EXTENDED REPORT

Treatment outcome in early diffuse cutaneous systemic sclerosis: the European Scleroderma Observational Study (ESOS)


Handling editor Tore K Kvien

ABSTRACT

Objectives The rarity of early diffuse cutaneous systemic sclerosis (dcSSc) makes randomised controlled trials very difficult. We aimed to use an observational approach to compare effectiveness of currently used treatment approaches.

Methods This was a prospective, observational cohort study of early dcSSc (within three years of onset of skin thickening). Clinicians selected one of four protocols for each patient: methotrexate, mycophenolate mofetil (MMF), cyclophosphamide or ‘no immunosuppressant’. Patients were assessed three-monthly for up to 24 months. The primary outcome was the change in modified Rodnan skin score (mRSS). Confounding by indication at baseline was accounted for using inverse probability of treatment (IPT) weights. As a secondary outcome, an IPT-weighted Cox model was used to test for differences in survival.

Results Of 326 patients recruited from 50 centres, 65 were prescribed methotrexate, 118 MMF, 87 cyclophosphamide and 56 no immunosuppressant. 276 (84.7%) patients completed 12 and 234 (71.7%) in 24 months follow-up (or reached last visit date). There were statistically significant reductions in mRSS at 12 months in all groups: −4.0 (−5.2 to −2.7) units for methotrexate, −4.1 (−5.3 to −2.9) for MMF, −3.3 (−4.9 to −1.7) for cyclophosphamide and −2.2 (−4.0 to −0.3) for no immunosuppressant (p value for between-group differences=0.346). There were no statistically significant differences in survival between protocols before (p=0.389) or after weighting (p=0.440), but survival was poorest in the no immunosuppressant group (84.0%) at 24 months.

Conclusions These findings may support using immunosuppressants for early dcSSc but suggest that overall benefit is modest over 12 months and that better treatments are needed.

Trial registration number NCT02339441.

INTRODUCTION

The diffuse cutaneous subtype of systemic sclerosis (dcSSc) is rare (SSc incidence is around 10–20/ million/year,1 of whom approximately 25% will have diffuse disease) but carries high morbidity and mortality due to early internal organ involvement and rapidly progressive, painful skin thickening. Also, 5-year and 10-year survival rates, although improving, are in the order of 68% and 50%, respectively.2,3 At present, there is no drug known to favourably influence disease course. Randomised controlled trials (RCTs) have historically been confounded by disease rarity (only small numbers of patients are recruited, often over long periods) and strict entry criteria meaning that severe cases are often excluded.4 These strict criteria further restrict sample sizes and limit generalisability. Therefore, although RCTs represent a gold standard for assessing drug efficacy, results may not be applicable to
real-life clinical settings. Small trials run the risk of being underpowered, thus potentially yielding false-negative results. The past three decades have seen a number of promising treatments for early dcSSc failing to meet efficacy end points in RCTs: examples include methotrexate (multinational, 71 patients) and anti-transforming growth factor β1 antibody therapy (multinational, 45 patients).

A further difficulty in recruiting into RCTs of early dcSSc is that many clinicians have reservations about placebo therapy in a potentially life-threatening disease and favour immunosuppression, consistent with the European League Against Rheumatism (EULAR) recommendations, which advocate methotrexate for skin manifestations in early dcSSc, although this agent has been shown to be of only limited efficacy. Immunosuppressants are potentially hazardous, especially in patients prone to internal organ disease and infection.

Against this background, our aim was to compare, using an observational approach, the effectiveness of standard treatment approaches (mainly immunosuppressant treatments but including a ‘no immunosuppressant’ option to reflect that some patients or clinicians may choose this approach) in the early management of patients with dcSSc, capturing entry and outcome data in a systematic way. Modern statistical approaches allow robust interrogations of prospective observational studies, as an adjunct to, or even substitute for, RCTs in rare diseases, although the potential of these novel approaches has not yet been realised.

METHODS

Study design
The European Scleroderma Observational Study (ESOS) was a prospective, observational cohort study (ClinicalTrials.gov identifier: NCT02339441), in which standardised data were collected at study entry and at follow-up visits, and entered electronically by investigators at each centre into an electronic case record form. All data were checked by the project coordinator and any inconsistencies were discussed with the chief investigator and (if appropriate) the local principal investigator. The main inclusion criteria were early dcSSc (skin involvement proximal to elbow, knee, face, neck and within three years of the onset of skin thickening) and age >18 years. Exclusion criteria were previous stem cell transplantation, previous immunosuppressant treatment for >4 months or use of any immunosuppressant drug other than methotrexate, mycophenolate mofetil (MMF) or cyclophosphamide within the month prior to study entry.

Clinicians selected the protocol of their choice for each patient. The recommended treatment protocols, as decided by the Steering Committee to reflect international best clinical practice, were

1. Methotrexate (oral or subcutaneous with a target dose of 20–25 mg weekly).
2. MMF (500 mg twice daily for 2 weeks increasing to 1 g twice daily).
3. Cyclophosphamide.

Possible regimens included:

i. Intravenous. Minimum monthly dose 500 mg/m² with a recommended duration of 6–12 months.
ii. Oral. 1–2 mg/kg/day with a recommended duration of 12 months. Patients treated with cyclophosphamide were then usually ‘transferred’ to a maintenance immunosuppressive drug (methotrexate, MMF or azathioprine) as per the treating clinician’s choice.

4. No immunosuppressant treatment, to give the option of including patients in whom immunosuppression was not felt indicated or appropriate (or declined by the patient).

Patients were assessed at baseline, with subsequent visits scheduled three-monthly for 24 months (or between 12 and 24 months for those patients recruited after September 2013).

To have 80% power to detect a difference between two treatment arms of five modified Rodnan skin score (mRSS) units at 12 months would require 63 patients per protocol. Allowing 20% loss to follow-up, and varying numbers recruited to the different protocols, recruitment target was 316 patients.

Patients
Patients were recruited between July 2010 and September 2014. Demographic characteristics including age, gender, smoking habit, ethnicity, antibody status (anti-topoisomerase-1 (anti-Scl70), anti-RNA III polymerase, anticientromere) and presence of visceral organ involvement were recorded for all patients. The algorithms to determine the presence of different types of organ involvement are summarised in online supplementary table S1.

Outcome measures
The primary outcome measure, assessed at each visit, was the change in mRSS over time. All mRSS assessments were performed by those experienced in skin scoring. The mRSS is assessed clinically at 17 body sites on a 0–3 scale (maximum score 51) and measures the extent of skin thickening. It is the most commonly used primary outcome measure in RCTs of dcSSc reflecting disease severity and predicting mortality.

All other outcomes/recorded variables were mainly part of routine clinical practice and are summarised in online supplementary table S2. Secondary end points included pulmonary function (forced vital capacity (FVC: % predicted) and carbon monoxide diffusing capacity (DLCO: % predicted)), quality of life reflecting disease severity and predicting mortality.

Statistical analysis
In an observational study, patient characteristics differ between groups and any differences in outcomes might be driven by those characteristics rather than the treatments (confounding by indication). In each of the analyses (for the different outcome measures), all variables associated with the outcome were considered as confounders.

Differences between protocols at baseline
Kruskal-Wallis test was applied for continuous variables and Fisher’s test for categorical variables.

Influence of baseline characteristics on mRSS at baseline and over time
The association between baseline variables and mRSS was assessed by simple linear regressions, entering each characteristic separately as a predictor of mRSS. To examine how each variable affected the progression of mRSS, the regression equation was modified by adding a term for time and its interaction with the baseline predictor value.

Differences in the changes between groups for all outcomes
Inverse probability of treatment (IPT) weights equalise the distributions of confounders between the treatment groups, thus removing confounding by indication. Treatment probabilities
were computed using multinomial logistic regressions, with the baseline values of the selected confounders as predictors.22 Censoring weights re-balanced the data such that the distributions of confounders remain unchanged throughout the study. For each observation, the probability of remaining uncensored given the baseline values of the confounders, the initial protocol and a cubic spline for time was calculated using a pooled logistic regression model.23 Multiplying both weights yielded the IPT and inverse probability of censoring (IIPC) weights. Weights >20 were truncated at that value.24

Treatment effects were assessed using IPTC-weighted linear regression models, which include an intercept, a time term, indicator variables for treatment groups and interactions between time and treatments. The model followed an intention-to-treat approach. Differences in the interaction terms reflected differences in the evolution of outcome.

Cochrane hand function data were log-transformed (after adding one to each value) to correct for a highly left-skewed distribution. CIs for the difference of logs were back-transformed, yielding a percentage difference between predicted baseline and 12-month levels.

Because of missing data at baseline for confounders, multiple imputation by chained equations was applied with STATA V13.1. Imputations were performed separately for each different outcome model. Moreover, each analysis was restricted to the subset of patients with available outcome data at baseline.

Survival analysis
Kaplan-Meier curves, adjusted using IPT weights, provide estimates of the cumulative probability of surviving in each of the protocols. An IPTC-weighted Cox regression, including indicator variables for the protocols, was used to test for differences in survival between protocols. Both overall and adverse event-free survival were examined.

RESULTS
In total, 326 patients from 50 centres (19 countries) were recruited into the study (figure 1): 160 from mainland Europe and the Middle East, 134 from the UK, 15 from Australia and 17 from North America (six centres from Australia and North America joined after the initial recruitment wave). Not being a North American joined after the initial recruitment wave). Not being a North American, a non-SSc-related cause (26 most likely primarily cardiorespiratory, 2 renal crises, 2 gastrointestinal (one aspiration) and 1 peritonitis (on peritoneal dialysis following renal crisis)), 3 died of cancer (1 nasopharyngeal, 1 rectal, 1 colorectal) and in 1 case the cause was unknown.

Influence of baseline variables on the initial skin score and on skin score trajectory
Table 2 summarises the effect of different characteristics on the initial mRSS and its subsequent trajectory, as analysed with linear regression.

Using the associations described by table 2, the confounders identified for the skin score were age, duration of skin thickening, current or previous steroid use, anti-topoisomerase, anti-RNA polymerase III, pulmonary fibrosis, pulmonary hypertension, cardiac, renal and muscle involvement, as well as HAQ-DI, Cochin hand function and FACIT fatigue scores (see online supplementary table S5 for lists of confounders and online supplementary tables S6–S13 for each model’s confounder selection process).

Changes in skin score over time in the different treatment groups
The mean change in mRSS after 12 and 24 months was –2.9 and –6.7 units. Based on a weighted regression model, there were
Clinical and epidemiological research

Figure 1 Progression of patients through the study.

- 348 patients assessed for eligibility
- 22 ineligible
  - 11 no proximal skin thickening
  - 2 previous immunosuppression
  - 2 skin thickening over 3 years
  - 1 recurrence of cancer
  - 1 revised diagnosis (not dcSSc)
  - 5 ineligible for other reasons
- 326 eligible

Baseline
- 65 assigned methotrexate
  - 12 study exits
    - 4 deaths
    - 4 withdrawals
    - 4 protocol violations
  - 19 protocol changes
    - 6 adverse reactions
    - 9 progression
    - 4 other reasons
- 118 assigned mycophenolate mofetil
  - 13 study exits
    - 4 deaths
    - 8 withdrawals
    - 1 protocol violation
  - 15 protocol changes
    - 8 adverse reactions
    - 3 progression
    - 4 other reasons
- 87 assigned cyclophosphamide
  - 16 study exits
    - 10 deaths
    - 3 withdrawals
    - 3 protocol violation
  - 14 protocol changes
    - 6 adverse reactions
    - 4 progression
    - 4 other reasons
- 56 assigned no immunosuppressant
  - 9 study exits
    - 6 deaths
    - 2 withdrawals
    - 1 protocol violation
  - 8 protocol changes
    - 4 progression
    - 4 other reasons

12 months
- 53 treatment ongoing (incl. 5 missing)
  - 11 study exits
    - 3 withdrawals
    - 2 protocol violations
    - 6 reached deadline before end of study
  - 2 protocol changes
    - 2 adverse reactions
- 105 treatment ongoing (incl. 17 missing)
  - 36 study exits
    - 7 deaths
    - 12 withdrawals
    - 5 protocol violations
    - 12 reached deadline before end of study
  - 10 protocol changes
    - 5 adverse reactions
    - 1 progression
    - 4 other reasons
- 71 treatment ongoing (incl. 6 missing)
  - 23 study exits
    - 2 deaths
    - 6 withdrawals
    - 1 protocol violation
    - 14 reached deadline before end of study
  - 3 protocol changes
    - 1 adverse reaction
    - 1 progression
    - 1 other reasons
- 47 treatment ongoing (incl. 6 missing)
  - 17 study exits
    - 2 deaths
    - 4 withdrawals
    - 3 protocol violations
    - 8 reached deadline before end of study
  - 2 protocol changes
    - 1 progression
    - 1 other reasons

24 months
- 42 complete study
  - 2 protocol changes
    - 2 adverse reactions
- 69 complete study
  - 10 protocol changes
    - 5 adverse reactions
    - 1 progression
    - 4 other reasons
- 48 complete study
- 30 complete study

\(^{a}\) Withdrawals include patients who left the study for the following reasons: unable to travel, changed hospital, enrolled in a randomized clinical trial, no longer willing to participate or lost to follow-up with no given reason. Among the 8 patients who were lost to follow-up in the first year, 5 patients were due for their 24-month visit after the study deadline.

\(^{b}\) Protocol violations brought about a premature exit from the study. There were 20 protocol violations mid-study: 9 who started rituximab (as their main treatment), 5 who received a stem cell transplantation, 4 who started azathioprine (not as part of a post-cyclophosphamide transfer), 1 who started tocilizumab and 1 who entered a randomized clinical trial.

\(^{c}\) Protocol changes designate patients who changed immunosuppressants, started taking or stopped receiving one (in non-observance to their initial assigned protocol). Changes that were a part of a post-cyclophosphamide transfer were not considered protocol changes. If a patient deviated from her/his initial protocol more than once, only the initial change (along with its reason) was recorded in the flow-chat.

\(^{d}\) There were 58 post-cyclophosphamide transfers: 40 patients went on to mycophenolate mofetil, 9 on to azathioprine, 5 on to methotrexate and 4 on to no immunosuppressant.

\(^{e}\) In the no immunosuppressant cohort, 10 out of 56 patients deviated from their protocol at any point: 2 switched to methotrexate, 5 to mycophenolate mofetil and 3 to cyclophosphamide. 7 of those 10 cases were linked to pulmonary complications, one to associated inflammatory arthritis, one to skin thickening and one because of preference.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Protocol 1 Methotrexate n=65</th>
<th>Protocol 2 Mycophenolate n=118</th>
<th>Protocol 3 Cyclophosphamide n=87</th>
<th>Protocol 4 No immunosuppressant n=56</th>
<th>P Value*</th>
<th>Total n=326</th>
<th>Missing at baseline, no. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>52.5 (41.5–61.1)</td>
<td>50 (40.7–61.1)</td>
<td>54.1 (45.7–60.5)</td>
<td>52.3 (42.3–60.3)</td>
<td>0.324</td>
<td>52.3 (43–60.8)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Female, no. (%)</td>
<td>50 (76.9%)</td>
<td>94 (79.7%)</td>
<td>49 (56.3%)</td>
<td>40 (71.4%)</td>
<td>0.003</td>
<td>233 (71.5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Months since onset of skin thickening</td>
<td>10.3 (5.5–20.8)</td>
<td>12.6 (7.8–21.8)</td>
<td>10.2 (5.9–14.5)</td>
<td>16.5 (8.7–27)</td>
<td>0.001</td>
<td>11.9 (7–21)</td>
<td>18 (5.5%)</td>
</tr>
<tr>
<td>Years since onset of first non-Raynaud’s phenomenon</td>
<td>1.3 (0.7–2.1)</td>
<td>1.4 (0.9–2)</td>
<td>1.0 (0.6–1.4)</td>
<td>1.7 (0.9–2.5)</td>
<td>0.001</td>
<td>1.2 (0.8–2)</td>
<td>6 (1.8%)</td>
</tr>
<tr>
<td>Years since onset of Raynaud’s phenomenon</td>
<td>1.3 (0.7–2.5)</td>
<td>1.9 (1.1–3.1)</td>
<td>1.4 (0.9–2.4)</td>
<td>2.2 (1.1–3.7)</td>
<td>0.014</td>
<td>1.7 (1–2.9)</td>
<td>22 (6.7%)</td>
</tr>
<tr>
<td>Previous immunosuppressant use, no. (%)†</td>
<td>3 (4.6%)</td>
<td>5 (4.2%)</td>
<td>15 (17.2%)</td>
<td>3 (5.4%)</td>
<td>0.007</td>
<td>26 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Current or previous steroid use, no. (%)</td>
<td>33 (50.8%)</td>
<td>39 (34.2%)</td>
<td>51 (58.6%)</td>
<td>18 (32.1%)</td>
<td>0.001</td>
<td>141 (43.8%)</td>
<td>4 (1.2%)</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>11 (16.9%)</td>
<td>17 (15.3%)</td>
<td>18 (21.7%)</td>
<td>11 (20.8%)</td>
<td>0.646</td>
<td>57 (18.3%)</td>
<td>14 (4.3%)</td>
</tr>
<tr>
<td>History of cancer, no. (%)</td>
<td>5 (7.8%)</td>
<td>4 (3.4%)</td>
<td>4 (4.7%)</td>
<td>7 (12.5%)</td>
<td>0.121</td>
<td>20 (6.2%)</td>
<td>4 (1.2%)</td>
</tr>
<tr>
<td>Caucasian, no. (%)</td>
<td>54 (83.1%)</td>
<td>92 (78.0%)</td>
<td>77 (88.5%)</td>
<td>49 (87.5%)</td>
<td>0.201</td>
<td>272 (83.4%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>mRSS (0–51)</td>
<td>21 (17–24)</td>
<td>21 (16–27)</td>
<td>22 (17–29)</td>
<td>20 (15.5–26)</td>
<td>0.306</td>
<td>21 (16–27)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Haemoglobin (g/L)</td>
<td>12.7 (11.18–136)</td>
<td>126 (118–137)</td>
<td>130 (116–140)</td>
<td>130 (118–139)</td>
<td>0.721</td>
<td>128 (118–137)</td>
<td>12 (4%)</td>
</tr>
<tr>
<td>White blood count (×10⁹/L)</td>
<td>7.7 (6.7–9.4)</td>
<td>7.9 (6.4–9.5)</td>
<td>8.8 (7.3–10.6)</td>
<td>8.0 (6.7–9.4)</td>
<td>0.029</td>
<td>8 (6.8–9.9)</td>
<td>14 (4.3%)</td>
</tr>
<tr>
<td>Platelets (×10⁹/L)</td>
<td>300 (254–337)</td>
<td>298 (246–370)</td>
<td>309 (259–359)</td>
<td>281 (250–337)</td>
<td>0.459</td>
<td>298 (253–358)</td>
<td>15 (4.6%)</td>
</tr>
<tr>
<td>ESR (mm/hour)</td>
<td>17 (10–29)</td>
<td>18 (8–30)</td>
<td>21 (9–48)</td>
<td>20 (10–35)</td>
<td>0.341</td>
<td>18 (8–34)</td>
<td>77 (23.6%)</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>4.0 (2.2–7.5)</td>
<td>5.0 (1.1–11)</td>
<td>5.9 (3.2–20.0)</td>
<td>4.8 (3.0–11.7)</td>
<td>0.026</td>
<td>5 (2.1–11.8)</td>
<td>90 (27.6%)</td>
</tr>
<tr>
<td>Anti-topoisomerase (anti-Scl70), no. (%)</td>
<td>20 (31.3%)</td>
<td>49 (42.6%)</td>
<td>39 (45.3%)</td>
<td>18 (33.3%)</td>
<td>0.228</td>
<td>126 (39.5%)</td>
<td>7 (2.1%)</td>
</tr>
<tr>
<td>Anti-RNA polymerase III, no. (%)</td>
<td>9 (18.8%)</td>
<td>23 (23.2%)</td>
<td>9 (13.0%)</td>
<td>9 (19.6%)</td>
<td>0.433</td>
<td>50 (19.1%)</td>
<td>64 (19.6%)</td>
</tr>
<tr>
<td>Anticentromere, no. (%)</td>
<td>9 (14.1%)</td>
<td>6 (5.4%)</td>
<td>4 (4.7%)</td>
<td>3 (5.7%)</td>
<td>0.147</td>
<td>22 (7%)</td>
<td>12 (3.7%)</td>
</tr>
<tr>
<td>Organ involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary fibrosis, no. (%)</td>
<td>8 (12.3%)</td>
<td>13 (11%)</td>
<td>21 (24.1%)</td>
<td>5 (8.9%)</td>
<td>0.036</td>
<td>47 (14.4%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>FVC (% predicted)</td>
<td>93.7 (81–106)</td>
<td>90 (75–102)</td>
<td>82.5 (68.5–96.5)</td>
<td>90 (75–100)</td>
<td>0.026</td>
<td>89 (75–102)</td>
<td>19 (5.8%)</td>
</tr>
<tr>
<td>DLCO (% predicted)</td>
<td>73 (62–83)</td>
<td>64.5 (48–77)</td>
<td>57 (41–73)</td>
<td>64 (52–75)</td>
<td>&lt;0.0005</td>
<td>64 (50–78)</td>
<td>35 (10.7%)</td>
</tr>
<tr>
<td>Pulmonary hypertension, no. (%)</td>
<td>4 (6.3%)</td>
<td>7 (5.9%)</td>
<td>10 (11.5%)</td>
<td>5 (8.9%)</td>
<td>0.488</td>
<td>26 (8%)</td>
<td>1 (0.3%)</td>
</tr>
<tr>
<td>sPAP or RVSP (mm Hg)†</td>
<td>27 (23–32)</td>
<td>27 (20–33)</td>
<td>30 (23–37)</td>
<td>27 (23–35)</td>
<td>0.472</td>
<td>29 (21–34)</td>
<td>124 (38%)</td>
</tr>
<tr>
<td>Cardiac involvement, no. (%)</td>
<td>5 (7.7%)</td>
<td>8 (6.8%)</td>
<td>19 (21.8%)</td>
<td>7 (13%)</td>
<td>0.009</td>
<td>39 (12%)</td>
<td>2 (0.6%)</td>
</tr>
<tr>
<td>Renal involvement, no. (%)‡</td>
<td>1 (1.5%)</td>
<td>13 (11%)</td>
<td>10 (11.5%)</td>
<td>8 (14.3%)</td>
<td>0.039</td>
<td>32 (9.8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>eGFR (ml/min)</td>
<td>90 (63–90)</td>
<td>84.5 (60–90)</td>
<td>90 (60–90)</td>
<td>80 (60–90)</td>
<td>0.339</td>
<td>85 (60–90)</td>
<td>92 (28.2%)</td>
</tr>
<tr>
<td>Renal crisis</td>
<td>0 (0%)</td>
<td>8 (6.8%)</td>
<td>4 (4.6%)</td>
<td>4 (7.1%)</td>
<td>0.110</td>
<td>16 (4.9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Plasma creatinine (µmol/L)</td>
<td>63.5 (55–72)</td>
<td>69 (55–83)</td>
<td>64.5 (53–86)</td>
<td>64 (56–77)</td>
<td>0.422</td>
<td>65 (55–79.5)</td>
<td>70 (21.5%)</td>
</tr>
</tbody>
</table>

Continued
statistically significant reductions in mRSS in all four treatment groups at 12 months (−4.0 (−5.2 to −2.7) units for methotrexate, −4.1 (−5.3 to −2.9) for MMF, −3.3 (−4.9 to −1.7) for cyclophosphamide and −2.2 (−4.0 to −0.3) for the no immunosuppressant group), but the differences between treatments were not significant (p=0.346) (table 3 and figure 2).

Changes in secondary outcomes over time in the different treatment groups

Lung function
After adjusting for potential confounders, the change rates of FVC and DLCO were not significantly different in the four treatment groups (p=0.460 and 0.505) (table 3).

However, in a subset of patients with pulmonary fibrosis or suspected pulmonary fibrosis (cases confirmed on high-resolution CT (HRCT) irrespective of FVC or DLCO, or with one of the following if HRCT not performed: FVC or DLCO under 55% predicted or definite bibasal shadowing on X-ray), there was a significant difference in the change rate of FVC over time (p=0.035). Patients initially prescribed cyclophosphamide demonstrated 7.4% absolute increase in FVC (% predicted) compared with 2.0% decrease for methotrexate, 3.2% increase for MMF and 4.0% increase for the ‘no immunosuppressant’ group (table 3).

Functional ability and hand function
Changes over time for the HAQ-DI and CHFS did not differ between protocols (p=0.130 and 0.073), regardless of adjusting (table 3).

Development of internal organ involvement
This is described in online supplementary figure S2.

Comparison of survival between treatment protocols
Survival was lowest in the no immunosuppressant group at both 12 and 24 months but differences between protocols were not statistically significant either before (p=0.389) or after weighting (p=0.440). In the adjusted model, at 24 months, those in the no immunosuppressant group had a predicted survival rate of 84.0% compared with 94.1% for methotrexate, 88.8% for MMF and 90.1% for cyclophosphamide (figure 3). Patients with lung involvement (pulmonary fibrosis and/or hypertension) at baseline had significantly poorer survival than those without: at 24 months, their predicted survival rate was 74.6% versus 91.7% (p<0.0005) and similarly for cardiac involvement, 71.6% versus 90.7% (p<0.0005).

Adverse effects
Of the 75, 182 and 101 patients who were ever on methotrexate, MMF or cyclophosphamide, respectively, 29 (38.7%), 40 (22.0%) and 23 (22.8%) were reported to have had side effects, necessitating drug discontinuation in 9 (12.0%), 14 (7.7%) and 5 (4.5%) patients, respectively. A survival analysis on protocol exits due to adverse effects showed no differences in the tolerability of the three treatments (p=0.212) (see online supplementary figure S3).

DISCUSSION
Our main findings were, first, that there were no significant differences in outcome between the four treatment protocols (methotrexate, MMF, cyclophosphamide, no immunosuppression), although there may be a signal in favour of immunosuppression for early dcSSc. Although skin score improved in all skin scores at entry, MMF or cyclophosphamide, respectively, 29 (38.7%), 40 (22.0%) and 23 (22.8%) were reported to have had side effects, necessitating drug discontinuation in 9 (12.0%), 14 (7.7%) and 5 (4.5%) patients, respectively. A survival analysis on protocol exits due to adverse effects showed no differences in the tolerability of the three treatments (p=0.212) (see online supplementary figure S3).
confirms the relative effectiveness of cyclophosphamide in patients with pulmonary fibrosis.25 26

An important point when interpreting our findings (and therefore a note of caution) is that the ‘no immunosuppressant’ group was not a control group. Patients in this group had a longer disease duration than the other three groups and were more likely to have renal involvement.

Our findings lend support to two recently published studies (the Autologous Stem Cell Transplantation International Scleroderma trial [ASTIS] trial of autologous stem cell transplantation27 and the Scleroderma Lung Study II [SLS II] [comparing MMF and cyclophosphamide],26 which suggest benefit, including in mRSS, from immunosuppression (as did SLS I23). In ASTIS, those patients randomised to cyclophosphamide had an 8.8 unit fall in mRSS (from 25.8) at 24 months (compared with 3.3 in ESOS over 12 months), but the cyclophosphamide protocol was more intense, and the patients had more severe disease (patients with the highest mRSS at baseline tend to improve most quickly4 as also demonstrated by our own findings (table 2)). mRSS fell by 19.9 units in those patients randomised to stem cell transplantation7,9 (and therefore intensive immunosuppression). In SLS I,23 patients with dcSSc randomised to cyclophosphamide experienced a 5.3 unit fall in mRSS at 12 months (compared with 3.3 in ESOS), whereas mRSS fell by 1.7 on placebo (compared with 2.2 units in the ESOS ‘no immunosuppressant’ group). In SLS II,26 mRSS at 24 months fell 4.9 units on MMF (compared with 4.1 units in ESOS at 12 months) and by 5.4 after 12 months treatment with cyclophosphamide, although these values are not directly comparable because they relate to patients with limited cutaneous and dcSSc combined.

The methodological strength of ESOS, which built upon an immunosuppressant group was not a control group. Patients in this group had a longer disease duration than the other three groups and were more likely to have renal involvement. Randomisation, Entry criteria were deliberately inclusive: RCTs often exclude patients with internal organ involvement and for whom immunosuppression is most likely to be
<table>
<thead>
<tr>
<th>Outcome</th>
<th>Model specification</th>
<th>p Value</th>
<th>Methotrexate</th>
<th>Mycophenolate mofetil</th>
<th>Cyclophosphamide</th>
<th>No immunosuppressant</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRSS (0–51)</td>
<td>No adjusting, n=326</td>
<td>0.252</td>
<td>−4.4</td>
<td>−3.8</td>
<td>−3.5</td>
<td>−2.4</td>
</tr>
<tr>
<td></td>
<td>Adjusting for confounding (weighted model), n=326</td>
<td>0.346</td>
<td>−4.0</td>
<td>−4.1</td>
<td>−3.3</td>
<td>−2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(−5.7 to −3.2)</td>
<td>(−5.2 to −2.7)</td>
<td>(−5.0 to −2.0)</td>
<td>(−3.9 to −1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n=65)</td>
<td>(n=118)</td>
<td>(n=87)</td>
<td>(n=56)</td>
</tr>
<tr>
<td>FVC (% predicted)</td>
<td>No adjusting, n=307</td>
<td>0.045</td>
<td>−1.7</td>
<td>2.1</td>
<td>4.0</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Adjusting for confounding (weighted model), n=307</td>
<td>0.460</td>
<td>−0.5</td>
<td>2.0</td>
<td>3.3</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(−4.4 to 1.0)</td>
<td>(−3.7 to 2.6)</td>
<td>(−0.6 to 7.2)</td>
<td>(−1.6 to 5.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n=109)</td>
<td>(n=111)</td>
<td>(n=84)</td>
<td>(n=53)</td>
</tr>
<tr>
<td></td>
<td>Subset with PF on HRCT, weighted, n=129†</td>
<td>0.035</td>
<td>−2.0</td>
<td>3.2</td>
<td>7.4</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(−5.9 to 2.0)</td>
<td>(−0.6 to 7.0)</td>
<td>(2.2 to 12.7)</td>
<td>(−1.1 to 9.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n=19)</td>
<td>(n=31)</td>
<td>(n=57)</td>
<td>(n=22)</td>
</tr>
<tr>
<td>DLCO (% predicted)</td>
<td>No adjusting, n=291</td>
<td>0.703</td>
<td>−1.2</td>
<td>0.3</td>
<td>0.6</td>
<td>−0.3</td>
</tr>
<tr>
<td></td>
<td>Adjusting for confounding (weighted model), n=291</td>
<td>0.505</td>
<td>−1.6</td>
<td>0.8</td>
<td>0.1</td>
<td>−0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(−3.5 to 1.0)</td>
<td>(−3.8 to 0.6)</td>
<td>(−3.1 to 3.2)</td>
<td>(−3.7 to 3.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n=51)</td>
<td>(n=110)</td>
<td>(n=79)</td>
<td>(n=51)</td>
</tr>
<tr>
<td></td>
<td>Subset with PF on HRCT, weighted, n=116†</td>
<td>0.809</td>
<td>−0.8</td>
<td>1.9</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(−5.4 to 3.8)</td>
<td>(−1.8 to 5.6)</td>
<td>(−1.9 to 5.4)</td>
<td>(−2.6 to 5.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n=12)</td>
<td>(n=31)</td>
<td>(n=53)</td>
<td>(n=20)</td>
</tr>
<tr>
<td>HAQ-DI (0–3)</td>
<td>No adjusting, n=307</td>
<td>0.070</td>
<td>−0.1</td>
<td>0</td>
<td>−0.2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Adjusting for confounding (weighted model), n=307</td>
<td>0.130</td>
<td>−0.1</td>
<td>0</td>
<td>(−0.3 to −0.1)</td>
<td>(−0.1 to 0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(−0.2 to 0.1)</td>
<td>(−0.1 to 0.1)</td>
<td>(−0.1 to 0.1)</td>
<td>(−0.1 to 0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n=59)</td>
<td>(n=113)</td>
<td>(n=81)</td>
<td>(n=54)</td>
</tr>
<tr>
<td>Cochin hand function (0–90)†</td>
<td>No adjusting, n=230</td>
<td>0.072</td>
<td>−1.1</td>
<td>−0.3</td>
<td>−3.1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Adjusting for confounding (weighted model), n=230</td>
<td>0.073</td>
<td>−1.4</td>
<td>−0.6</td>
<td>−2.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(−3.5 to 2.2)</td>
<td>(−2.0 to 1.1)</td>
<td>(−4.7 to 0.6)</td>
<td>(−0.1 to 4.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n=36)</td>
<td>(n=103)</td>
<td>(n=49)</td>
<td>(n=42)</td>
</tr>
<tr>
<td>Survival</td>
<td>No adjusting, n=326</td>
<td>0.389</td>
<td>(12 months) 93.5%</td>
<td>(12 months) 96.5%</td>
<td>(12 months) 88.1%</td>
<td>(12 months) 88.9%</td>
</tr>
<tr>
<td></td>
<td>Adjusting for confounding (weighted model), n=326</td>
<td>0.440</td>
<td>(24 months) 93.5%</td>
<td>(24 months) 89.3%</td>
<td>(24 months) 85.4%</td>
<td>(24 months) 85.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(24 months) 93.5%</td>
<td>(24 months) 89.3%</td>
<td>(24 months) 85.4%</td>
<td>(24 months) 85.1%</td>
</tr>
</tbody>
</table>

Significance p: Fisher’s test for equality of change rates between protocols, for each outcome variable.

*Results are reported in terms of changes after 12 months. However, all study data (from baseline to the 24-month end point) were used in estimation. To obtain 24-month changes, multiply results above by 2.

†For the subanalysis involving the subset of patients with pulmonary fibrosis at baseline, patients with definite bibasal pulmonary fibrosis confirmed on HRCT were included, irrespective of FVC value. If no HRCT scan was performed at baseline, an FVC<55%, DLCO<55% predicted or definite bibasal shadowing on X-ray was also a basis for inclusion.

‡Changes expressed in units for the Cochin regression are an approximation derived from the 95% CI of percentage changes between baseline and 12 months (on a scale shifted by one unit), applied to the predicted baseline values for each group in the original scale.

mRSS, modified Rodnan skin score (17 sites); PF, pulmonary fibrosis.
Figure 2  Modified Rodnan skin score (mRSS) during baseline and follow-up visits, by initial protocol. For each group of patients, according to their initial protocol, the distribution of the skin score is illustrated on the left-hand side by box and whisker plots (indicating the median and IQR) at baseline, 12 and 24 months. On the right-hand side, the distribution of individual 1-year changes in the skin score is described by histograms and a kernel density estimate. In addition, a vertical green line indicates the value of the average 1-year change in the skin score, irrespective of treatment choice. The bottom panel in the figure describes the estimated changes in mRSS (with 95% CI) according to initial protocol, based on the results from the adjusted model (described in table 3).
bene
ficial. By recruiting 326 patients from 50 centres, ESOS represents a large cohort of patients with very early dcSSc (median duration of skin thickening 11.9 months): its data will serve as a benchmark when designing and interpreting future clinical trials. This is especially relevant with a number of novel treatment approaches currently being explored including biological agents. For example, in a recent RCT of tocilizumab,29 mRSS fell over 24 weeks by 3.9 units from 26 in the 43 tocilizumab-treated patients and by 1.2 units from 26 in the 44 placebo-treated patients, this latter fall comparable to the ESOS ‘no immunosuppressant’ response. In comparing between these studies, the higher baseline mRSS in the tocilizumab study should be borne in mind.

The main weakness of observational studies is that each patient’s outcome on her/his treatment arm cannot be completely disentangled from her/his initial characteristics. For instance, ESOS has verified that patients with lung and cardiac involvement tend to be prescribed cyclophosphamide. However, adjusting using IPT weights minimises the problem of confounding by indication.

In conclusion, observational studies offer a rich population-wide perspective assessing treatment effects in a real-world setting. ESOS achieved its aim of following a large international cohort of patients with early dcSSc over 2 years, each of whom was treated according to one of four protocols. The message for clinicians is that there is a weak signal to support using immunosuppressants for early dcSSc (and in particular cyclophosphamide for patients with pulmonary fibrosis). However, it is clear that there remains a pressing need for the development of more effective and targeted treatments.

Figure 3  Kaplan-Meier estimated survival curves by treatment group.

Author affiliations

1Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
2NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
3Centre for Musculoskeletal Research, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
4Department of Rheumatology, Lund University, Lund, Sweden
5Service de Médecine Interne, Hôpital Cochin, Centre de Référence pour les Vasculites Nécrosantes et la Sclérodermie Systémique, Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
6Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
7Member of Steering Committee, contact via Professor Herrick, The University of Manchester, Manchester, UK
8Department of Rheumatology and Immunology, Medical Center, University of Pécs, Pécs, Hungary
9Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
10Department of Rheumatology, University of Zurich, Zurich, Switzerland
11Royal Free London NHS Foundation Trust, London, UK.
12Rehabilitation Services, Salford Royal NHS Foundation Trust, Salford, UK
13Department of the Rheumatic Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
14Rheumatology 2 Department, “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Rehabilitation Hospital, Iasi, Romania
15UCL Division of Medicine, Centre for Rheumatology and Connective Tissue Diseases, London, UK
16Unité Clinique de Médecine Interne, Maladies Auto-immunes et Pathologie Vasculaire, UF 04, Hôpital Saint-Louis, AP-HP Assistance Publique des Hôpitaux de Paris, INSERM UMR 1160, Paris Denis Diderot University, France
17Jewish General Hospital, Lady Davis Institute and McGill University, Montreal, Canada
18Department Experimental and Clinical Medicine, Division of Rheumatology ADUC, University of Florence, Florence, Italy
19Shine Rheumatology Unit, Rambam Health Care Campus; Rappaport Faculty of Medicine, Haifa, Israel
20Rheumatology Unit, Oslo University Hospital Rikshospitalet, Oslo, Norway
21Queen Elizabeth Hospital Birmingham, UHB Foundation Trust, Birmingham, UK
22St Vincent’s Hospital, Melbourne, Australia
23Department for Dermatology, University of Cologne Kerpenerstr. 62, Köln, Germany
24Cambridge University NHS Hospital Foundation Trust, Cambridge, UK
25Department of Internal Medicine, Hôtel-Dieu Hospital, University of Nantes, Nantes, France
26Department of Internal Medicine, University of Florence, Florence, Italy
27Department of Rheumatology and Immunology, Medical Center, University of Pécs, Pécs, Hungary
28Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
29Department of Rheumatology, University of Zurich, Zurich, Switzerland
30Royal Free London NHS Foundation Trust, London, UK.
31Rehabilitation Services, Salford Royal NHS Foundation Trust, Salford, UK
32Department of the Rheumatic Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
33Rheumatology 2 Department, “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Rehabilitation Hospital, Iasi, Romania
34UCL Division of Medicine, Centre for Rheumatology and Connective Tissue Diseases, London, UK
35Unité Clinique de Médecine Interne, Maladies Auto-immunes et Pathologie Vasculaire, UF 04, Hôpital Saint-Louis, AP-HP Assistance Publique des Hôpitaux de Paris, INSERM UMR 1160, Paris Denis Diderot University, France
36Jewish General Hospital, Lady Davis Institute and McGill University, Montreal, Canada
37Department Experimental and Clinical Medicine, Division of Rheumatology ADUC, University of Florence, Florence, Italy
38Shine Rheumatology Unit, Rambam Health Care Campus; Rappaport Faculty of Medicine, Haifa, Israel
39Rheumatology Unit, Oslo University Hospital Rikshospitalet, Oslo, Norway
40Queen Elizabeth Hospital Birmingham, UHB Foundation Trust, Birmingham, UK
41St Vincent’s Hospital, Melbourne, Australia
42Department for Dermatology, University of Cologne Kerpenerstr. 62, Köln, Germany
43Cambridge University NHS Hospital Foundation Trust, Cambridge, UK
44Department of Internal Medicine, Hôtel-Dieu Hospital, University of Nantes, Nantes, France
45UCL Division of Medicine, Centre for Rheumatology and Connective Tissue Diseases, London, UK
46Department of Rheumatology and Immunology, Medical Center, University of Pécs, Pécs, Hungary
47Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
48Department of Rheumatology, University of Zurich, Zurich, Switzerland
49Royal Free London NHS Foundation Trust, London, UK.
50Department of the Rheumatic Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
51Rheumatology 2 Department, “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Rehabilitation Hospital, Iasi, Romania
Clinical and epidemiological research

11

REFERENCES


Assessment Questionnaire (HAQ), Systemic Sclerosis HAQ, and Medical Outcomes Study 36-Item Short Form Health Survey. *Arthritis Rheum* 2007;57:94–102.


