ENERGY USE OF URBAN TRANSPORT AND BUILDINGS:
A New Combined Metric
Bruno Osório*, †, Nick McCullen*, Ian Walker† and David Coley*
* Department of Architecture and Civil Engineering; † Department of Psychology — University of Bath
email: ‡ b.osorio@bath.ac.uk

Introduction
To implement actions to reduce the negative effects of carbon-based energy consumption calls for a good method of measuring that energy. Prior research has always considered urban buildings and transport energy costs separately. A combined energy use metric is developed at a large scale to provide better understanding of energy consumption patterns. Because commuting plays such a substantial role in energy demand, the results show a direct relationship between lower per capita energy consumption and urbanised areas, demonstrating how energy efficient urban living is.

Background
• Urban areas have been growing continuously [1] leading to an increasing carbon-related energy consumption [2]
• The rise of CO₂ and other GHG emissions results in negative consequences: climate change, air pollution, and others
• Priority: implementing strategies to mitigate the effects of the negative outcomes
• Measuring energy consumption is essential to outline strategies
• An energy use metric enables us to identify consumption patterns

Methodology
• There is an advantage to combine the energy consumption of buildings and transport due to their interdependency [3], given that people move from homes to workplaces
• Energy metric: estimate of the buildings operational energy and the commuting transport carbon footprint
• Use of freely available and reliable data published by official governing bodies [4, 5]
• Use of Lower layer Super Output Area (LSOA) geographic level
• Applied a common unit of measurement: kgCO₂e

Combined metric
Figure 1: Energy consumption by LSOA per capita: (a) Total and (b) Buildings
• Lower per capita consumption is found in major urban areas
• Larger LSOA units generally show more energy use
• Observed a similarity between total energy and buildings alone
• Rural areas have significantly higher energy consumption

Transport analysis
Figure 2: (a) Commuting transport carbon footprint per capita; (b) Population density > 4500 prs/km²
• Relation: low transport footprint ⇔ high density areas
• Greater London: its better public transport system denotes lower per capita commuting transport energy
• Predominantly, urban areas are more energy efficient

Conclusions and future work
• Estimating energy consumption is important to provide information to design better mitigation policies
• Significant benefit from a combined energy use metric
• The simplicity of the new metric enables it to be reproduced for other regions
• Consumption patterns show that more densely populated areas have better energy efficiency [6]
• Future development: understand the relationship between energy consumption and urban characteristics

References