Modelling Porous Ferroelectrics to Assess Piezoelectric Energy Harvesting Capabilities

J. I. Roscow, R. W. C. Lewis and C. R. Bowen. Email: j.i.Roscow@bath.ac.uk

Aim: To evaluate the effect of porosity and porous structure on the energy harvesting capabilities of ferroelectric ceramics using a Finite Element Modelling approach.

Context
Porous piezoelectric ceramics are of interest for energy harvesting applications due to porosity causing significant reductions in permittivity, ε_{33}, compared with relatively small reductions in longitudinal strain coefficient, d_{33}, leading to increases in energy harvesting figures of merit, where $FOM_{33} = d_{33}^2 / \varepsilon_{33}$ [1]. The development of an FE Model will allow different porous structures to be evaluated for their energy harvesting capabilities.

Pre- and Post-Poling Porous BaTiO$_3$ network

(a) 303 cells randomly designated material properties of either unpoled BaTiO$_3$ (blue) or air (empty), depending on density defined for run and (b) post-poling procedure with poled (red) and unpoled BaTiO$_3$ (blue) and air (empty). BaTiO$_3$ elements are poled when local E-field exceeds coercive field.

![Pre- and Post-Poling Porous BaTiO$_3$ network](image)

Fig. 1: Flow diagram of modelling process used to generate randomly distributed porosity with piezoelectric ceramic (adapted from [2])

Initial Results

![Initial Results](image)

Fig. 3: FE model data (blue) compared to experimental data BaTiO$_3$ (red) for (a) d_{33}, (b) relative permittivity and (c) FOM_{33}, all plotted as a function of relative density. Experimental data measured from BaTiO$_3$ ceramics with range of porosities obtained using the burned out polymer spheres (BURPS) process.

Discussion & Outlook
- Want to bring model and experimental data closer together
 - More accurate input data required
- Use model to investigate EH capabilities of different structures/ connectivities
 - Currently, only randomly distributed porosity (3-0/3-3) generated
 - Structure has effect on key properties, i.e. d_{33}, ε_{33} and S^0_{33} (elastic compliance)

Acknowledgement
The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS).

References