An Approach to Reducing Distance Compression in Audiovisual Virtual Environments

Daniel J. Finnegan† Eamonn O’Neill‡ Michael J. Proulx¶

University of Bath

ABSTRACT

Perception of distances in virtual reality (VR) is compressed: objects are consistently perceived as closer than intended. Although this phenomenon has been well documented, it is still not fully understood or defined with respect to the factors influencing such compression. This is a problem in scenarios where veridical perception of distance and scale is essential. We report the results of an experiment investigating an approach to reducing distance compression in audiovisual VR based on a predictive model of distance perception. Our test environment involved photorealistic 3D images captured through stereo photography, with corresponding spatial audio rendered binaurally over headphones. In a perceptual matching task, participants positioned an auditory stimulus with respect to the corresponding visual stimulus. We found a high correlation between the distance perception predicted by our model and how participants perceived the distance. Through automated manipulation of the audio and visual displays based on the model, our approach can be used to reposition auditory and visual components of a scene to reduce distance compression. The approach is adaptable to different environments and agnostic of scene content, and can be calibrated to individual observers.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Virtual Reality; H.5.m [HCI]: Miscellaneous

1 INTRODUCTION

Egocentric distance perception is defined as the perception of distance between oneself and an object [23]. In VR the subjective perception of distance is frequently compressed (i.e. perceived closer) compared to the real world [12, 16, 29]. In entertainment applications veridical perception may not be critical, although it has been shown to be an important factor in preference and enjoyment [17]. However, applications such as virtual museum tours, actions involving reaching to nearby objects, and augmented remote medical surgery (telerobotic surgery) can benefit from a perception of space as close as possible to the real world [13, 19, 22].

Distance compression is both a unimodal and a crossmodal phenomenon, and has been studied extensively in audio, visual and audiovisual environments. For example, Renner et al. segmented the space around an observer into three cue regions: personal, action and vista space [23]. Each space is defined by the distance from the observer, and different cues (e.g. binocular disparity, occlusion, relative size) are applicable in different spaces. Some cues overlap and apply in more than one cue region. With respect to audition, Zahorik studied distance cues in virtual environments [30]. His assessment of various cues such as sound intensity, binaural differences, direct-to-reverberant ratio, and spectral content demonstrated a similar context-sensitive appropriation of distance cues to that in Renner et al.

A well known example of crossmodal influence on perception is the ‘Ventriloquist Effect’, where the source location of speech auditory stimuli is often localised to the nearest face in the visible environment [1, 6, 18]. Ernst & Banks demonstrated that, for combinations of visual and haptic stimuli, humans perceive in a ‘statistically optimal fashion’, termed Maximum Likelihood Theory [8]. Maximum Likelihood theory has been demonstrated with vision and audition [3] but the authors note that their results do not rule out ‘visual capture’, a theory suggesting an overall bias towards the visual modality. In order to come to a consensus, the study reported here investigates crossmodal influence on distance perception in audiovisual virtual environments using a perceptual matching task.

2 BACKGROUND

With respect to audition, the energy in reverberant environments lingers longer than in anechoic environments due to the reflections and echoes. The human auditory system is understood to integrate the intensity level of a sound source, with the energy in its reflections, in order to estimate the distance to the sound source [31]. Zahorik conducted an analysis of how humans weigh intensity and direct-to-reverberant energy ratio cues (D-R) when determining distance [30]. He found that the weight attributed to each cue when making distance judgements changes as a function of sound source type as well as sound source position. When sounds were presented directly in front of participants, intensity was weighted more than D-R, meaning participants relied on the intensity of the direct wave rather than the reverberant energy in the environment to make judgements. However, as sounds were moved further to the lateral side of the listener, participants began to weigh intensity less and rely more on D-R. Therefore, the efficacy of auditory cues correlates with their angular displacement of the sound source relative to the observer. The changes in weighting between the cues results in repercussions for interventions that try to exploit particular cues in order to relieve distance compression. This could lead to localization errors in depth: any compression compensation method would need to accommodate this. It is also unclear how these weights may interact with visual perception in an audiovisual environment.

Distance perception can also result from internal processing. Distance information is extracted from cues and integrated, exploiting the cue context. For example, speech is a well known signal and has certain expected attributes. A speech source is expected to originate from the mouth of a person, and is thus expected to travel outwards, in multiple directions (due to the propagation of sound in free space), however, it is expected to propagate in a particular direction most strongly, i.e. towards the listener who is the target of the speech. This expectation of the sound source origin has repercussions for vision; the listener would expect to see an appropriate visual cue emanating from the same source. However, the Ventriloquist Effect may be exploitable. Decomposing an audiovisual stimuli into auditory and visual components, and repositioning them may still result in the stimuli being perceived as a single object. All temporal properties of the stimuli remain unaffected, simply their spatial alignment is changed. This idea has been previously applied by Finnegan et al. in

*e-mail: djf32@bath.ac.uk
†e-mail: eamonn@cs.bath.ac.uk
‡e-mail: mjproulx@bath.ac.uk
a simple abstract environment with minimal distance cues [9]. We
test whether the effect holds true in natural, cue rich environments.

Crossmodal binding has been studied to observe visual or au-
dio bias effects on distance perception [2, 5, 14]. Chan et al. took
distance judgements in an audiovisual target selection task. Visual
stimuli consisted of a picture of a face being lit up, while auditory
stimuli consisted of a speech signal of the phrase ‘Hi’. All stimuli
emanated from a 2D circular array consisting of a foreground arc
and a background arc. The front arc was situated 60 cm from the
listener and the background arc was 120cm. They measured localised
accuracy, asking participants to choose whether an audio, visual,
or audiovisual stimulus appeared in either the background or
foreground arc while starting at a fixation point at the 0° position.
They found an interaction effect between the audiovisual modality
and the presentation angle along the arc. Accuracy across audio-
visual *incongruent* trials was greater in the central location than
the periphery. Audiovisual *congruent* trials were as accurate in the
central locations as the peripheral [5]. This suggests that the audi-
tory stimulus was a distraction and did not result in more accuracy
than the visual only condition. However, participants were told to
ignore the auditory stimulus in the audiovisual conditions. Results
could have been different if participants were told to perceive the
audiovisual stimuli as a single multimodal stimulus, as multimodal
processing is broadly considered to be more effective than unimodal
processing (See [25] for example).

Anderson & Zahorik took distance judgements with auditory,
visual, and audiovisual photoreal stimuli in the frontal plane [2]. The
expected compression of distance occurred in all 3 modalities, and
in agreement with Chan et al. they found AV and V conditions were
not significantly different from one another, yet visual cues resulted
in less variability across trials. They concluded that the presence
of visual information improves accuracy in distance perception.
Their design consisted of a captured binaural room impulse response
(BRIR) for naturalistic spatial audio, and a photo of the loudspeaker
as auditory and visual stimuli respectively. Similarly to the study by
Chan et al. participants would have made the implicit association
between the crossmodal stimuli and bound the two together.

Considering that this crossmodal binding result is stronger for
spatially congruent stimuli, an interesting question occurs: ‘What
are the bounds of congruency within which perceptual binding can
occur with respect to distance perception’? Gorzel et al. investigated
the bounds of incongruence for a range of audiovisual stimuli [10].
In a perceptual study involving stereoscopic imagery viewed using
polarised filter based 3D glasses and a large HDTV monitor, with
ambisonic audio rendered over headphones, they found that there
were margins of misalignment for which audiovisual stimuli were
perceived as consistent. For visual stimuli positioned 2m from the
observer, 50% (chance level) estimates were consistently made with
a margin of 1m. However, when the visual stimuli was pushed back
to 8m, a margin of 3m resulted in 50% performance. These trends
suggest that the margin of misalignment increases logarithmically
with the egocentric distance of the visual stimulus. This implies
that further distance allows for greater incongruency while ensuring
perceptual binding.

3 Solving the Distance Compression Problem

In the visual domain, manipulating the geometry of the scene can
reduce the level of distance compression in blind walking tasks [15].
The technique, known as minification, involves shrinking the image
to be displayed, and then rendering the resulting image so that
the complete field of view is scaled appropriately. Minification adjusts
the angle of declination (see [21]) with respect to a scaling factor as
in Equation 1.

$$\theta_{\text{new}} = \arctan(m \cdot \tan \theta_{\text{orig}})$$

(1)

Kuhl et al. conducted a between-subjects experiment investigating
the effect of ‘minifying’ the scene geometry on distance percep-
tion, and found that compression was reduced with the minification
rendering technique compared to a control condition with an un-
minified scene [15]. However, compression still occurred regardless
of minification.

Steinicke et al. experimented with redirected walking, a technique
to lead a user immersed in a virtual world along a specific trajectory
[26]. This enables virtual world designers to expand the exploration
space in the virtual world to a greater area than is physically available.
The most striking finding is that users can be made to walk in a circle
of radius greater than 22 meters yet feel as if they have maintained
a straight line. An added benefit of redirected walking is that high
cognitive load has an impact on the curve at which participants could
be redirected [4]. In hectic VR environments, observers may be very
easily led to believe they are immersed in a bigger environment than
physical constraints allow.

In implementing their redirected walking technique, Steinicke et
al. found that distances can also be modified in the virtual environ-
ment so that they don’t match the physical world, yet are perceptually
veridical to the user [26]. Finnegan et al. found a similar effect with
incongruent audiovisual environments, where the variance of the
point of subjective equality (PSE) was as great as 0.5 meters when
audio and visual stimuli were misaligned [9]. Their incongruence
function determines the position of an audio source given a visual
anchor as in Equation 2.

$$\phi = \left(\frac{\gamma}{k}\right)^\frac{1}{\pi}$$

(2)

By intentionally misaligning the acoustic source from a visual stim-
ulus (i.e. seeing and hearing a loudspeaker), participants were more
accurate in their estimates of distance based in a 2 alternative forced
choice (2AFC) task.

4 Hypothesis

The aim of this current study was to assess incongruence as a viable
solution to the distance compression problem in photorealistic virtual
environments. In summary, we note the following points made in
this background review:

1. Distance perception within virtual environments has been
found to be compressed with respect to the real world across
various studies.

2. Distance perception is seen as a crossmodal cognitive task
and therefore should be studied from the perspective of multi-
sensory integration and psychophysics.

3. It is unclear whether incongruency is only effective in some
virtual environments, consisting of abstract and unfamiliar
stimuli, or whether the positive impact of incongruence is
generalizable and applicable to more natural environments.

The first and second points have been discussed in the preceding
sections. In order to address the third point, we designed and con-
ducted an experiment which looked at distance perception in virtual
audiovisual environments. We anticipated that incongruence would
be effective in environments that provide more distance cues to the
observer; in this instance, extra cues in the form of relative size,
occlusion, binocular disparity and shading.

H1: Incongruence would be effective in predicting distance percep-
tion in environments that provide more distance cues to the
observer.

5 EXPERIMENT DESIGN

The experiment involved 40 participants (12 Female), a mixture of undergraduate and postgraduate students at a local university, with a mean age of 26 years. The task was to match the position of a car horn to the spatial position of a target car. Spatial audio was implemented using the same custom plugin written for the Unity Game Engine used by Finnegan et al. [9]. The plugin is publicly available for download: [https://github.com/Ps2Fino/Unity-Audio-Plugin]. All participants were unaware of the experiment's hypothesis, and had no known hearing impairments. The Oculus Rift headset was calibrated based on the IPD of the individual participant using the configuration utility from the Oculus Rift SDK. Participants were seated in a chair, with head movement restricted using a chin rest.

5.1 Environment and Stimuli

Inside the virtual environment, participants saw a series of scenes each depicting a row of cars parked, viewed from the side. In each scene, the closest car was recorded as being 5 meters from the camera’s position, measured using a tape measure. Each scene was rendered from stereo photographs captured with a Canon EOS 60D, with a 50mm lens, mounted on a custom camera rig consisting of a tripod, sliding dolly, and wooden frame. The photographs were captured by taking a single photograph, namely the photograph for the right eye, then shifting the camera 2.5 inches to the left and taking a second photograph. 2.5 inches was chosen as it is a measured estimate for the IPD across the general population [7]. A sample image pair from our asset set is shown in Figure 2. Scenes 1 & 3 contained 6 cars while scene 2 contained 5 cars for a total of 17 distances across all scenes. The audio stimulus was a synthesized car horn (1 second, mono channel) that participants moved around the scene. All scenes were comparable in terms of visual cues, and the horn sound was identical in all trials.

5.2 Procedure

Before beginning the experiment, each participant was guided through a tutorial that demonstrated the input mechanism and the task for the experiment. The UI shown in Figure 3 was displayed throughout the entire experiment to remind participants. After the tutorial, the main experiment began immediately. Using the game controller, participants could move the current location of the car horn in a semi-circle arc in front of them, from 0° to 180°. No online auditory feedback was provided; at any time, participants could poll the audio in order to hear the horn from its current position. They could also hear the horn from a reference position 1 meter directly in front of them. When they felt the position of the horn sound matched

the position of the target car, they confirmed their response using the game controller and moved on to the next trial. Each participant completed 30 such trials, presented in randomised order.

6 RESULTS

All data were processed using the R Language and Environment for Statistical Processing with plots produced using the R graphical statistics package ggplot2. Figure 4 shows the results of a regression model, with output of the incongruent function plotted against the perceived distance. The raw data for each set distance is also plotted on a continuous scale. Data is averaged over all 40 participants, with trial repetitions included, governing 20 trials on average. A statistically significant effect was observed, with the model explaining over 91% of the variance ($R^2 = 0.91, p < 0.01$). Figure 5 is the residuals plot demonstrating homogeneity of variance.

Table 1 shows the error margins for each distance in meters over all 3 scenes. Distances that resulted in outliers were removed, reducing the number of distance targets in scene 2. Each scene was taken from a different angular perspective, with cars of different shapes, sizes, and color. The response values follow a linear rise, with variations most notable in Scene 2. During debrief, some participants divulged different strategies for matching the horn sound to the target car. These strategies consisted of ‘always picking the front of the car’ to ‘matching the nearest part visible’ to ‘matching the horn to the perceived center of the car’.

Table 1: The raw data for each set distance is plotted against the perceived distance.

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>Error Margin</th>
<th>Mean Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>6.0</td>
</tr>
</tbody>
</table>

3R Project: https://www.r-project.org/
Table 1: Table of error margins for mean responses over each distance in the trial set.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Mean Response</th>
<th>Error</th>
<th>Scene</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>0.34</td>
<td>4.66</td>
<td>Scene 1, 2, & 3</td>
</tr>
<tr>
<td>7.18</td>
<td>0.50</td>
<td>6.67</td>
<td>Scene 1</td>
</tr>
<tr>
<td>7.31</td>
<td>0.283</td>
<td>7.03</td>
<td>Scene 3</td>
</tr>
<tr>
<td>7.76</td>
<td>0.45</td>
<td>7.31</td>
<td>Scene 2</td>
</tr>
<tr>
<td>9.47</td>
<td>0.68</td>
<td>8.79</td>
<td>Scene 1</td>
</tr>
<tr>
<td>9.71</td>
<td>1.00</td>
<td>8.71</td>
<td>Scene 3</td>
</tr>
<tr>
<td>10.45</td>
<td>0.61</td>
<td>10.04</td>
<td>Scene 2</td>
</tr>
<tr>
<td>11.80</td>
<td>1.06</td>
<td>10.74</td>
<td>Scene 1</td>
</tr>
<tr>
<td>12.15</td>
<td>0.90</td>
<td>11.25</td>
<td>Scene 3</td>
</tr>
<tr>
<td>13.59</td>
<td>1.16</td>
<td>12.43</td>
<td>Scene 2</td>
</tr>
<tr>
<td>14.16</td>
<td>1.11</td>
<td>13.05</td>
<td>Scene 1</td>
</tr>
<tr>
<td>14.61</td>
<td>1.34</td>
<td>13.27</td>
<td>Scene 3</td>
</tr>
<tr>
<td>16.32</td>
<td>1.372</td>
<td>14.95</td>
<td>Scene 1</td>
</tr>
<tr>
<td>17.08</td>
<td>1.62</td>
<td>15.46</td>
<td>Scene 3</td>
</tr>
</tbody>
</table>

Figure 4: Log-Linear plot of incongruent function output against response values from participants. Actual distances are shaded on a continuous scale. The difference in the axes represents the compression rate of participants over all scenes, demonstrating the need for calibration of the incongruent function.

Figure 5: Residual plot of the incongruent function model from Figure 4 demonstrating similar variance across distances.

adaptation, or more appropriate, a ‘training’ period is required to calibrate the incongruence function to the observer’s individual rate of compression. The perceptual matching task used here could be adapted into an appropriate calibration procedure. More research gauging the flexibility of incongruence in other environments will lead to a more complex, general function.

The fact that compression occurred is expected, as numerous past trials attest to this [2, 10]. Severe distance compression has been observed in at least one previous study which also used a head mounted display [29]. It is unclear why such severe compression occurred here, but one reason may be that observers had no reference distance in the visual modality. The only reference given was in the auditory domain consisting of the horn sound positioned 1 meter in front of them. Perhaps participants saw this as a clue to the actual location of the cars, and thus used this as a basis for generating their estimates. Another reason the cars were perceived as being much closer could be due to the binocular disparity kept constant throughout the experiment and across all scenes. Results from Turner et al. suggest that 3D audio may be used to enhance the perception of binocular depth [27]. Combining this evidence with the use of a constant IPD value in the presentation of stimuli in our study, is it viable to suggest that there are subtle crossmodal interaction effects between vision with respect to IPD and binaural audio. However, more research, specifically in the form of a controlled experiment specifically looking at the interaction between IPD and spatial audio position on depth perception in binocular environments, would be needed to confirm this.

As noted, some participants chose different strategies for positioning the car horn. Trials where participants positioned the sound to the front of the car would result in different distance response values compared to participants who chose to just put the sound to the center or rear of the car. Thus asking participants which part of the target object to match to affects the results. Specifying the exact part of the target object to match would lead to reduced error in the calibration phase.

8 Conclusion

Previous studies in audiovisual distance perception in VR report compression of distance. Researchers have explained this compression in the context of numerous factors, including response measurement protocol, graphics rendering, direct-to-reverberant ratio of auditory stimuli. We studied distance compression with the goal of reducing compression through crossmodal compensation. Our work is based on a theory that distance compression may be compensated through intentionally misaligning the audio and visual stimuli components
of an audiovisual target.

We tested the hypothesis that distance perception can be predicted by an inverted power function whose parameters were based on prior studies in distance compression. We replicated the finding of distance compression measured using a perceptual matching task. Our results showed a log-linear fit for perceived location for a given distance, suggesting that compression is a systematic perceptual phenomenon whose parameters may be determined. Determining these parameters has beneficial impact to VR practitioners and designers of VR environments, by recommending a mapping between the acoustic and visual spaces that result in close to real world distance spatial perception.

9 ACKNOWLEDGMENTS

Daniel J. Finnegan’s research is funded by CAMERA, the EPSRC Centre for the Analysis of Motion, Entertainment Research and Applications, EP/M023281/1. Eamonn O'Neill’s research is also partly funded by CAMERA. Michael J. Proulx’s research is partly funded by EPSRC grant EP/J017205/1, Design Patterns for Inclusive Collaboration. We thank Soumya Chinnachamy Barathi and Tayfun Essenkaya for their insightful comments.

REFERENCES

[26] A. Turner, J. Berry, and N. Holliman. Can the perception of depth in stereoscopic images be influenced by 3D sound? Displays, 7863(February), 2011. doi: 10.1117/12.871960