1. Introduction

The complex problems associated with the misuse and overuse of antibiotics have made infectious diseases a particularly urgent issue [1]. With the increasing prevalence of multi-resistant bacteria, there is an increasing pressure to find novel effective alternatives. For years, plants have been recognized as natural sources of bioactive compounds with promising potentials in combating infectious diseases. Plants are in rich in secondary metabolites, many of which have been found to have antimicrobial activities in vitro [2–6].

Dental caries is one of the most common infectious diseases in humans today. *Streptococcus mutans* (*S. mutans*) is the main cause of dental decay. *S. mutans* is highly acidogenic and is capable of producing exopolysaccharides and forming biofilms (dental plaque), allowing it to adapt to and survive the environment of the oral cavity [7–10]. Thus, the control of cariogenic bacteria using antimicrobial agents capable of inhibiting their virulence will be an effective and advantageous chemotherapeutic strategy in controlling dental caries. However, long-term use of chemical agents at high concentrations, for example fluoride or chlorhexidine, may result in
undesirable side-effects. Therefore, natural anticaries, especially phytochemicals, have been attracting much attention as promising alternatives.

Cleistocalyx operculatus L. (*C. operculatus*) is a well-known perennial tree, widely distributed throughout China, Vietnam and several other tropical countries. Traditionally, the brewed leaves and buds of *C. operculatus* have been used as herbal tea for gastrointestinal disorders or as medicine such as antiseptic for dermatophytic fungi.[11] Previous reports revealed that the *C. operculatus* buds had various biological activities in vitro and in vivo such as anticancer, antitumor, anti-inflammatory and cardiotonic action.[11–15] The bark contains oleanane-type triterpene[16], and sterols (e.g. β-sitosterol), while flavanones, chalcones and triterpene acids (e.g. ursolic acid) are present as the main constituents in the methanol extract of the *C. operculatus* buds.[12,17–20] Gas chromatography and gas chromatography–mass spectrometry analysis of essential oils from *C. operculatus* leaves has been also reported.[21–23], but the chemical composition and biological activities of *C. operculatus* leaves have not been studied in detail.

In the present investigation, we examined the biological activities of a methanolic extract from the leaves of *C. operculatus* including antimicrobial, and anticaries activities.

2. Materials and methods

2.1. Plant materials

Leaves of *C. operculatus* were collected in Ha Tay Province, North of Vietnam in April, 2014 and identified by the Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi. Voucher specimens were deposited at Department of Botany, Vietnam National University, Hanoi University of Science.

2.2. Test organisms

The following microorganisms were used as test organisms: *Staphylococcus aureus* (*S. aureus*) (ATCC 6538), *Bacillus subtilis* (ATCC 6059) (*B. subtilis*), *S. mutans* GS-5 (kindly provided by Dr. Robert Marquis, University of Rochester, New York, US), *Escherichia coli* (ATCC 11229), *Pseudomonas aeruginosa* (ATCC 27853) and *Candida maltosa* (SBUG 700) (*C. maltosa*), which were deposited at the strain collection of the Department of Biology of the University of Greifswald. In addition, three multiresistant *Staphylococcus* strains namely, *Staphylococcus epidermidis* 847, *Staphylococcus haemolyticus* 535 and *S. aureus* North German epidemic strain (kindly provided by the Institute of Hygiene of Mecklenburg-Vorpommern, Greifswald, Germany) were also applied. The bacteria were grown in Mueller–Hinton agar at 37 °C for 24 h. For growing of *S. mutans* GS-5, the organism was cultured statically in TYG (3% tryptone, 0.5% yeast extract, 1% glucose) for acidogenic assays or TYS (TY with 1% sucrose instead of glucose) for biofilm assays.

2.3. Extraction

Air-dried and powdered plant material (10 g) was extracted separately with 400 mL n-hexane for 8 h, followed by extraction with 400 mL methanol for another 8 h by using a Soxhlet apparatus. The extractions were repeated twice and dried to yield hexane and methanol residues using rotary vacuum.

2.4. Phytochemical screening and bioautography

The screening of chemical constituents was carried out with the methanol extracts using chemical methods. The extract was separated on thin-layer chromatography (TLC) plates using solvent system of toluene: ethyl acetate: acetone: formic acid (5:3:1:1). The presence of terpenes/steroids, alkaloids, flavonoids, and other organic compounds was investigated after spraying specific reagents for the compounds on TLC plates. Natural products-polyethylene glycol was used to detect flavonoids; anisaldehyde-sulfuric acid was used to detect terpenes; Drageordorf’s reagent was used to detect alkaloids; 5% KOH was used to detect coumarine; and vanillin-sulfuric acid was used to detect organic compounds in general. Bioautography was done according to the methodology described by Wagner and Bladt[24] using TLC followed by determination of antimicrobial activity on agar plate.

2.5. Flavonoid determination

The total flavonoid content in the extracts was determined spectrophotometrically according to Subedi et al.[25] using a method based on the formation of a flavonoid-aluminum complex, which has an absorbance maximum at 430 nm. Briefly, 1 mL of sample was dissolved in 1 mL of 2% aluminum chloride methanolic solution. Following 15 min of incubation at room temperature, Milton Roy 601 UV–vis spectrophotometer was used to measure the absorbance of the reaction mixture at 430 nm. The flavonoid content was expressed in mg per gram of quercetin equivalent.

2.6. Antimicrobial activity assay

The disc-diffusion assay was used to determine the antimicrobial activity of the investigated extracts. Sterile nutrient agar (Oxoid, Basingstoke, UK) was inoculated with microbial cells (200 μL microbial cell suspensions at concentration of 10⁶ CFU/mL) in 20 mL of agar medium and poured into a sterile Petri dish. Sterile filter paper disc (Merck, Germany) was impregnated with the solution containing 2 mg of the dried extract. The solvent in the filter disc was left to evaporate before placed onto the surface of the inoculated agar plates. Plates were then refrigerated for 2 h to enable diffusion of the extracts into the agar, followed by overnight incubation for 48 h at 37 °C for *S. mutans* GS-5 plates and at 28 °C for *C. maltosa*. Ampicillin, gentamicin and nystatin (Sigma, Deisenhofen, Germany) were used as positive controls. Negative controls were prepared by loading methanol into filter discs. The inhibition zones were measured after the incubation period.

2.7. pH drop assay

A simple and rapid method to measure acid production by *S. mutans* was described by Belli & Marquis[26]. In brief, washed *S. mutans* GS-5 cells were resuspended in 50 mmol/L KCl solution containing 1 mmol/L MgCl₂ to reach biomass concentration of 2 mg dry weight per milliliter. KOH was used to adjust the pH of the cell suspension to 7.2 before adding 1% glucose. The subsequent drop in pH from glycolytic acid production was monitored using a glass pH electrode.
2.8. Enzyme assays

F-ATPase activity was assayed in terms of the release of inorganic phosphate in Tris-maleate buffer, pH 7.0 containing MgCl₂ and permeabilized cells. The F-ATPase reaction was initiated by the addition of ATP. Samples were removed and assayed for inorganic phosphate liberated from cleavage of ATP with reagents from American Monitor Co. (Indianapolis, IN) [26]. Phosphotransferase system (PTS) activity was assessed in terms of pyruvate production from phosphoenolpyruvate in response to glucose addition. Pyruvate was assayed by use of lactate dehydrogenase and measurements of the change in absorbance of 340 nm light associated with oxidation of NADH. The permeabilized cells were prepared by subjecting cells to 10% toluene (v/v) followed by two cycles of freezing and thawing as previously described by Nguyen et al. [27].

2.9. Anti-biofilm assay

The assay was performed in flat-bottomed 96-well plates as described by Molhoek et al. [28]. Briefly, 50 µL of a 16 h S. mutans GS-5 culture, which was adjusted to an optical density at 590 nm of 0.02, was added into the wells containing 100 µL TYS medium and the test extract at different concentrations (ethanol as vehicle, negative control) was added. The plate was incubated for 24 h at 37 °C. After growing, the wells were emptied and washed twice with phosphate buffered saline to remove non-adherent bacteria. The biofilms that formed in the wells were then stained with 0.1% crystal violet for 10 min. Excess stain was removed by washing three times with phosphate buffered saline. Bound crystal violet was solubilized in 200 µL of 33% acetic acid per well. The absorbance at 590 nm was then measured. The mean of the six replicates was calculated after subtraction of the blank measurement and the results were expressed as a percentage of biofilm in relation to the untreated control. Each assay was carried out independently three times.

2.10. Confocal microscopy

S. mutans GS-5 was cultured overnight in TYG, and diluted to an optical density of 0.4–0.6 at 600 nm. Polynylvin plastic coverslips (22 mm × 22 mm) were sterilized in 100% isopropanol, dried before placed in 3 wells of a six-well cell culture plate. An aliquot (2 mL) of the diluted bacterial suspension was added to each well followed by an aliquot (2 mL) of TYS. The plate was incubated at 37 °C for 24 h. After growing, the media was then aspirated and replaced with fresh TYS (4 mL). The test extract was pipetted to the wells. The plate was again incubated at 37 °C for another 24 h. After the second incubation, the media were removed and the coverslips were washed with sterile water (6 × 2 mL). The coverslips were stained with LIVE/DEAD BacLight mixture (50:50 v/v, 800 µL, 0.3% w/v of each supplied dye solution diluted in sterile water). The coverslips were left for 15 min in the dark prior to washing with sterile water (6 × 2 mL) before mounted on glass slides using nail varnish. Stained biofilms were observed using laser scanning confocal fluorescence microscopy (Olympus, Tokyo, Japan).

2.11. Cytotoxicity assay

Adherent human keratinocytes (HaCaT) were cultured in RPMI1640 medium (Sigma–Aldrich) supplemented with 1% v/v antibiotics (10.000 IU/mL penicillin; 10.000 µg/mL streptomycin) (Sigma–Aldrich) and 8% v/v heat inactivated fetal calf serum (Sigma–Aldrich) in a humidified atmosphere (37 ºC, 5% CO₂). The cells were subcultivated twice a week. Cell viability was assessed using Luna™ automated cell counter (Logos Biosystems, ANNANDALE, USA) by trypan blue (Sigma–Aldrich) exclusion. Cells were seeded in T25 cell culture flasks (0.1 × 10⁶ cells/mL). The cell culture was regularly tested for Mycoplasma contamination.

The cell viability was determined by using the MTT-assay that is based on the reduction of a tetrazolium salt [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] to a formazan, which mainly depends on the cells' mitochondrial activity. After 24 h cultivation in a 96-well microtiter plate (8 × 10⁴ cells/well) to allow cell attachment, medium was aspirated and cells were exposed to vehicle (0.5% MeOH), the positive control etoposide (0.99 µmol/L) or the extract at concentrations between 31.25 and 250.00 µg/mL for 72 h in six technical replicates. After the incubation period medium was removed and cells were washed with 200 µL Hanks balanced salt solution (Sigma–Aldrich). Then 100 µL of an MTT (Carl Roth, Karlsruhe, Germany) solution (end concentration 0.5 mg/mL) was added for 3 h. The supernatant was discarded and 200 µL dimethylsulfoxide (Carl Roth, Karlsruhe, Germany) was added to dissolve the colored formazan crystals. For a better dissolution of the crystals the plate was mixed on a shaker for further 30 min. The absorbance values of the solutions were measured at 550 nm and 620 nm using a plate reader (FLUO star Omega, BMG Labtech, Ortenberg, Germany). The IC₅₀ was calculated by linear regression. The extract was tested for five times.

2.12. Statistical analysis

All the experiments were performed in triplicate. For each result, data are presented as the mean ± SD. Student's t-test was used to calculate the significance of the difference between the experimental and the control samples. Differences were considered significant at P < 0.05.

3. Results

3.1. Phytochemical screening and flavonoid content of methanolic extract of C. operculatus leaves

The phytochemical screening using TLC showed positive results for flavonoids and terpenes in the methanolic extract of C. operculatus leaves. Flavonoids were the major constituents with a concentration of 6.8 mg/g dry material. Previous studies also indicated that flavonoids were the major constituents found in this plant [18,22,23]. Bioautography results revealed the activity...
of polar compounds in the extract (appeared as bands with low Rf value in TLC plates) against two pathogenic bacteria *S. aureus* and *S. mutans* GS-5 (Figure 1).

3.2. Antimicrobial activity of *C. operculatus* leaves extract

The investigated extract exhibited inhibitory activity mainly against the Gram-positive bacteria and the yeast *C. maltosa*. Interestingly, the multiresistant *Staphylococcus* strains showed more sensitivity to the extract compared to the antibiotic susceptible Gram-positive bacteria (Table 1). The hexane extract was also tested, but this did not exhibit any antimicrobial activity (data not shown).

Table 1 Antibacterial activity of *C. operculatus* leaves extract.

<table>
<thead>
<tr>
<th>Tested microorganisms</th>
<th>Inhibition zone diameter (mm)</th>
<th>Extract</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>12</td>
<td>40</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>–</td>
<td>23</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>7</td>
<td>21</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>–</td>
<td>12</td>
<td>Gentamicin</td>
</tr>
<tr>
<td>C. maltosa</td>
<td>12</td>
<td>20</td>
<td>Nystatin</td>
</tr>
<tr>
<td>S. mutans GS-5</td>
<td>8</td>
<td>30</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>S. aureus North German epidemic strain</td>
<td>16</td>
<td>0</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Staphylococcus epidermidis 847</td>
<td>12</td>
<td>18</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Staphylococcus haemolyticus 535</td>
<td>14</td>
<td>0</td>
<td>Ampicillin</td>
</tr>
</tbody>
</table>

The data are representatives of three independent experiments.

3.3. Anticaries activity of *C. operculatus* leaves extract

3.3.1. Anti-acidogenic activity

S. mutans GS-5 is a strong acid producing and tolerant organism in dental plaque. It is able to perform glycolysis, even at a pH < 4.0 [78]. *S. mutans* GS-5 carcinogenicity can be related directly to acid production during glycolysis at low pH values. As shown in Figure 2, glycolysis by *S. mutans* GS-5 in planktonic form was clearly inhibited by methanol extract of *C. operculatus* leaves at concentration of 25 μg/mL. In this assay, the medium contained excess glucose (0.5% m/v or about 28 mmol/L) so that, as shown in the figure, glycolysis was not limited by catabolite supply. The obtained result suggested that F-ATPase may play a role.

The membrane-bound F-ATPase (H+-translocating ATPase) is considered the primary determinant of the acid tolerance of *S. mutans* GS-5, as it translocates protons from the cytoplasm and maintains the pH across the cell membrane. Thus, the enzyme maintains the pH of the cytoplasm close to neutral and, under certain conditions, uses the proton gradient to generate ATP for growth and persistence [82,26,27]. As methanol extract of *C. operculatus* leaves inhibits acid production, we tested whether this was an effect on the F-ATPase activity. As shown in Figure 3A, F-ATPase activity was indeed strongly inhibited by the extract, with an IC50 of 51 μg/mL.

S. mutans GS-5 can take up and metabolize various sugars, resulting in the production of lactic acid. An important first step in the acidogenicity is the PTS, which is responsible for sugar uptake in oral streptococci. The coupled transport and phosphorylation of sugar involves a two-step reaction catalyzed by two enzymes, enzyme I and enzyme II, with the protein HPt as an intermediate phosphoryl donor. Consequently sugar is transported across the membrane to release a sugar phosphate in the cytoplasm. In this study, the glucose-PTS of permeabilized cells of *S. mutans* was inhibited in its phosphotransferase activity by the extract, with an average IC50 of 98 μg/mL (Figure 3B). A biological action of many phenolics is to bind tightly to and disrupt cell membranes. Although the exact nature of *C. operculatus* leaves extract in the inhibition of the membrane bound enzymes F-ATPase and PTS found in this study remains to be determined, our data indicated that the extract could be a potent inhibitor of membrane-located enzymes.

3.3.2. Anti-biofilm activity

Strong production of biofilm by *S. mutans* GS-5 is an important virulence factor of this organism. The effect of methanol extract of *C. operculatus* leaves on the ability of *S. mutans* GS-5 to form biofilms was measured in 96-well polystyrene plates. The extract was added into the culture medium at the beginning of growth to analyze activity against biofilm formation by *S. mutans* GS-5. The results presented in Figure 4 show a reduction in biofilm biomass up to 67% at concentrations of 3 μg/mL compared to the untreated biofilms. Lower concentrations were not effective on biofilm biomass of this organism. There was no bactericidal activity of the extract found at the treated concentrations (data not shown).

![Figure 2](image1.png)
Figure 2. Effect of methanol extract of *C. operculatus* leaves on acid production by *S. mutans* GS-5.

![Figure 3](image2.png)
Figure 3. Effect of methanol extract of *C. operculatus* leaves on membrane bound enzymes of *S. mutans* GS-5. A: F-ATPase; B: PTS. Values are represented as mean ± SD of three independent experiments.
3.4. Confocal microscopy

Figure 5 presents the effect of the extract in killing bacteria. The treated biofilm clearly fluoresced red, which indicated that the bacteria were dead, whereas the fluorescence of the S. mutans GS-5 biofilm was significantly more green in the absence of the extract.

3.5. Cytotoxicity of methanol extract of C. operculatus leaves

A keratinocyte cell line (HaCaT cells) was exposed to increasing concentrations of the extract for 72 h, and toxicity was analyzed using the MTT assay. Only high concentrations between 125.00 and 250.00 μg/mL decreased cell viability. The IC₅₀ value was calculated by linear regression compared to vehicle treated cells with a concentration of (119.98 ± 4.63) μg/mL. The extract at a concentration of 62.50 μg/mL stimulated cell viability (Figure 6).

4. Discussion

In this study, the antimicrobial activity, and anticaries of methanolic extract from leaves of C. operculatus were investigated. It was found that the extract showed very clear activity against Gram-positive bacteria including S. aureus, B. subtilis and S. mutans GS-5. Moreover, it also showed a remarkably inhibitory activity against C. maltosa and 3 methicillin-resistant Staphylococcus strains. Previous investigation indicated the presence of flavonoids, triterpenes and essential oil in the buds and bark of this plant which could be responsible for biological activity of plant [12,16–20]. Our phytochemical screening result also indicated the presence of these components, especially flavonoids (6.8 mg/g) in the leaves of C. operculatus. It is remarkably lower than that in the bud of C. operculatus grown in Thailand [28].

In this study, for the first time, we determined the anticaries activity of methanolic extract of the leaves of C. operculatus by testing its capacity of inhibiting acid production and acid tolerance of S. mutans GS-5 cells, as observed in the glycolytic pH-drop assay. The final pH values of extract, which were above critical pH (5.5) for tooth enamel demineralization, were significantly higher than those in the presence of the vehicle control. Based on data from the pH-drop curves, these effects can be attributed to proton permeability of the cell membrane.

Moreover, our study also focused on membrane bound enzymes F(H⁺)-ATPase and the PTS, a possible primary locus for the inhibitory effects of the extract. Aciduricity of S. mutans GS-5 is coupled with an increase in the activity of the F₁F₀ H⁺-translocating ATPase enzyme [26]. The F-ATPase maintains the cytoplasmic pH in a range where metabolic enzymes and transporters can function, and is thus important for acid tolerance. Acid production is linked to uptake and metabolism of sugars, and demineralization of teeth occurs when the pH in dental plaque drops below 4.0 as a result of acid production by S. mutans GS-5. Our data indicated that both F-ATPase and PTS activity were suppressed by methanolic extract of the leaves of C. operculatus, and consequently acid production was reduced.

In S. mutans GS-5, glycosyltransferases are responsible for exopolysaccharide production. The previous study with other antimicrobial agents such as fluoride or z-mangostin [7,29–31], indicated that this enzyme is a target for anti-biofilm formation by this organism. Thus, probably the inhibition of glycosyltransferases may cause the disruption in biofilm development when treated with the extract. The effect of methanolic extract of...
C. operculatus leaves on quorum sensing system involving the biofilm formation by S. mutans GS-5 should also be examined to see if it could be another target of the extract. Cytotoxicity showed only weak effect in cell culture assays with keratinocytes, a predominant cell type in the epidermis, suggesting it is safe for topical use in health care products. Thus, the C. operculatus leaves extract seems to be a promising source of new antiacaricides because it possesses both anti-acidogenic and anti-biofilm activity.

In conclusion, the present study suggests that methanolic extract of C. operculatus leaves could be an interesting material for the development of antibacterial drugs against Gram-positive bacteria and anticares agents. In future, work will be done to isolate bioactive constituents of the extract to identify the desired pharmacological agents, as well as mechanisms of action of potential compounds against S. aureus, including methicillin-resistant S. aureus, and S. mutans GS-5.

Conflicts of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This work was supported by the German Academic Exchange Service (DAAD) funding in 2015 for Phuong T.M. Nguyen (Ref. 91562658). The authors are thankful to Frau Monika Matthias and Frau Jutta Fenske, and Simon Merdivan, University of Greifswald, Germany for all their assistance in this research.

References