Hybrid Microfibre-Lithium Niobate Nanowaveguide Structures as High Purity Heralded Single Photon Sources

Philip Main,1 Peter J. Mosley,1 Wei Ding,2,∗ Lijian Zhang,3,4 and Andrey V. Gorbach1,†

1Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath BA2 7AY, UK
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Dated: November 23, 2016)

We propose a compact, fibre-integrated architecture for photon-pair generation by parametric downconversion with unprecedented flexibility in the properties of the photons produced. Our approach is based on a thin film lithium niobate nanowaveguide, evanescently coupled to a tapered silica microfibre. We demonstrate how controllable mode hybridisation between the fibre and waveguide yields control over the joint spectrum of the photon pairs. We also investigate how independent engineering of the linear and nonlinear properties of the structure can be achieved through the addition of a tapered, proton exchanged layer to the waveguide. This allows further refinement of the joint spectrum through custom profiling of the effective nonlinearity, drastically improving the purity of the heralded photons. We give details of a source design capable of generating heralded single photons in the telecom wavelength range with purity of at least 0.95, and provide a feasible fabrication methodology.

PACS numbers: 42.65.Lm, 42.50Dv, 42.65.Wi, 42.82.Fv

Quantum technologies promise to deliver functionality not possible with classical paradigms employed in computation, communication, and measurement [1]. Photonic quantum-information processing shows great merits due to the relative simplicity of the components required and the capability to operate in ambient conditions [2, 3]. However there are several key challenges to solve before photonic quantum technologies can be scaled up to demonstrate extensive real-world impact, most notably the design of more effective sources of single photons.

Considerable progress has been made in developing sources of heralded single photons based on spontaneous parametric downconversion (SPDC) in which photon pairs are generated as a pump laser propagates through a nonlinear crystal [4]. These sources are attractive not only due to their ability to deliver high count rates, but also because they work at room temperature and pressure. Early implementations used free-space components [5, 6], however the drive towards integrated optics has led to the development of guided-wave SPDC sources that demonstrate higher efficiencies and require lower pump powers [7, 8].

Despite their success these approaches have their limitations. Integration of SPDC sources into large-scale devices requires miniaturization, and even in fibre-pigtailed waveguide devices the periodic poling required to achieve phasematching imposes a minimum device length of several millimetres. Furthermore, waveguide out-coupling efficiency can be limited as the photon-pairs produced often do not match well to single-mode optical fibre [9]. Although the issue of miniaturization can be addressed with sources based on spontaneous four-wave mixing (SFWM) in materials compatible with established microfabrication techniques (for example silicon-on-insulator), the third-order nonlinearity available is orders of magnitude smaller limiting count rates and necessitating complex device designs to maximise effective interaction length, inevitably increasing losses [10, 11].

Furthermore, the intrinsic energy and momentum conservation associated with SPDC typically results in anti-correlation between the frequencies of the daughter photons. This provides distinguishing information that yields a mixed state when one photon is detected to herald the presence of its twin [12]. Although frequency correlation can be removed by tight filtering, to preserve high count rates the photon pairs can be tailored by controlling the dispersion of the nonlinear medium. This enables frequency correlation to be minimised at the point of generation to produce high-purity heralded photons [13], as demonstrated both in bulk crystals and quasi-phase-matched waveguides [14–18]. However, control over an additional degree of freedom – the magnitude of the nonlinearity – is required to achieve the ultimate purity. For example, modulating the duty cycle of periodically-poled waveguides can produce apodisation of the effective nonlinearity in the direction of propagation at the cost of significantly reduced effective interaction length and longer devices [19, 20].

In this work we show that planar nano-structuring in the transversal, rather than longitudinal, dimension [21] offers a more elegant approach to design ultra-compact and efficient SPDC sources of heralded photons. Our scheme is based on mode hybridization of a lithium niobate thin film (LNOI) [22] nanowaveguide with an inte-

∗ wding@iphy.ac.cn
† A.Gorbach@bath.ac.uk
grated shallow proton exchanged (PE) channel [23], and a silica microfibre [21], as shown in Fig 1. This structure enables the unique combination of high nonlinearity of LNOI, ability to engineer dispersion and nonlinearity independently, and natural integration with low loss fibre optic systems.

The hybrid structure can be prepared with the help of well-established nanofabrication techniques. After lithographically defining a PE channel of a fixed depth of well-established nanofabrication techniques. After optic systems.

The hybrid structure can be prepared with the help of well-established nanofabrication techniques. After lithographically defining a PE channel of a fixed depth (d = 0.16μm) and variable width w(y) [23] on an X-cut LNOI wafer (of thickness H = 0.3μm) [22, 24, 25], a ’floating’ nanoscale waveguide with constant width W can be fabricated by focused ion-beam milling, followed by HF wet etching. A silica microfibre with diameter D is attached on top of the waveguide. Van der Waals attraction is then used to keep together the whole structure and align the fibre and the waveguide symmetrically. When necessary, the fibre can be detached and re-assembled at other positions [21].

In our scheme, the SPDC process occurs between a particular set of guided modes of the hybrid structure, i.e. from a short-wavelength pulse in a higher-order mode (pump) to a pair of long-wavelength photons in their fundamental modes (signal/idler), see Fig. 2. Using the tapering-in and -out geometries of the waveguide, see Fig. 1, the pump and the signal/idler modes can be adiabatically converted to the TE_{01} and the HE_{11} modes of the pure microfibre, respectively [21]. With the help of FDTD simulations, we confirm that a 10μm long linear taper is sufficient to ensure a nearly adiabatic conversion of the signal/idler mode, with a total out-coupling loss less than 0.3dB. The in-coupling loss of the pump mode is found to be below 1.5dB in few-micron long tapers. Although a fraction of the pump is converted to unwanted modes in such a non-ideal adiabatic transition, this in-coupling loss does not have any significant effect on the considered SPDC processes: the other pump modes are not phase matched with any signal/idler modes in the wavelength range of interest, and therefore do not contribute to the SPDC process in our devices.

In the limit of an undepleted pump field, assuming low probability of photon pair production per pump pulse (|α|^2 ≪ 1), the SPDC process can be described by its output state in the form: |

\[ |\psi\rangle \approx |\text{vac}\rangle + |\psi_2\rangle, \]

where |\text{vac}\rangle is the vacuum state, and the two-photon state function is given by [12, 26]:

\[ |\psi_2\rangle = \int \int d\omega_s d\omega_i |\alpha(\omega_s + \omega_i)|\Phi(\omega_s, \omega_i) |\omega_s\rangle |\omega_i\rangle. \]  

In the above expression |\omega_{s,i}\rangle are one photon Fock states in the signal/idler mode at the respective frequencies, |\alpha(\omega_s + \omega_i)| is the spectral amplitude of the pump pulse, for which we assume a Gaussian expression with a bandwidth of \(\Delta\lambda \sim 10\text{nm}\). The normalization of pump spectral amplitude is such that |\alpha|^2 gives the number of pump photons per unit pump bandwidth. The phase matching function \(\Phi(\omega_s, \omega_i)\) is
defined as [27]:
\[
\Phi(\omega_s, \omega_i) = \int_0^L \rho_2(\omega_s, \omega_i, y)S(\omega_s, \omega_i, y) dy ,
\]
where \( \Delta \beta = \beta_p - \beta_s - \beta_i \) is the mismatch between propagation constants of the pump, signal and idler waves, \( L \) is the overall length of the structure, nonlinear coefficient \( \rho_2 \) is determined by the overlap of the mode profiles and the second-order nonlinear tensor \( \hat{d}^{(2)} \) [21, 26]:
\[
\rho_2 = \frac{\epsilon_0}{8h\sqrt{N_p N_s N_i}} \int_{W_G} \left( \mathbf{e}_s^* \cdot \hat{d}^{(2)} \mathbf{e}_i \right) dx dz ,
\]
\[
N_j = \frac{1}{4 \hbar \omega_j} \int_{-\infty}^{\infty} (\mathbf{e}_j \times \mathbf{h}_j^* + \mathbf{e}_j^* \times \mathbf{h}_j) dx dz ,
\]
where \( j = p, s, i \), the integration in Eq. (4) is carried out in the LN part of the structure, while the nonlinear tensor \( \hat{d}^{(2)} \) is modified inside the PE region [28], as discussed below. Electric and magnetic field profiles \( \mathbf{e}_j, \mathbf{h}_j \), together with the respective propagation constants \( \beta_j \), are obtained with the commercial Maxwell solver package Comsil Multiphysics.

First, we focus on structures having a fixed cross-section and no PE channel. In this circumstance, coefficients \( \rho_2 \) and \( \Delta \beta \) are constant along the interaction length, resulting in the conventional sinc-shape phase matching function in Eq. (2):
\[
\Phi(\omega_s, \omega_i) = \rho_2 e^{i\Delta \beta L/2} L \text{sinc}(\Delta \beta L/2) ,
\]
with the peak determined by the phase matching condition \( \Delta \beta = 0 \), see Fig. 3(a). In the previous work [21] we have demonstrated that the mode hybridization between microfibre and LNOI waveguide makes it possible to achieve phase matching across a broad spectral region, adjustable by geometrical parameters of the structure. In Fig. 2 the hybridization of the two pump modes (dashed curves) is illustrated; the associated avoided crossing of the two modes enables phase matching with a signal/idler mode (solid curve). Also, the hybridization induced shaping of modes, shown in the inset of Fig. 2, in combination with the PE channel assisted modulation of \( \hat{d}^{(2)} \) tensor, enables comprehensive control of the magnitude and sign of the nonlinear coefficient \( \rho_2 \), see Eq. (4). Here we benefit from the combination of the above two factors to facilitate an efficient SPDC process in a compact structure, and adjust the wavelength of the generated photons to the desired specifications. In particular, in Table I we identify several possible geometries to produce high purity photons at wavelengths around 1.55 \( \mu \)m from the pump in a vicinity of 0.72 \( \mu \)m, accessible with a tunable Ti:Saphire pulsed oscillator.

The product of the pump spectral amplitude and the phase matching function \( \alpha(\omega_s + \omega_i)\Phi(\omega_s, \omega_i) \) inside the integral in Eq. (1) defines the Joint Spectral Amplitude (JSA) of the generated photon pair. Generally it cannot be factorized, and the resulting state cannot be represented as a product state separable with signal and idler components. The degree of correlation in the output bi-partite state can be analysed by decomposing the JSA function into a weighted sum of separable functions (Schmidt decomposition):
\[
\alpha(\omega_s + \omega_i)\Phi(\omega_s, \omega_i) =
\]
\[
\frac{\sqrt{\alpha_s^* \omega_s + \alpha_i^* \omega_i}}{\sqrt{\alpha_s^* \omega_s + \alpha_i^* \omega_i}}.
\]

FIG. 3. Photon pair generation in the structure with the fixed cross-section of \( D = 1.44 \mu \)m, \( W = 0.51 \mu \)m, \( L = 200 \mu \)m and without a PE channel: a) Intensity of the phase matching function \( |\Phi|^2 \), as a function of signal and idler photon wavelengths, red contour lines indicate the pump function \( \alpha \) for \( \lambda_{\text{pump}} = 0.72 \mu \)m and \( \Delta \lambda = 12 \mu \)m. Inset shows the corresponding JSA intensity; b) Purity of the generated photons as a function of pump wavelength, dashed lines indicate the corresponding signal and idler wavelengths. The sharp drop of purity at \( \lambda_{\text{pump}} \approx 0.76 \mu \)m is caused by a strong dispersion of the \( \rho_2 \) coefficient around that wavelength.
TABLE I. Examples of structure to generate high purity photons in the vicinity of $\lambda_s = 1.55 \mu$m.

| Geometry (D, W μm) | Max Purity $P_{\lambda_s}[|\lambda_s| \mu m]$ | High Purity Range $\lambda_s(\mu m)$ for $P > 0.8$ |
|------------------|---------------------------------|----------------------------------|
| (0.7, 0.42)      | 0.85 1.55 [1.25]                | 1.52[1.25] < $\lambda_s$ < 1.6[1.3] |
| (0.9, 0.46)      | 0.85 1.61 [1.28]                | 1.57[1.26] < $\lambda_s$ < 1.64[1.32] |
| (1.44, 0.51)     | 0.84 1.54 [1.33]                | 1.53[1.32] < $\lambda_s$ < 1.63[1.38] |

This process creates a small change to the refractive index of the crystal ($< 4\%$) [23], but has been observed to drastically reduce or completely eliminate $\chi_2$ nonlinearity of LN [35] depending on the crystallographic phase of PE-LN. Designing a longitudinal profile $w(y)$ of the fixed depth PE channel, we thus can manipulate the effective nonlinearity of the structure, while introducing only negligible changes to the linear dispersion factor $\Delta \beta$. In addition, this flexibility allows for the nonlinearity to be totally suppressed in the in- and out-coupling tapers, while the linear dispersion is managed for adiabatic out-coupling of the generated photons.

According to Ref. [23], for a relatively shallow depth $d$ of the PE channel, the lateral diffusion could be ignored, so that we adopt the rectangular profile of the PE region in our calculations, see inset in Fig. 1. As an example, in Fig. 4(a) the variation of $\rho_2$ coefficient induced by insertion of the PE channel with linearly tapered width between $w = 22$nm and 510nm over the taper length $t$ in the geometry with $D = 1.44 \mu$m and $W = 0.51 \mu$m (cf. Fig. 3) is illustrated. By increasing the taper ratio $2t/L$ of the PE channel, a significant suppression of the side lobes of JSA function is observed over the fixed propagation length of $L = 200 \mu$m, as shown in Fig. 4(b). In Fig. 4(c) photon purity as a function of pump wavelength is plotted for different PE taper ratios. A significant improvement is observed for larger tapers, with the maximal photon purity reaching at least $P = 0.95$ at the photon wavelength of $\lambda_s = 1.56 \mu$m ($\lambda_i = 1.34 \mu$m). We emphasize that this result is obtained with the simple linear tapering of the PE channel, it can be further improved by adopting more sophisticated tapers $w(y)$ to tailor the optimal profile of the nonlinearity [19, 20]. Considering the number of photon pairs created per pump pulse $N = \langle \psi_2 | \psi_2 \rangle$, for this structure we estimate a generation efficiency of $\eta \sim 2.5 \cdot 10^{-3}$ photon pairs per pump photon.

To summarize, we propose an architecture for efficient, compact and tuneable SPDC based sources of high purity heralded photons. The key advantages of our scheme are: native integration with fibre optics systems; strong second-order nonlinearity leading to high count rates of photon production; compact footprint due to direct (as opposed to quasi-) phase matching; ability to engineer dispersion and nonlinearity profiles independently via lithographically defined PE channel; scalability and ability to adjust the spectral range of generated photons; transverse and laminar (as opposed to longitudinal) nano-structuring offering easier and more precise fabrication. Furthermore, we believe that LNOI represents a convenient platform for further developments of quantum photonic circuits, including integration of our setup into compact spatial multiplexing schemes to enhance photon count rate.
ACKNOWLEDGMENTS

This work was supported by the UK EPSRC Quantum Technology Hub “Networked Quantum Information Technologies” (EP/M013243/1) and National Natural Science Foundation of China (Grant Nos. 61575218 and 61275044).

033808 (2008).


