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By substituting the Cattaneo-Christov heat-flow
model for the more usual parabolic Fourier law, we
consider the impact of hyperbolic heat-flow effects
on thermal convection in the classic problem of a
magnetised conducting fluid layer heated from below.
For stationary convection the system is equivalent
to that studied by Chandrasekhar [Hydrodynamic
and Hydromagnetic Stability (1981)], and with free
boundary conditions we recover the classical critical
Rayleigh number R(c)

c (Q) which exhibits inhibition
of convection by the field according to R

(c)
c → π2Q

as Q→∞, where Q is the Chandrasekhar number.
However, for oscillatory convection we find that
the critical Rayleigh number R

(o)
c (Q,P1,P2, C) is

given by a more complicated function of the thermal
Prandtl number P1, magnetic Prandtl number P2,
and Cattaneo number C. To elucidate features of this
dependence we neglectP2 (in which case overstability
would be classically forbidden), and thereby obtain
an expression for the Rayleigh number that is far less
stongly inhibited by the field, with limiting behaviour
R

(o)
c → π

√
Q/C, as Q→∞. One consequence of this

weaker dependence is that onset of instability occurs
as overstability provided C exceeds a threshold value
CT (Q); indeed, crucially we show that when Q is
large, CT ∝ 1/

√
Q, meaning that oscillatory modes

are preferred even when C itself is small. Similar
behaviour is demonstrated in the case of fixed
boundaries by means of a novel numerical solution.

1. Introduction
It has long been known that the parabolic form of
the classical Fourier heat-flow law presents a physical
paradox whereby thermal disturbances are predicted
to propagate with infinite speed [2,14,15,19]. Several
approaches have been proposed to address this apparent

c© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:j.bissell@bath.ac.uk


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

inconsistency (including, for example, ballistic [6,21,34], and relativistic heat-transfer equations
[23]); however, perhaps the most commonly encountered model is the Maxwell-Cattaneo
formulation [2,24]1 whereby the heat-flow Qi is expressed in terms of gradients in the local
temperature T and thermal conductivity κ (i.e., the classical Fourier law), combined with an
inertial term accounting for some thermal relaxation time τ , that is,

τ
∂Qi
∂t

+Qi =−κ
∂T

∂xi
. (1.1)

Crucially, the introduction of an inertial term yields a hyperbolic thermal-energy equation (cf.
equation (2.1b)), thereby removing the infinite-speed paradox by allowing thermal disturbances
to propagate with finite velocity as heat-waves [19] (‘second-sound’ [11,14,15]). Note that
phenomena introduced by the inertial term in τ are often best described by the Cattaneo number
C(τ), a dimensionless parameter which accounts for combined system and material properties,
while Christov & Jordan [7] have shown that in moving media a convective derivative should be
employed, a formulation we refer to as Cattaneo-Christov heat-flow (see equations (2.9) and (2.1c)).

Hyperbolic heat-flow effects have a range of practical applications that extend beyond their
foundational significance. For example, thermal waves are important in the study of thermal
transport in nanomaterials and nanofluids [18,21], and thermal shocks in solids [33], and for heat
transport in biological tissue and surgical operations [9,22,23,32]. Similarly, thermal relaxation
has been shown to impact on flow velocity profiles in Jeffrey fluids [12], and a number of thermal
convection problems in fluids and porous media [27,29–31] (including thermo-haline convection
[13,28]), while type-II flux laws analogous to equation (1.1) have found utility in related contexts
involving advection-diffusion systems [16,17,26].

In accordance with these varied applications, especially those involving convection (see, e.g.,
Straughan et al. [27–31]), recently we studied the impact of the Cattaneo-Christov heat-flow model
on the canonical Rayligh-Bénard problem of a Boussinesq fluid layer heated from below [1,3,25].
Our analysis in this earlier context showed that in addition to onset of instability by stationary
convection (as predicted classically [3,25]), Cattaneo effects give rise to oscillatory convection as
the preferred manner of instability whenever C exceeds some threshold value CT , where CT (P1)
is a function of the Prandtl number P1 [1]. Here we develop these ideas to study hyperbolic
heat-flow effects on convection in a fluid layer subject to an impressed magnetic field. Such an
investigation is desirable for at least two reasons: first, magnetic fields are known to strongly
suppress the onset of instability in the classical (Fourier law) Bénard problem [4,5], and would
therefore be expected to impact on convection with the Cattaneo-Christov heat-flow; and second,
introduction of an impressed field in the classical problem results in overstability whenever
the Chandrasekhar number Q exceeds a threshold value QT (P1,P2), where P2 is the magnetic
Prandtl number [20], suggesting potential for interaction between magnetic field induced [4,5],
and Cattaneo induced [1] overstability once hyperbolic effects are accounted for.

While the problem of thermal convection in a magnetised fluid with the Cattaneo-Christov
heat-flow model is readily formulated in terms similar to our earlier study [1], the inclusion of
magnetic field effects is non-trivial, and requires substantial theoretical development. Here we
begin by introducing the augmented thermal convection model (§2), and consider the problem of
stationary convection (§3), in which case we find that hyperbolic heat-flow effects do not impact
on the critical Rayleigh number R(c)

c for onset of instability, and we recover Chandrasekhar’s
classical result obtained using the Fourier heat-flow [3]: i.e., strong inhibition of convection
by the impressed field, with asymptotic behaviour R(c)

c (Q)→ π2Q as Q→∞. The problem of
oscillatory convection subject to free boundary conditions is then considered in §4, where we
derive general solutions for both the Rayleigh number R(o)

a (a), and oscillation frequency γ(a), at
given wavenumber a. As expected, onset of oscillatory convection is found to be determined
by all four parameters P1, P2, Q and C, leading to an expression for the Rayleigh number
1Indeed, some apparently novel heat-flow formulations, such as the ballistic model by Xu and Hu [34], are equivalent to the
Maxwell-Cattaneo law (see, e.g., Christov & Jordan [8]).
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R
(o)
a (a;P1,P2, Q,C) in which the various dependencies are somewhat obscured. Nevertheless,

following in the tradition of Chandrasekhar [3], analytical progress can be made by neglecting the
magnetic Prandtl number P2, meaning overstability would be classically forbidden [3]. Indeed,
by proceeding in this way, expressions for both the critical Rayleigh number R(o)

c ≡R
(o)
c (ac),

and the corresponding critical wavenumber ac are derived in section §4(b), while conditions
for permitted solutions are explored in §4(a). Crucially, we show that the critical Rayleigh
number for oscillatory convection scales as R(o)

c (Q)→ π
√
Q/C for Q→∞, that is, much weaker

suppression of instability by the impressed field when compared to stationary convection. Thus,
for given Chandrasekhar number Q, we expect some threshold Cattaneo number CT beyond
which (C >CT ) the preferred manner of onset of instability switches from stationary to oscillatory
convection; here we find that CT ∝ 1/

√
Q for largeQ, meaning that overstability can be preferred

even if the Cattaneo number itself is relatively small §4(c). For fixed boundary conditions we
study the problem using a novel numerical scheme to compute threshold values for Prandtl
numbersP1 = 1 andP1 = 10, and Chandrasekhar numbers in the rangeQ∈ [10−1, 10+4], thereby
obtaining qualitatively similar behaviour to that found analytically for free boundaries (§5). The
nature of transitions between stationary and oscillatory convection, which are characterised by
discontinuous shifts in the critical wavenumber ac, are discussed further in Section 6.

2. Thermal Convection Model
To extend our earlier model [1], the fluid equations governing conservation of mass and energy,
alongside Christov’s Galilean invariant formulation of the Cattaneo heat-flow law [2,7], are
augmented to account for magnetic field evolution (cf. Chandrasekar [3]). Hence, denoting the
velocity, pressure, temperature, heat-flow, and magnetic field as vi, P , T , Qi, and Hi respectively,
the momentum, energy, heat-flow, and induction equations comprising our basic model are(

∂vi
∂t

+ vj
∂vi
∂xj

)
=
µHj
4πρ0

∂Hi
∂xj

− ∂

∂xi

(
P

ρ0
+
µH2

8πρ0

)
+ ν∇2vi −

ρ

ρ0
gλi, (2.1a)

ρ0cV

(
∂T

∂t
+ vj

∂T

∂xj

)
=−

∂Qj
∂xj

, (2.1b)

τ

(
∂Qi
∂t

+ vj
∂Qi
∂xj

)
=−Qi − κ

∂T

∂xi
. (2.1c)(

∂Hi
∂t

+ vj
∂Hi
∂xj

)
=Hj

∂vi
∂xj

+ η∇2Hi, (2.1d)

where the fluid viscosity ν, gravitational acceleration g= |g|, specific heat cV , thermal relaxation
time τ , thermal conductivity κ, magnetic permeability µ, and resistivity η are constant coefficients.
As in our earlier study [1], we assume a Cartesian (x, y, z) geometry in which gravity acts in the
negative z-direction, such that λi is the unit vector λi = (0, 0, 1), while the Laplacian operator
is ∇2 ≡

∑
i ∂

2/∂x2i . The model is closed by an incompressible equation of state, alongside
Maxwell’s expression for the divergence-free magnetic field, viz

∂vi
∂xi

= 0, and
∂Hi
∂xi

= 0, (2.2)

in addition to the standard Boussinesq approximation in the buoyancy term, namely

ρ(T ) = ρ0 [1 + α(Tα − T )] , (2.3)

where ρ0 is the fluid density when it is at temperature T = Tα, and α is a thermal expansion
coefficient.

Supposing the fluid to be confined within the semi-infinite region (x, y)∈R2 between parallel
planes z = 0 and z = d, with upper and lower planes held at fixed temperatures Tu and Tl
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respectively, our boundary conditions are

vz =w= 0 at z = 0, d, and T (0) = Tl and T (d) = Tu, where Tl >Tu. (2.4)

Thus, assuming an impressed uniform magnetic field H aligned with the z-axis, the steady-state
conducting solution to system (2.1), which we denote using the subscript ‘0’, is

vi0 = 0, Hi0 =Hλi, T0 = Tl − βλjxj , and Qi0 = βκλi, with β =
Tl − Tu

d
, (2.5)

where β represents the temperature gradient, and buoyancy is balanced by gradients in the
pressure P = P0(z), i.e., ∂P0

∂xi
=−gρ(T0)λi. To study the stability of the steady-state conducting

solution (2.5), we add a set of perturbations {ui, θ, qi, p, hi} such that

vi = vi0 + ui = ui, T = T0 + θ, Qi =Qi0 + qi, P = P0 + p, and Hi =Hλi + hi, (2.6)

and then derive equations governing the perturbed quantities normalised according to

x̃i =
xi
d
, t̃=

νt

d2
, ṽi =

vid

ν
, P̃ =

Pd2

ν2ρ0
, H̃i =

Hi
H
, T̃ =

√
αgκd2T 2

βν3ρ0cV
, Q̃i =

T̃Qid

Tκ
. (2.7)

Indeed, in this way we obtain a fully non-linear dimensionless system of perturbation equations
which can be linearised to give (cf. Bissell [1] and Chandrasekar [3])

∂

∂t
∇2w=R

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+

Q

P2
∂

∂z
∇2hz +∇4w, (2.8a)

P1
∂θ

∂t
=Rw − sq, with sq =

∂qi
∂xi

, (2.8b)

2CP1
∂sq
∂t

=−sq −∇2θ, (2.8c)

P2
∂hz
∂t

=∇2hz + P2
∂w

∂z
, (2.8d)

where the tilde notation has been dropped for brevity, w= uz and hz are the z-components
of the velocity and magnetic field perturbations respectively, and we have made use of the
dimensionless thermal and magnetic Prandtl numbers, P1 and P2 respectively, Cattaneo number
C, Chandrasekhar number Q, and Rayleigh number Ra =R2, i.e.,

P1 =
νρ0cV
κ

, P2 =
ν

η
, Q=

µH2d2

4πρ0νη
, C =

τκ

2ρ0d2cV
, and Ra =R2 =

αgd4βρ0cV
νκ

. (2.9)

Proceeding with the usual analysis, the perturbations are then decomposed into normal modes
based on eigenfunctions W , Θ, S, and K, and an exponential time dependence ∝ eσt, with σ as a
constant frequency, thus:

w=W (z)f(x, y)eσt, θ=Θ(z)f(x, y)eσt, sq = S(z)f(x, y)eσt, hz =K(z)f(x, y)eσt, (2.10)

where f(x, y) is a plane tiling function satisfying∇2f(x, y) =−a2f(x, y), with a as a characteristic
wavenumber or inverse length-scale. System (2.8) may then be expressed as

σ(D2 − a2)W =−a2RΘ + (D2 − a2)2W +
Q

P2
D(D2 − a2)K, (2.11a)

σP1Θ=RW − S, (2.11b)

(2CP1σ + 1)S =−(D2 − a2)Θ, (2.11c)

σP2K = (D2 − a2)K + P2DW, (2.11d)

where D is the ordinary differential gradient operator in the z-direction, i.e., D≡ d
dz , D2 ≡ d2

dz2 .
System (2.11) may be further reduced by eliminating Θ, S, and K to obtain the eighth-order
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eigenfunction problem in W forming the basis of our subsequent analysis

(D2 − a2)
[
(D2 − a2)− P1σ(2CP1σ + 1)

] [
(D2 − a2 − σ)(D2 − a2 − σP2)−QD2

]
W

=−a2R2(2CP1σ + 1)(D2 − a2 − σP2)W. (2.12)

Note that here we shall consider two sets of boundary conditions, both with the assumption
of perfect conduction (in which case the magnetic field perturbation vanishes at z = 0, 1): free
surfaces (no tangental stress); and fixed sufaces (no slip), that is (see Chandrasekhar [3]):

free surfaces: W = 0, D2W= 0, Θ= 0, and K = 0, at z = 0, 1, (2.13a)

fixed surfaces: W = 0, DW = 0, Θ= 0, and K = 0, at z = 0, 1, (2.13b)

where the former admits analytical discussion, and the latter must be investigated numerically.

3. Stationary Convection
In the case of stationary convection, onset of instability in system (2.10) occurs through the
marginal state σ= 0, for which the eigenfunction problem of equation (2.12) reduces to(

D2 − a2
)[(

D2 − a2
)2
−QD2

]
W =−a2R2W. (3.1)

The absence of terms in C from this expression make it apparent that hyperbolic heat-flow effects
do not impact on the solutions for stationary convection, and results in this instance are equivalent
to those found using the Fourier heat-flow law. Indeed, equation (3.1) is identical to the classical
eigenfunction problem for magnetised conducting fluids described by Chandrasekhar [3–5],
whose results we now summarise briefly for later comparison with the oscillatory modes.

For fixed boundary conditions (2.13b) equation (3.1) must be solved numerically (see §5), and
in this section we consider free boundaries (2.13a) only, in which case all even derivatives of W
vanish at z = 1, 0, and W (z) can be written in terms of a Fourier series comprising odd terms

W (z) =

∞∑
n=1

Wn, where Wn =An sin(nπz) (3.2)

is the nth mode weighted by the constant coefficient An. Thence, equation (3.1) yields a Rayleigh
number corresponding to the nth mode [3]

Ra(n) =R2(n) =
Λn(Λ

2
n + n2π2Q)

a2
, where Λn ≡ n2π2 + a2, or equivalently (3.3)

R̂=
(1 + xn)

xn

[
(1 + xn)

2 + Q̂
]
, with R̂≡ Ra

n4π4
, xn ≡

a2

n2π2
, Q̂≡ Q

n2π2
, (3.4)

as a set of further ‘n2π2’ normalisations. Further, solving ∂R̂
∂xn

∣∣∣
xc

= 0, where xc(n) = a2c/n
2π2

is the critical wavenumber at which R̂ is minimised (both a and xn shall be referred to as the
wavenumber), one obtains the critical Rayleigh number Rc for the onset of stationary convection

R̂c ≡ R̂(xc;n), or alternatively Rc ≡Ra(ac;n), where 2x3c + 3x2c − 1 = Q̂. (3.5)

Observe from equation (3.3) that, for some given wavenumber a, the sequence of Rayleigh
numbers {Ra(a;n)} increases monotonically with n. Thus, the absolute critical Rayleigh number
and wavenumber are those associated with the lowest mode n= 1, in which case we have [3]

Rc(Q)→

{
27π4

4 , as Q→ 0,

π2Q, as Q→∞,
with ac(Q)→


π√
2
, as Q→ 0,(

1
2π

4Q
)1/6

, as Q→∞.
(3.6)

We shall adopt the convention that unless the mode number n is stated in a parameter’s argument
explicitly, or made clear by the context, expressions shall be quoted assuming n= 1 throughout.
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4. Oscillatory Convection
We now consider the onset of instability in system (2.11) via oscillatory modes of convection,
i.e., overstability. The existence of such modes in magnetised fluids obeying a Fourier type
heat-flow law have long been known. Indeed, Chandrasekhar discusses the topic at length in
Hydrodynamic and Hydromagnetic Stability [3], and—for the geometry considered here—it has been
shown that overstability is the preferred form of convection provided Q exceeds some threshold
value QT (P1,P2) [20]. Similarly, we have demonstrated recently that overstability can also occur
in unmagnetised fluids subject to a Cattaneo-Christov heat-flow model [1], and represents the
preferred form of instability whenever the Cattaneo numberC exceeds a threshold valueCT (P1).
When both magnetic fields and Cattaneo effects are simultaneously present, therefore, we expect
the manner of onset of instability to depend in some way on each of the parameters C, Q, P1 and
P2. In general, the nature of this dependence will be rather complicated, but as we now discuss,
some of its features may be uncovered by appropriate simplifications. Note that our attention
shall be restricted initially to free boundary conditions (2.13a), since fixed boundary conditions
(2.13b) will require a numerical treatment (see §5).

For the problem of oscillatory convection, we assume that σ may in general be complex, and
define γ such that [3]

σ≡ iγ. (4.1)

Since we deal in this section with free boundary conditions (2.13a), we find as for stationary
convection that all even derivatives of W (z) vanish at the boundaries, so that substitution
of the Fourier expansion (3.2) into the general eigenfunction function problem (2.12) yields a
relationship for the nth mode{

Λn
(
Λn − 2CP2

1γ
2
)(

Λ2
n − γ2P2 + n2π2Q

)
− γ2Λ2

nP1 (1 + P2)
}

+
{
P1Λn

(
Λ2
n − γ2P2 + n2π2Q

)
+ Λ2

n

(
Λn − 2CP2

1γ
2
)
(1 + P2)

}
σ

=
{
Λn − 2CP1P2γ2

}
a2Ra + {2CP1Λn + P2} a2Raσ, (4.2)

where we have written terms in σ2 as −γ2 according to the definition (4.1). For given frequency,
and wavenumber a, this expression may be used to calculate the corresponding Rayleigh number
Ra required for the nth mode to satisfy system (2.11). Our task here is to find the minimum
Rayleigh number for which such solutions are physical, and, since Ra must be real, this places
constraints on the relationship between the complex quantities σ and γ. Proceeding in the
tradition of Chandrasekhar [3], we shall study the onset of convection via a purely oscillatory
mode, i.e., <{σ}= 0, and assert γ to be real. Hence, by comparing real and imaginary parts in
equation (4.2) we may eliminate terms in σ to obtain the following quadratic in γ2

γ4
{
4C2P3

1P2
2

}
+ γ2

{
P2
2 (1 + P1)− 2CP1

(
P2
2Λn − 2CP2

1

[
Λ2
n + n2π2Q

])}
−
{
2CP1Λn

[
Λ2
n + n2π2Q

]
− Λ2

n(P1 + 1) + (P2 − P1)n2π2Q
}
= 0. (4.3)

The standard solution to the quadratic implies two solutions for γ2; however, it may be shown
that our requirement γ2 > 0 means one of these solutions can be discarded, and we have

γ2 =
1

8C2P3
1P2

2

{
−
{
P2
2 (1 + P1[1− 2CΛn]) + 4C2P3

1

[
Λ2
n + n2π2Q

]}
(4.4)

+

√{
P2
2 (1 + P1[1− 2CΛn])− 4C2P3

1

[
Λ2
n + n2π2Q

]}2
+ 16C2P3

1P2
2 (1 + P2)

}
.
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Thus, by the imaginary part of equation (4.2), we arrive at a general expression for the Rayleigh
number

Ra =

(
Λ3
n[1 + P1 + P2] + P1Λnn2πQ− P1Λn [(2CP1Λn + P2) + 2CP1P2Λn] γ2

a2(2CP1Λn + P2)

)
. (4.5)

For given values of P1, P2, Q, and C, and for given mode number n, this equation defines the
Rayleigh number Ra as a function of the wavenumber a. By calculating the minimum value of
Ra, one may then determine the critical wavenumber ac, and thence critical Rayleigh numbers
Rc for the onset of instability by oscillatory convection.

In the case that {P2
2 (1 + P1[1− 2CΛn]) + 4C2P3

1 [Λ
2
n + n2π2M ]} ≥ 0,2 careful examination of

equation (4.4) reveals that a necessary condition for our requirement γ2 > 0 to hold is

P2 − P1[1− 2CΛn]> 0. (4.6)

Comparing this expression with Chandrasekhar’s results for magnetised convection [3], we see
that one effect of the Cattaneo-Christov heat-flux is to relax the classical necessary condition for
oscillatory convection, i.e., that P2 >P1, according to the transformation P1→P1[1− 2CΛn].
Furthermore, when (1 + P1[1− 2CΛn])> 0 it may also be shown that γ2 > 0 is possible only if

Q̂ > Q̂∗, where Q̂∗ =

(
1 + P1[1− 2CΛn]

P2 − P1[1− 2CΛn]

)
(1 + xn)

2; (4.7)

this too can be compared with Chandrasekhar’s classical results [3], namely the lower bound Q̂ >

Q̂∗ = (1+P1)
(P2−P1)

(1 + xn)
2, where again we observe the transformation P1→P1[1− 2CΛn]. Here

the balance between C and P1 is perhaps to be expected given that increases in P1(ν) correspond
to ‘stiffening’ of the fluid by virtue of the viscosity dependence ν, whereas hyperbolic heat-flow
effects in C impart a kind of elasticity [1].

Equation (4.5) represents the most general solution to the problem of overstability in a
magnetised fluid with Cattaneo heat-flow effects as described by system (2.11). The complexity
of the general form does, however, somewhat obscures the nature of the P1, P2, Q, and
C dependences, and it is therefore expedient to consider whether there is simpler means of
exploring the combined effects of Cattaneo heat-flow and magnetic field without recourse to exact
solution. To this end we now follow in the tradition of Chandrasekhar’s treatment of combined
magnetic and rotational effects, and explore conditions for which the magnetic Prandtl number
P2 can be neglected [3]. Such a move has two advantages: first, the value of P2 will typically
be small in any case (at least when compared to P1); and second, in the classical problem of
magnetised thermal convection, overstability is only possible when P2 6= 0 [3]. Thus, in what
follows we can be certain that oscillatory convection arises solely as a result of hyperbolic heat-
flow effects, that is, we will essentially be studying the impact of magnetic fields on the overstable
solutions determined in our original context [1].

In principle one may remove terms in P2 by binomial expansion of our previous results in
the limit P2→ 0; however, in practice it is more straightforward to return to equations (4.2) after
setting P2 = 0. Thence, solving for the frequency of oscillation, we obtain

γ2 =
1

4C2P3
1

[
P1 (2CΛn − 1)− rn

]
, where rn(Λn, Q)≡ Λ2

n

Λ2
n + n2π2Q

≤ 1, (4.8)

with equality holding in the definition of rn in the limit Q→ 0, in which case we recover the
frequency of oscillation for unmagnetised Cattaneo convection [1]. Thus, since we require γ2 >
0, oscillatory convection is only possible when 2CΛn > 1. Similarly, we find that the Rayleigh

2The situation is more involved when {P2
2 (1 + P1[1− 2CΛn]) + 4C2P3

1 [Λ
2
n + n2π2M ]}< 0, and requires analysis in

greater detail than would be appropriate here.
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number for the nth mode is given by

Ra =
Λn(P1 + rn) + 2CP2

1 (Λ
2
n + n2π2Q)

4C2P2
1a

2
, (4.9)

from which one recovers the unmagnetised Cattaneo convection result as Q→ 0 and rn→ 1 [1].
Indeed, observe that one my write this equation as

Ra =RS +RQ, where (4.10)

RS =
1

4C2P2
1a

2

[
(P1 + 1)Λn + 2CP2

1Λ
2
n

]
, and RQ =

n2π2Q

4C2P2
1a

2

[
2CP2

1 −
rn
Λn

]
, (4.11)

are the Rayleigh numbers for oscillatory convection with the Cattaneo-Christov model of our
original study [1], and a magnetic correction term respectively. Writing the Rayleigh number
in this way helps to separate the unmagnetised hyperbolic heat-flow effects from new aspects
introduced by the Chandrasekhar number Q; however, it is also useful for considering the mode
number for which the Rayleigh numbers are smallest. In particular, in our earlier context we
showed that for given a, C, and P1 that the sequence of Rayleigh numbers {RS(n)} is strictly
increasing with n [1]. Similarly, it may be shown that the sequence {sn}= {rn/Λn} is strictly
decreasing, and thus that {RQ(n)}, is also strictly increasing with n. In this way, we have that the
minimum Rayleigh number for oscillatory convection may be found by selecting n= 1. However,
in what follows it shall often be convenient to work in the ‘n2π2’ normalisations, and for this
reason we introduce

γ̂ ≡ γ

n2π2
, and Ĉ ≡ n2π2C, (4.12)

such that the oscillation frequency and Rayleigh numbers may be expressed as

γ̂2 =
1

4Ĉ2P3
1

[
P1
[
2Ĉ(1 + xn)− 1

]
− rn

]
, where rn(xn, Q̂) =

(1 + xn)
2

(1 + xn)2 + Q̂
, (4.13)

and R̂=
(1 + xn)

4Ĉ2P2
1xn

[(
P1 +

(1 + xn)
2

(1 + xn)2 + Q̂

)
+ 2ĈP2

1

(
(1 + xn) +

Q̂

(1 + xn)

)]
. (4.14)

It will be seen from these expressions that while P2→ 0 represents a useful simplifying
assumption, the nature of our various dependences mean that the solution is non-trivial. Several
features remain to be shown: first, the conditions whereby oscillatory convection is a permitted
solution, i.e., γ2 > 0; second, the critical values at which the Rayleigh number R̂ is minimised; and
third, the range of parameters for which oscillatory convection is the preferred manner of onset
of instability. We consider these problems in the following subsections.

(a) Cut-off Wavenumber for Oscillatory Solutions
To determine the preferred manner of onset of instability, we shall need to explore those regions
of parameter space where the critical Rayleigh number for oscillatory convection R(o)

c is less than
that for stationary convection R

(c)
c . However, our requirement that the oscillation frequency be

real means that we must also confirm γ2 > 0 whenever R(o)
c <R

(c)
c , and this places restrictions

on the wavenumber for oscillatory modes. Indeed, by equation (4.13) we have both the necessary,
and the necessary and sufficient conditions

(1 + xn)>
1

2Ĉ
, and P1

[
2Ĉ(1 + xn)− 1

]
> rn =

(1 + xn)
2

(1 + xn)2 + Q̂
< 1 (4.15)

respectively. Such inequalities prompt us to define a cut-off wavenumber xn = x∗n for which
γ̂2(x∗n) = 0, and by equation (4.13) we see that x∗n will be given by solutions to the cubic

P∗(yn) = 2P1Ĉy3n − (P1 + 1)y2n + 2P1ĈQ̂yn − P1Q̂= 0. where yn ≡ (1 + xn), (4.16)
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Hence, permitted solutions obtain whenever P∗(yn)> 0. Since P∗(yn) has either one or three
real positive roots y∗n, which we can label y∗n = yw (one root) and y∗n ∈ {yu, yv, yw} (three roots,
yu < yv < yw), for permitted solutions we require either yw < yn (if one root), or (if three roots)
either yu < yn < yv or yw < yn. While it is not possible to solve equation (4.16) meaningfully, it

may be shown that
(
P1, Ĉ

√
Q̂

)
parameter space is divided into regions for which either one or

three roots obtain by the curve

CQ± =

√
2(P1 + 1)3/2√

P1(1 + 20P1 − 6P2
1 )∓ P1(1− 8P1)3/2

, where CQ ≡ Ĉ
√
Q̂, (4.17)

with the triple root solution represented by the cusp co-ordinate (P1, CQ) = ( 18 ,
3
√
2

2 ). Thus,
provided we restrict ourselves to P1 ≥ 1

8 , in which case only one root (or a triple root) is
possible, only one cut-off wavenumber obtains, and we can make general statements regarding
the possibility of solutions (see section (c)). Indeed, notice that if the cut-off x∗n is less than or equal
to zero, i.e., yc ≤ 1, then all wavenumbers will yield permitted oscillatory solutions.

(b) Critical Rayleigh Number for Oscillatory Modes
By equation (4.14) we have that for given P1, Q, and C, the Rayleigh number is a function of the
wavenumber xn. Thus, proceeding as we did in section 3, differentiating R̂(xn) with respect to
xn and solving ∂Rn/∂xn|xc = 0, we may obtain an expression for the critical wavenumber xc for
the nth mode, and thence critical the Rayleigh number R̂c ≡ R̂(xc). Indeed, defining

xS(n)≡

[
1 +

(P1 + 1)

2ĈP2
1

]1/2
, (4.18)

we find that the critical xc will be given by solutions to

(x2S − x
2
c + Q̂) =

Q̂

2ĈP2
1

(
2xc(1 + xc)

2 + [(1 + xc)
2 + Q̂]

[(1 + xc)2 + Q̂]2

)
. (4.19)

This equation represents a sextic polynomial in xc and is not amenable to further solution. In
addition, numerical investigation reveals that under some conditions, particularly very small
values of the Prandtl number, more than one root with xc > 0 is permitted. Consequently, care
must be taken when computing the critical Rayleigh number to ensure that the correct value of
xc is used such that R̂(xc) represents an absolute (global) minimum, and, indeed, that such a
solution is permitted with x∗n <xc.

Though it is not possible to solve for xc exactly, we can calculate the asymptotic limits, and
in this way reveal at least some of the system qualities analytically. As expected, in the limit of
low Chandresekhar number we recover the unmagnetised results from our original context [1],
whereas at high Q we find

lim
Q→∞

xc =

√
Q̂, lim

Q→∞
R̂c =

√
Q̂

Ĉ
, and lim

Q→∞
γ̂2c =

√
Q̂

2ĈP2
1

, (4.20)

where the absolute critical values correspond to the case where n= 1 (provided that these
solutions are permitted, see §(a)). In the absence of closed form expressions, these limits allow
us to compare the Rayleigh numbers for stationary and oscillatory convection, which we may
denote R(c)

c and R(o)
c respectively, when Q is large. Notice in particular that with n= 1 we have

R
(o)
c → π2(

√
Q/C) asQ→∞, whereas for stationary convection we foundR(c)

c → π2Q asQ→∞
(see equation (3.6)), i.e., that hyperbolic heat-flow effects lead to much weaker inhibition of onset
of instability when the Chandrasekhar number is large. As we shall discuss in the following
section, one consequence of this is that we expect oscillatory convection to represent the preferred
form of instability at large Q even if the Cattaneo number C is itself small. Indeed, by solving
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Figure 1. Critical Rayleigh numbers Rc (top), wavenumbers ac (bottom), and illustrative asymptotic limits (dash-dotted

curves) plotted as a function of Q for free boundary conditions with P1 = 1 (left) and P1 = 10 (right), and several values

of Cattaneo number (as labelled). Critical Rayleigh number curves for each form of convention intersect at the points

(Q,CT (Q)), where CT is the threshold Cattaneo number corresponding to Q (see §(c)). Here we have selected the

critical mode n= 1, while only those portions of theRc curves corresponding to permitted solutions (γ2c > 0) are shown;

full curves are shown for ac indicating their non-trivial Q dependence. In these calculations the sextic (4.19) yields only

one physical root for the critical wavenumber.

equation (4.19) numerically for given P1,C andQ, in figure 1 we compare values for the Rayleigh
numbersR(c)

c andR(o)
c , and their corresponding critical wave-numbers a(c)c and a(o)c respectively,

for a range of Q. These plots suggest that for each value of the Cattaneo number C, there is
some threshold Chandrasekhar number QT (C,P1) beyond which R(c)

c >R
(o)
c and the preferred

manner of onset of instability changes from stationary to oscillatory convection (see §4(c) below).
[This threshold may be conceived of equivalently as a threshold Cattaneo number CT (Q,P1).]
Note that at fixed Q, the behaviour at large Cattaneo number C is

lim
C→∞

xc =

√
1 + Q̂, lim

C→∞
R̂c =

1

Ĉ

[
1 +

√
1 + Q̂

]
, and lim

C→∞
γ2c =

1 +

√
1 + Q̂

2ĈP2
1

; (4.21)

while at low C we have that solutions are non-physical, with xc→ xS→∞, and R̂c→∞.

(c) Preferred Manner of Onset of Instability
We now consider the problem of determining the preferred manner by which instability occurs,
using the superscripts ‘(c)’, and ‘(o)’ for quantities corresponding to stationary and oscillatory
convection respectively. Without closed form expressions for either of the critical Rayleigh
numbers, such an investigation is non-trivial; however, some analytical progress can be made
by considering the more general formulae for Ra as a function of wave-number. First, observe
by equations (3.4) and (4.14) that the Rayleigh numbers for stationary and oscillatory convection,
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R̂(c) and R̂(o), are related by the expression

R̂(o) = R̂(c) − γ̂2P1
xn

[
2ĈP1(1 + xn)

2 + (1 + xn) + 2ĈP1Q̂
]
. (4.22)

Hence, in the (xn, R̂) plane we have that the solutions for oscillatory convection branch off from
those for stationary convection when γ2 = 0, i.e., at the point xn = x∗n (recall that x∗n is unique
for P1 > 1

8 , see §(a)). It then follows that for a given wavenumber xn, oscillatory convection is
the preferred manner for onset of instability whenever solutions for R̂(o)(xn) are permitted (γ2 >
0). If we now consider the critical wave-number for stationary convection x(c)c , then we find by
equations (3.5) and (4.13) that for given P1 and Q

γ̂2(x
(c)
c )> 0 and thus R̂(o)(x

(c)
c )< R̂

(c)
c whenever Ĉ >

(
1 + 2P1x

(c)
c

)
4P1x

(c)
c

(
1 + x

(c)
c

) ; (4.23)

that is, we have the sufficient condition on C for oscillatory convection to represent the preferred
manner of instability (for which only the critical mode n= 1 is relevant)

C >CS(P1, Q)≡

(
π2 + 2P1(a

(c)
c )2

)
4P1(a

(c)
c )2

(
π2 + (a

(c)
c )2

) , with lim
Q→∞

CS =
1

(4π4Q)1/3
, (4.24)

where CS is defined here as the sufficient Cattaneo number, and a(c)c (Q) is given by the solution to
the cubic (3.5) (see figure 2). Note that for unmagnetised conditions CS(P1) = (1 + P1)/3π2P1.

Inequality (4.24) is a sufficient and necessary condition for R(o)(x
(c)
c )<R

(c)
c ≡R(c)(x

(c)
c ), but

it is not a necessary condition for R(o)
c ≡R(o)(x

(o)
c )<R

(c)
c . The non-trivial dependence of x(o)c

(the critical wavenumber for oscillatory convection) on the Cattaneo number means that it is
difficult to make general statements concerning the C dependence of R(o)

c ; however, results from
our earlier context [1], in addition to our asymptotic limits (4.21), and substantial numerical
investigation, suggest that R(o)

c is a strictly decreasing function of C for given P1 and Q. Indeed,
our asymptotic limits indicate that for given P1 and Q there is some threshold Cattaneo number CT
beyond which (C >CT ) onset of instability will be as oscillatory convection, where CT is defined
such that (cf. figure 1)

R
(o)
c (P1, Q,CT ) =R

(c)
c (P1, Q), (4.25)

In this way we may define both threshold wave-numbers and gyration frequencies corresponding
to R(o)

c (CT ), which we denote aT = a
(o)
c (CT ) and γT = γ

(o)
c (CT ) respectively (see §6, figure 4).

Whilst it does not look easy to solve for CT in general, as before we can gain some insight
into the values of the threshold parameters by considering the behaviour at limiting values of Q.
When Q is small, these values are simply those found in our earlier context [1], with

C
3/2
T

[
C

1/2
T −

√
2π2

R
(c)
c

]
=

(P1 + 1)

4R
(c)
c P2

1

, where R
(c)
c =

27π4

4
. (4.26)

Conversely, the task of determining asymptotic limits forQ→∞ is not straightforward; however,
in essence one finds that

lim
Q→∞

CT =

(
φT (1 + bT )

4
√
bT

)
1

πQ1/2
= 0, with φT (P1)≡

4b2T
P2
1 (1 + bT )3(1− bT )

, (4.27)

where bT ≡ bT (P1) is a strictly increasing function of P1 given by the solutions to a sextic

P3
1 + P2

1
bT (3− bT )

(1 + bT )(1− bT )
−
(

2bT
(1 + bT )2

)2
bT

(1− bT )2
= 0, (4.28)
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Figure 2. The sufficient Cattaneo number CS (dashed curves), threshold Cattaneo number CT (solid curves), and

asymptotes (dash-dotted curves) plotted as a function ofQ, with P1 = 1 (left) and P1 = 10 (right). For C >CS we have

by equation (4.22) and inequality (4.23) that oscillatory convection will be the preferred manner of onset of instability,

with R(o)
a (acc)<R

(c)
c ≡R

(c)
a (acc); conversely, when C <CT , stationary convection will be the preferred manner of

onset of instability, with R(o)
c >R

(c)
c . Between the two curves CT and CS we expect instability to occur as overstability

(R(o)
c <R

(c)
c ); however, whilst numerical investigation is supportive of this claim, since we have not demonstrated that all

oscillatory solutions are permitted in this region, such an expectation is unproven. Data in this figure corresponds to free

boundary conditions, with values for CT computed by solving the intersection problem of equation (4.25) numerically (cf.

§5 and figure 3). A subset of the data used to produce these plots is given in table 1.

and it may be shown that φ(P1)∈ (2, 4) and bT ∈ (0, 1), with

φT (P1)→

{
2, as P1→ 0,

4, as P1→∞,
and bT (P1)→

P1→ 0, as P1→ 0,(
1− 1

4P2
1

)
→ 1, as P1→∞.

(4.29)

Similarly, the asymptotes for threshold wave-numbers and gyration frequencies are

lim
Q→∞

aT =
(
bTπ

2Q
)1/4

=∞, and (4.30)

lim
Q→∞

γ2T =
4π2bT

P3
1 (1 + bT )2φ

2
T

{
P1
[
1

2
(1 + bT )φT − 1

]
− bT
bT + 1

}
Q=∞. (4.31)

With recourse to both the sufficientCS and thresholdCT Cattaneo numbers, (Q,C) parameter
space may be divided into regions where each form of onset of instability is preferred, as we have
done in figure 2. For C >CS onset of instability is as oscillatory convection, whereas for C <CT ,
onset of instability is as stationary convection. There thus remains a region CT <C <CS where
the exact manner of onset of instability is in some sense uncertain, because while substantial
numerical investigation suggests that all oscillatory solutions with C >CT are permitted, this
has not been proven in general. Notice from these plots that CT appears to decrease with P1, in
agreement with the results for unmagnetised Catteneo convection in our earlier context [1].

5. Numerical Solution
For fixed boundary conditions, such as those given by equation (2.13b), system (2.11) must be
solved numerically, and to this end we employ the Chebyshev-τ method described by Dongerra
et al. [10] as adopted in our earlier context [1], and for which the z-coordinate is transformed such
that our problem is defined on z ∈ (−1, 1). The basic principle of this method is to eliminate terms
with derivatives higher than D2, so that here it is necessary for us to propose a novel numerical
scheme by introducing the auxiliary variable χ(z) defined such that

χ(z)f(x, y)eσt =∇2w. (5.1)
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Thence, operating on equation (2.11d) with D, and substituting the result into equation (2.11a),
system (2.11) may be written in the augmented form

(D2 − a2)W − χ= 0, (5.2a)

−Qa2W + [(D2 − a2)−Q]χ− a2RΘ= σ(χ−QDK), (5.2b)

P2DW + (D2 − a2)K = σP2K, (5.2c)

(D2 − a2)Θ + S =−2σCP1S, (5.2d)

−RW + S =−σP1Θ. (5.2e)

Further, by expanding our quantities Φ∈ {W,χ,K,Θ, S} as Chebyshev polynomials Tn(z)

weighted by constant coefficients φn, viz

Φ(z) =

N−1∑
n=0

φnTn(z), with N even, (5.3)

system (5.2) may be approximated to an arbitrary level of precision by the eigenvalue problem

Aijxj = σBijxj , i, j = 0, . . . , (5N − 1) (5.4)

where xj is a vector of length 5N comprising the φn, i.e.,

xj = (w0, . . . , wN−1, χ0, . . . , χN−1, k0, . . . , kN−1, θ0, . . . , θN−1, q0, . . . , qN−1)
T, (5.5)

and Aij ≡Aij(a,R,P2, Q) and Bij ≡Bij(C,P1,P2, Q) are 5N × 5N matrices with constant
coefficients defined in equation (5.9) below. Notice that on the boundaries of the domain the
Chebyshev polynomials satisfy

Tn(±1) = (±1)n and T ′n(±1) = (±1)n−1n2, (5.6)

so that by equations (2.13b), for rigid surfaces we can form the set of expanded fixed boundary
conditions (B.C.s)

W (±1) = 0

{
B.C. 1: w0 + w2 + w4 + · · ·+ wN−2 = 0,

B.C. 2: w1 + w3 + w5 + · · ·+ wN−1 = 0,
(5.7a)

DW (±1) = 0

{
B.C. 3: 22w2 + 42w4 + 62w6 + · · ·+ (N − 2)2wN−2 = 0,

B.C. 4: w1 + 32w3 + 52w5 + · · ·+ (N − 1)2wN−1 = 0,
(5.7b)

K(±1) = 0

{
B.C. 5: k0 + k2 + k4 + · · ·+ kN−2 = 0,

B.C. 6: k1 + k3 + k5 + · · ·+ kN−1 = 0,
(5.7c)

Θ(±1) = 0

{
B.C. 7: θ0 + θ2 + θ4 + · · ·+ θN−2 = 0,

B.C. 8: θ1 + θ3 + θ5 + · · ·+ θN−1 = 0,
(5.7d)

which may also be used in the case of free surfaces provided one replaces B.C.s 3 & 4 with

D2W (±1) = χ(±1) = 0

{
B.C. 9: χ0 + χ2 + χ4 + · · ·+ χN−2 = 0,

B.C. 10: χ1 + χ3 + χ5 + · · ·+ χN−1 = 0,
(5.8)

respectively (see equation (2.13a)). These boundary conditions are incorporated into the
numerical solver at the stage of constructing the matrices Aij and Bij . Indeed, if we use the
superscript notation MX,Y to indicate a matrix M modified such that its penultimate row is over-
written with an equation for boundary condition B.C. X, and its final row over-written with an
equation for boundary condition B.C. Y, and the notation M0,0 to indicate a matrix M modified
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such that its final two rows have been over-written with zeros, then Aij and Bij are given by

Aij =


(4D2 − a2I)1,2 (−I)0,0 0 0 0

(−Qa2I)3,4/0,0 (4D2 − a2I −QI)0,0/9,10 0 (−a2RI)0,0 0

(2P2D)0,0 0 (4D2 − a2I)5,6 0 0

0 0 0 (4D2 − a2I)7,8 (I)0,0

−RI 0 0 0 I



and Bij =


0 0 0 0 0

0 (I)0,0 (−2QD)0,0 0 0

0 0 (P2I)0,0 0 0

0 0 0 0 (−2CP1I)0,0

0 0 0 −P1I 0

 (5.9)

respectively. Here each of the coefficients represents a N ×N sub-matrix block, with Ins = δns,
n, s= 0, . . . , (N − 1) as the identity tensor, and Dns as the differentiation matrix defined by
Dongerra et al. [10]. The choice of boundary conditions in the second row block (rows N + 1

to 2N ) corresponds to fixed/free surfaces.
For given parameters a, C, P1, P2, and Q (though here we set P2 = 0) , the matrix system (5.4)

may be solved iteratively to determine a value of R=
√
Ra such that <{σ}= 0. Critical values

are then obtained by minimising Ra(a) =R2 with respect to wavenumber a. In this way both
stationary (γ = 0) and oscillatory (γ 6= 0) solutions may be found for a range of P1, Q and C, and
one may produce critical curves of the kind shown in figure 1. [For free boundary conditions, this
procedure provides a convenient means of testing the accuracy of the numerical solver.]

When Q and P1 are fixed, the Rayleigh number for stationary convection R
(c)
c is constant,

whereas the Rayleigh number for oscillatory convection R
(o)
c varies with Cattaneo number.

Thus, by computing R
(o)
c (C) for a range of C, one obtains an intersection problem for the

threshold Cattaneo number CT (Q); in particular, we may bound this threshold to the interval
CT ∈ (Cl, Cu), where R(o)

c (Cl)>R
(c)
c >R

(o)
c (Cu), and thus determine CT numerically to within

some chosen tolerance (this process is described in greater detail in our earlier context [1]). Here
we do so for Prandtl numbers P1 = 1 and P1 = 10, and 10001 values of Chandrasekhar number
in the interval Q∈ [10−1, 10+4] (see table 1, & figure 3). Note that numerical accuracy is most
strongly influenced by the resolution for scans over wavenumber a when calculating ac, though
by employing a suitably fine mesh, we are able to determine the threshold parameters aT , γT ,
and CT to within ±0.1%. Other considerations on numerical accuracy include truncation of the
Chebychev polynomial expansion; however, we find (up to at least six significant figures) that
changing the number of Chebyshev polynomials fromN = 40 toN = 50 does not affect computed
values of Rc, and all numerical data is thus quoted assuming N = 40.

6. Comments on Transitions Between Forms of Convection
Observe from table 1 that the threshold Cattaneo number CT (Q) is of comparable magnitude
given either free or fixed boundary conditions, while in both instances CT decreases with
increasing Prandtl number P1. As expected, this behaviour is consistent with our previous results
for oscillatory convection with the Cattaneo-Christov heat-flow law in unmagnetised conditions
[1]. Furthermore, a comparison between figures 2 and 3 suggests that for fixed boundary
conditions we can expect similar asymptotic dependence to that found for free boundaries,
i.e., CT ∝ 1/

√
Q as Q→∞. Crucially, therefore, the asymptotic behaviour of CT means that for

sufficiently large Chandrasekhar numbers Q, oscillatory convection can represent the preferred
form of instability even when the Cattaneo number C itself is small.

The CT (Q) curves displayed in figures 2 and 3 divide (Q,C) parameter space into regions
where either stationary or oscillatory convection represents the preferred manner of onset of
instability, and can be equivalently interpreted as a threshold Chandrasekhar number QT (C)
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for given C. Thus, for fixed P1 and C, transitions between the two forms of convection can
be triggered by increasing Q beyond a threshold QT (C). As shown in figure 4, transitions
of this kind are marked by a discontinuous shift in the critical wavenumber a(c)c to larger
critical wavenumber aT , and thus smaller convection cells (as we found for unmagnetised
convection with hyperbolic heat-flow effects in our earlier context [1]). Such a result has important
consequences for investigating the verisimilitude for the Cattaneo-Christov heat-flow law, as
marked transitions between forms of overall system behaviour can in principle be controlled by
appropriate ‘tuning’ of the Chandrasekhar number Q.

In essence, the CT ∝ 1/
√
Q scaling of the threshold Cattaneo number as Q→∞ may be

expected from the corresponding fixed C scalings of the critical Rayleigh numbers R(c)
c → π2Q

and R
(o)
c → π

√
Q/C given by limits (3.6) and (4.20) respectively. As noted by Chandrasekhar,

the absence of P1 from these expressions is an indication that dissipation of energy at high Q is
dominated by Joule heating (as controlled by the resistivity η) rather than viscosity ν [3]. In the
case of stationary convection, this interpretation of quasi-inviscid convection at large Q supports

Q

Free Boundary Conditions Fixed Boundary Conditions
P1 = 1 P1 = 10 P1 = 1 P1 = 10

CT aT CT aT CT aT CT aT
0 0.05439 4.086 0.03254 3.268 0.03214 5.175 0.02149 4.834

10−1.0 0.05424 4.090 0.03247 3.275 0.03213 5.176 0.02148 4.837
10−0.8 0.05415 4.092 0.03243 3.280 0.03209 5.179 0.02146 4.839
10−0.6 0.05401 4.095 0.03236 3.286 0.03206 5.181 0.02146 4.841
10−0.4 0.05380 4.100 0.03226 3.297 0.03203 5.183 0.02144 4.845
10−0.2 0.05346 4.108 0.03211 3.313 0.03197 5.187 0.02140 4.852
10+0.0 0.05294 4.120 0.03186 3.338 0.03187 5.195 0.02133 4.861
10+0.2 0.05215 4.139 0.03149 3.377 0.03171 5.204 0.02125 4.878
10+0.4 0.05100 4.168 0.03095 3.437 0.03149 5.222 0.02112 4.902
10+0.6 0.04935 4.213 0.03016 3.524 0.03111 5.248 0.02091 4.941
10+0.8 0.04711 4.279 0.02908 3.651 0.03059 5.287 0.02060 5.000
10+1.0 0.04421 4.377 0.02766 3.828 0.02977 5.350 0.02015 5.088
10+1.2 0.04070 4.517 0.02590 4.067 0.02866 5.444 0.01949 5.221
10+1.4 0.03675 4.713 0.02385 4.375 0.02718 5.581 0.01862 5.409
10+1.6 0.03257 4.979 4.75861 1.333 0.02529 5.776 0.01748 5.669
10+1.8 0.02839 5.329 0.01925 5.224 0.02309 6.048 0.01614 6.013
10+2.0 0.02440 5.772 0.01690 5.773 0.02064 6.411 0.01461 6.455
10+2.2 0.02074 6.314 0.01465 6.412 0.01814 6.875 0.01300 6.998
10+2.4 0.01746 6.960 0.01255 7.147 0.01568 7.447 0.01138 7.653
10+2.6 0.01459 7.714 0.01064 7.983 0.01339 8.139 0.009833 8.423
10+2.8 0.01211 8.585 0.008949 8.931 0.01130 8.958 0.008387 9.312
10+3.0 0.009992 9.579 0.007469 10.00 0.009450 9.904 0.007090 10.34
10+3.2 0.008206 10.71 0.006193 11.21 0.007854 10.99 0.005939 11.50
10+3.4 0.006712 11.99 0.005107 12.56 0.006475 12.23 0.004935 12.83
10+3.6 0.005470 13.43 0.004190 14.09 0.005316 13.65 0.004077 14.32
10+3.8 0.004443 15.05 0.003423 15.80 0.004343 15.25 0.003348 16.00
10+4.0 0.003599 16.88 0.002787 17.72 0.003534 17.05 0.002738 17.91

Table 1. Numerically computed values for the threshold Cattaneo numbersCT , and wave-numbers aT , for both free and

fixed boundary conditions. Threshold values are determined by solving the intersection problem of equation (4.25); for

free boundaries this is done using the analytical expressions of Section 4, whereas for fixed boundaries the Chebychev-τ

scheme described in Section 5 is employed. This table comprises a subset of the values used to produce figures 2, 3 and

4 for Chandrasekhar numbers in the range Q∈ [10−1, 10+4], with data quoted to within ±0.1% uncertainty.
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Figure 3. Threshold Cattaneo numbers CT (Q) (solid curve) as a function of Q for P1 = 1 (left) and P1 = 10 (right)

in the case of fixed boundary conditions (dash-dotted curves represent CT (0)). Above the curve we expect the

preferred manner of instability to be oscillatory convection according toR(o)
c <R

(c)
c , whereas below the curve stationary

convection prevails with R(o)
c >R

(c)
c (cf. figure 2). A subset of the data used to produce these plots is given in table 1.
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Figure 4. Threshold wavenumbers aT ≡ a
(o)
c (P1, CT ) for oscillatory convection (CT ≡CT (Q)), and critical

wavenumbers for stationary convection a(c)c (Q) as a function of Chandrasekhar number Q for both free (top) and fixed

(bottom) boundary conditions, and with Prandtl numbers P1 = 1 (left) and P1 = 10 (right). The dash-dotted curves are

the asymptotic limits given by equation (4.30), and the values for Q= 0 as computed in our earlier context [1].

the narrowing of convection cells as shown in figure 4 [3]. For oscillatory convection the physical
basis of such asymptotic limits is less clear, though it may be possible to obtain further insight
by considering the geometry of the convection cells, and their impact on wave-motion, as part of
a more advanced non-linear analysis. Indeed, the presence of P1 dependence in the limit for the
threshold Cattaneo number is at first glance rather puzzling (see equation (4.27)). However, this
feature is understood by observing that the highQ limits onR(o)

c assume fixed C, whereas (when
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solving for the threshold Cattaneo number) CT vanishes like CT ∝ 1/
√
Q, modifying the leading

order terms in R(o)
c (Q,CT ), and thence solutions to R(o)

c (Q,CT ) =R
(c)
c (Q) as Q→∞.

7. Conclusions
We have studied the impact of hyperbolic heat-flow effects on the problem of thermal convection
in a magnetised conducting fluid layer heated from below, by replacing the classical Fourier law
with the Catteneo-Christov heat-flow formulation [1,3,7,25], and in this way developed a linear
theory for Catteo-driven oscillatory convection in the presence of an impressed magnetic field.
In the case of free boundary conditions, analytical approaches yield critical Rayleigh numbers
for the onset of instability by either stationary or oscillatory convection, which we denote
R

(c)
c ≡R

(c)
a (a

(c)
c ) and R(o)

c ≡R
(o)
a (a

(o)
c ) respectively, corresponding to critical wavenumbers a(c)c

and a
(o)
c , and the lowest mode number n= 1 (see §2, 3, & 4). For stationary convection, absence

of a gyration component to the mode frequency (σ≡ iγ = 0) means that effects arising from the
Cattaneo number C vanish, and we recover the classical result (i.e., that obtained using the more
usual Fourier law) of suppressed onset of instability by the impressed field, with R(c)

c dependent
on the Chandrasekhar numberQ, and exhibiting asymptotic behaviourR(c)

c → π2Q asQ→∞ [3].
However, for oscillatory convection (γ 6= 0) we find that the Rayleigh number R(o)

a (P1,P2, Q,C)

becomes a more complicated function of Q, C, and both the Prandtl and magnetic Prandtl
numbers P1 and P2 respectively; this result is expected given that in the classical, Fourier
heat-flow formulation of the problem [3], oscillatory convection can obtain providedP2 >P1 [20].

The complexity of the exact expression for R(o)
a precludes direct solution; however, following

in the tradition of Chandrasekhar’s treatment of combined rotational and magnetic effects [3],
the impact of Cattaneo terms on magnetised convection has been furthered by considering
conditions under which P2 can be neglected, in which case overstability would be classically
forbidden. Thus, by setting P2→ 0 we have derived expressions for the critical Rayleigh number
R

(o)
c which indicate weaker inhibition of instability by the impressed field when compared

to stationary convection (§4(b)), as exemplified in the high Q limit for which R
(o)
c → π

√
Q/C.

Indeed, investigation of (a,Ra) parameter space guarantees that Rayleigh numbers R(o)
a (a

(c)
c )

for oscillatory convection are lower than the critical Rayleigh numbers for stationary convection
R

(c)
c =R

(c)
a (a

(c)
c ) whenever C exceeds a value CS , where CS(P1, Q) can be computed exactly,

and has limiting behaviour CS ∝ 1/Q1/3 (§4(a) & 4(b)). More strongly, we have argued that
there exists a threshold Cattaneo number CT (Q) beyond which (C >CT ) the preferred manner
onset of instability switches from stationary to oscillatory convection, and in this way divided
(Q,C) parameter space into regions were each form of convection prevails (§4(c)). For large
Chandrasekhar numbers Q, this threshold scales as CT ∝ 1/

√
Q, meaning that oscillatory modes

are preferred even when C itself is small.
For fixed boundary conditions the impact of Cattaneo terms on magnetised convection

must be studied using computational approaches, and here we have done so by developing
a novel numerical scheme following expansion of the problem into Chebychev polynomials
(§5). In so doing, we have investigated the transition from stationary to oscillatory convection
for Chandrasekhar numbers in the range Q∈ [10−1, 10+4], recovering similar behaviour to that
found for free boundaries, including discontinuous shifts in the mode wavenumber, and apparent
asymptotic dependence for the threshold Cattaneo number CT ∝ 1/

√
Q as Q→∞ (see §6). One

possible area of future work, therefore, would be to confirm this dependence at high Q; indeed,
the fixed boundary problem should be amenable to further analytical treatment when Q→∞ by
means of boundary later solutions. By using N = 40 polynomials, threshold values for both the
Cattaneo number CT , and oscillatory wavenumber aT ≡ a

(o)
c (CT ) have been tabulated here for

the more general cases (Q∈ [10−1, 10+4]) to within ±0.1% (see table 1).
Both the theoretical and numerical analyses presented here represent a substantial

development of our earlier work on Cattaneo-Christov heat-flow effects on thermal convection
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[1]; nevertheless, while we have succeeded in deriving a number of new analytical results and
asymptotic limits, several theoretical questions remain. For example, the linear approach adopted
here precludes an investigation of convection cell geometry, making it difficult to establish reasons
for the discontinuous shift in wavenumber between the stationary and oscillatory regimes. Of
particular importance, however, is establishing a physical basis for the CT ∝ 1/

√
Q dependence

of the threshold Cattaneo number at large Q. In our earlier context we described how hyperbolic
heat-flow effects impart a kind of elasticity to the fluid, allowing thermal disturbances to
propagate as waves, and it is thus intuitive that Cattaneo terms should promote the onset of
oscillatory modes [1]. Perhaps one reason for the CT ∝ 1/

√
Q dependence, therefore, is coupling

between thermal and Alfvén waves; indeed, for classical oscillatory convection (forbidden here
due to vanishing P2), Chandrasekhar shows that the Alfvén wave-speed determines the effective
gyration frequency γ [3], and it seems plausible that an analogous effect may be acting here. Given
the importance of the threshold Cattaneo number CT for determining the preferred manner of
onset of instability, these questions warrant further investigation in future studies.

Taken together, our results for both free and fixed boundary conditions imply that hyperbolic
heat-flow effects can have a profound impact on magnetised thermal convection, with significant
lowering of thresholds for onset of instability as exemplified by our solutions for oscillatory
modes. Indeed, our analysis emphasises the significance of Cattaneo terms in determining overall
system behaviour, beyond simply the speed at which thermal signals propagate [2,14,15,19].
In particular, modifications to the Chandrasekhar number Q at fixed C and P1 can trigger
bifurcations in the preferred manner of onset of instability by pushing the system beyond the
CT (Q) threshold. That an impressed magnetic field inhibits Cattaneo driven overstability [1]
is expected given that magnetisation is known to suppress classical stationary convection [3];
however, such inhibition is far less dramatic than that of the stationary modes, meaning that
Cattaneo terms lead to a comparably enhanced effect on the onset of convection overall. Crucially,
therefore, our study implies that even relatively weak hyperbolic heat-flow effects have the
potential to become pronounced in the presence of large magnetic fields.
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