Influence of Tibial Component Position on Outcome after UKR

L.O.G. Murphy¹, E.C. Pegg¹, C.A.F. Dodd¹, H.G. Pandit¹, D.W. Murray¹

¹Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford

Introduction

Alignment and position of tibial component implantation and bearing thickness have been investigated as potential causes of pain and poor function of unicompartmental knee replacement (UKR), with significant tolerance to variation identified in tibial component angle and overhang.¹² The aim of this study was to identify the role of various surgical parameters in determining postoperative outcome.

Methods

Radiographs from 93 patients were analysed using semi-automated Active Shape Modelling, an example of the tibial fit generated shown in Fig. 2. The known size of the femoral component was used for calibration.

The parameters measured (Fig. 3) were normalised by tibial width and analysed using parametric testing, with the Pearson correlation coefficient calculated to assess the strength of correlations between them.

The Oxford Knee Score (OKS) was used to assess patient-reported outcome, with preoperative and at least 20 month postoperative scores compared to give a change in OKS, ΔOKS.

Intraclass correlation coefficients (ICCs) were generated to determine intra-observer and inter-observer reliability of the program analysis.

Results and Discussion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC</td>
<td>0.744</td>
<td>0.772</td>
<td>0.933</td>
<td>0.785</td>
<td>0.815</td>
<td>0.883</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC</td>
<td>0.893</td>
<td>0.955</td>
<td>0.906</td>
<td>0.794</td>
<td>0.820</td>
<td>0.831</td>
</tr>
</tbody>
</table>

High (>0.7) ICCs for all measured parameters suggests sufficient agreement to draw reliable conclusions from the data (Fig. 4).

The Oxford Knee Score (OKS) was used to assess patient-reported outcome, with preoperative and at least 20 month postoperative scores compared to give a change in OKS, ΔOKS.

Only the height of the tibial cut (C) was shown to correlate with ΔOKS (p=0.009), such that a deeper cut was associated with a greater change in OKS (Fig. 5). However, there was no correlation with absolute post-operative OKS.

Bearing thickness was inversely related to both resection depth (p=0.09) and OKS (p=0.07) but neither was significant.

Conclusions

The results suggest that the lower the horizontal cut relative to the lateral tibial plateau the greater the improvement in function. However, there was no significant difference between bearing thickness and outcome, with a trend towards thin bearings doing better. This suggests that it is not the amount of bone removed that improves outcome, but rather the presence of tibia vara. Previous data has shown that tibia vara does improve outcome, so this is not a new finding, but it does confirm that tibia vara is not a contraindication for unicompartmental knee replacement.

Fig. 2. Tibial fit of model

Fig. 3. Measured tibial parameters.

Fig. 4. Measured intra-observer and inter-observer ICCs for parameters A-F.

Fig. 5. Correlation between resection depth and ΔOKS.