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Summary: Glimm et al. (2010) and Tamhane et al. (2010) studied the problem of testing a primary and a secondary

endpoint, subject to a gatekeeping constraint, using a group sequential design (GSD) with K = 2 looks. In this paper we

greatly extend the previous results to multiple (K > 2) looks. If the familywise error rate (FWER) is to be controlled at

a preassigned α level then it is clear that the primary boundary must be of level α. We show under what conditions one

α-level primary boundary is uniformly more powerful than another. Based on this result we recommend the choice of the

O’Brien and Fleming (1979) boundary over the Pocock (1977) boundary for the primary endpoint. For the secondary

endpoint the choice of the boundary is more complicated since under certain conditions the secondary boundary can be

refined to have a nominal level α′ > α, while still controlling the FWER at level α, thus boosting the secondary power.

We carry out secondary power comparisons via simulation between different choices of primary-secondary boundary

combinations. The methodology is applied to the data from the RALES study (Pitt et al., 1999; Wittes et al., 2001).

Key words: Familywise error rate; Gatekeeping; Lan-DeMets error spending function approach; Multiple compar-

isons; Multiple endpoints; O’Brien-Fleming boundary; Pocock boundary; Primary power; Secondary power.
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1. Introduction

Gatekeeping procedures for testing multiple hierarchical objectives such as tests on multiple

endpoints have been been studied by many authors in the last 15 years, see, e.g., Dmitrienko

and Tamhane (2007, 2009). For the most part, these studies are restricted to fixed sample

designs. However, group sequential designs (GSDs) have become increasingly more common

in clinical trials since the early works of Pocock (1977) and O’Brien and Fleming (1979);

Jennison and Turnbull (2000) have given a thorough overview of the subject. Tang and Geller

(1999), Jennison and Turnbull (1993) and Maurer and Bretz (2013) have addressed certain

aspects of multiple testing in GSDs. Still, there is a pressing need to develop procedures at

the interface of gatekeeping and group sequential designs. This paper addresses a practically

important problem at this interface.

Hung et al. (2007) were the first to study a gatekeeping test on a primary and a secondary

endpoint using a GSD with two looks (or stages). They showed that the fixed-sequence testing

strategy of propagating α from a rejected hypothesis to an unrejected one, used effectively

in gatekeeping and graphical procedures (Bretz et al. (2009)), inflates the type I error rate

when used in a GSD. Glimm et al. (2010) and Tamhane et al. (2010) studied this problem

analytically and showed how to determine the critical boundaries for the two endpoints to

control the familywise type I error rate (FWER). Both these papers focused on the two-look

(K = 2) case. In this paper we study this problem in much greater depth and extend the

previous results to multiple looks (K > 2).

The outline of the paper is as follows. Section 2 sets up the notation and gives the statement

of the problem. Section 3 discusses the choice of the primary boundary. Section 4 discusses

the choice of the secondary boundary. This section is divided into three subsections. The first

subsection reviews the previous results forK = 2, while the second subsection gives new results

for K > 2. Both these subsections consider the least favorable case (in terms of maximizing the
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FWER) of the correlation ρ between the primary and the secondary endpoints equal to 1. The

third subsection gives the secondary boundaries for the known ρ case to illustrate how much

the secondary boundary can be relaxed if ρ < 1. Section 5 gives simulated power comparisons

between different choices of primary and secondary boundaries. Section 6 gives a clinical trial

example to illustrate the methodology presented in the paper. Section 7 gives an extension of

the procedure studied in the paper. Section 8 gives concluding remarks. To keep the length

of the paper within limits only a simpler and shorter proof of a special case of Theorem 1 is

included in the Appendix; a longer and a more technical proof of that theorem is included

in a Web Appendix, which also includes proofs of Theorems 4 and 5, and the R program to

compute the various boundaries necessary to implement the proposed methodology.

2. Problem Formulation and Notation

We will assume the following normal theory set up, which applies asymptotically to broad

types of data including survival and binary data. Consider a parallel arm trial to compare

a treatment with a control or placebo on a primary and a secondary endpoint, which are to

be tested hierarchically with the primary endpoint acting as a gatekeeper for the secondary

endpoint. For each patient we observe a bivariate normal response on the primary and the

secondary endpoints with means (µt1, µt2) for the treatment group and (µc1, µc2) for the control

group; the variances (σ2
1, σ

2
2) and the correlation coefficient ρ are assumed to be common for

the two groups. Let δ1 = µt1 − µc1 and δ2 = µt2 − µc2 denote the primary and secondary

treatment effects, respectively. We want to test two hypotheses, H1 : δ1 = 0 and H2 : δ2 = 0

against upper one-sided alternatives where H2 is tested only if H1 is rejected.

We use a GSD with K > 2 stages. In the ith stage of the trial we have ni patients on each

arm. Denote the cumulative sample sizes on each arm by Ni = n1+. . .+ni and the information

times by ti = Ni/NK (1 6 i 6 K). We assume that the information times are the same for
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the primary and secondary endpoints. All except one example (the RALES data example in

Section 6) given in this paper assume equal group sizes and so ti = i/K (1 6 i 6 K);

however. theoretical results apply more generally. This assumption will not be repeated in

those examples.

Denote the critical boundary for the primary endpoint by (c1, . . . , cK) and that for the

secondary endpoint by (d1, . . . , dK). We want to determine these decision boundaries so as to

strongly control the FWER for any specified α (Hochberg and Tamhane, 1987):

FWER = P{Reject at least one true Hi (i = 1, 2)} 6 α (1)

regardless of whether H1 or H2 is true or both are true.

The Lan and Demets (1983) flexible error spending function approach used in the example

in Section 6 does not require prespecification of the number or the timings of the looks. In

that example we will adapt the fixed GSD boundaries to the flexible error spending function

boundaries.

At the ith look, let (Xi, Yi) denote the standardized sample mean test statistics for the two

endpoints, which are assumed to be bivariate normal with mean vector (∆1i,∆2i) where

∆1i =
δ1
σ1

√
Ni

2
and ∆2i =

δ2
σ2

√
Ni

2
(1 6 i 6 K)

and correlation coefficient ρ. Define the standardized treatment effects at Stage K for the two

endpoints by

∆1 = ∆1K =
δ1
σ1

√
NK

2
and ∆2 = ∆2K =

δ2
σ2

√
NK

2
.

Then ∆1i = γi∆1 and ∆2i = γi∆2 where γi =
√
ti (1 6 i 6 K). (We note that in Tamhane

et al. (2010), ∆1 and ∆2 were defined as δ1
√
n1 and δ2

√
n1, respectively; also a single-sample

study was assumed in contrast to the two-sample study assumed in the present paper.)

The correlation structure of (X1, . . . , XK) and (Y1, . . . , YK) can be readily shown to be as
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follows.

corr(Xi, Xj) = corr(Yi, Yj) = γij =
γi
γj

(1 6 i < j 6 K)

corr(Xi, Yi) = ρ (1 6 i 6 K)

corr(Xi, Yj) = corr(Xj, Yi) = ργij (1 6 i < j 6 K).

We will restrict attention to what Glimm et al. (2010) called the stagewise hierarchical rule

in which H1 is tested using the primary decision boundary until either it is rejected, i.e.,

Xi > ci for some i 6 K and then H2 is tested or the trial terminates without rejecting H1

and hence also H2. If H1 is rejected at the ith look then H2 is rejected if Yi > di; otherwise

H2 is retained and the trial terminates. We will denote this procedure by Pa. See, however,

see Section 7, which studies a more general procedure Pb that conducts sequential tests on

H2 until it is rejected or the trial stops.

3. Choice of the Primary Boundary

It is clear that since H1 is a gatekeeper for H2, the primary boundary must control the type

I error under H1 at level α. Any such α-level boundary can be chosen for this purpose. The

following theorem tells how to choose a more powerful α-level boundary.

Theorem 1: Suppose (X1, . . . , XK) has a multivariate normal distribution as defined

above. Consider two different α-level tests: Test A with group sequential boundary (a1, . . . , aK)

and Test B with group sequential boundary (b1, . . . , bK) for testing H1: δ1 = 0 vs δ1 > 0. If for

some k∗ ∈ {1, . . . , K − 1}, ai > bi for i = 1, . . . , k∗ and ai < bi for i = k∗ + 1, . . . , K, and

if the total sample size is the same for both the tests then Test A is uniformly more powerful

than Test B for all δ1 > 0.

An intuitive explanation for this result is that if test A tends to stop later than test B,

then test A always makes a final decision based on more data than test B and so hs more
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power. An extreme case for k∗ = K − 1 is when a1 = . . . = aK−1 = ∞ and so test A always

takes the maximum possible sample size, while test B tends to take fewer observations. Then

application of the Neymann-Pearson lemma implies that test A has a higher power. In the

Appendix, we use a likelihood ratio argument to prove Theorem 1 for cases where k∗ = K− 1

and test A never stops earlier than test B. However, this method does not generalize to cases

where k∗K − 2 and it is possible for test A to stop before test B. Our proof for such cases is

longer and more technical and is given in the Web Appendix.

Consider a corollary to this theorem for two classical group sequential boundaries: the

O’Brien-Fleming (OBF) boundary and the Pocock (POC) boundary. It is clear that the OBF

boundary corresponds to Test A and the POC boundary corresponds to Test B. So the OBF

boundary is uniformly more powerful than the POC boundary. Thus given a choice between

these two boundaries we choose the OBF boundary for the primary endpoint.

4. Choice of the Secondary Boundary

Now consider the choice of the secondary boundary to control the FWER under H2 : δ2 = 0

when H1 is false. This FWER (which we will also refer to as the secondary type I error

probability) is a function of the joint distribution of the Xi’s and the Yi’s, and so of the

unknown parameters ∆1 and ρ (as well as of the known information fractions). We denote it

by α2(∆1, ρ), where

α2(∆1, ρ) =
K∑
i=1

PH2 {X1 6 c1, . . . , Xi−1 6 ci−1, Xi > ci;Yi > di} . (2)

Let α2 = max∆1,ρ
α2(∆1, ρ). Then we need to determine (d1, . . . , dK) such that α2 6 α.

4.1 Summary of Results for K = 2

We summarize the main results from Tamhane et al. (2010).
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Theorem 2: If c1 > d1 then α2 = max∆1,ρ
α2(∆1, ρ) is achieved at ∆1 = ∆0

11 = (c1 −

d1)/γ1 and ρ = 1 and

α2 = 1− PH2(Y1 6 d1, Y2 6 d2) = 1− Φ2(d1, d2|γ1), (3)

where Φ2(·, ·|γ) denotes the standard bivariate normal c.d.f. with correlation coefficient γ.

Thus in order to control α2 6 α, (d1, d2) must be an α-level boundary, i.e., PH2(Y1 6 d1, Y2 6

d2) = Φ2(d1, d2|γ1) = 1− α.

This theorem shows that Hung et al.’s (2007) Strategy 1 will be liberal since it uses d1 =

d2 = zα, the upper α critical point of the standard normal distribution. If α = 0.05 then

z.05 = 1.645 and α2 = 1− Φ2(1.645, 1.645|
√

1/2) = 0.08 > 0.05.

Note that max∆1,ρ
α2(∆1, ρ) is independent of (c1, c2) although where this maximum occurs

w.r.t. ∆1 depends on (c1, d1). Any α-level boundary can be chosen for (d1, d2) as long as c1 > d1.

For example, (c1, c2) can be the OBF boundary and (d1, d2) can be the POC boundary. The

0.05-level boundaries are (c1, c2) = (1.678
√

2, 1.678) and (d1, d2) = (1.876, 1.876). In this case

max∆1,ρ
α2(∆1, ρ) is equal to 0.05 and is attained at ∆1 = ∆0

11 = (1.678
√

2− 1.876)/
√

0.5 =

0.703 as shown in Figure 3 of Tamhane et al. (2010).

Next we consider the case c1 < d1 and c2 > d2. For example, (c1, c2) is the POC boundary

and (d1, d2) is the OBF boundary.

Theorem 3: If (c1, c2) and (d1, d2) are α-level boundaries with c1 < d1 and c2 > d2 then

α2 = max∆1,ρ
α2(∆1, ρ) is achieved at ∆1 = ∆0

12 = (c2 − d2)/γ2 = c2 − d2 and the associated

α2 < α. So the secondary boundary can be refined to be more liberal with some nominal level

α′ > α to make the associated α2 = α, thus boosting the secondary power.

To obtain the refined boundary (d1, d2), note that under the least favorable configuration

ρ = 1, using E(Xi) = γi∆1, we have Yi = Xi − γi∆1 (i = 1, 2). So we can write

α2 = P{Y1 > max(c1 − γ1∆1, d1)}+ P{Y1 6 c1 − γ1∆1, Y2 > max(c2 − γ2∆1, d2)}. (4)
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We can parameterize (d1, d2) by a single unknown d and solve the equation α2 = α for d. As an

illustration, suppose for α = 0.05, the primary boundary is POC with c1 = c2 = 1.876 and the

secondary boundary is OBF with d1 = d
√

2, d2 = d with d = 1.678. For this boundary it turns

out that α2 = 0.039 using (4). We can find a refined OBF boundary (d1, d2) by setting (4) equal

to α = 0.05 and solving for d. The solution is d = 1.570. Thus the refined secondary boundary

is (1.570
√

2, 1.570). The nominal α level of this refined boundary is α′ = 0.063 > 0.05. These

calculations are shown in the top panel of Table 1.

From these theorems we conclude that ρ = 1 is the least favorable configuration in that

it maximizes α2(∆1, ρ). In practice, of course, ρ is always less than 1 (an exception being

noninferiority-superiority testing, where the same statistic is used for both tests). So it is of

interest to know how α2(∆1, ρ) behaves as a function of ρ. Figure 3 in Tamhane et al. (2010)

indicates that max∆1
α2(∆1, ρ) < α if ρ < 1, so a more liberal and more powerful secondary

boundary can be used if ρ is known. We will extend these results to K > 2 in Section 4.3.

If ρ is estimated from the first stage data then Tamhane et al. (2012) showed how an upper

confidence limit on ρ can be used instead.

If c1 > d1 and c2 < d2 then it follows that ∆0
11 > 0 > ∆0

12. For example, for the OBF-POC

boundary combination and α = 0.05, we have ∆0
11 = (1.678

√
2 − 1.876)/

√
0.5 = 0.703 and

∆0
12 = 1.678 − 1.876 = −0.198. Thus, as ∆1 is increased from −∞, it crosses ∆0

12 first when

max(c2−γ2∆1, d2) changes from c2−γ2∆1 to d2, then it crosses ∆0
11 when max(c1−γ1∆1, d1)

changes from c1 − γ1∆1 to d1. This gives us the following expressions for the two peak values

of α2(∆1, ρ = 1):

α2(∆1, ρ = 1) =

 P (Y1 > c1 − γ1∆0
12) + P (Y1 6 c1 − γ1∆0

12, Y2 > d2) (∆1 = ∆0
12)

P (Y1 > d1) + P (Y1 6 d1, Y2 > d2) (∆1 = ∆0
11).

The overall maximum clearly occurs at ∆1 = ∆0
11 and equals α since (d1, d2) is an α-level

boundary.
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4.2 New Results for K > 2

We first derive a necessary and sufficient condition for the secondary boundary {d1, . . . , dK}

to be an α-level boundary, i.e., PH2{Y1 6 d1, . . . , YK 6 dK} = 1− α.

Theorem 4: The secondary type I error α2(∆1, ρ) is bounded above by

1− PH2{Y1 6 d1, . . . , YK 6 dK},

and this bound is achieved if and only if

∆0
11 = · · · = ∆0

1,K−1 > ∆0
1K and ρ = 1. (5)

In all other cases, α2 = max∆1,ρ
α2(∆1, ρ) < α. So the secondary boundary can be refined to

be more liberal with nominal level α′ > α to make the associated α2 = α, thus boosting the

secondary power.

Theorem 2 is a special case for K = 2 of the above theorem. In this case if (c1, c2) and (d1, d2)

are both α-level boundaries and c1 > d1 then c2 6 d2, and hence ∆0
11 > 0 and ∆0

12 6 0. So

condition (5) is obviously satisfied. In most practical situations, condition (5) will not be

satisfied for K > 2 unless the primary and secondary boundaries are the same. Hence α2 will

be less than α. Analogous to the K = 2 case, we can refine the secondary boundary to increase

α2 to α as follows.

Generalizing the formula (4) we can write

α2 =
K∑
i=1

P{Y1 6 c1 − γ1∆1, . . . , Yi−1 6 ci−1 − γi−1∆1, Yi > max(ci − γi∆1, di)}. (6)

As before, given any α-level primary boundary (c1, . . . , cK), we can find a refined secondary

boundary parameterized by a single unknown constant d by solving the equation α2 = α

for d. For example, if we choose the secondary boundary to be the OBF boundary then

di = d/γi (1 6 i 6 K). We illustrate this calculation for K = 3 and K = 4 below.

Consider two boundary combinations: OBF for primary and POC for secondary (denoted
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as OBF-POC) and POC for primary and OBF for secondary (denoted as POC-OBF). In both

cases, the condition (5) is not satisfied and hence α2 < α. The middle panel of Table 1 gives

the original boundaries with α2 < α associated with them for K = 3. It also gives the refined

secondary boundary with α2 = α and nominal level α′ > α. The refined secondary boundary

has the same form as the original secondary boundary (i.e., OBF or POC) but has α2 = α.

The bottom panel of Table 1 gives analogous results for K = 4.

[Table 1 about here.]

Generalizing the results for K = 2, the sharp peaks (where the derivative does not exist) in

FWER plots for ρ = 1 occur at ∆1 = ∆0
1i = (ci − di)/γi (1 6 i 6 K). Thus there are exactly

K such peaks and so the continuous problem of finding max∆1
α2(∆1, ρ = 1) reduces to the

discrete problem of searching for the maximum of K values of α2(∆
0
1i, ρ = 1) for i = 1, . . . , K.

Figure 1 illustrates this phenomenon for K = 3 with the OBF primary boundary and the

refined POC secondary boundary with three sharp peaks. As shown in Figure 1, these peaks

occur at ∆1 = ∆0
1i (i = 1, 2, 3), which are listed in Table 2 for the OBF-POC boundary

combination under Refined Boundaries.

[Figure 1 about here.]

[Table 2 about here.]

In general, the ordering of the ∆0
1i values depends on the choice of the primary and secondary

boundaries as well as the information times of the looks. For the OBF-POC boundary combi-

nation with equispaced information times of the looks, it is easy to show that ∆0
11 > · · · > ∆0

1K ,

as seen in Table 2.

For K > 2, we can write the following expression for ∆1 = ∆0
1i:

α2(∆
0
1i, ρ = 1) =

i−1∑
j=1

P{Yk 6 ck − γk∆0
1i (1 6 k 6 j − 1), Yj > cj − γj∆0

1i}
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+
K∑
j=i

P{Yk 6 ck − γk∆0
1i (1 6 k 6 j − 1), Yj > dj}.

At ∆1 = ∆0
11, this expression equals

P (Y1 > d1) + P (Y1 6 d1, Y2 > d2) + P (Y1 6 d1, Y2 6 c2 − γ2∆0
11, Y3 > d3) + · · ·

+P (Y1 6 d1, Y2 6 c2 − γ2∆0
11, . . . , YK−1 6 cK−1 − γK−1∆0

11, YK > dK),

which is < α since ci − γi∆0
11 < di for i = 1, . . . , K − 1 unless ∆0

11 = · · · = ∆0
1,K−1 according

to Theorem 4.

4.3 Secondary Boundary Calculation for Known ρ

The secondary boundary calculations given in the previous section have assumed the least

favorable value of ρ = 1. As noted before, in practice ρ is generally less than 1. So it is of

interest to determine how much the secondary boundary can be refined if ρ < 1 is assumed

to be known. Analogous to Table 1 in Tamhane et al. (2010), we calculated the secondary

boundary for selected values of ρ for α = 0.05 in the top and the bottom panels of Table 3

for K = 3 and K = 4, respectively. This calculation involves simultaneous maximization with

respect to ∆1 and root finding with respect to d; the algorithm iterates between these two

steps. The expression for α2(∆1, ρ) used in these calculations and its derivation are given in

the Web Appendix.

[Table 3 about here.]

It is clear that the secondary boundary becomes more liberal as the assumed ρ gets smaller.

However, if the true ρ is larger than the assumed ρ then the FWER under H2 will not be

controlled at level α. Therefore direct power comparisons between the secondary boundaries

for different ρ are not possible. For example, if we compare the powers for the boundary

combination OBF-POC for ρ = 0.4 and ρ = 0.6. Then clearly, the boundary combination for

ρ = 0.4 will give a higher power than that for ρ = 0.6. However, if the true ρ = 0.5 then the
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former will not control the FWER while the latter would. Thus the gain in power is obtained

at the expense of excess secondary type I error.

5. Power Simulations

For studying secondary powers we will restrict attention to combinations of the OBF and POC

boundaries. Since the OBF boundary is uniformly more powerful than the POC boundary for

the primary endpoint, we will only consider OBF-POC and OBF-OBF combinations. If we

choose the OBF-POC combination then since condition (5) in Theorem 4 is not satisfied,

the POC boundary can be refined to level α′ > α. If we use the OBF-OBF combination then

condition (5) is satisfied; so the secondary OBF boundary cannot be refined. Thus we compare

the powers of two primary-secondary boundary combinations: (1) α-level OBF boundary for

the primary endpoint and α′-level POC boundary for the secondary endpoint, and (2) α-level

OBF boundary for both the primary and secondary endpoints. Figure 2 gives the secondary

power plots for these two combinations as functions of ∆2 for α = 0.05, ρ = 0.5,∆1 = 1.0, 3.0

and K = 3. We see that for ∆1 = 1.0, the differences in the powers between the two boundary

combinations are very small, but the boundary combination (1) is slightly more powerful. For

∆1 = 3.0, the boundary combination (1) is uniformly and substantially more powerful.

[Figure 2 about here.]

6. Example

To illustrate the methodology presented in this paper we use the data from the Randomized

Aldactone Evaluation Study (RALES) (Pitt et al., 1999; Wittes et al., 2001). The goal of the

study was to evaluate the efficacy of spironolactone for patients who had severe heart failure.

The study used a multicenter double-blind randomized trial with 822 patients assigned to

the treatment (25 mg of spironolactone daily) and 841 patients assigned to placebo. The
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primary endpoint was death from all causes. The actual numbers of patients enrolled in the

two arms were less than these numbers and are given in Table 4. There were a number of

secondary endpoints, but none was evaluated formally. For illustration purposes we will use

sudden cardiovascular (CV) deaths as the secondary endpoint.

The trial employed a group sequential design with Lan and Demets (1983) stopping bound-

ary using the OBF error spending function: α(t) = 2[1−Φ(zα/2/
√
t)]. The trial was monitored

semi-annually by the Data Safety Monitoring Board (DSMB) and it was stopped early at the

5th look when the log-rank statistic for comparing the treatment and placebo group exceeded

the critical threshold. The trial was planned assuming a total of 1080 all-cause deaths by the

end of the trial. The looks occurred approximately at equal information times spaced 0.125

units (or 135 all-cause deaths) apart, which corresponds to K = 8 looks in a fixed GSD trial.

The one-sided 0.025-level critical values for the primary endpoint using the OBF error

spending function are given in Table 4 along with the log-rank statistics for the observed

number of deaths and the information fractions until the 5th look. We see that, in fact, the

log-rank statistic crossed the boundary at the 4th look. In the actual trial this happened at

the 5th look because the data on the number of deaths was not fully reported and thus was

not up-to-date when the DSMB meetings took place.

Next we test the secondary endpoint at the 4th look. The data for the secondary endpoint

is given in Table 5, where the information fractions are taken from Table 4, which are based

on all-cause deaths. Since the expected total number of sudden CV deaths at the end of

the trial was not specified, the information fractions based on sudden CV deaths cannot be

computed. However, the total number of all-cause deaths and sudden CV deaths at each look

are almost perfectly correlated with a correlation coefficient of 0.999. Therefore the correlations

between the Yi’s needed to compute the secondary boundary, which are equal to the ratios of

the total numbers of sudden CV deaths at different looks, are unaffected if we use all-cause
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deaths instead. Another important point to note is that the alpha-spending for the secondary

boundary is based on the information fractions for the primary boundary. But this change of

time scale can be justified by the theory in Lan and Demets (1983) and also Proschan et al.

(2006), pp. 87-89, and almost perfect correlation between the two sets of information fractions.

The log-rank statistic at the 4th look equals only 1.268 and fails to cross the Pocock boundary

value of 2.505 calculated from the error spending function: α(t) = α ln[1+(e−1)t]. At the 5th

look, when the actual trial terminated, the log-rank statistic is 2.224, which still fails to exceed

the Pocock critical value of 2.532. We could use the refined Pocock boundary by applying the

method developed in Section 4.2 to the above error spending function. For this calculation we

assumed that the number of looks is 8 and the timings of the future looks are equispaced at

(1 − 0.61)/3 = 0.13 units apart, i.e., at t6 = 0.74, t7 = 0.8, t8 = 1. The nominal significance

level of the refined Pocock boundary turns out to be α′ = 0.0473. The corresponding critical

value at the 5th look is 2.259, which is still not crossed by the secondary log-rank statistic.

Thus we fail to declare statistical significance for the sudden CV death secondary endpoint.

In the above, we have assumed that the future looks are equispaced. For sensitivity analysis

purposes, we considered two other sequences of future information times in which t6−t5, t7−t6
and t8−t7 are in 2:1:1 and 1:1:2 ratios. The corresponding information times are t6 = 0.81, t7 =

0.90, t8 = 1. and t6 = 0.71, t7 = 0.81, t8 = 1. The α′-levels of the refined Pocock boundaries

for these two sequences are 0.0480 and 0.0459, respectively, which don’t differ very much from

α′ = 0.0473 for the equispaced information fractions refined Pocock boundary. In making a

positive claim for a secondary endpoint based on a refined test of the secondary endpoint, it

could be advisable for investigators to report a similar sensitivity analysis.

[Table 4 about here.]

[Table 5 about here.]
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7. Extensions

The procedure Pa tests H2 only once and if it is not rejected then the trial stops. In practice,

the DMC may choose not to stop the trial at the interim look when H1 is rejected but H2 is

not rejected if the overall benefit/risk is not fully convincing. In that case a DMC may want

to continue the trial and sequentially test H2 until it is rejected or the trial stops. We denote

this procedure by Pb. Glimm et al. (2010) referred to this procedure as the overall hierarchical

rule. They gave an expression for its secondary type I error for K = 2. Its straightforward

generalization and an upper bound on it are given in the following theorem.

Theorem 5: Denote the secondary type I errors of procedures Pa and Pb by αa2(∆1, ρ)

and αb2(∆1, ρ), respectively, where αa2(∆1, ρ) is the same as α2(∆1, ρ) given by (2). Then we

have

αb2(∆1, ρ) = αa2(∆1, ρ)

+
K−1∑
i=1

K∑
j=i+1

P (X1 6 c1, · · · , Xi−1 6 ci−1, Xi > ci, Yi 6 di, · · · , Yj−1 6 dj−1, Yj > dj)

6 1− PH2{Y1 6 d1, . . . , YK 6 dK}. (7)

This upper bound is achieved if and only if ρ = 1 and ∆1 > max16i6K(∆0
1i).

The proof of the theorem is given in the Web Appendix. Note that this upper bound is

equal to α if and only if {d1, . . . , dK} is an α-level boundary. Thus under the least favorable

configuration of ρ = 1 and ∆1 > max16i6K(∆0
1i), the procedure Pb must use the regular

α-level boundary for the secondary endpoint; any refinement is not possible.

Some other useful extensions that could be followed up include multiple primary and

secondary endpoints, either unordered or hierarchically ordered.
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8. Concluding Remarks

Some limitations of the proposed methodology stemming from the underlying assumptions

should be noted here. One assumption is that ρ and ∆1 are assumed to remain fixed throughout

the trial. In practice, they might vary if the patient population changes over time. If the trial

is designed under the least favorable configuration of ρ = 1 and ∆1 = argmax{α2(∆1, ρ = 1)}

then the procedure will control the FWER for all ρ and ∆1 and so will be robust to changes

in these parameters.

Although the theory developed is for the case of a fixed GSD with a prespecified number and

timings of the looks, we have shown through an example, how this theory can be applied to

the flexible GSD using the error spending function approach of Lan and Demets (1983). Our

general recommendation is to use this latter approach with a O’Brien-Fleming type boundary

for the primary endpoint and a refined Pocock type boundary for the secondary endpoint.
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Appendix

Proof of a Special Case of Theorem 1. We consider the special case k∗ = K−1, i.e., ai > bi

for 1 6 i 6 K − 1 and aK > bK . However, we assume that the distribution of (X1, . . . , XK)

has monotone likelihood ratio (MLR) thus relaxing the assumption of multivariate normality.

Denote by A the group sequential test defined by the boundary (a1, . . . , aK) and by B the

group sequential test defined by the boundary (b1, . . . , bK), where ai > bi (1 6 i 6 K − 1)

and aK < bK . Both A and B are α-level tests. Denote by fδ(x1, . . . , xK) the joint probability
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density function (p.d.f.) of (X1, . . . , XK) under δ. When δ = 0 this is the joint null p.d.f. under

H1 : δ1 = 0.

First consider the K = 2 case, where a1 > b1, a2 < b2. Equality of type I errors of A and B

yields the equation∫ b1

−∞

∫ b2

−∞
f0(x1, x2)dx1dx2 =

∫ a1

−∞

∫ a2

−∞
f0(x1, x2)dx1dx2.

Write the LHS of the above equation as∫ b1

−∞

∫ a2

−∞
f0(x1, x2)dx1dx2 +

∫ b1

−∞

∫ b2

a2

f0(x1, x2)dx1dx2

and the RHS as ∫ b1

−∞

∫ a2

−∞
f0(x1, x2)dx1dx2 +

∫ a1

b1

∫ a2

−∞
f0(x1, x2)dx1dx2.

Canceling the common term from both sides of the equation we get∫ b1

−∞

∫ b2

a2

f0(x1, x2)dx1dx2 =

∫ a1

b1

∫ a2

−∞
f0(x1, x2)dx1dx2. (A.1)

The LHS of the above equation is the probability under H1 that A rejects H1 but B does not

and the RHS is the probability under H1 that B rejects H1 but A does not.

To show that A is uniformly more powerful than B under δ > 0 we need to show that∫ b1

−∞

∫ b2

a2

fδ(x1, x2)dx1dx2 >

∫ a1

b1

∫ a2

−∞
fδ(x1, x2)dx1dx2.

Let

rδ(x1, x2) =
fδ(x1, x2)

f0(x1, x2)

denote the likelihood ratio (LR) of the joint p.d.f.’s under δ > 0 and under δ = 0. Then since

x2 is a sufficient statistic for δ, rδ(x1, x2) is a function only of x2, so we can denote it simply

by rδ(x2). Then by the monotone likelihood ratio (MLR) property, it follows that rδ(x2) is

an increasing function of x2. Therefore we can write∫ b1

−∞

∫ b2

a2

fδ(x1, x2)dx1dx2 =

∫ b1

−∞

∫ b2

a2

f0(x1, x2)rδ(x2)dx1dx2
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> rδ(a2)

∫ b1

−∞

∫ b2

a2

f0(x1, x2)dx1dx2

= rδ(a2)

∫ a1

b1

∫ a2

−∞
f0(x1, x2)dx1dx2 (from (A.1))

>

∫ a1

b1

∫ a2

−∞
f0(x1, x2)rδ(x2)dx1dx2

=

∫ a1

b1

∫ a2

−∞
fδ(x1, x2)dx1dx2,

which was to be shown.

This result can be generalized to the K > 2 case by defining two sets of sample paths:

A = {(x1, . . . , xK−1) : Neither A nor B rejects in stages 1, . . . , K − 1}

and

B = {(x1, . . . , xK−1) : B rejects but A does not reject in stages 1, . . . , K − 1}.

In A we have xi 6 bi < ai and in B we have bi < xi 6 ai for i = 1, . . . , K − 1. For K = 2,

A = [−∞, b1] and B = [b1, a1]. If (x1, . . . , xK−1) ∈ A and xK ∈ [aK , bK ] then A rejects H1 but

B does not. On the other hand, if (x1, . . . , xK−1) ∈ B and xK < aK then B rejects H1 but A

does not. The proof then essentially proceeds as in the K = 2 case with obvious extensions

(e.g., xK replacing x2). �
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Figure 1. FWER Plot for OBF primary and Refined POC secondary boundary for K = 3
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Figure 2. Secondary power as a function of ∆2, ρ = 0.5. K = 2, ∆1 = 1 (top left panel)
and ∆1 = 3 (top right panel), K = 3, ∆1 = 1 (bottom left panel) and ∆1 = 3 (bottom right
panel)
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Table 1
Original and refined boundaries1,2,3 (α = 0.05)

K = 2 Original Boundaries Refined Secondary Boundary

Primary Secondary α2 Secondary α′

OBF: c = 1.678 POC: d = 1.876 0.050 Secondary boundary not refined
POC: c = 1.876 OBF: d = 1.678 0.039 OBF: d = 1.570 0.063

K = 3 Original Boundaries Refined Secondary Boundary

Primary Secondary α2 Secondary α′

OBF: c = 1.710 POC: d = 1.992 0.039 POC: d = 1.881 0.063
POC: c = 1.992 OBF: d = 1.710 0.033 OBF: d = 1.535 0.073

K = 4 Original Boundaries Refined Secondary Boundary

Primary Secondary α2 Secondary α′

OBF: c = 1.733 POC: d = 2.067 0.033 POC: d = 1.877 0.075
POC: c = 2.067 OBF: d = 1.733 0.028 OBF: d = 1.513 0.080

1 OBF primary boundary: (c
√

2, c), OBF secondary boundary: (d
√

2, d).
2 POC primary boundary: (c, c), POC secondary boundary: (d, d).
3 For the refined secondary boundary α2 = α = 0.05 and α′ > α is its nominal α-level.
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Table 2
∆0

1i Values for original and refined boundaries (K = 3, α = 0.05)

Boundary Combination Original Boundaries Refined Boundaries
∆0

11 ∆0
12 ∆0

13 ∆0
11 ∆0

12 ∆0
13

OBF-POC 1.678 0.124 −0.283 1.871 0.261 −0.171

POC-OBF −1.678 −0.124 0.283 −1.153 0.138 0.458
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Table 3
Secondary boundary critical constants d for different combinations of the OBF and POC boundaries for K = 3 (top

panel), K = 4 (bottom panel), α = 0.05 and equispaced information times

K = 3 Primary Secondary ρ
Boundary Boundary 0.0 0.2 0.4 0.6 0.8 1.0

OBF OBF 1.356 1.378 1.408 1.451 1.519 1.710
(2.945) (2.481) (2.062) (1.524) (1.002) (0)

OBF POC 1.645 1.670 1.698 1.729 1.767 1.881
(∞) (4.376) (3.561) (2.940) (2.596) (1.871)

POC OBF 1.185 1.211 1.245 1.291 1.359 1.534
(3.001) (2.587) (2.143) (1.667) (1.128) (0.458)

POC POC 1.645 1.666 1.695 1.736 1.798 1.992
(∞) (3.807) (2.987) (2.148) (1.319) (0)

The OBF secondary boundary is di = d
√

3/i, the POC secondary boundary is di = d.

K = 4 Primary Secondary ρ
Boundary Boundary 0.0 0.2 0.4 0.6 0.8 1.0

OBF OBF 1.321 1.345 1.378 1.425 1.500 1.733
(2.884) (2.461) (2.043) (1.472) (0.956) (0)

OBF POC 1.645 1.669 1.695 1.726 1.767 1.877
(∞) (5.752) (3.507) (2.445) (1.547) (0.812)

POC OBF 1.140 1.166 1.201 1.249 1.323 1.513
(3.011) (2.597) (2.160) (1.655) (1.145) (0.554)

POC POC 1.645 1.674 1.712 1.761 1.835 2.067
(∞) (3.883) (3.014) (2.200) (1.314) (0)

The OBF secondary boundary is di = d
√

4/i, the POC secondary boundary is di = d.
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Table 4
One-Sided 0.025-Level Lan-DeMets Boundary Using the O’Brien-Fleming Error Spending Function for the Primary

Endpoint, Observed Number of All-Cause Deaths with Associated Log-Rank Statistics

Look Placebo Treatment Information Relative Observed Critical
No. Enrolled Deaths Enrolled Deaths Fraction Risk Xi ci

1 563 81 543 59 0.130 0.755 1.820 6.117
2 830 189 809 139 0.304 0.755 2.719 3.903
3 830 254 810 199 0.419 0.803 2.744 3.278
4 830 327 811 251 0.535 0.786 3.357 2.876
5 831 380 811 279 0.610 0.752 4.414 2.704
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Table 5
One-Sided 0.025-Level Lan-DeMets Boundary Using the Regular and Refined Pocock Error Spending Function for the

Secondary Endpoint, Observed Number of Sudden CV Deaths with Associated Log-Rank Statistics

Look Placebo Treatment Information∗ Relative Observed Regular Pocock Refined Pocock
No. Enrolled Deaths Enrolled Deaths Fraction Risk Yi ci ci

1 563 29 543 15 0.130 0.536 2.073 2.574 2.345
2 830 57 809 44 0.304 0.792 1.270 2.478 2.228
3 830 71 810 59 0.419 0.852 1.113 2.519 2.257
4 830 91 811 76 0.535 0.855 1.268 2.505 2.236
5 831 109 811 82 0.610 0.771 2.224 2.532 2.259

∗ These information fractions are based on all-cause mortality and are the same as in Table 4.
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