Increased carboxylate production in high-rate activated A-sludge by forward osmosis thickening

Cagnetta, C., a, b; D’Haese, A., b; Coma, M., a, c; Props R., a; Buysschaert B., a; Verliefde, A.R.D., b & Rabaey, K., a, *

a Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium

b Particle and Interfacial Technology Group (PaInT), Ghent University, Coupure Links 653, B-9000 Gent, Belgium

c Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom

*Corresponding author:

Prof. Dr. Ir. Korneel Rabaey

Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering; Coupure Links 653, 9000 Ghent, Belgium. Tel. +32 9 264 5976; Mob. +32 468 118476; Fax. +32 9 264 6248; Korneel.rabaey@ugent.be; http://cmet.ugent.be
Abstract

Domestic wastewater represents a considerable feedstock for organics but the high dilution makes their recovery typically unsuccessful. Here we investigated three routes to 10-fold concentrate the organics using Forward Osmosis (FO) (Draw solution (DS) 2.2 M MgCl₂): directly on domestic wastewater, A-sludge, or secondary sludge, with the end goal of increasing volatile fatty acid (VFA) yield from subsequent 9-day fermentation tests. Forward osmosis concentrated the total COD by a factor of 8.2 ± 1.2, 10.1 ± 2.4 and 4.8 ± 0.2 with respect to the raw streams of wastewater, secondary sludge and A-sludge. The soluble fraction of the COD was concentrated up to 3.5 times in the A-sludge and 2.1 times in the secondary sludge; the result of a combined effect of the chemical action of Mg²⁺ (diffused from the DS) on sludge disaggregation and cell lysis, and the physical action of recirculation and air-scouring of the A-sludge in the FO-unit.

The FO-concentrated A-sludge produced 445 ± 22 mg COD-VFA g⁻¹ COD₆₀, which was 4.4 times higher than for the untreated A-sludge. No VFA were produced from untreated secondary sludge, but after FO-concentration 71 ± 5 mg COD-VFA g⁻¹ COD₆₀ could be reached. Due to the low organics in wastewater even after FO-concentration (1.08 ± 0.08 g COD L⁻¹), no notable VFA production occurred. The combination of A-stage technology and membrane technology for dewatering and COD concentration could be a key advancement to increase VFA production from domestic wastewater, whereby at least 45% of the COD can be recovered as valuable VFA.

Keywords: Carboxylate fermentation; Forward osmosis (FO); AB system; Volatile fatty acids (VFA); Waste activated sludge (WAS).
1. **Introduction**

The global domestic wastewater production is estimated at 330 billion m3 annually [1]. Significant research efforts are focused on the recovery of water and nutrients [2] from this waste stream and particularly in the conversion of the organic fraction into energy as biogas. Recently, an alternative route was developed whereby these organics are converted into volatile fatty acids (VFA), which are building blocks for a multitude of valuable products such as biopolymers [3], medium or long chain fatty acids [4] and biofuels [5]. However, the generally low organic content of domestic wastewater (< 600 mg L$^{-1}$) hampers efficient recovery, and is one of the main limitations in developing feasible bioproduction platforms [6].

An evident means to concentrate organics is to work via sludge, generated from the wastewater as substrate and separated via settling. The conventional activated sludge (CAS) process is typically performed with high aeration energy, and at solid retention time (SRT) of 8 - 20 days, resulting in a very efficient organic carbon removal, but yielding a sludge with poor digestion efficiency due to the high sludge age and high sludge oxidation [7, 8].

An attractive alternative approach is the “Adsorption-Bioxidation” (AB) process [9]. The AB system is a two-stage treatment system where the first stage (A-stage) is typically operated at low hydraulic retention time (HRT 15 - 30 min) and low SRT (between 3 hours and 1 day). The soluble and colloidal organic matter is removed in the A-stage through bioflocculation into microbial A-sludge. The A-sludge is also separated in a clarifier, while the effluent is then taken to the subsequent B-stage to ensure polishing of the wastewater [2, 9]. A-sludge is usually digested to biogas with high digestion efficiency (higher than that of CAS) due to the remarkably low sludge age and high biodegradability [9, 10].

However, due to the poor settling performance of the A-sludge, the COD content is still too diluted to ensure high VFA production [6, 11]. A-stage is operated at 2 to 10 kg BOD kg$^{-1}$ VSS d$^{-1}$ [9] while optimum settling is obtained between 0.3 and 0.6 kg BOD kg$^{-1}$ VSS d$^{-1}$ [12]. CAS systems are typically operated at 0.25 kg BOD kg$^{-1}$ VSS d$^{-1}$ [13], achieving good sludge settling but with a relatively high water content. Thus, a further concentration of both A-sludge and secondary sludge is needed to ensure
sufficiently high VFA production for extraction (> 5 g L\(^{-1}\)) and further valorization into high value
products [14, 15].

Forward osmosis (FO) is a potentially energy-efficient and low-cost technique for concentration of
challenging feed streams such as waste activated sludge (WAS) [16, 17] and domestic wastewater [18].
FO is based on the spontaneous process of osmosis, in which water is transported through a semi-
permeable membrane from a feed solution (FS) of relatively low solute concentration (low osmotic
pressure) to a draw solution (DS) of relatively high solute concentration (high osmotic pressure). The
membrane allows for water transport but displays a high rejection of solutes [19]. Draw solutes, such as
\(\text{MgCl}_2\), need to have a low molecular weight, a high diffusivity, produce high osmotic pressures, are
well-retained by the FO membrane, are non-toxic and cheap [20]. Concentrating any stream using FO
causes an increase in its dissolved solutes content, due to a build-up of rejected solutes from the feed
itself as well as the diffusion of solutes from the draw solution into the feed. The latter is referred to as
reverse salt diffusion (RSD).

Here, we applied FO to concentrate the organics of domestic wastewater, high-rate activated A-sludge
and secondary sludge to undergo a subsequent fermentation for VFA production purposes. FO
dewatering fluxes of the different streams were compared. \(\text{MgCl}_2\) was chosen as draw solute because of
the high osmotic pressure generated by these solutions combined with the lower RSD compared to
monovalent salts such as \(\text{NaCl}\) [19]. VFA yields and composition of the concentrated streams were
measured and compared to the non-concentrated streams to assess the effect of concentration by FO.
The effect of salt leakage during FO was investigated by carrying out fermentation experiments with
and without addition of \(\text{MgCl}_2\).
2 Materials and Methods

2.1 Substrate collection

A-sludge was collected from the return flux to the A-tank in Nieuweveer WWTP (Breda, The Netherlands). Domestic secondary sludge and domestic wastewater were collected from Destelbergen WWTP (Destelbergen, Belgium). Characteristics of the substrates are summarized in Table 1. Mixed liquors as collected were used as FO feed. Part of a second batch of A-sludge (7.76 ± 0.16 gCOD L$^{-1}$, 4.41 ± 0.14 gVSS L$^{-1}$) was stored at 4°C and gravity-concentrated (removing the liquid volume above the settled sludge – resulting in a concentration of 3.8 times) to carry out fermentation tests to study the effects of RSD.

2.2 Aerobic and Anaerobic Forward osmosis (FO) experiments

A schematic overview of the setup is given in Figure S1 (Supplementary information (SI)) and a description of the set-up, cross-flow velocity, flow measurements and analysis are provided in the methodology section of SI.

The FO membranes used in this study (supported in a membrane module, Figure S1), were commercial thin film composite (TFC) membranes produced by Hydration Technology Innovations (HTI) (Albany, Oregon, USA) [21]. The membrane orientation in this study was AL-FS (active layer facing the feed solution). For each test, a new membrane coupon of 14 cm x 4 cm (56 cm²) was used. 10-fold concentration of the FO feeds was done by recirculating a fixed volume of feed in batch mode. Experiments were carried out in triplicate.

The DS was maintained at 2.2 M MgCl$_2$ by recirculating it over a bed of solid MgCl$_2$ when necessary using a PID control based on conductivity measurements. Aeration (0.6 L min$^{-1}$) was applied to the FS just before entering into the membrane cell to increase scouring and to reduce membrane fouling.

An anaerobic FO set-up was built to investigate the potential effect of microbial respiration during FO treatment. In order to keep the feed compartment anaerobic and to mitigate concentration polarization and fouling, an N_2/CO_2 (9:1 ratio) gas mixture was recirculated in the feed compartment (0.6 L min$^{-1}$).
2.3 Fermentation experimental procedure

Fermentation batch tests were carried out in triplicate with fermentative inoculum as described in SI. The 3 feed substrates were fermented before and after FO-concentration. A-sludge was also fermented after anaerobic FO-concentration. To avoid overloading of the fermentation tests by organics, different substrate quantities were tested according each feed concentration as defined in Table S1.

To assess the reasons for changes in VFA production before and after FO-concentration, extra experiments were carried out: the effect of sludge concentration, aeration during FO-concentration, RSD or a combination of these effects was evaluated towards changes in soluble COD in the substrate and VFA production. To this extent, the raw A-sludge and the gravity-concentrated A-sludge (obtained removing the liquid volume above the sludge settled over night at 4 °C) were subjected to three different types of treatments:

i) Addition of 7.1 g L⁻¹ of MgCl₂ (same concentration as in the FO-concentrate A-sludge (Table 2));

ii) Addition of 28.4 g L⁻¹ of MgCl₂ (salt overdose to evaluate the effect of build-up salinity and conductivity in acidogenesis)

iii) Air bubbling (flow 0.6 L min⁻¹, the same used during the FO);

iv) A combination of conditions i) or ii) with condition iii).

All conditions were applied for 37.3 hours (same time needed to FO-concentrate the A-sludge 10 times (Table 2)). Fermentation tests were performed in each of the pre-treated substrates as indicated in Table S1. The potential impact of RSD on cell lysis was determined by flow cytometry with live/dead staining as described in SI.

All the analyses carried out during fermentation tests were performed as described in the SI.

2.4 Statistical analysis

Statistical significance between intact cell densities, cell proportions and VFA concentrations for the different experiments were determined by generalized mixed model regression of the cell densities with
the experimental condition (e.g., GC-ASM, etc.) as a categorical predictor. A random intercept effect
was incorporated for each replicate analysis. All models were first checked for normal distributed
residuals (Shapiro Wilks test and QQ-plots) and homogenous variance (Levene’s test). Parameters were
estimated by the maximum likelihood method. Posthoc analysis was performed in case of a significant
treatment effect (p < 0.05) by Tukey’s all pair comparison method. Pair-wise comparisons were
considered significant for p < 0.01.

3. Results and Discussion

3.1 Concentration of sewage and sludge by FO

3.1.1 Dewatering performance/flux behavior in FO

The goal of the FO treatment was to concentrate the different substrates and produce a concentrate rich
in organic carbon for fermentative VFA production. To this end, A-sludge, secondary waste activated
sludge (WAS) and domestic wastewater were concentrated 10-fold by FO in batch mode.

During FO concentration, the water flux across the membrane decreases over time due to fouling and
increased salinity build-up on the concentrate side. The flux profile obtained for the different feed
solutions is shown in Figure 1. Repeated experiments for the respective feed solutions (n = 3) yielded
similar flux behavior (Figure S2). Despite the relatively similar conductivities of the different substrates,
the initial fluxes, defined as the average flux during the first 2 hours of FO concentration, were 11.4 ±
0.2 LMH (L m⁻² h⁻¹) for secondary sludge, 8.0 ± 0.7 LMH for A-sludge and 9.6 ± 0.4 LMH for
wastewater, respectively. We hypothesize that the different initial fluxes between the different streams
can be explained by the feed characteristics in terms of different solids (total solids (TS), volatile solids
(VS) and suspended solids (SS)) and organic content (soluble COD (sCOD) and total COD (tCOD))
(Table 1). Secondary sludge yielded the highest initial flux, approaching the DI water baseline. This was
consistent with an earlier study from Cornelissen et al. [16] that found similar flux values for secondary
activated sludge and DI water during 7 to 8 hour experiments (5.1 - 6.2 LMH for the DI water and 5.8
LMH for the activated sludge, respectively by using a TFC FO-membrane and 0.5 M NaCl draw
solution). Secondary sludge had a low content of soluble or colloidal VS (calculated as difference
between VS and VSS) compared to A-sludge. A-sludge contained the highest amounts of TS, VS and
SS of all feeds. Moreover, the sCOD content of A-sludge, and the sCOD/tCOD ratio (1.25 ± 0.02 g L⁻¹
and 15 %, respectively) were higher than that of secondary sludge (0.22 ± 0.01 g L⁻¹ and 5 %,
respectively) (Table 1). Thus, we hypothesize that a combination of a fast formation of a dense fouling-
layer on the membrane, combined with cake-enhanced concentration polarization caused the initial
lower flux during A-sludge FO-dewatering. The latter is due to the dominance of small, soluble/colloidal
organic compounds which potentially impart extra osmotic pressure in A-sludge, caused the initial lower
flux of A-sludge during FO-dewatering. In the case of secondary sludge, the sludge flocs could aid in
scouring the membrane surface and in sequestering the soluble organics, thus leading to less fouling (or
potentially a cake with less hydraulic resistance). Wastewater had the lowest VS/TS ratio (38 %) but the
highest sCOD fraction of tCOD (25 %) (Table 1). Similar conditions were found by Lutchmiah et al.
[18] who reported a 20% reduction of the initial dewatering flux from DI water to wastewater. It is likely
that the dominance of small, soluble organic compounds in wastewater caused the rapid formation of a
gel layer on the membrane and a higher osmotic pressure in the proximity of the membrane, resulting
in a lower initial flux compared with that of secondary sludge.

For both A-sludge and secondary sludge (containing higher solids concentration), the initial flux
remained stable for the first 5 hours of filtration, after which the flux declined linearly for all repetitions
(Figure S2). Flux decline rate for the secondary sludge (0.302 ± 0.005 LMH h⁻¹) was twice that of the
A-sludge (0.114 ± 0.029 LMH h⁻¹), which might be related to the higher initial flux of the secondary
sludge. It was visually observed that the secondary sludge thickened to a highly viscous mixture by the
end of the FO concentration. This caused the formation of a thick cake on the membrane, which inhibited
further sludge dewatering depicted by a profound flux decline in Figure 1. The A-sludge did not become
viscous and the final flux decline was less pronounced, but FO-dewatering lasted longer than that for
the secondary sludge to reach the same 10-fold concentration (28.1, 29.7 and 37.3 hours for secondary
sludge, wastewater and A-sludge, respectively (Table 2)) due to the lower average flux. Consistently
with what reported in literature [18], only limited flux decline occurred during wastewater concentration.
Most likely, the relatively low fouling propensity of the wastewater was related to the low total
concentration of organics in the wastewater (Table 1) and the low concentration of suspended solids.
3.1.2 Concentration of inorganic/organic compounds by FO

The concentration ratio of the organics during FO was determined as FO-concentrated COD to feed COD. As a 10-fold volume reduction was reached, the same theoretical organics concentration ratio was expected, assuming that no organics are transported through or adsorbed onto the membrane, converted into biomass or mineralized. The COD concentration ratio was only 8.2 ± 1.2 for the domestic wastewater and 4.8 ± 0.2 for the A-sludge, but 10.1 ± 2.4 for the secondary sludge. This indicates a COD loss of 18% for the domestic wastewater, 52% for the A-sludge and no loss for the secondary sludge. The high organic loss for the A-sludge might be due to biological degradation, given its high biodegradability, low sludge age and high initial organic content [9, 22, 23] and the constant aeration applied for membrane scouring. Its dewatering also took the longest, allowing more time for organic loss though biological activity. Tests to demonstrate this are reported in the next section. Secondary sludge contains less biodegradable organics as most of the SS and organics from sewages are removed during upstream primary treatment [7] and due to the extent oxidation and high SRT of the secondary treatment (CAS) itself. Hence, no detectable COD loss could be observed during secondary sludge FO concentration. Wastewater showed a modest COD loss. The organic matter in wastewater is considered relatively easy to degrade, as it is soluble and has not yet been incorporated in microbial biomass, however, wastewater typically does not contain an enriched population of organisms able to degrade organics, which are present in sludge [7, 9, 24].

FO concentration in general caused an increase in the dissolved compounds content of the feed streams, which is caused both by concentrating the initial feed solutes in a smaller volume and by diffusion of draw solutes into the feed. This can be seen in Table 2, where both conductivity and Mg$^{2+}$ content of the feed streams are shown. The conductivity of the feed streams increased from about 1.5 to about 30 mS cm$^{-1}$ in the case of wastewater and A-sludge, and to about 20 mS cm$^{-1}$ in the case of secondary sludge. The measured conductivity of the concentrates does not relate well to the MgCl$_2$ concentration measured on filtered samples by ion chromatography (IC). Apparently, the different types of flocs in the different types of sludge appeared to be specifically adsorbing different amounts of Mg$^{2+}$. This became clear by freezing and thawing concentrated secondary sludge, which caused the conductivity to increase from
18.2 to 51.3 mS cm⁻¹ after thawing, indicating that MgCl₂ was sequestered by EPS or intracellular uptake, which was subsequently released by lysis of the sludge structure when freezing-thawing. As a result, no clear correlations can be seen between flux decline and measured Mg²⁺ concentrations.

3.2 Identifying organic loses during FO concentration

During FO concentration of A-sludge, half of the incoming COD was lost, almost twice as much as in domestic wastewater. To elucidate if this loss was caused by bacterial respiration, 10-fold FO concentration under anaerobic conditions was targeted with the A-sludge. Considerably lower FO flux in anaerobic conditions caused that the concentration factor of 10 was not reached. The initial flux was about 7.5 LMH (Figure S3), similar to the initial flux during aerobic A-sludge concentration (8.0 LMH (Figure 1)). Flux declined steadily down to 0.5 - 1 LMH (after 30 hours) and then remained constant for the rest of the FO treatment (Figure S3). After 95.4 hours, a concentration factor of only 3.9 was reached, and the test was aborted in order to limit the salinity build-up in the feed due to RSD. In contrast to aerobic FO experiments, the COD content increased from 5.5 ± 0.5 to 21.4 ± 1.7 g L⁻¹, equaling a 3.9 ± 0.1 -fold increase, equal to the concentration factor obtained. Chen et al. [25] studied the treatment of low-strength wastewater using an anaerobic osmotic membrane bioreactors, reporting a flux decline to 3.5 LMH. The stable flux obtained during anaerobic FO concentration in this study is lower of that obtained in literature [29], due to a higher initial COD of the A-sludge (8.40 gCOD L⁻¹ and 0.46 gCOD L⁻¹, respectively).

The large extent of flux decline, starting already after few hours of anaerobic FO-concentration (Figure S3), was most likely due to a major formation of gel-like substances (and deposition of these substances on the membranes surface) by the high concentration of organics retained in the feed compartment, which prevented dewatering. For concentration of A-sludge, especially under anaerobic conditions, it is thus clear that a continuous scouring of the membrane, using alternative techniques in combination with N₂:CO₂ (9:1) gas bubbling, is needed to prevent flux decline. However, a continuous flow of oxygen free gases would increase the operational cost of the system, and just using air (as in the aerobic FO-dewatering) will result in COD-loss. Alternative scouring systems, such as (osmotic) backwashing, relaxation or periodic air bubbling should be considered.
3.3 Effect of FO-concentration on fermentation

3.3.1 Fermentation yields of the different streams

High initial organic matter content is needed to obtain high VFA production [6]. Fermentation batch tests were performed on all the streams (domestic wastewater, secondary sludge and A-sludge) as well as their FO-concentrates to assess if the application of an FO system after a CAS, an A-stage or directly to the domestic wastewater could improve VFA production and yields. During fermentation tests, maximum VFA production was obtained between day 4 and 7 followed by a decrease in product concentrations due to conversion of VFA to methane.

No notable VFA production occurred for domestic wastewater, either before or after the FO concentration. To maximize the available organics for VFA production from the domestic wastewater, the organic load during fermentation was increased by 6 times compared to the initial test (Table S1), but again no notable VFA production occurred (Figure 2). The tCOD after FO-concentration of the domestic wastewater was 1.08 ± 0.08 g L$^{-1}$ and the sCOD was 0.24 ± 0.01 g L$^{-1}$. This concentration was insufficient to sustain the growth of the microorganisms and, to a lesser extent, allow substantial production of VFA or CH$_4$. Higher concentrations still might be needed in order to produce VFA from FO-concentrated domestic wastewater, however this would further increase contact time in the FO, leading to more draw solutes leaking and increased conductivity. Such highly conductive feedstocks could be used for VFA accumulation as conductivity above 30 mS cm$^{-1}$ negatively affects methanogenesis while acetogenic bacteria still produce VFA at high salt concentrations De Vrieze et al. [26]. However, an economic assessment would be required as draw solute leakage comes at a cost. It is unknown whether other factors, such as accumulation of toxic compounds, could also play a role in the observed lack of VFA production.

Fermentation of the FO-concentrated secondary sludge led to a production of 71 ± 5 mg COD-VFA g$^{-1}$COD$_{fed}$ after 7 days, corresponding to 7% of COD converted into VFA. No notable VFA production occurred for the raw secondary sludge. The digestion efficiency of the secondary sludge and the VFA yields produced during fermentation are low compared to substrates typically used in fermentation. This
is mainly due to the high sludge age and the extent of oxidation [6, 8] of the secondary sludge, even when the concentration is increased in the FO treatment.

For the FO-concentrated A-sludge, a VFA production of $346 \pm 30 \text{ mg COD-VFA g}^{-1}\text{COD}_{ed}$ was reached already after 1 day of fermentation (Figure S4), with a production up to $445 \pm 22 \text{ mg COD-VFA g}^{-1}\text{COD}_{ed}$ after 4 days (Figure 2, Figure S4). For the raw A-sludge, the VFA production after 4 days of fermentation was only $102 \pm 3 \text{ mg COD-VFA g}^{-1}\text{COD}_{ed}$, which is 4.4 times lower ($p < 0.01$) than that for the FO-concentrated A-sludge (Figure 2). This shows that FO-concentration increases fermentability of A-sludge as higher VFA is produced compared to the same quantity of organics fed. Fermentation was also performed with the anaerobic FO-concentrated A-sludge. VFA production already reached its maximum after 2 days of fermentation with $444 \pm 8 \text{ mg COD-VFA g}^{-1}\text{COD}_{ed}$ (Figure 2) (significantly higher than A-sludge itself with $p < 0.01$). This fast start-up of VFA formation might be attributed to hydrolysis of the sludge already starting during the 95.4 hours of anaerobic FO treatment.

3.3.2 Factors affecting improvement in fermentation capacity

FO-concentration of the two sludge types increased their overall COD as well as the sCOD concentration (Table 3). For secondary sludge the increase corresponded to $10.1 \pm 1.0 \% \text{ sCOD/tCOD}$ while for A-sludge, this rose up to $30.4 \pm 1.9 \% \text{ sCOD/tCOD}$. Two main reasons why FO-concentration increases the sCOD fraction might be a sort of physical pretreatment by the recirculation through the peristaltic pump (for $37.3/95.4$ hours), as well as the shear force of the continuous air bubbling in the feed compartment. Because of this improvement on sCOD fraction and overall increased organics content, specific VFA production improves after FO-concentration of sludge.

During FO, water molecules follow the osmotic gradient from the FS to the DS; likewise the ions contained in the DS can migrate to the FS. One of the hypotheses we put forward in this manuscript, is that the draw solute used for the dewatering might also have an impact on fermentation through improved hydrolysis. A high concentration of cations such as Mg$^{2+}$ (Table 2) facilitates the formation of single-cells which are more sensitive to lysis by spontaneous disaggregation from the floc structure [27] (hypothesis further evaluated in the next sections). Furthermore, several ions can also interact with the negative charges of the EPS (extracellular polymeric substances) surrounding the bacterial cells, breaking the bounds among these polymers and favoring cell lysis and release of organic matter [28].
Finally, an increased concentration of the sludge can enhance the hydrolysis due to overload shock [29]. The increased organic loading can also lead to the accumulation of carboxylates, which are crucial in inhibiting methanogenesis, increasing the overall VFA accumulation [30].

3.3.3 Fermentation product speciation linked to stream composition

A different VFA speciation was found for the different streams and also for the same stream before and after the FO-concentration (Figure 3). In case of the A-sludge before FO, acetate was the most abundant VFA formed after 4 days of fermentation (60 ± 3 %) besides 26 ± 3 % propionate and 9 ± 0 % isovalerate.

In the FO-concentrated A-sludge, the proportion of acetate dropped to 24 ± 4 % after 4 days of fermentation, with propionate increasing to 43 ± 3 %. Moreover, a larger proportion of longer chain fatty acids was produced after 4 days of fermentation for the FO-concentrated A-sludge compared to the non-concentrated sludge, 4 ± 0 % isobutyrate, 7 ± 0 % butyrate, 8 ± 0 % isovalerate and 8 ± 0 % valerate which shows an impact of higher loading.

Similar VFA speciation was found for the anaerobically FO-concentrated A-sludge, with 31 ± 0 % acetate and 35 ± 0 % propionate present after 2 days of fermentation. The proportion of longer chain fatty acids also increased with 6 ± 0 % isobutyrate, 10 ± 0 % butyrate, 11 ± 0 % isovalerate and 5 ± 0 % valerate, for anaerobic FO-concentration of A-sludge, confirming again that the application of FO may lead to the accumulation of longer chain fatty acids again due to increased loading. For the FO-concentrated secondary sludge, acetate and propionate were the main VFA formed, at 46 ± 3 % and 18 ± 0 % respectively, which is similar to the raw A-sludge with approximate sCOD fractions of that of secondary sludge (14.9 ± 0.7 % and 10.1 ± 1.0 % sCOD/tCOD, respectively (Table 3)). FO-concentrated secondary sludge fermentation also led to the production of longer chain fatty acids, at 6 ± 0 % isobutyrate, 7 ± 0 % butyrate and 13 ± 0 % valerate after 4 days of fermentation (Figure 3).

Production of CH₄ at day 4 was relatively low for the FO-concentrated streams with 7 ± 2 mg COD-CH₄ g⁻¹CODkd (9% initial COD) for secondary sludge and 29 ± 3 mg COD-CH₄ g⁻¹CODkd (5% of initial COD) for the A-sludge, while 6 ± 1 mg COD-CH₄ g⁻¹CODkd (6% of initial COD) was obtained with the raw A-sludge (Figure 3). The use of an FO-system to concentrate A-sludge and secondary sludge thus seems to promote the production of more VFA with a higher proportion of longer chain fatty acids.
(C_2-C_3), but not improving the conversion of VFA into methane. The increased organic loading together with the increased conductivity reduces the acetoclastic activity of methanogens and thus leads to higher VFA production and accumulation [28, 30, 31].

3.4 Effect of FO operational conditions on fermentation

FO-concentration of both secondary sludge and A-sludge increased VFA yields, from 0 to 7 % and 10 to 45 %, respectively. To understand whether the main reason for this was 1) the increased organics concentration due to dewatering, 2) the enhanced hydrolysis of the organics by RSD, 3) enhanced breakdown of the cells due to the air scouring, or 4) any combination of these phenomena, 9-days fermentation batch tests were performed as described in section 2.3. The effect of the increase in organics concentration was investigated by gravity-concentrating the sludge; the potential enhanced hydrolysis by RSD was investigated by adding a 7.1 g L^{-1} MgCl_2 (same concentration in the A-sludge after aerobic FO-concentration) or 28.4 g L^{-1} MgCl_2 (concentration needed in order to reach the same conductivity after anaerobic FO-concentration of the A-sludge); and the potential breakdown of cells due to air scouring was investigated by aerating at 0.6 L min^{-1}. All treatments were carried out for 37.3 hours, same time needed to reach a 10-fold by FO-concentration of A-sludge. Results are depicted in Figure 4.

For the non-concentrated A-sludge, addition of MgCl_2 increased the sCOD/tCOD ratio from 19.0 % to 25.0 % (with low salt) and to 27.5 % (with high salt), respectively (Table 3). However, production of VFA stayed constant at 265 ± 3 mg COD–VFA g COD_{ed} with low salt addition and only 177 ± 5 mg COD–VFA g COD_{ed} were produced by increasing the MgCl_2 up to 28.4 g L^{-1} (Figure 4). For all the other conditions tried VFA production was lower than that of untreated A-sludge. Thus, for the non-concentrated A-sludge, neither MgCl_2 addition nor aeration nor the combination of these could explain the increased VFA production resulting from the FO-concentration.

Gravity concentration of the A-sludge did not improve the VFA yield. Only 196 ± 13 mg COD–VFA g COD_{ed} (corresponding to 20 % yield) were produced by fermenting gravity-concentrated (GC) A-sludge, significantly lower (p < 0.01) than the yield obtained from non-concentrated A-sludge (around 26 %). This might be caused as gravity-concentrating the A-sludge 3.8 times was carried by removing
the supernatant rich in sCOD after settling (Table 3), but consequently the sCOD/tCOD ratio was reduced from 19.0 to 13.1 % (Table 3). This is due to the fact that after gravity concentration the wastewater rich in biodegradable organics (sCOD/tCOD 26.7 % (Table 3)) was removed and only the sludge settled at the bottom, which is more difficult to hydrolyze, was used for the fermentation. Adding MgCl₂ to the GC-A-sludge increased the sCOD/tCOD ratio somewhat from 13.1 % to 16.1 % (Table 3), resulting in a VFA yield of 248 ± 7 mg COD -VFA g CODₜₜₑₑ (25 %), significantly higher (p < 0.01) than that of GC-A-sludge (20 %) (Figure 4). This indicates that bringing the concentrated sludge in contact with a relatively high concentration of salt (7.1 g L⁻¹) causes some disaggregation of the sludge flocs and enhances the hydrolysis of the cells as reported by Chen et al. [28]. Again, although raising the MgCl₂ up to 28.4 g L⁻¹ increased the sCOD/tCOD ratio from 13.1 % to 14.2 %, only 158 ± 1 mg COD -VFA g CODₑₑ were produced (significantly lower than that of GC-A-sludge with p < 0.01). High conductivity (< 40 mS cm⁻¹ (Table S2)) might be affecting batch fermentation. Aerating the GC-A-sludge for 37.3 hours decreased the sCOD/tCOD ratio (from 13.1 % to 10.8 %) due to COD uptake for biomass growth. Combination of aeration and salt addition (7.1 g L⁻¹ MgCl₂) resulted in increased sCOD/tCOD ratio to 12.6 %. Combining GC-A-sludge with aeration produced 197 ± 2 mg COD -VFA g CODₑₑ, and with aeration and 7.1 g L⁻¹ MgCl₂ production was 210 ± 1 mg COD -VFA g CODₑₑ (Figure 4). Further increase of the MgCl₂ concentration, yet again, resulted in a significantly lower (p < 0.01) VFA production (132 ± 8 mg COD -VFA g CODₑₑ).

In all conditions tested, VFA production yield from GC-A-sludge was lower than for the FO-concentrated A-sludge (between 16 and 25 %) (Figure 4), suggesting that none of these treatments nor the combination of them – alone – could explain the increased VFA production obtained after FO-concentration. The sCOD/tCOD ratio of the different treatments on GC-A-sludge varied between 10.4 % and 16.1 %, while recirculating A-sludge throughout the FO unit increased the ratio up to 30.4 % for the aerated system and 52.5 % for the anaerobic system (Table 3) (experiments run for 37.3 and 95.4 hours, respectively (Table 2)). Therefore, although the combination of sludge concentration, aeration and salts leakage to the FS increased sCOD/tCOD, the main cause of VFA production enhancement was probably due to the physical action of the peristaltic pump and the scouring of the bubbles that enter the
feed compartment. This leads to disaggregation of the sludge flocs promoting cell lysis. This hypothesis was further investigated in the next section.

3.5 Effect of FO-concentration on cell lysis

The number of intact planktonic cells and permeabilized cells, thus damaged by lysis, in the GC-A-sludge and the FO-concentrated A-sludge was determined with a live/dead staining coupled to flow-cytometry. These measurements were performed to confirm the hypothesis that FO facilitated breakage of sludge flocs and cells (Figure 5) leading to enhanced fermentability. Intact and permeabilized cells are defined as bacterial cells with a cellular membrane that is either impenetrable (intact) or penetrable (permeabilized) by the nucleic acid binding compound propidium iodide (PI) [32]. (Table S3). Although by gravity concentrating the A-sludge a 3.8-fold concentration could be reached, the concentration of total intact cells only increased (significantly) from $4.11 \times 10^{09} \pm 2.12 \times 10^{07}$ to $9.41 \times 10^{09} \pm 5.66 \times 10^{07}$ cells mL$^{-1}$, corresponding to a 2.3-fold increase. Consequently, the intact cells/total cells ratio significantly decreased from 68.2 ± 0.4 % to 56.1 ± 2.2 % (Figure 5) after gravity concentration indicating that part of the intact cells (both sludge flocs and single cells) were present in the discarded supernatant. The changes in intact cells/ total cells ratio followed the same behavior for both A-sludge and GC-A-sludge under different treatments (Figure 5). Addition of 7.1 g L$^{-1}$ MgCl$_2$ resulted in a significant decrease of the number of intact cells/ total cells ratio to 54.0 ± 3.7 % for the A-sludge and down to 29.5 ± 0.8 % for the GC-A-sludge, respectively. These differences confirmed that Mg$^{2+}$ and Cl$^-$ ions have a lytic effect on the sludge flocs and cells, which simultaneously disaggregates the flocs and releases sCOD (Table 3). This was even more pronounced upon adding higher concentration of MgCl$_2$ (28.4 g L$^{-1}$), the intact cells/ total cells ratio significantly decreased to 29.5 ± 0.8 % for the A-sludge and down to 15.9 ± 0.4 % for the GC-A-sludge. Aeration resulted in an increase of the intact cells/ total cells ratio up to 69.0 ± 1.2 % for the A-sludge and up to 61.8 ± 1.4 % for the GC-A-sludge (Figure 5). This was most likely due to biomass respiration and thus growth, with consequent reduction of sCOD. Combining aeration and salt addition (7.1 g L$^{-1}$) the intact cells/ total cells ratio significantly increased up to 75.7 ± 2.9 % for the A-sludge and to 65.9 ± 5.6 % for the GC-A-sludge when compared to the mere aeration. In contrast, by increasing the concentration of the MgCl$_2$ to 28.4 g L$^{-1}$ with active aeration, the intact cells/ total cells ratio significantly decreased to 51.6 ± 1.9 % for the A-sludge and down to
35.2 ± 0.8 % for the GC-A-sludge. This supports the initial hypothesis that the lytic action of MgCl₂ increased the sCOD which was taken up to enhance biomass growth when aerating, only when conductivity values (at low salt addition) did not affect the microbial performance. The intact cells/total cells ratio for the aerobically FO-concentrated A-sludge was rather high (68.2 ± 11.9 %). For the membrane-compromised fraction of FO-concentrated A-sludge (both anaerobically and aerobically concentrated), permeabilised cell population overlapped with the background noise and was therefore questionable. Thus the absolute value of intact cells has to be considered over the intact cells/total cells ratio. 10-fold and a 3.4-fold concentrations could be reached by FO-concentrating the A-sludge aerobic and anaerobically, respectively, while GC-concentration resulted in a 3.8-fold concentration of the A-sludge. Nonetheless, FO concentration resulted in an significantly lower (p < 0.01) intact cells content of 3.18 x 10⁹ ± 8.39 x 10⁷, compared to that of GC-A-sludge and GC-A-sludge treated with a combination of salt addition and aeration (8.86 x 10⁹ ± 9.53 x 10⁸ and 6.96 x 10⁹ ± 3.76 x 10⁸, respectively).

These findings are thus consistent with the hypothesis set above, that FO-concentration leads to a combined effect of the chemical action of the salt on the sludge flocs and cells, and the physical action of the recirculation and the scouring by bubbles of the A-sludge in the FO-cell. The more the A-sludge was recirculated throughout the FO unit the more the flocs were broken down and their constituent cells lysed (Figure 5). The number of intact cells found in the anaerobically FO-concentrated A-sludge was 2.13 x 10⁸ ± 2.74 x 10⁷. This was significantly lower than all of the values reported for the gravity concentrated sludge and the aerobically FO-concentrated sludge, confirming the mechanical shear effect of FO on the breakage of the sludge, which ultimately resulted in increased sCOD and increased VFA production yield.

3.6 Economical assessment

Replacing thickening with a more compact FO-concentration will lead to higher VFA conversion efficiency (from 20 % to 45 %) but also to additional cost. To assess the economic viability of the proposed technology, three scenarios were considered, comparing the use of either 2.2 M MgCl₂ or seawater (0.5 M NaCl) as DS in the FO, to the scenario with a settling (thickening) based AB-system. The costs for the technologies and their references are listed in Table S4 and a description of the
assumptions made to calculate capital expenses (CAPEX) and operational expenses (OPEX) is given in section S4 (SI).

Table 4 then gathers the scenarios, where it can be seen that the CAPEX for the 2.2 M MgCl₂ FO-system is 0.79 € m⁻³ sludge and for the seawater 1.06 € m⁻³ sludge (due to the lower driving force and higher membrane requirement). For the OPEX only the specific energy consumption (SEC) needed for reverse osmosis (RO) reconcentration of the DS was considered (section S4, SI) and was as such calculated only for the scenario with 2.2 M MgCl₂ (0.67 € m⁻³ sludge) – it was assumed that when using seawater as DS, the seawater is discharged back into the ocean. RO drinking water production from this seawater might be possible, and might lead to a lower total cost (as the income of the drinking water needs to be taken into account). Hence, the total costs (OPEX + CAPEX) for FO-concentration of A-sludge amounted to 1.46 € m⁻³ sludge and 1.06 € m⁻³ sludge for 2.2 M MgCl₂ and sea-water as DS, respectively. For the gravity concentration of A-sludge the CAPEX was 0.08 € m⁻³ sludge and the OPEX 0.06 € m⁻³ sludge and thus the total costs (OPEX + CAPEX) were 0.14 € m⁻³ sludge (Table 4).

Profits obtained from the VFA production of FO-concentrated A-sludge (for both DS considered) and the GC-A-sludge were calculated considering a conversion efficiency of 45 % for the former and 20 % for the latter (sections 3.3.1 and 3.4) and amounted to 2.36 € m⁻³ sludge and 1.05 € m⁻³ sludge, respectively. The net profits were comparable for the GC-A-sludge and for the A-sludge FO-concentrated with 2.2 M MgCl₂, at 0.91 € m⁻³ sludge (0.12 € kg⁻¹ sludge) and 0.90 € m⁻³ sludge (0.12 € kg⁻¹ sludge), respectively (Table 4). However, these calculations are based on current generation of FO membranes in the market. Considerable research is currently aiming at novel FO-membranes with increased water flux (LMH) during FO, reducing the CAPEX and therefore increasing the total profit. In fact, several of these membranes are already close to commercialization [33]. In addition, it has to be stated that, the use of FO system over conventional thickening for the sludge concentration has the advantage of a smaller footprint at WWTP level.

When sea-water is used as DS, the total profit amounts to 1.30 € m⁻³ sludge (0.17 € kg⁻¹ sludge), higher than that of the other scenarios considered but still underestimated. Indeed, for this scenario the same conversion efficiency obtained for 2.2 M MgCl₂ was considered (45 %), but as in sea-water the
The concentration of NaCl is 4.4 times lower, longer time would be needed to arrive to the same 10-fold concentration. This would result in higher sCOD/tCOD of the FS compared to that reached with 2.2 M MgCl₂ and therefore it would allow higher VFA production. On the other hand, the effect of Na⁺ on cell lysis and sCOD increase and its effect on the subsequent fermentation should be further investigated.

3.7 Strategies to further increase VFA production after A-sludge FO-concentration

FO-concentration of A-sludge increased the VFA conversion efficiency from 10 % to 45 % (4.4-fold), which is higher than previously reported [11]. It has been described that high salinity and high conductivity (above 30 mS cm⁻¹) negatively affect methanogenesis while acetogenic bacteria can acclimatize to high salt concentration and produce VFA [34]. FO-concentration of A-sludge could be a strategy to increase VFA production (sections 3.4 and 3.5) and, inhibit methanogens due to RSD, thus allowing VFA accumulation in a continuous system.

Conversion efficiency up to 70 % has been reported during A-sludge digestion [10] suggesting that the potential for VFA production from A-sludge should be higher. Methodologies such as the use of acid or alkali pretreatment [35, 36] and/or thermal pretreatment [6] and the application of alkaline pH to the fermentation are reported to increase VFA production from sludge [37, 38]. Particularly, alkaline conditions increase both hydrolysis and acidification rates and also increase solubilization of carbohydrates and proteins, main components of the sludge, resulting in higher VFA production [39]. Therefore, the combination of FO-concentration of the sludge with pretreatments or with fermentation at alkaline pH might promote VFA production and should be further investigated.

4. Conclusions

Forward Osmosis enabled 10-fold dewatering of domestic wastewater, secondary activated sludge and high-rate activated A-sludge, yet 18% and 52% of the COD were lost for the domestic wastewater and A-sludge, respectively. Aeration, used to scour the fouling layer on the membrane, promoted COD consumption, therefore other techniques to mitigate membrane fouling need to be investigated. Forward osmosis increased the soluble COD (sCOD) fraction in the sludge enhancing VFA production by 7 % for secondary sludge and by 35 % for A-sludge (from 10 % to 45 %) but
did not enable VFA production for the domestic wastewater due to the limited sCOD. This proves the importance of an intermediate step to convert the sCOD into microbial sludge before the FO-concentration. Increased VFA production for FO-concentrated streams is due to both chemical action of the ions leaking from the draw solution and the physical effect caused by recirculation of the stream and air scouring. Both effects together result in disaggregation of the sludge flocs and lysis of the cells, increasing sCOD and VFA production.

5. Acknowledgements

CC is supported by the FWO-MOST (G.0535.13) project (Research Foundation Flanders) “The Domestic Biorefinery”. MC and KR were supported by Ghent University Multidisciplinary Research Partnership (MRP) - Biotechnology for a sustainable economy (01 MRA 510W). RP is supported by Ghent University (BOFD0C2015000601) and the Belgian Nuclear Research Centre (SCK•CEN). BB is supported by the project grant SB-131370 of the IWT Flanders. ADH and ARDV were supported by the EFRO Interreg V Flanders-Netherlands program.

Authors wish to acknowledge Nieuwveer WWTP (Breda), Destelbergen WWTP (Destelbergen) for the provision of the sludge and wastewater; HTI for providing FO membrane samples; Dries Seuntjens and Ramon Ganigué for the inspiring scientific discussions; Stephen J Andersen and Marjolein Vanoppen for their feedback on the manuscript; Hans Mollen for the helpful information on the economics.

5. References

Table 1. Characteristics of the streams. Analysis were carried out in triplicate.

<table>
<thead>
<tr>
<th></th>
<th>Domestic wastewater</th>
<th>Secondary sludge</th>
<th>A-sludge</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.42</td>
<td>7.26</td>
<td>7.15</td>
</tr>
<tr>
<td>Conductivity (mS cm⁻¹)</td>
<td>1.4</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Total solids, TS (g L⁻¹)</td>
<td>0.26 ± 0.04</td>
<td>4.89 ± 0.83</td>
<td>6.73 ± 0.59</td>
</tr>
<tr>
<td>Volatile solids, VS (g L⁻¹)</td>
<td>0.10 ± 0.03</td>
<td>2.83 ± 0.48</td>
<td>5.06 ± 0.62</td>
</tr>
<tr>
<td>Volatile solids, VS/TS (%)</td>
<td>38</td>
<td>58</td>
<td>78</td>
</tr>
<tr>
<td>Total suspended solids, TSS (g L⁻¹)</td>
<td><0.01</td>
<td>4.01 ± 0.04</td>
<td>5.43 ± 0.52</td>
</tr>
<tr>
<td>Volatile suspended solids, VSS (g L⁻¹)</td>
<td><0.01</td>
<td>2.51 ± 0.05</td>
<td>4.22 ± 0.48</td>
</tr>
<tr>
<td>Volatile suspended solids, VSS/TSS (%)</td>
<td>-</td>
<td>63</td>
<td>78</td>
</tr>
<tr>
<td>Kjeldahl nitrogen, TKN (mg N L⁻¹)</td>
<td>9 ± 0</td>
<td>974 ± 15</td>
<td>476 ± 40</td>
</tr>
<tr>
<td>Total ammonia nitrogen, TAN (mg N L⁻¹)</td>
<td>7 ± 5</td>
<td>56 ± 7</td>
<td>577 ± 20</td>
</tr>
<tr>
<td>Total chemical oxygen demand, tCOD (g L⁻¹)</td>
<td>0.132 ± 0.016</td>
<td>4.482 ± 0.979</td>
<td>8.398 ± 0.362</td>
</tr>
<tr>
<td>Soluble chemical oxygen demand, sCOD (g L⁻¹)</td>
<td>0.033 ± 0.003</td>
<td>0.215 ± 0.007</td>
<td>1.252 ± 0.023</td>
</tr>
<tr>
<td>Soluble chemical oxygen demand, sCOD/tCOD (%)</td>
<td>25</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Fe (mg L⁻¹)</td>
<td>6 ± 0</td>
<td>141 ± 1</td>
<td>271 ± 7</td>
</tr>
<tr>
<td>P (mg L⁻¹)</td>
<td>463 ± 38</td>
<td>223 ± 1</td>
<td>200 ± 4</td>
</tr>
<tr>
<td>S (mg L⁻¹)</td>
<td>3111 ± 189</td>
<td>85 ± 9</td>
<td>56 ± 5</td>
</tr>
<tr>
<td>K (mg L⁻¹)</td>
<td>437 ± 29</td>
<td>47 ± 0</td>
<td>40 ± 2</td>
</tr>
<tr>
<td>Na (mg L⁻¹)</td>
<td>45 ± 2</td>
<td>85 ± 3</td>
<td>54 ± 2</td>
</tr>
<tr>
<td>Ca (mg L⁻¹)</td>
<td>387 ± 3</td>
<td>201 ± 7</td>
<td>233 ± 4</td>
</tr>
<tr>
<td>Mg (mg L⁻¹)</td>
<td>1658 ± 242</td>
<td>37 ± 0</td>
<td>41 ± 1</td>
</tr>
</tbody>
</table>
Table 2: Operational parameters changes during FO-concentration (FO) and anaerobic FO-concentration (AnaFO). \(t^0 \) stands for initial values.

<table>
<thead>
<tr>
<th></th>
<th>Time FO (hrs)</th>
<th>Volume/concentration ratio</th>
<th>COD concentration ratio</th>
<th>Conductivity (mS cm(^{-1}))</th>
<th>Mg(^{2+}) concentration (g L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FO</td>
<td>AnaFO</td>
<td>FO</td>
<td>AnaFO</td>
<td>FO</td>
</tr>
<tr>
<td>Domestic wastewater</td>
<td>28.1</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>8.2 ± 1.2</td>
</tr>
<tr>
<td>Secondary sludge</td>
<td>29.7</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>10.1 ± 2.4</td>
</tr>
<tr>
<td>A-sludge</td>
<td>37.3</td>
<td>95.4</td>
<td>10</td>
<td>4</td>
<td>4.8 ± 0.2</td>
</tr>
</tbody>
</table>
Table 3: Total and soluble COD and its ratio (COD soluble/COD total) for inputs and outputs of the concentration tests. Acronyms stand for raw A-sludge (AS), secondary sludge (WAS), domestic wastewater (WW), FO-concentrated streams (FO-AS, FO-WAS, FO-WW), anaerobically FO-concentrated A-sludge (AnaFO-AS), gravity concentrated A-sludge (GC-AS), addition of 7.1 g L\(^{-1}\) of MgCl\(_2\) (ASM/GC-ASM), aeration at 0.6 L min\(^{-1}\) (ASA/GC-ASA), a combination of salt addition and aeration (ASAM/GC-ASAM) and the wastewater discharged after A-sludge gravity concentration (GC-WW). * estimated soluble COD according to typical COD ratios for A-sludge.

<table>
<thead>
<tr>
<th></th>
<th>COD total (g L(^{-1}))</th>
<th>COD soluble (g L(^{-1}))</th>
<th>COD ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Osmosis (FO) tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>8.40 ± 0.36</td>
<td>1.25 ± 0.02</td>
<td>14.9</td>
</tr>
<tr>
<td>FO-AS</td>
<td>40.49 ± 1.09</td>
<td>12.30 ± 0.70</td>
<td>30.4</td>
</tr>
<tr>
<td>AS</td>
<td>5.46 ± 0.53</td>
<td>0.81 *</td>
<td>14.9 *</td>
</tr>
<tr>
<td>AnaFO-AS</td>
<td>21.40 ± 1.65</td>
<td>11.23 ± 0.23</td>
<td>52.5</td>
</tr>
<tr>
<td>WAS</td>
<td>4.48 ± 0.98</td>
<td>0.22 ± 0.01</td>
<td>4.8</td>
</tr>
<tr>
<td>FO-WAS</td>
<td>48.53 ± 0.27</td>
<td>4.92 ± 0.50</td>
<td>10.1</td>
</tr>
<tr>
<td>WW</td>
<td>0.13 ± 0.02</td>
<td>0.03 ± 0.00</td>
<td>25.2</td>
</tr>
<tr>
<td>FO-WW</td>
<td>1.08 ± 0.08</td>
<td>0.24 ± 0.01</td>
<td>21.7</td>
</tr>
<tr>
<td>Gravity concentration (GC) tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>7.76 ± 0.16</td>
<td>1.47 ± 0.04</td>
<td>19.0</td>
</tr>
<tr>
<td>ASML</td>
<td>7.65 ± 0.16</td>
<td>1.91 ± 0.00</td>
<td>25.0</td>
</tr>
<tr>
<td>ASMH</td>
<td>7.78 ± 0.01</td>
<td>2.14 ± 0.07</td>
<td>27.5</td>
</tr>
<tr>
<td>ASA</td>
<td>6.84 ± 0.31</td>
<td>1.12 ± 0.03</td>
<td>16.4</td>
</tr>
<tr>
<td>ASAML</td>
<td>6.50 ± 0.20</td>
<td>1.24 ± 0.02</td>
<td>19.0</td>
</tr>
<tr>
<td>ASAMH</td>
<td>7.05 ± 1.10</td>
<td>1.28 ± 0.06</td>
<td>18.1</td>
</tr>
<tr>
<td>GC-AS</td>
<td>29.42 ± 0.19</td>
<td>3.84 ± 0.01</td>
<td>13.1</td>
</tr>
<tr>
<td>GC-ASML</td>
<td>29.14 ± 0.67</td>
<td>4.69 ± 0.01</td>
<td>16.1</td>
</tr>
<tr>
<td>GC-ASMH</td>
<td>28.14 ± 0.01</td>
<td>4.01 ± 0.01</td>
<td>14.2</td>
</tr>
<tr>
<td>GC-ASA</td>
<td>28.12 ± 0.15</td>
<td>3.04 ± 0.04</td>
<td>10.8</td>
</tr>
<tr>
<td>GC-ASAML</td>
<td>29.25 ± 0.49</td>
<td>3.68 ± 0.08</td>
<td>12.6</td>
</tr>
<tr>
<td>GC-ASAMH</td>
<td>28.18 ± 0.72</td>
<td>2.93 ± 0.09</td>
<td>10.4</td>
</tr>
<tr>
<td>GC-WW</td>
<td>3.24 ± 0.04</td>
<td>0.86 ± 0.01</td>
<td>26.7</td>
</tr>
</tbody>
</table>
Table 4: Cost analysis for the Forward Osmosis (FO) concentration and of A-sludge (average concentration of 7.5 g COD L⁻¹) by using either 2.2 M MgCl₂ or sea-water (NaCl 0.5 M) as draw solution. For the former Reverse Osmosis (RO) was considered for the reconcentration of the DS and relative costs were included. Profit gained for the VFA production of either FO-concentrated or A-sludge concentrated by thickening are calculated considering a conversion efficiency (mg COD-VFA g⁻¹ CODₚ₅) of 45 % for the FO-concentrated A-sludge and of 20 % for the thickened A-sludge. Costs and profits are reported as ratio of € for m³ or kg of raw A-sludge (CAPEX capital expenses, OPEX operational expenses, SEC Specific Energy Consumption). Total profits (balance) are calculated as difference between the net for the VFA for the technology and the total costs (OPEX+CAPEX) of that technology.

<table>
<thead>
<tr>
<th></th>
<th>2.2 M MgCl₂</th>
<th></th>
<th></th>
<th></th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FO RO Total</td>
<td>FO RO Total</td>
<td>FO RO Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPEX</td>
<td>€ m⁻³</td>
<td>0.53 0.26 0.79</td>
<td>1.06 - 1.06</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>OPEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC</td>
<td>€ m⁻³</td>
<td>- 0.67 0.67</td>
<td>- - -</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>PE + Electricity</td>
<td>€ m⁻³</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Total costs</td>
<td>€ m⁻³</td>
<td>0.53 0.93 1.46</td>
<td>1.06 - 1.06</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>€ kg⁻¹</td>
<td>0.07 0.12 0.19</td>
<td>0.14 - 0.14</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>VFA net</td>
<td>€ m⁻³</td>
<td>2.36</td>
<td>2.36</td>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>€ kg⁻¹</td>
<td>0.32</td>
<td>0.32</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Balance</td>
<td>€ m⁻³</td>
<td>0.90</td>
<td>1.30</td>
<td></td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>€ kg⁻¹</td>
<td>0.12</td>
<td>0.17</td>
<td></td>
<td>0.12</td>
</tr>
</tbody>
</table>
Figure 1. FO dewatering flux in L m$^{-2}$ h$^{-1}$ for the domestic wastewater, secondary sludge or A-sludge (feed solution) when in contact with a solution of MgCl$_2$ 2.2 M (draw solution) through a semipermeable TFC membrane. The streams were concentrated/dewatered with a factor 10.
Figure 2. Specific VFA production for raw and FO-concentrated streams on their peak-production day. The test was carried out at 35 °C and pH 7. (n = 3).
Figure 3. VFA composition in mg COD g⁻¹CODfed on the peak production day. The test was carried out at 35 °C and pH 7 (n = 3).
Figure 4. Specific VFA production on the peak-production day for A-sludge and gravity concentrated A-sludge (GC-A-sludge) with different treatments and A-sludge concentrated aerobically or anaerobically with forward osmosis (FO-A-sludge). The fermentation was performed at 35 ºC and pH 7 (n = 3).
Figure 5. A. total intact cells/ permeabilized cells ratio (%) (n = 3) and B. total intact cells concentration for A-sludge and gravity concentrated A-sludge (GC-A-sludge) with different treatments and A-sludge concentrated aerobically or anaerobically with forward osmosis (FO-A-sludge) (n = 3).