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tion mechanism, but this is still unclear in spite of previous re-
lated studies. To the best of our knowledge, early studies on the 
sodium storage mechanism of TiO2 could not conclusively 
identify the phases involved during the sodiation/de-sodiation 
reactions. Kim et al. have proposed that the anatase framework 
is maintained during the sodium intercalation, i.e., via a solid-
solution mechanism.16 Nevertheless, the ex-situ x-ray diffrac-
tion data published in support of this proposal did not show the 
main line of the tetragonal phase, which therefore cannot be 
conclusive. Subsequently, Wu et al., performed in-situ diffrac-
tion analysis showing that anatase amorphizes during the first 
discharge, yielding an amorphous electrochemically-active Nax-
TiO2 phase.28 Louvain et al. have further confirmed the for-
mation of an amorphous NaxTiO2 like phase using operando Ra-
man spectroscopy.29 These studies point out the need to reveal 
the structure of the newly formed amorphous NaxTiO2 and iden-
tify the sodium storage mechanism occurring in anatase .  

To clarify the sodium storage mechanism occurring in ana-
tase TiO2, we have used electrochemical and chemical routes to 
prepare reduced compounds for which we obtained structural 
insights by combining high-energy synchrotron-based total 
scattering measurements, high resolution HAADF-STEM, 
magnetic measurements and DFT calculations. Our analysis 
shows that intercalation of Na into anatase TiO2 proceeds by a 
different mechanism to Li intercalation. Where LiTiO2 main-
tains the pattern of edge-sharing TiO6 octahedra of the anatase 
structure30, Na intercalation produces a rhombohedral R-3m 
structure, accompanied by a decrease of long-range order. We 
also find that further electrochemical cycling proceeds via a 
phase transition between an amorphous like anatase and a dis-
ordered layered-like NaxTiO2 phase.  

Experimental section  
Synthesis and characterizations. Hydroxyfluorinated anatase 

was prepared by solvothermal synthesis according to reference 
31. Pure TiO2 anatase nanoparticles was obtained by thermal 
treatment at 450 ºC under air for 4 hours. Powder X-ray diffrac-
tion (XRD) analysis was carried out using a Rigaku Ultima IV 
X-ray diffractometer equipped with a Cu K" radiation source (# 
= 1.54059 Å). Transmission Electron Microscopy (TEM) anal-
ysis was performed using a JEM ARM200F FEG double aber-
ration corrected microscope operated at 200 kV, equipped with 
CENTURIO EDX detector and GIF Quantum. TEM sample 
was prepared in glove box under vacuum condition, crushed in 
agate mortar with adding methanol. The obtained suspension 
was deposited on holey carbon Cu grid. Afterwards the grid was 
immediately transport inside the microscope.  

Electrochemical measurements. Electrodes were prepared by 
thoroughly mixing 80 wt. % active material, 10 wt. % black 
acetylene as the conductive agent and 10 wt. % sodium carbox-
ymethyl cellulose32 (CMC) as the binder. Then, the mixture was 
dispersed into a diluted H2O2 aqueous solution (H2O2: H2O = 
2.5 : 97.5 v/v %) and coated on an aluminum foil. The elec-
trodes were dried at 80 °C under air for 6 hours and under pri-
mary vacuum for 12 hours. Sodium half cells were assembled 
inside a glove box filled with Ar by using sodium foil as the 
negative electrode. A solution of 1 M NaPF6 dissolved in eth-
ylene carbonate and diethyl carbonate was used as the electro-
lyte. A sandwich-like film composed of glass filter in the two 
sides and polyolefin in the middle wasused as the separator. The 
Na cells were cycled between 0.0–2.0 V at a current density of 

25 mA g-1 using galvanostatic discharge–charge testers 
(TOSCAT-3100, Toyo System Co. Ltd.). 

Synchrotron diffraction data were collected at the 11-ID-B 
beamline at the Advanced Photon Source at Argonne National 
Laboratory, using high energy X-rays (# = 0.2128 Å) allowing 
access to high values of momentum transfer.33,34 One-dimen-
sional diffraction data were obtained by integrating the raw 2D 
total scattering data in Fit2D.35 PDFs, G(r), were extracted from 
the background and Compton scattering corrected data follow-
ing Fourier transformation using PDFgetX2.36 The PDFs were 
subsequently modelled using PDFgui.37 

Chemical sodiation was performed using sodium naph-
talenide as reducing agent. The TiO2 nanoparticles (200 mg) 
were dispersed in 20 mL of THF. Naphtalene (0.5 g) and small 
pieces of Na° (170 mg) were added to the mixture and stirred in 
a glove box during 6 days at room temperature. Finally, the re-
duced phase was wash with THF and dry under vacuum.  

Magnetic properties. The magnetic susceptibility $ as a func-
tion of temperature was obtained from magnetic moment meas-
urements performed by squid magnetometry with a MPMS-5T 
from Quantum Design. The data were collected upon warming 
from 5K to 290K in a 100 Oe applied magnetic field in zero-
field-cooling (zfc) and field-cooling (fc) processes. A diamag-
netic correction was applied to $mol. Additional isothermal mag-
netic moment measurements were made as a function of the ap-
plied magnetic field H. In order to avoid air exposure, the prep-
aration of the sample was made in a glove box. About 0.1 g of 
the sample powder was set within a gelatine capsule. 

Computational. Density functional theory (DFT) calculations 
were performed using the plane-wave code VASP38,39 with va-
lence electrons described by a plane-wave basis with a cutoff of 
500 eV. Interactions between core and valence electrons were 
described with the PAW method40, with cores of [Mg] for Ti, 
[He] for O, and [Ne] for Na. The calculations used the revised 
Perdew-Burke-Ernzerhof generalized gradient approximation 
PBEsol41, supplemented with a Dudarev +U correction applied 
to the Ti d states (GGA+U). We used a value of UTi,d = 4.2 eV, 
which has previously been used to model lithium intercalation 
in anatase TiO2 and in TiO2-B42-44. All calculations were spin-
polarized. 

To model dilute Na-intercalated anatase TiO2 we considered 
a single interstitial Na ion in a 4%4%2 supercell (384 atoms). 
Optimised lattice parameters were obtained by performing a se-
ries of constant–volume calculations for a stoichiometric ana-
tase Ti4O8 cell, with the resulting volume–energy data fitted to 
the Murnaghan equation of state. These calculations were con-
sidered geometry-optimized when all atomic forces were 
smaller than 0.01 eV Å-1. This procedure gives zero-pressure 
lattice parameters of a = 3.8495 Å and c = 9.5966 Å. These cal-
culations used a 2%2%2 Monkhorst-Pack k-point mesh.  

To model the fully sodiated phase we considered two struc-
tures for stoichiometric NaTiO2: the rhombohedral O3-type lay-
ered structure45 (space group R-3m) identified in our experi-
ments, as discussed below, and the tetragonal “LiTiO2” struc-
ture (space group I41/amd) observed by Wagemaker et al. for 
Li-intercalated anatase nanoparticle. 44 To compare the interca-
lation behaviour for sodium versus lithium, we performed cal-
culations on both structures for compositions of NaTiO2 and Li-
TiO2. Calculations for the rhombohedral layered structure used 
a primitive cell (12 atoms) and a 4%4%1 Monkhorst-Pack k-
point mesh. Calculations for the tetragonal “LiTiO2” structure 
used a 2%1%1 supercell and a 2%4%2 Monkhorst-Pack k-point 







 

 

Figure 3. PDF profiles of the pristine (black), fully discharged (red) 
and fully charged (blue) electrodes. A and B refer to the interatomic 
distances of Ti–Na/Ti in edge-sharing and corner-sharing 
(Ti/Na)O6 octahedra, respectively.  

Based on our results, a mechanism accounting for the sodium 
storage in anatase can be proposed. Upon sodium insertion, the 
anatase type structure is converted into a layered like phase ac-
companied by a dramatic loss of long-range order due to strong 
cationic inter-mixing between the Ti and Na slabs. The first dis-
charge corresponded to an activation step yielding an electroac-
tive phase. According to Wu et al, the structural re-arrangement 
occurring during the first discharge suggests the release of O2 
as detected by in-situ chromatography.28 After sodium de-inter-
calation, the structure can no longer be considered as a layered 
compound but transforms to a heavily disordered three-dimen-
sional network with a similar local structure to anatase. Reversi-
ble sodium insertion/de-insertion is insured by these two 
phases. This phase transition is, however, characterized by a 
solid solution-like potential curve. This phenomenon can be ex-
plained by the amorphous nature of the two phases, which leads 
to a spectrum of voltage profiles for the phase transition, that 
produces a sloping curve similar to a solid solution mecha-
nism.22,51 It should be noted that solid solution-like voltage 
curve has been also observed in the case of a phase transition 
from a highly disordered amorphous Na3Fe3(SO4)2(OH)6 to-
wards crystallized NaFe3(SO4)2(OH)6.52 

Chemical sodiation. Although attempts to reduce micron-sized 
anatase particles using a chemical route failed,45 it can be antic-
ipated that decreasing the size of the particles will increase the 
sodium solubility. Following Wagemaker’s works on the chem-
ical reactivity of TiO2 nanoparticles vs. Li,53 we employed a 
chemical route to reduce TiO2 nanoparticles using Na-
Naphetlane as the reducing agent (see experimental method). 
The reaction was left for six days to reach equilibrium condi-
tions. Figure 4 shows the x-ray diffraction powder pattern of 
the chemically reduced phase. The chemical sodiation induced 
a strong reduction of the crystallinity and similarly to the elec-
trochemical route, a phase transition toward a NaxTiO2 like 

phase was observed. This result indicates that both electro-
chemical and chemical sodiation yielded NaxTiO2 type phase. 
Accordingly, the x-ray diffraction pattern was fitted using a 
rhombohedral structure and the following unit cell parameters 
were obtained a=3.05 and c= 14.60 Å. The c value indicates 
cationic inter-mixing in agreement with the three-dimensional 
pristine structure. Moreover, the lower c-value obtained by 
chemical sodiation indicates a larger amount of inserted so-
dium. 

 

Figure 4. Le Bail profile refinement of the x-ray diffraction powder 
pattern of the reduced NaxTiO2 obtained by chemical sodiation.  

Elemental analysis performed on reduced nanoparticles using 
energy-dispersive X-ray spectroscopy (EDX) yielded to a com-
position close to Na0.9TiO2. Elemental mapping on nanoparti-
cles presented in Figure 5a shows a homogeneous distribution 
of all elements, which is further evidenced from the overlay 
color image (Figure 5b). Bright field HRTEM image and cor-
responding FT pattern (Figure 5c) of a fragment of nanoparticle 
oriented along the c-axis revealed lattice plane separation of 
0.54 nm corresponding to the d002 spacing of the rhombohedral 
NaxTiO2 phase, in agreement with XRD analysis. Deeper 
atomic insights was obtained using high resolution HAADF-
STEM performed on a single nanoparticle viewed along the 
[001] rhombohedral direction (Figure 6). A close inspection by 
high-resolution HAADF-STEM revealed non-homogeneity at 
the atomic level. Contrast in HAADF-STEM image is propor-
tional to the thicknesses of the crystal and atomic number (~Z2). 
There is clear evidence of Na(Ti) atomic columns contrast var-
iation. Some columns appears as very bright with respect to sur-
rounding ones and can be attributed to Ti-rich (Z=22) columns 
(marked by white arrows in the Figure 8 inset). Moreover, the 
presence of black holes distributed over the nanoparticles 
(marked by red arrows head in Figure 8 inset) can be associated 
with vacancies thus concluding on similar structural arrange-
ment adopted by the electrochemically and chemically reduced 
phases. 
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Figure 5. (a) Low magnification bright field TEM image of chem-
ically reduced TiO2 nanoparticles. Inset: HAADF-STEM image. 
(b) EDX elemental mapping for Ti K, Na K and O K. Overlay color 
image (right corner). (c) Bright field HRTEM image and corre-
sponding FT pattern of fragment of nanoparticle oriented along the 
c-axis.  Spots in the FT pattern depicted with white arrows corre-
spond to the d002=0.54 nm of the rhombohedral Na0.9TiO2 structure.   

 

Figure 6. High-resolution HAADF-STEM image of NaxTiO2 nano-
particle viewing along 001 zone axis. Corresponding FT pattern is 
given as insert in right upper corner. Enlargement of HAADF-
STEM image (right bottom corner) indicate the brightness variation 
of Na(Ti) columns: enhancement - by white and depletion –  by red 
arrow heads.  

Magnetic properties. The magnetic susceptibility measured as 
a function of the temperature of the sample chemically sodiated 

is shown in Figure 7. We noted that the small upturn in the $(T) 
observed below ~50K indicates a small Curie-Weiss paramag-
netic component which could be attributed to a small amount of 
magnetic impurity, supported also by the slightly larger fc val-
ues. The M(H) curve collected at 5K (figure 9 inset) confirms 
this feature as M maximum values in 5T reach only 0.01 'B/f.u. 
Overall, the $(T) curve shows a rather T-independent $ from 
50K to 290K for both zfc and fc curves with low $ values of 
about 10-3 emu.mol-1. This result is consistent with Pauli para-
magnetism resulting from the network of S=1/2 spins made by 
the majority Ti3+ in the disordered structure on which charge 
carriers are delocalized with three possible type of MO6 with 
M=Ti, Na, and vacancy. The delocalized character ascribed to 
Ti-Ti distances is close to the Goodenough criterion.54  

 
Figure 7. Susceptibility versus temperature for NaxTiO2 sample. In-
set: M(H) curve at T=5K.  

Clarke et al,45,55 investigated the magnetic properties of ordered 
NaTiO2 and Na0.9TiO2 samples. For a NaTiO2 composition, they 
observed a magnetic transition at !  260 K ascribed to a mono-
clinic transition of the RT structure. Furthermore, the authors 
observed a similar transition for their Na0.9TiO2 sample, i.e. a 
composition very close to that of our chemically prepared ma-
terial. The absence of the magnetic transition for the sample un-
der study suggests that the structural transition observed in ref-
erences45,52 is responsible for the "(#)  transition. Moreover, 
both the pseudo-layered character of as prepared sample offer-
ing a large degree of ionic disorder as well as the smallness of 
the crystallites can explain the absence of the magnetic transi-
tion.  

DFT calculations. To better understand the intercalation of 
sodium into anatase TiO2, we performed DFT calculations for 
NaxTiO2 in the diluted limit and at the fully intercalated limit. 
To allow a direct comparison with the intercalation of lithium 
into anatase TiO2, we also performed equivalent calculations for 
LixTiO2. 

To model intercalation in the diluted-limit, one Na or Li atom 
was placed at an octahedral interstitial site in a 4%4%2 Ti128O256 
supercell, corresponding to x=0.008. For Na+ intercalation, the 
Na+ ion adopts a five-coordinate off-centre position (Figure 8), 
with average nearest Na–O separations of 2.13 Å, and a sixth 
Na–O distance of 3.28 Å. Constraining the Na ion to the centre 
of the interstitial octahedron increased the energy by 59 meV. 
In contrast, lithium does preferentially occupy the octahedron 
center, giving [4+2] coordination with average distances to the 
equatorial oxygen ions of 1.90 Å.43 The calculated intercalation 
energy for Na, relative to metallic sodium, is -0.08 eV. This is 
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significantly smaller (less negative) than the corresponding in-
tercalation energy for Li, relative to metallic lithium, of -1.529 
eV, and corresponds to a much smaller thermodynamic driving 
force for the initial intercalation of Na into anatase TiO2 than 
for Li.  

 

Figure 8. DFT optimized structure for Na in anatase TiO2, showing 
the preferred off-centre coordination.  

To model the fully sodiated limit, we performed DFT calcu-
lations on fully stoichiometric NaTiO2 and LiTiO2 (Figure 9). 
For LixTiO2, the theoretical maximum of x=1 is only observed 
experimentally in sub-10 nm nanoparticles,44,51 The reported 
LiTiO2 structure is tetragonal (I41/amd), and preserves the edge-
sharing between TiO6 octahedra exhibited by pristine anatase 
TiO2. In contrast, Na intercalation produces a rhombohedral R-
3m phase. For our DFT calculations, we consider both MTiO2 
structures for M=Li and M=Na. For NaTiO2, the rhombohedral 
structure gives an average intercalation energy of -1.247 eV Na-

1, and is more stable than the LiTiO2 I41/amd structure by 0.272 
eV per formula unit. In contrast, for LiTiO2, we find the tetrag-
onal I41/amd structure to be more stable by 0.110 eV per for-
mula unit, with an average intercalation energy of -1.716 eV Li-

1. 
 
 

 

Figure 9. DFT optimized structures for stoichiometric NaTiO2. Left 
panel: rhombohedral R-3m layered structure.45 Right panel: 
tetragonal I41/amd “LiTiO2” structure.30 

Conclusion 
Here, we investigated the sodium intercalation mechanism in 

anatase TiO2 emphasizing a complex process. During the first 
discharge, an irreversible plateau region was observed at ~0.2 

V and enabled the electrode activation which can be further cy-
cled with discharge-charge curves featuring a sloping profile 
and an average working voltage of ca. 0.8 V. Using PDF anal-
ysis, we identified the structural changes associated with the 
plateau region of the electrochemical profile demonstrating the 
stabilization of a rhombohedral phase NaxTiO2 showing high 
degree of disorder. The stabilization of such a structure was sup-
ported by DFT calculations which points out the structural dif-
ference between sodiated. The chemical formula deduced by 
PDF refinement led to (Na0.43Ti0.57)3a(!0.22Na0.39Ti0.39)3bO2 
where ! refers to vacancy, highlighting the strong structural 
disorder due to cationic inter-mixing. Moreover, the presence 
of Ti cations in the Na slabs induced a contraction of the c-pa-
rameters as compared to the ordered phase NaTiO2. PDF data 
of the charged electrode showed that the local structure of the 
anatase is recovered with short-range order of about 1 nm. Thus, 
the electrochemical process enabling the reversible sodia-
tion/de-sodiation reactions implied the rhombohedral phase and 
an amorphous anatase phase yielding to a sloping composition-
potential curves. Moreover, we showed that similar to lithium, 
using chemical sodiation, downsizing the particle size increases 
the sodium solubility. Magnetic measurements performed on 
the reduced phase did not show any phase transition which is in 
contrast with the ordered phase.  

ASSOCIATED CONTENT  
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