Objectives:
This study identified the difference in energy expenditure and substrate utilization of patients during and upon liberation from mechanical ventilation.

Methods:
Patients under intensive care who were diagnosed with septic shock and mechanical ventilation-dependent were recruited. Indirect calorimetry measurements were performed during and upon liberation from mechanical ventilation.

Results:
Thirty-five patients were recruited (20 males and 15 females; mean age 69 ±10 years). Measured energy expenditures during ventilation and upon liberation were 2090 ±489 kcal·d⁻¹ and 1910 ±579 kcal·d⁻¹, respectively (p<0.05). Energy intake was provided at 1148 ±495 kcal·d⁻¹ and differed significantly from all measured energy expenditures (p<0.05). Mean carbohydrate utilization was 0.17 ±0.09 g·min⁻¹ when patients were on mechanical ventilation compared to 0.14 ±0.08 g·min⁻¹ upon liberation (p>0.05). Mean lipid oxidation was 0.08 ±0.05 g·min⁻¹ during and 0.09±0.07 g·min⁻¹ upon liberation from mechanical ventilation (p>0.05).

Conclusions:
Measured energy expenditure was higher during than upon liberation from mechanical ventilation. This could be the increase in work of breathing from the continuous positive pressure support, repeated weaning cycles from mechanical ventilation and/or the asynchronization between patients’ respiration and ventilator support. Future studies should examine whether more appropriately matching energy expenditure with energy intake would promote positive health outcomes.
Introduction

Critically ill populations are especially susceptible to malnutrition due to their hypermetabolic state combined with suboptimal nutrition support. Sepsis is a complex and progressive physiological stress response to infection among patients, involving multiple organs and high mortality rate. The related stress response changes energy expenditure and can differ during various stages of sepsis (i.e. highest in complicated sepsis but similar to healthy individuals in septic shock).

Energy expenditure is positively related to the duration of sepsis and substrate utilization can also be altered during such critical illness. In addition to the clinical condition per se, treatment with mechanical ventilation support has the capacity to increase a patient’s energy expenditure. This observation is particularly apparent amongst patients on partial pressure support, which requires increased work of breathing to reach the sensitivity threshold that triggers the ventilator to complete the respiration.

In this study, the focus was the change in energy expenditure during liberation, defined as cessation of any pressure support from the ventilator. A common technique in intensive care unit is to gradually liberate patients from mechanical ventilation using a repeated “work” and “rest” cycle. This cycle allows respiratory muscles to rest adequately with partial pressure support from the ventilator so that atrophied respiratory muscles may be strengthened and self-breathing can begin in a less fatigue state. However, there is evidence that energy expenditure may gradually elevate through each “work” and “rest” cycle. Based on the available evidence, we hypothesized that energy expenditure would vary over time in the process of weaning from mechanical ventilation to the fully liberated state when pressure support from the ventilator is entirely withdrawn.
I. Methodology

This study complied with the 2013 version of the Declaration of Helsinki and approval was obtained from the ethics committee of the Kowloon East Cluster hospitals, Hospital Authority, Hong Kong SAR (approval reference: KC/KE-09-0107/ER-2).

Participant Recruitment

Patients aged 18 and above who were admitted into the intensive care unit with initial diagnosis of septic shock and mechanical ventilation dependent were recruited. Patients must have been hemodynamically stable at the time of indirect calorimetry measurement. Patients with significant post-operative bleeding, major pulmonary complications, under isolation protocol and/or with comfort care directives were excluded.

The stature of patients was measured from the crown to the bottom of their feet in the supine position using a measuring tape. Body mass was obtained from either past records, next of kin or by calculating the ideal body weight. Length of stay, duration on ventilator and APACHEII were collected (Table 1).

Indirect Calorimetry

CCM Express was selected for indirect calorimetric measurement in this study. The connecting circuitry is composed of a DirectConnect™ volume-measuring flow sensor and umbilical, which connects to the terminal and all expiratory gas from patients directed through DirectConnect™. A face-mask and canopy were not options for measuring devices as patients had either tracheostomy or endotracheal tube insertion.

A system calibration on CCM Express is performed according to American Thoracic Society recommendation using a 3-liter syringe for volume calibration. A designated volume of air is introduced by the syringe into the
flow sensor several times at different flow rates in three separate trials. CCM Express utilizes an external gas calibration device for calibration with two gases; reference gas (21% of gas volume oxygen and nitrogen typical of atmospheric composition) and calibration gas (12% oxygen, 5% carbon dioxide and nitrogen similar to atmospheric composition). An auto-calibration which includes correcting continuous bias flow was also performed. Bias flow minimizes the work of breathing by allowing the patient to tap into a continuous gas flow rather than initiate flow through a delivery circuit. The system is able to differentiate between gas delivery to the patient’s lungs and gas continuously flowing through the circuit. Measurements from indirect calorimetry were deemed valid once steady state can be achieved by the patients.

Nutrition support
Nutrition support was the provision of formulated enteral or parenteral nutrients to appropriate patients for maintaining or restoring nutrition balance. It was provided to this cohort through either tube feedings or oral diets. The route of tube feedings was either nasal gastric, nasal jejunal tube or jejunostomy. The rate of feeding was controlled by electric feeding pumps that dispensed feeding continuously at a fixed rate. All feeding regimens remained unchanged pre- and post-indirect calorimetry measurement. Tube feedings were withheld 4 hours prior to indirect calorimetry measurement in order to minimize the influence from thermogenesis of food.

Patients Care-Specific Measurement Protocols
Indirect calorimetry measurements only commenced after 90 minutes following procedures such as bathing, turning, physiotherapy, change of ventilator setting, change of dosage of sedatives or inotropes or hemodialysis with possibility of excess accumulation of bicarbonate in the blood. Physicians also gradually tapered the level of sedation with a decreased level of ventilator support. Energy expenditure was measured once during a stable
ventilator setting (Pre-MEE). It was measured again after 90 minutes of
liberation or cessation of pressure support from mechanical ventilation (Post-
MEE). The results were deemed valid when the patient did not require
reintubation for at least the following 12 hours.

Automatic Tube Compensation Protocol

Patients were often mechanically ventilated either by tracheostomy or
endotracheal-tube to create an external airway to the lungs. The endotracheal-
tube was used for short-term ventilator support and removed when the patients
are able to wean themselves off mechanical ventilation. The direct connection
of the endotracheal tube to the circuitry of the indirect calorimetry for
measurement is then no longer available. Hence, a specific protocol was
developed to accommodate the measurement for patients who utilized
endotracheal tube for mechanical ventilation. Automatic Tube Compensation
(ATC) mode in mechanical ventilators relieves the pressure imposed by the
endotracheal-tube inside the airway and its subsequent impact on work of
breathing. This ATC protocol allowed the cohort to retain the endotracheal
tube for connecting to the indirect calorimeter circuitry. The setting of the
ventilator was adjusted to supply only oxygen without pressure support to
simulate self-breathing\(^\text{16}\). Indirect calorimetric measurements were performed
after 90 minutes of cessation of pressure support for proper acclimatization
and patients were then extubated after the measurement. Data were again
deemed valid when patients did not require reintubation for the next 12 hours.

Modification In Resting Energy Expenditure and Substrate Utilization

Calculation

The indirect calorimeter automatically determined the concentration of oxygen
consumed and carbon dioxide produced by patients and data were converted
into energy expenditure (kcal·d\(^{-1}\))\(^\text{14}\) with carbohydrate utilization and lipid
oxidation were then determined based on the respiratory exchange ratio\(^\text{13}\).
Urinary nitrogen was not collected in this cohort because of practical
limitations in laboratory capacity. Research indicated that there was only 1% of error for every 12.3% of total calories metabolized from protein and thus, the equation could be simplified by excluding urinary nitrogen14.

\[(3.914 \cdot \text{VO}_2 \text{ L min}^{-1}) + (1.106 \cdot \text{VCO}_2 \text{ L min}^{-1}) (2.17 \cdot n \text{ gm min}^{-1}) \cdot 1400 \text{min day}^{-1} \]

Statistical Analysis

All statistical analysis was performed by EXCEL 2010 version 12.0 (Microsoft Inc.). Mean values and standard deviation were used to express descriptive statistics. Paired-t tests were used to examine mean differences between during and following liberation from mechanical ventilation in energy expenditure (pre-MEE vs post-MEE), actual energy consumption (KCAL), oxygen consumption (V_{O_2}), carbon dioxide production (V_{CO_2}) and substrate oxidation. Spearman’s correlation coefficient was used to assess the relationship among variables and significance accepted at $p \leq 0.05$. Only correlations with ‘good’ agreement (i.e $r \geq 0.7$) were reported. Variability of data was expressed as standard deviation.

Results

There were originally 37 patients in the cohort and 2 patients terminated their indirect calorimetry measurements prematurely due to post-operative seizures, persistent restlessness and/or irritation during measurement. Thirty-three patients received actual calories from tube feeding, one patient did not receive any nutrition support and the remaining one was on oral diet during entire study period. Disease conditions of the cohort included:

- Central Nervous System (CNS) Infection
- Status epilepticus with sepsis
- Acute cholecystitis
- Type I respiratory failure and septic shock
- Herpes encephalitis
- Hospital-acquired pneumonia
- Pancreatitis and septic shock
- Urosepsis
- Perforated Peptic Ulcer
- Community-acquired pneumonia
- Parapharyngeal abscess and pneumonia
- Retropharyngeal abscess
- Liver abscess
- Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia
- Neck abscess, right pneumothorax
- Pancreatitis with retroperitoneal collection
- Sepsis
- Septic shock and acute renal failure
- Appendicitis and gangrene
- Cholangitis, septic shock and multi-organ failure (MOF)
- Ischemic gangrenous large bowel
- Brochopneumonia
- Acute cholecystitis with liver abscess and septic shock
- Necrotizing fasciitis, septic shock with amputation
- Severe Community-acquired pneumonia
- Necrotizing fasciitis
- Hip implant infection
- Severe pneumonia with respiratory failure
- Klesbsiella septicemia with meningitis
- Retropharyngeal abscess
- Acute cholecystitis with pneumonia
- Necrotizing fasciitis with septic shock

Measured energy expenditure, actual calories received, oxygen consumption
and carbon dioxide production during and upon liberation from mechanical ventilation were all statistically different (Table 2). Measured energy expenditure during mechanical ventilation was 9% higher than without (Figure 1) and the difference was statistically significant (Table 2). The range of PREMEE was 1299 to 3115 kilocalories and POSTMEE was 882 to 3290 kilocalories (Figure 2). The actual calories received met 55% of measured energy expenditure during ventilatory support and 59% upon liberation from ventilators (Figure 1). Furthermore, 94% (n=33) of patients during mechanical ventilation and 77% (n=27) of them upon liberation from ventilator support received actual calories that were less than their measured energy expenditures.

Mean respiratory exchange ratio (mean values of individual patient) shown in Figure 3 was higher during than upon liberation from mechanical ventilation but it was not statistically different (Table 2). The range of respiratory exchange ratios during mechanical ventilation was 0.74 to 1.32 and without ventilatory support was 0.66 to 1.22 (Figure 3).

The cohort showed 11% higher oxygen consumption (Figure 4) during than upon liberation from mechanical ventilation (Table 2). The minimum oxygen consumption during mechanical ventilation was 0.180 l/min and maximum was 0.478 l/min, whereas without ventilatory support the range was 0.128 l/min to 0.514 l/min. Mean carbon dioxide production was 13% higher during mechanical ventilation than without ventilatory support (Table 2). Carbon dioxide production in patients on mechanical ventilation ranged from 0.184 l/min to 0.406 l/min and upon liberation from mechanical ventilation was 0.113 l/min to 0.365 l/min (Figure 5).

Figure 6 illustrates substrate utilization among the cohort. Carbohydrate utilization during mechanical ventilation was 238% of lipid oxidation whereas it was 167% upon liberation from ventilator support. Minimum carbohydrate
utilization was 0.05 g/min and maximum was 0.49 g/min during mechanical
ventilation and 0.00 g/min to 0.38 g/min upon liberation from ventilation
(Figure 7). Minimum lipid oxidation was 0.00 g/min and maximum was 0.20
g/min during mechanical ventilation and 0.00 g/min to 0.25 g/min upon
liberation from ventilation (Figure 8).

The Spearman correlation coefficients (Table 3) demonstrated strong positive
relationship in which elevated oxygen production was observed with an
increase in lipid utilization \((r =0.74)\) both during and upon liberation from
mechanical ventilation \((r=0.82)\). Similar correlation was found in carbon
dioxide production that also increased with higher lipid utilization upon
liberation from mechanical ventilation \((r=0.91)\). Furthermore, the correlation
was moderately strong in higher actual calories received with longer duration
of mechanical ventilation support \((r=0.55)\) and length of stay \((r=0.41)\).

Discussion

Healthy people seldom realize the effort to breathe because it is a normal
mechanical process and requires minimal metabolic effort in healthy
individuals. Respiratory muscles including diaphragm and intercostal muscles
between the ribcage are actively engaged in the ventilation mechanism and
diaphragmatic fatigue contributes to respiratory failure. The positive
relationship between use of various mode of mechanical ventilation including
total and partial pressure support and rate of diaphragmatic atrophy has been
identified among critically ill patients\(^{15,44}\) and the current study documents
changes in energy expenditure when liberated from mechanical ventilation.
The current cohort exhibited significant negative energy balance both during
and upon liberation from mechanical ventilation. Underfeeding is common\(^4\) in
intensive care because of conservative practice and frequent interruption by
complications, procedures and examinations. A structured nutrition support
protocol or algorithm could provide guidance for clinicians to prescribe
nutrition support appropriately, heighten clinicians’ awareness to minimize
negative energy balance and reduce potential cumulative energy deficit with prolonged patients’ length of stay.

In the present study, the absolute mass of carbohydrate utilized was higher than lipids oxidized with and without mechanical ventilation, so carbohydrate metabolism undoubtedly plays an important role among critically ill patients. However, when considering substrate selection data collected in this population, factors such as disruption in heart rate and adjustment of ventilator setting should be considered as these can alter minute ventilation and temporarily influence carbon dioxide production which can lead to errors. Similar to high-intensity exercise, potentially high rates of glycolytic flux and glycogenolysis during critical illness can confound standard estimates based on exclusive oxidation of glucose.

The limitation of using critically ill patients in clinical trials remains difficult and requires a lot of technical considerations because of the heterogeneous nature of the cohort. Recruitment criteria of critically ill patients in most studies are usually by location and seldom a specific disease and there are clinical conditions to the formation of syndromes rather than well-defined diagnosis. Moreover, patients whose disease progression warrants admission to the intensive care can be in their late and more severe stages. Nonetheless, increased understanding of the risk factors of selected conditions and limitations of the clinical syndrome will allow appropriate patients to be selected for specific trials.

Additional challenges and limitation in this study include variability in sedation management and body mass. Firstly, sedation prescription was protocol-driven and levels of sedation were similar among the cohort and throughout the study; the lower level of sedation upon weaning from mechanical ventilation in this study cannot therefore account for higher energy
expenditure than during ventilatory support. In terms of metabolically active muscle mass, this can directly predict energy expenditure yet could not be directly ascertained or assumed stable in this study due to the addition/removal of resuscitation fluid and/or loss of muscle mass with prolong total bed rest. Finally, duration in intensive care represents a major confounding variable given that caloric intake was positively associated with how long a patient remained on the ward. The length of stay in intensive care was longer than duration on mechanical ventilation because patients would usually be weaned from mechanical ventilation prior to transfer to general care wards (Table 1).

Conclusion

This study provides novel insight regarding the metabolic profile of critically ill patients during mechanical ventilation and in the transition towards liberation. The observed responses in patients’ respiration and ventilatory cycles hold potential implications for nutritional support with a view to improved clinical outcomes. The economic benefits of accurate metabolic profiling amongst critically ill populations can bring positive impact on healthcare savings and should form the focus of future studies.
References

