Supporting Information

A Reversible Phase Transition for Sodium Insertion in Anatase TiO$_2$

Wei Li,† Mika Fukunishi,§ Benjamin J. Morgan,† Olaf J. Borkiewicz,‡ Karena W. Chapman,‡ Valérie Pralong,○ Antoine Maignan,○ Oleg I. Lebedev,○ Jiwei Ma,† Henri Groult,† Shinichi Komaba,§ Damien Dambournet†,*

† Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8234, Laboratoire PHENIX, 4 place Jussieu, F-75005 Paris, France.
§ Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
‡ Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, United Kingdom.
⊥ X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States.
○ Laboratoire CRISMAT, ENSICAEN, Université de Caen, CNRS, 6 Bd Maréchal Juin, F-14050 Caen, France.

Corresponding Author
* damien.dambournet@upmc.fr

Figure S1. Powder x-ray diffraction pattern of anatase TiO$_2$.
Figure S2. Cycling behavior of anatase TiO$_2$ upon Na insertion/de-insertion. The capacity obtained after 50 cycles is 165 mAh/g, corresponding to ca. 0.5 Na$^+$ per TiO$_2$.
Figure S3. (a) High-energy X-ray diffraction pattern of the pristine and fully discharged TiO$_2$ electrodes. (b) The X-ray diffraction pattern of the fully discharged electrode was indexed with an O3-type NaTiO$_2$ rhombohedral structure (space group: R-3m).
Figure S4. PDF refinement of the TiO$_2$ electrode discharged to 0.3V, *i.e.* 0.3 Na$^+$ per TiO$_2$.

Figure S5. High-energy X-ray diffraction pattern of the fully charged electrode. The peak at 2-theta $\approx 25^\circ$ can be assigned to the (101) of the anatase type structure, indicating the recovery of anatase framework upon charging.
Figure S6. PDF refinement of the electrode charged to 2 V using O3-type NaTiO$_2$ (space group: R-3m) and TiO$_2$ (space group: I4$_1$/amd) models. The results show that the desodiated electrode is composed by 20 % O3-type Na$_x$TiO$_2$ and 80 % TiO$_2$, which agrees with the capacity delivered during the 1st charge. Note that the high value of the Rw is due to strong disorder occurring in Na$_x$TiO$_2$ phase.