Visible light promoted photocatalytic water oxidations were conducted with a synthesized iron oxide nanoparticulate catalyst together with a [Ru(bpy)]$_3^{2+}$ light harvesting dye and electron acceptor. With highest intensity set at daylight equivalent levels, the effects of fluctuating illumination upon ongoing reactions were studied and gaseous O$_2$ and proton production measured. A light oscillation cycle was identified that significantly increased reaction TOF and quantum yields, which is suggested to arise from improvements in synchronization of the cyclic reaction steps and minimization of light sensitizer self-decomposition.

In tandem with solar photovoltaics, the capture and storage of energy in the form of convenient, inexpensive fuels is an essential goal but remains technically elusive. The design of solar-fuel generation systems with the required efficiency, scalability, and sustainability to be economically viable has clear benefits. Artificial photosynthesis utilizing processes that are akin to Photosystem II (PSII) water oxidation is a vital step towards linking with development of Photosystem I (PSI)-like systems for the complete water splitting reaction and generation of liquid solar fuels.$^{1-3}$

Water oxidation typically utilizes the photocycling light absorbing dye [Ru(bpy)$_3$]$^{2+}$.4 The MLCT visible absorption region of the [Ru(bpy)$_3$]$^{2+}$ light sensitizer ranges from \sim420-540nm (λ_{max} 454nm) (Fig. 1 inset), hence shorter wavelength visible light is effective in promotion of ruthenium d orbital e$^-$ onto orbitals associated with a bipyridine ligand to give an excited state Ru(bpy)$_3^{3+}$.4

An electron acceptor (Co(NH$_3$)$_5$Cl)$_3^-$ quenches the excited state [Ru(bpy)$_3$]$^{2+}$, giving [Ru(bpy)$_3$]$^{3+}$.5 An electron donated from a metal oxide catalyst restores the stable [Ru(bpy)$_3$]$^{2+}$ state, and absorbed water is oxidized on the metal oxide surface with the release of O$_2$ gas and protons.5 In total, 4 photons generate 4 protons and an O$_2$ molecule.$^5, 7, 8$

$$2\text{H}_2\text{O} + 4\text{hv} \rightarrow \text{O}_2 \uparrow + 4\text{H}^+ \text{ (to buffer)} + 4\text{e}^- \text{ (to electron acceptor)}$$

Previously we have investigated the effect of catalyst composition and a range of daylight equivalent light intensities at constant levels over a reaction lifetime.9 Natural daylight intensity levels vary due cloud cover, diurnal, seasonal and other factors and one aim of this research was determine any effect of fluctuating light intensity upon an ongoing reaction profile and yields.

A nanoparticulate iron oxide was prepared as an earth abundant non-toxic catalyst component of the photocatalysis reaction.$^{10, 11}$ The oxide was prepared by simple short and moderate temperature calcining methodology utilizing the natural polymer xyloglucan.12 This acts as a sacrificial agent to limit particle size during the heating process (catalyst synthesis is described in the ESI†). Powder XRD showed the catalyst to be near pure α-Fe$_2$O$_3$ (JCPDS 01-081, maghemite) together with a trace of γ-Fe$_2$O$_3$ (JCPDS 024-081, maghemite). TEM showed the presence of irregular nanoparticles of \sim10-100nm in dimension, EDX showed presence of Fe and O only (Fig. S1a-c, ESI†). Braunauer-Emmett-Teller (BET) N$_2$ adsorption surface area was measured as 36.3m2/g, with calculated average particle size of \sim30nm. Solid state UV-vis spectroscopy of the Fe$_2$O$_3$ was measured and Tauc plots indicated direct and indirect band gaps of 2.02 and 1.88eV respectively (Fig. S2a-c, ESI†). Nanoparticulate hematite has a reported direct band gap of \sim2.2eV, the presence of trace levels of γ-Fe$_2$O$_3$ may promote the red-shift in band-gaps observed.13

In-situ realtime measurement of O$_2$ released into the flask headspace by an accurate optical sensor system and proton generation by pH probe measurement was undertaken.$^9, 14$ A RGB led light was capable of cyclic output and also pure colour led’s were utilized as light sources. Measurements were made in triplicate with representative yield profiles shown, full experimental and instrumentation details are described in the ESI†.

![Fig. 1. Graph of RGB led light emissions generated in cyclic colour mode. The blue output was used for continuous light reactions. Yellow/orange through to red light lies at the upper edge or outside the absorption region of [Ru(bpy)$_3$]$^{2+}$. Inset shows absorption spectrum of [Ru(bpy)$_3$]$^{2+}$.](image-url)
Photocatalytic water oxidations of 60 min duration were initially conducted using a standard blue led (λ_{max} 455nm) source with measured light intensity at the stirred reaction flask at a daylight equivalent level of 5mWcm⁻². This was then compared to reactions conducted with the led source set to a colour spectrum cycle of 25, 50 or 100s duration repeated for 60min which generated violet through to red including white by mixing of the RGB led sources. Fig. 1 shows the measured RGB wavelengths and relative intensities.

Fig. 2 shows the actual fluctuating light intensity received at the reaction flask of between 0 to 3.3mWcm⁻² (average of 3.3mWcm⁻²) over the [Ru(bpy)]³⁺ absorption region, using a 50s repeat cycle. Finally, comparison was made to a light source using pure colour λ_{max} 410, 450 and 500nm led sources giving a combined continuous illumination of 400-540nm, to test effects of full saturation of the [Ru(bpy)]³⁺ absorption region (Fig. S3, ESI†).

Comparison of measured O₂ yields and reaction rates showed that 50s cycle gave highest O₂ yield and reaction rate compared to a 25s and 100s lighting cycle (Fig. S4, ESI†). As the repeating 50 second duration fluctuating cycle was in the optimal zone it was used for further comparison to continuous illumination reactions.

Fig. 3 shows gaseous O₂ generation for 60 min photoreactions using the reagent mixture in stirred N₂ degassed acetate buffer. Yield profiles for differing lighting conditions including red light as a non-light absorbing control system are shown. Significantly the 50s cyclic fluctuating illumination gave a ~30% increased O₂ yield compared to 5mWcm⁻² blue light (Fig. 3a,b). This is despite the overall average illumination being ~30% reduced compared to the continuous blue illumination. Saturation of the absorption region with combined led sources gave further reduced yields compared to both the 50s cyclic and blue sources (Fig. 3c). Red light (together with a low level of ambient light of intensity 0.1-0.2mWcm⁻²) produced almost no reaction (Fig. 3d). Increase in pH due to capture of electrons from Ru-bpy bonding orbitals in the excited state by the pentamine cobalt acceptor and its subsequent decomposition liberating ammonia corresponds to measured O₂ generation profiles (Fig. 3).⁵

To establish if lighting effects are replicated using an alternative system, the photocatalyzed water oxidation was repeated using a commercial Co₃O₄ nanoparticle powder as catalyst, Co₃O₄ is known to be an effective catalyst for water oxidations.¹⁵ Reactions using the 50s cyclic light were compared...
to continuous 5mWcm-2 blue illumination, an increase in O\textsubscript{2} yield of ~35% combined with increased TOF was obtained with 50s cyclic illumination (Fig. S5, ESI†).

The half water splitting reaction is oxidative and thus reagents, in particular organic components are subject to degradation. Cessation of the photocatalytic reaction, which begins after 20-30 min is due to gradual exhaustion of the electron acceptor and also increasing decomposition of the [Ru(bpy)\textsubscript{3}]2+ dye. In this photoaquation process bipyridine ligands are displaced from the ruthenium and can be observed to form a breakdown product which accumulates as a low solubility dark coloured tar like deposit on the flask surface. Mixture composition is believed to be bipyridine and hydroxylated derivatives of Ru(bpy)\textsubscript{3}Cl\textsubscript{2}.

Table 1. Maximum net O\textsubscript{2} generated, calculated TOFs (TOF as mol O\textsubscript{2} per sec per mol (active) metal). Quantum yield \(\phi_{O_2} \% = \frac{O_2 \text{produced at } t = T_{max \text{ at } 40 \text{min}}}{\text{photons absorbed at } t = 40 \text{ min} \times 400\% (4 \text{ photons absorbed per O}_2)} \times \text{Quantum Yield} \times \frac{1}{\text{m}^2 \text{g}^{-1}} \alpha-Fe_{2}O_{3} = 36.3, \text{Co}_3\text{O}_4 = 35.8. \text{(see Fig.2). (Example calculations are shown in the ESI).}

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Light Source (nm)</th>
<th>O\textsubscript{2} yield (at t=40min)</th>
<th>TOF\textsubscript{max} (t = 0-10min)</th>
<th>(\phi_{O_2} % \text{ at t=40min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha-Fe_{2}O_{3})</td>
<td>cyclic(50s)</td>
<td>108</td>
<td>7.667</td>
<td>45.6</td>
</tr>
<tr>
<td>(\alpha-Fe_{2}O_{3})</td>
<td>cyclic(25s)</td>
<td>69</td>
<td>3.994</td>
<td>29.1</td>
</tr>
<tr>
<td>(\alpha-Fe_{2}O_{3})</td>
<td>cyclic(100s)</td>
<td>55</td>
<td>2.394</td>
<td>23.2</td>
</tr>
<tr>
<td>(\alpha-Fe_{2}O_{3})</td>
<td>455</td>
<td>79</td>
<td>4.792</td>
<td>22.0</td>
</tr>
<tr>
<td>(\alpha-Fe_{2}O_{3})</td>
<td>400-540</td>
<td>62</td>
<td>3.195</td>
<td>17.3</td>
</tr>
<tr>
<td>(\alpha-Fe_{2}O_{3})</td>
<td>630</td>
<td>20</td>
<td>0.7987</td>
<td>5.58</td>
</tr>
<tr>
<td>(\text{Co}_3\text{O}_4)</td>
<td>cyclic(50s)</td>
<td>117</td>
<td>10.44</td>
<td>49.4</td>
</tr>
<tr>
<td>(\text{Co}_3\text{O}_4)</td>
<td>455</td>
<td>75</td>
<td>5.622</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Therefore photocatalysis continued more efficiently for a sustained period, notably the drop away in reaction rate was observed to be offset for ~10min with cyclic illumination (Fig. 3a).

Conclusions

[Ru(bpy)\textsubscript{3}]2+ has been extensively employed as the light harvester for photocatalytic water oxidations and is by far the most costly component of the reagent mixture. Thus any improvement of reaction efficiency with reduced sensitizer degradation is of interest. Furthermore, low cost abundant metal oxide catalysts with moderate surface area could be used effectively in these reactions as their activity, in terms of both reaction rate and duration, was enhanced by controlled lighting. We have recently investigated substitution of irreversible electron acceptor with an electron mediator.20 A long term aim is the combining of these improvements for application and eventual implementation of water oxidation for storable solar fuels.

For this study the main mechanism for the enhanced yields is suggested to be from improved synchronization of the photocyclic reaction steps, which includes reduction in light sensitizer decomposition, balanced with maintaining the ongoing photoreaction with sufficient light influx. For use with natural sunlight, an oscillating prism system can be envisaged to deliver the optimized fluctuating light intensity onto a reaction vessel.

[Ru(bpy)\textsubscript{3}]2+ is also increasingly being employed as photoredox agent in e.g. organic catalysis,21-23 photopharmacology,24 natural product synthesis,25 and biochemical couplings such as C-S click reactions.26 Thus effects of light source in terms of both wavelength and continuous versus fluctuating intensity has implications for these wider uses. Our further studies will include a detailed comparative study of light sensitizer decomposition rate and composition.
using spectroscopic analysis together with optimization of the cyclic illumination, including use with non-rare earth e.g. Zn-porphyrin light sensitizers.

Notes and references
We thank V.P. Ting and H. Doan UoBristol for assistance with BET analysis. DW and MTW acknowledge funding from a UoBath Faculty of Science departmental grant. S.R.H., J.P. and J.W. acknowledge the Engineering and Physical Sciences Research Council [EPSRC], UK (grant EP/G036780/1) and the Bristol Centre for Functional Nanomaterials for project funding.

25. T. P. Nicholls, D. Leonori and A. C. Bissember, Natural Product Reports, 2016, DOI: 10.1039/C6NP00070C.