Modelling ion motion in perovskite films

Simon E. J. O’Kane1, Jamie M. Foster2, James M. Cave1, Nicola Courtier3, Giles Richardson3 and Alison B. Walker1

1Department of Physics, University of Bath, BA2 7AY, United Kingdom
2Department of Mathematics, University of Portsmouth, PO1 2UP, United Kingdom
3Department of Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom

Contact: S.E.J.O’Kane@bath.ac.uk, G.Richardson@soton.ac.uk, A.B.Walker@bath.ac.uk

Motivation
In previous work [1], we have used an asymptotic approximation to solve the drift-diffusion equations for ion motion in perovskite films, while others have used finite difference methods. Here, we test the suitability of two different numerical methods - finite difference and spectral - for this challenging problem.

Two of the best methods available in MATLAB for solving partial differential equations, such as the time-dependent drift-diffusion equations, are the built-in function PDEPE and the open-source additional module Chebfun [2].

PDEPE is a finite-difference method that solves the equations on a user-defined mesh with adaptive time step.

Chebfun is a spectral method that solves equations with a spectrum of functions (in this case Chebyshev polynomials) and therefore does not use a mesh. Instead, the user defines the time steps.

Conclusions
1. The spectral method Chebfun can solve the problem for average ion density of up to $3.2 \times 10^{18} \text{cm}^{-3}$ using 5000 time steps
2. Finite difference method is also suitable but sub-nanometre spatial resolution is required to resolve the thin charge accumulation layers correctly
3. Unlike the asymptotic approximation, numerical methods can be used to create a fully coupled model that accounts for the electrostatic effect of electrons and holes. This is very challenging but some preliminary results have been obtained.

Motivation

<table>
<thead>
<tr>
<th>PDEPE</th>
<th>Chebfun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast (when it works)</td>
<td>When solution found, it is very accurate</td>
</tr>
<tr>
<td>Automatic time stepping</td>
<td>High spatial resolution (no mesh)</td>
</tr>
<tr>
<td>Suitable for very large ion densities (~10^{19}cm^{-3})</td>
<td>Can work with internal boundary conditions</td>
</tr>
<tr>
<td>Inaccurate if insufficient spatial resolution used</td>
<td>Can be slow</td>
</tr>
<tr>
<td>Cannot deal with internal boundaries</td>
<td>Careful choice of time step required</td>
</tr>
<tr>
<td>Struggles with very large ion densities (>3.5x10^{18}cm^{-3})</td>
<td>Struggles with very large ion densities</td>
</tr>
</tbody>
</table>

Table 1: Advantages and disadvantages of the PDEPE and Chebfun methods.

References