Citation for published version:
Pegg, E, Pandit, H, Dodd, CAF, Murray, D & Gill, H 2012, 'An Active Shape Modelling Based Tool for Semi-Automated Xray Assessment' Orthopaedic Research Society Annual Meeting, San Francisco, USA United States, 4/02/12 - 7/02/12.

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
An Active Shape Modeling Based Tool for Semi-automated Xray Assessment

1Pegg, EC; 1,2Pandit, H; 3Dodd, CAF; 1,2Murray, DW; 1Gill, HS

1 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
2 NIHR BRU, Nuffield Orthopaedic Centre and University of Oxford
3 Nuffield Orthopaedic Centre

OBJECTIVES
- Develop an active shape modeling tool to identify features in radiographs and take measurements
- Assess the reliability and accuracy of the measurements compared to standard manual measurements.

METHODOLOGY

Training the Model

Thirty-six post-operative radiographs of implanted Oxford Unicompartmental Knee tibial trays were used to train the model applying the methodology detailed by Cootes et al. [1]. Points outlining the tibia (n=64) and tray (n=53) were selected for each image (Figure 1), 20 further points were interpolated between each point couple. Shapes from each image were aligned using the Procrustes method, (Equations 1-3) and principal component analysis performed on the shapes and surrounding greyscale values.

\[
\begin{align*}
\text{Translation} & = \frac{1}{N} \sum_{i=1}^{N} x_i \\
\text{Rotation} & = \frac{1}{N} \sum_{i=1}^{N} \tan^{-1} \left( \frac{y_i - y_0}{x_i - x_0} \right) \\
\text{Scale} & = \frac{1}{\text{TibialWidth}}
\end{align*}
\]

Measurements

The measurements which were taken of the tibial tray are summarised in figure 3. (1) is the angle of the tray to the horizontal. (2) is the distance the tray overlaps the edge of the bone. (3) is the size of the tray. (4) is the distance from the sagittal cut to the mechanical axis. (5) is the resection level and (6) is the width of the tray. The same measurements were taken manually and using the ASM 4 times each to allow assessment of the intra-observer reliability.

Application of the Model

Prior to application the user could flip/invert the radiograph and rotate/resize the average shape and then select a starting position. Once the model was applied, 40 iterations were used and at each application the program calculated the pixel profiles for the current points and then moved the point to a new location which minimised the Mahalanobis distance. Once the shape was found, the mechanical axis of the tibia was determined; the image was then rotated to be in line with the axis and cropped to the proximal tibia. The scale of the image was identified by fitting a circle to the spherical portion of the femoral component, which was a known size (Figure 2).

RESULTS

The ICC results were on average 27% higher for all the ASM datasets compared to the manual data and this difference was significantly significant (Mann-Whitney t-test, p=0.018, Figure 4). A good correlation was observed between the measurement values of the ASM compared with the manual measurements for all parameters with the exception of the degree of tray overhang (Table 1).

CONCLUSION

The ASM measurement technique enabled measurement of radiographs with reduced labour, equivalent accuracy and improved reliability for all parameters, with the exception of the tray overhang. This is a promising result and with further optimisation of the algorithm it is hoped and this technique could prove useful for quick analysis of radiographs [1].

ACKNOWLEDGEMENTS

We would like to thank Gabriella Salmon, Stephen Mellon and Abtin Alvand for trialling the software and Barbara Marks for all her help with this study.

Figure 1: Example landmark points chosen to represent the shape of the tibia and tibial tray.

Figure 2: Illustration of three radiographs before, and after application of the ASM.

Figure 3: Summary of the measurements taken from the post-operative radiographs.

Figure 4: Intra-observer ICC results of different measurements parameters using the ASM and manual measurement method.

Table 1: Paired t-test results comparing ASM measured data to manual measurements.

<table>
<thead>
<tr>
<th>Measured Parameter</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tray angle</td>
<td>0.6590</td>
</tr>
<tr>
<td>Tray overhang</td>
<td>0.001*</td>
</tr>
<tr>
<td>Size tray</td>
<td>0.5390</td>
</tr>
<tr>
<td>Sagittal cut position</td>
<td>0.9630</td>
</tr>
<tr>
<td>Resection level</td>
<td>0.2950</td>
</tr>
<tr>
<td>Tibial width</td>
<td>0.8550</td>
</tr>
<tr>
<td>Pixel size</td>
<td>0.0820</td>
</tr>
</tbody>
</table>