

Citation for published version:
Hooper, A 2017, A Serious Game for Teaching First Order Logic to Secondary School Students. Department of
Computer Science Technical Report Series, Department of Computer Science, University of Bath, Bath, U. K.

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Dec. 2022

https://researchportal.bath.ac.uk/en/publications/68e725e7-116c-461f-b4f4-edd5bc20c2c9

A Serious Game for Teaching First Order Logic to Secondary

School Students

Amy Hooper

Bachelor of Science in Computer Science with Honours
The University of Bath

2016-2017

This dissertation may be made available for consultation within the Uni-
versity Library and may be photocopied or lent to other libraries for the
purposes of consultation.

Signed:

A Serious Game for Teaching First Order Logic

Submitted by: Amy Hooper

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to the
author unless otherwise speci�ed below, in accordance with the University of Bath’s policy
on intellectual property (see http://www.bath.ac.uk/ordinances/22.pdf).
This copy of the dissertation has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the dissertation and no information derived from it may be published without the
prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Bachelor of Science in the Department of Computer Science. No portion of
the work in this dissertation has been submitted in support of an application for any other
degree or quali�cation of this or any other university or institution of learning. Except
where speci�cally acknowledged, it is the work of the author.

Signed:

Abstract

This dissertation investigates the teaching of �rst order logic, which is normally taught
at university level, to A-level students. A serious game, which is a game designed for a
speci�c purpose, is developed to teach this topic. Serious games for teaching �rst order
logic exist, but none are aimed at school-aged students.

This project describes the development of the serious game, and evaluates its e�ective-
ness with a group of A-Level students. The game was found to be successful at teaching
�rst order logic to adults with a range of mathematical backgrounds and to A-level stu-
dents. This demonstrates the value of serious games and gami�cation in teaching abstract
mathematical topics to this user group.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Problem Description . 1

1.1.2 First Order Logic . 1

1.1.3 Serious Games . 2

1.2 Aims . 2

1.3 Structure . 2

2 Literature Survey 4

2.1 Introduction . 4

2.2 About Serious Games . 4

2.2.1 De�nition . 4

2.2.2 Serious Games for Education . 5

2.2.3 Assessing a Serious Game . 6

2.3 Serious Games in Computer Science . 6

2.3.1 Scratch and Lego Mindstorms . 6

2.3.2 Hamada’s Integrated Environment for automata 7

2.3.3 Isayama et al.’s Finite Automata Serious Game 7

2.4 First Order Logic . 8

2.4.1 Introduction . 8

2.4.2 Language, Proof and Logic and Tarski’s World 9

2.4.3 Logic in Computer Science . 10

2.4.4 Organon . 11

ii

CONTENTS iii

2.4.5 Logic and Proofs . 12

2.5 Summary . 13

3 Requirements 14

3.1 Sources for elicitation . 14

3.2 Requirements and their Justi�cation . 14

3.2.1 Gami�cation Requirements . 15

3.2.2 Pedagogical Requirements . 16

3.2.3 Non-Functional Requirements . 17

4 Design 19

4.1 Introduction . 19

4.2 Pedagogical Design - What to Teach . 19

4.3 Story . 20

4.4 Input and Mechanics . 20

4.5 Prototypes . 20

4.5.1 Level Prototypes . 21

4.6 Game Design - Sequence Diagram . 23

4.7 FirstOrderLogic Design . 25

4.7.1 Representation of Sentences . 25

4.7.2 Representation of Context . 25

4.7.3 Evaluate Sentences Function . 25

4.8 Level-Logic Design . 27

4.9 Level Design . 28

5 Implementation 31

5.1 Language . 31

5.2 Environment . 31

5.3 Implementation Process . 32

5.4 Final Level Implementation . 34

6 Testing 36

CONTENTS iv

6.1 Introduction . 36

6.2 Initial Testing . 37

6.2.1 First User . 37

6.2.2 Second User . 38

6.2.3 Third User . 38

6.3 Adult Questionnaire . 38

6.3.1 Post-game Questionnaire Results . 39

6.3.2 Comparison of Pre-Game and Post-Game Results 40

6.3.3 Level of Quali�cation . 41

6.3.4 Factors that predict game success . 42

6.3.5 Summary of Results from Adult Questionnaire 44

6.4 School Questionnaire . 45

6.4.1 Was the Game Interesting and Enjoyable? 45

6.4.2 Di�culty of the game . 47

6.4.3 Summary of Findings from the School Questionnaire 49

6.5 Summary of Testing . 49

7 Conclusions 50

7.1 Re
ections . 50

7.1.1 Achievements . 50

7.1.2 Limitations and Future Work . 50

7.2 Summary . 53

A Level Designs 58

A.1 Early Level Design . 58

A.2 Final Level Design . 60

B Code 65

B.1 File: FOL.js . 66

B.2 File: shared.js . 70

B.3 File: Level1.html . 72

B.4 File: Level3.html . 76

CONTENTS v

B.5 File: Level3.js . 81

C Ethics Checklists 85

C.1 Initial Testing Ethics . 85

C.1.1 Checklist . 85

C.2 Questionnaire Ethics . 87

C.2.1 Checklist . 87

C.2.2 Brie�ng . 89

C.2.3 Parent Letter . 90

D Initial User Testing 91

E Raw Questionnaire Results 94

E.1 Questionnaire with adults . 94

E.1.1 Results . 94

E.1.2 Key for adult results table . 95

E.1.3 Comments from the adult questionnaire 96

E.2 Questionnaire with A-level students . 96

E.2.1 Results . 96

E.2.2 Key for A-level results table . 97

List of Figures

4.1 Sub-system diagram . 20

4.2 First level prototype . 21

4.3 Second level prototype . 22

4.4 Third level prototype . 23

4.5 Sequence diagram . 24

4.6 Example �rst order logic trees . 25

4.7 Evaluate all sentences
owchart . 26

4.8 MakeContext()
owchart . 28

5.1 Original sub-system diagram. 32

5.2 Updated sub-system diagram. 33

5.3 System boundary diagram. 34

5.4 A typical level . 35

6.1 Comparison of summed responses before and after playing the game 41

6.2 Enjoyable and interesting mean responses by highest maths quali�cation . . 46

6.3 Enjoyable and interesting mean responses by prior knowledge of �rst order
logic . 46

6.4 Mean and median responses to questions relating to di�culty 47

6.5 Di�culty measures from adults with A-level as the highest maths quali�ca-
tion and from the A-level students . 48

6.6 Di�culty measures from adults who had no prior knowledge of �rst order
logic and from the A-level students . 48

vi

List of Tables

4.1 Eval() function . 27

4.2 Design for level 7 . 29

4.3 Rational design for level 7 . 29

6.1 Summary of results from the post-game questionnaire 40

6.2 Mean responses by highest mathematics quali�cation 42

6.3 Pearson correlation coe�cients between pre-game and post-game mean answers 43

6.4 Discussion of the �ve strongest correlations 44

6.5 Mean and median responses to whether the game was enjoyable and interesting 45

A.3 Rationale for �nal level design . 64

D.1 First User Observation . 92

D.2 Second User Observation . 93

vii

Acknowledgements

I would like to thank my supervisor, Dr Willem Heijltjes for his guidance during the
project.

As always, I am grateful for the love and support of my Mom, my Dad, Matthew and
the rest of my family during my studies.

viii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Problem Description

In 2014, the National Curriculum in the UK was changed to introduce Computing for
the �rst time. Students as young of �ve are to be introduced to writing and debugging
simple programs, and students are expected to be able to program in two languages before
leaving Secondary School (Department for Education, 2013). These changes were welcomed
by many people, but concerns have been raised on how Computing should be taught in
schools by teachers with little or no experience teaching the subject (Brown et al., 2014).

Many pedagogical applications exist for teaching Computer Science, but most of these fo-
cus on programming (Brown et al., 2014). There are also successful web-based applications
for teaching mathematics in schools. Despite this, there is little research into Computer
Science education within schools, possibly because the discipline is much younger than
most school subjects (Armoni, 2011). With the changes to the Curriculum, it is likely that
there will be more demand for teaching resources aimed at teaching the theoretical side of
Computer Science, including logical reasoning.

1.1.2 First Order Logic

First order logic is one system of formal logic that students may learn. It uses predicates,
relations, objects, quanti�ers and variables to express facts that can be evaluated as true or
false. Logical thinking and abstraction is an important part of learning Computer Science
(Computing at School Working Group, 2012). Teaching �rst order logic also helps to fa-
miliarise students with mathematical notation such as universal and existential quanti�ers.
This is especially important for school students who go on to study Computer Science at

1

CHAPTER 1. INTRODUCTION 2

University, because lack of familiarity with notation has been found to be a key reason why
some undergraduates within Computer Science struggle with mathematical units (Fung
et al., 1994).

1.1.3 Serious Games

A serious game is a game that is developed to impart an educational bene�t (Glover,
2013). Serious games have been proven to be a successful tool in education (de Aguilera
and Mendiz, 2003), increasing learning and student motivation (Mildner et al., 2015). The
development of a serious game for the teaching of �rst order logic will provide an additional
tool for the teaching of Computer Science in schools. Investigation and user testing of the
�nished product will help assess the potential for serious games to assist in school students’
learning of abstract logical reasoning skills.

1.2 Aims

The primary aim of this project is to develop a serious game that employs visualisation
and gami�cation techniques to teach �rst order logic. The project also aims to evaluate its
e�ectiveness, particulary for teaching secondary school students.

1.3 Structure

Literature Review The dissertation begins with a review of the literature on serious
games and gami�cation; existing serious games used in mathematics and computer science
education; and existing methods for teaching �rst order logic.

Requirements This research then informs the development of the requirements speci�-
cation, which describes how the requirements for the game were elicited.

Design The Design chapter details the development of the requirements into designs for
the game, covering the design of the levels, the user interface and the internal architecture.

Implementation The Implementation chapter describes decisions that were made con-
necting to the development of the system, and the results of the earliest tests on the
prototype game.

Testing The Testing chapter describes how the implemented game was tested with two
di�erent user groups, and evaluates the results of this testing.

CHAPTER 1. INTRODUCTION 3

Evaluation The test results, as well as re
ections on the rest of the project, go on to
inform the evaluation of the game and of the project as a whole.

Chapter 2

Literature Survey

2.1 Introduction

This project proposes the development of a serious game to teach �rst order logic to
secondary school students. Gami�cation is a growing area of research and serious games
for use in education are becoming much more widespread. This literature review therefore
has a number of areas to draw from in order to inform the design of the proposed game.

Firstly, serious games will be de�ned and their key features identi�ed. Existing serious
games will be analysed to identify features and techniques that have been successful in the
past. Relevant serious games fall into two categories. The �rst are games that teach Com-
puter Science and Mathematics within secondary schools. The second category is games
and other resources used to teach logic and closely related subjects at any level. Games
in these areas that have been shown to be successful and/or have achieved widespread
popularity will be useful for informing the design of the proposed project.

The review will �nish by examining existing pedagogy for teaching �rst order logic and
closely related subjects.

2.2 About Serious Games

2.2.1 De�nition

There is no universally agreed upon de�nition of a serious game (D�orner et al., 2016,
p.3). Malone (1981) de�nes a game as having three key characteristics: challenge, fantasy
and curiosity. Charsky (2010) adds rules, choices and competition and goals to this list.

4

CHAPTER 2. LITERATURE SURVEY 5

Glover (2013) de�nes a serious game as a game that is developed to impart an educational
bene�t. D�orner et al. (2016) provide a slightly broader de�nition, de�ning a serious game
to be a game that attempts to both entertain and achieve another goal, with the additional
goal being the characterising goal. Here, the game does not explicitly have to be for learning,
but could have another aim, such as improving health. Charsky (2010) re�nes the de�nition
further, by insisting that a serious game must encourage the development of ‘higher order
thinking skills’ and not just employ drill like activities. This provides a distinction between
serious games and ‘edutainment’, which is where an application employs a simple reward
mechanism for the completion of rote learning or simple tasks. Serious games, therefore,
must encourage some kind of more complex thought process or inspire deeper learning.

Gami�cation refers to the addition of game-like features to existing contexts (Deterding
et al., 2011) (D�orner et al., 2016). This is normally achieved by adding simple features,
such as points and leaderboards; adding a story or theme; tracking achievements or adding
challenges or level progression (Hamari et al., 2014).

2.2.2 Serious Games for Education

Games have been proven to be useful tools in education which can aid students in the
development of a range of skills (de Aguilera and Mendiz, 2003). Games are a useful tool
in education for three main reasons: they are accessible; they are engaging; and they are
able to o�er instant feedback.

A well designed educational game will be accessible to all of the target user group. Other
educational tools, such as textbooks, often require the user to have background knowledge.
Within a game, instructions can be provided and a player’s options restricted so as to make
it easy for a player to make a move. Learners can also repeat and practice a game for as
long as they need to, rather than rely on a lesson plan scheduled for a whole class.

Engagement is another important advantage of games for education. A well-designed
educational game will be enjoyable, and inspire in the user a desire to keep playing. The
popularity of video games means that digital serious games are a good format for generating
engagement (de Aguilera and Mendiz, 2003, p.2). Malone and Lepper (1987) state that
there is a strong link between motivation and intrinsic learning, so choosing an educational
tool that engages and motivates users is an important factor in how e�ectively people learn.
When students are intrinsically motivated, they may spend more time and e�ort learning,
and may be more likely to use the acquired knowledge in the future (Malone, 1981). In one
study, Mildner et al. (2015) found that gami�cation of a quiz application increased user
enjoyment; likelihood of playing again and for longer; and perceived learning. This held
even though the game elements took time away from answering the questions in the quiz.

CHAPTER 2. LITERATURE SURVEY 6

Instant feedback is also an important feature of educational games. Users can be told
instantly whether or not they have been successful by the program, without needing to
get their work checked by a teacher or tutor. Games can be responsive to the needs of
a user more easily than traditional teaching methods. Progressions to the ‘next level’ or
the higher levels of di�culty can be decided by user performance. User performance can
also be used to inform the behaviour of the game: if the user is repeatedly succeeding
at a task, then the di�culty of the game can be increased; if the user is failing tasks or
not completing them quickly enough then the game can o�er hints, introduce a tutorial or
reduce the di�culty of the tasks. New information can be given to the user as and when
they require it, reducing the load on memory (Gee, 2003). This was found to be successful
by Mildner et al. (2015), who found that adding an algorithm that chose the next question
based on past player performance increased both enjoyment and perceived learning for a
quiz application.

2.2.3 Assessing a Serious Game

The evaluation of an educational tool or method is usually done based on learning ob-
jectives, which are determined before the tool is designed (Hainey et al., 2012). A learning
objective is a statement about something a student should know or should be able to do
(European and Culture DG., 2008).

De�ning Learning Objectives

De�ning learning objectives for Computer Science may be particularly di�cult, because
there is little agreed consensus on what students should be taught at what age. This is
highlighted by Kunkle and Allen (2016), who present a research project into an educational
assessment tool designed to assess the e�ectiveness of teaching in several �rst year under-
graduate programming courses. Their study includes a description of the di�culties in
designing a tool to assess knowledge in Computer Science, because of the lack of standards
for Computer Science curricula.

2.3 Serious Games in Computer Science

A number of serious games and other interactive applications have been developed to
teach Computer Science within schools.

2.3.1 Scratch and Lego Mindstorms

One of the most successful computer science education applications is Scratch, a drag-
and-drop programming language. School students are reported to �nd Scratch highly mo-
tivating (Resnick et al., 2009, p.66). Maloney et al. (2010) analyse Scratch and list its

CHAPTER 2. LITERATURE SURVEY 7

key attractions. These include ‘tinkerability’, its user interface design and the way in
which is encourages self-directed learning. Also praised is its lack of error messages - the
environment simply only permits sensible combinations of blocks, which Maloney et al.
compare to real life play. The Scratch project also includes a website where users can share
their projects, which currently has just under 18 million uploads (Lifelong Kindergarten
Group, 2016). The average age of participants is just 12 years old (Resnick et al., 2009),
showing that there is interest in computer science for younger people.

Another highly successful tool for teaching Computer Science is the LEGO Mindstorm,
which is a small robot that can be programmed using a computer and have physical hard-
ware added to it using LEGO blocks (LEGO Group, 2016). The Mindstorm is used to teach
programming in schools, and has been shown to enhance student learning and engagement
from the perspective of both students and parents (Melchior et al., 2005). The Mindstorm
again uses play to enhance learning, with many students seeing it as a toy rather than an
educational tool (Mauch, 2001).

Both Scratch and LEGO Mindstorms make use of techniques characteristic of gami�ca-
tion, such as facilitating creativity in a controlled environment. They are highly successful,
being engaging and enjoyable for students whilst still having pedagogical value. Their
popularity also demonstrates a willingness on the part of both students and teachers to
use digital resources for Computer Science education. Their success as educational tools
demonstrates that applications designed to be enjoyable can also achieve good educational
outcomes.

2.3.2 Hamada’s Integrated Environment for automata

Hamada (2008) presents a software package for teaching �nite state automata and Tur-
ing machines to Computer Engineering undergraduates, which was later expanded to add
pushdown automata (Hamada, 2009). Whilst the application does not involve gami�cation,
it employs several features that are common in serious games: it �rst introduces a topic
with a video tutorial that users can navigate themselves, and then expects the student to
carry out certain tasks in a directed order; it makes heavy usage of visualisation to ex-
plain theoretical content; and its �nite state machine and Turing machine simulators o�er
signi�cant room for exploration and creativity. Hamada found that using the application
signi�cantly increased both student motivation and performance.

2.3.3 Isayama et al.’s Finite Automata Serious Game

Isayama et al. (2016) developed an application that uses gami�cation to teach �nite
automata to children aged 9-12. They employ puzzle-based learning in place of attempting
to teach formal mathematical de�nitions (Isayama et al., 2016, p. 6).This approach aims
to motivate students, who are expected to feel satisfaction upon correctly solving a puzzle.

CHAPTER 2. LITERATURE SURVEY 8

Gami�cation is used to motivate students, with the aim of getting them to engage in the
game for at least an hour. This claim is backed up by their results; 98% of a sample group
of children reported that they found the game enjoyable, with some choosing to play the
game even through their allotted break time (Isayama et al., 2016, p. 20).

They also use a ‘walkthrough’ to teach the concepts and how to play the game; the
application provides hints whilst children interact with it, rather than expecting children
to read long passages of instructions (Isayama et al., 2016, p. 9). Spreading out the delivery
of the content reduces the load on memory, as described by (Gee, 2003).

Isayama et al. put their success partly down to the way they reduced the complexity of
the topic from what is normally taught at undergraduate level to an appropriate level for
school children. Notably, mathematical notation was completely omitted (Isayama et al.,
2016, p. 6), as were more advanced topics such as nondeterminism (Isayama et al., 2016,
p. 3). They also attribute some of their success to the design of their metaphor, which is
how the abstract concepts were represented in-game (in this case, a robot acting based on
a recipe). It is important that the metaphor chosen is intuitive and promotes engagement.

Isayama et al. also use the project as a way of assessing the feasibility of teaching theo-
retical computer science to younger children, recognising that Computer Science curricula
within schools are going through rapid changes. Their �ndings were that the children
played the game successfully, and that some were able to understand advanced concepts
(Isayama et al., 2016, p. 21-22). That children were able to understand the concepts of
�nite automata at this age concurs with Eysink et al. (2001), who, after reviewing the work
of educational theorists, state that the ability to think abstractly is likely to be developed
at around this age.

2.4 First Order Logic

2.4.1 Introduction

First order logic sentences contain variables and predicates or relations, where a predicate
says something about a property of the variable. Sentences are usually written as:

P (x)

where P is a predicate and x is a variable, or as

R(x; y)

where R is a relation and x and y are variables.

CHAPTER 2. LITERATURE SURVEY 9

More complex sentences can be formed using the Boolean operators NOT :, AND ^,
OR _, and implication =) and the universal and existential quanti�ers 8 and 9.

2.4.2 Language, Proof and Logic and Tarski’s World

One of the key works that the proposed project will build on is the serious game Tarski’s
World. Tarski’s World is a computer application that forms part of a courseware package
called Language, Proof and Logic (Barwise and Etchemendy, 1993). It places various shapes
on to a three-dimensional chess-board style grid and asks users to write sentences about
these shapes using a �rst order logic based language (The Openproof Project, 2016).

Language, Proof and Logic Textbook

The Language, Proof and Logic package contains a textbook of the same name (Barwise
and Etchemendy, 1993). Textbook chapters introduce logic topics and are supplemented
by exercises within the Tarski’s World game. The �rst topic to be introduced is atomic
sentences, where examples are �rst given in English and then shown using predicate logic,
for example:

A is a cube

becomes:
Cube(A)

The textbook then gradually increases new concepts, such as functions and boolean oper-
ators.

The Language, Proof and Logic package is aimed at either undergraduate or postgraduate
study, with the �rst two chapters forming an introductory course in logic (Barwise et al.,
2000, p.11), so my proposed game will involve less mathematical complexity. The textbook
goes into great detail about a number of topics in mathematics and logic as appropriate
for university level study, and Tarski’s World contains enough operations and tools to
facilitate exercises for all of these topics. Naturally, many of these are beyond the scope of
the proposed project. As in Isayama et al.’s (2016) �nite automata serious game, removing
some of the mathematical complexity will likely be important for the game to be successful
with a younger audience.

Isayama et al. also note the importance of reducing the amount of mathematical notation.
For instance, Language, Proof and Logic uses over a page to clarify what e�ect parentheses
would have on a �rst order logic sentence. Whilst this may be appropriate at University
level, including notation that complicates the proposed game will increase the number of
rules that users need to memorise in order to play the game, which may detract from
student motivation and learning.

CHAPTER 2. LITERATURE SURVEY 10

Tarski’s World

Tarski’s World is one of the serious games that is part of Language, Proof and Logic.
(Barwise et al., 2000). It consists of a window containing three sections. The �rst is a
three-dimensional chessboard style grid, called a ‘World’ that has three-dimensional shapes
placed on it. The second is a list of sentences, written in a �rst order logic language. The
third is a keyboard with logic symbols, such as quanti�ers, to make these easier to input.
The sentences are visualised immediately in the world.

Tarski’s World is very
exible in its usage (Goldson et al., 1993). Students can create
worlds themselves or generate them from a set of sentences. Likewise, sets of sentences
can be created by the student, or they can use a set of built-in sentences. As part of an
exercise, students may be asked to construct sentences or evaluate existing sentences as
true or false based on the world they can see.

One of Tarski’s Worlds key features is that it allows students to describe objects in the
world directly using �rst order logic, rather than using translation into a written language
(Barwise et al., 2000, p.14). In their review of the game, Goldson and Reeves (1994)
particularly admire the way in which sentences can be visualised directly within the world,
rather than �rst being translated into a spoken language.

Tarski’s World provides feedback in three di�erent ways: it determines whether a sen-
tence is valid; whether it is syntactically correct and whether is the right answer. It does
not attempt to �gure out why someone went wrong (Eysink et al., 2001, p.7), but does
demonstrate why an answer is incorrect.

In their review of eight games for teaching logical reasoning, Goldson et al. (1993) give
particularly high praise to Tarski’s World, describing it as
exible and interesting. However,
they also note that the game does rely on the accompanying textbook, and as such, does
not include any in-line help except for instructions on how to play the game.

2.4.3 Logic in Computer Science

Logic in Computer Science (Huth and Ryan, 2004b), is another textbook that teaches
�rst order logic at University level. Like Language, Proof and Logic, it is also accompanied
by computer based software, in the form of interactive exercises for each chapter (Huth
and Ryan, 2004a).

The �rst chapter of the book introduces propositional logic, including the logical opera-
tors for negation, conjunction, disjunction and implication. Chapter 2 focuses on predicate

CHAPTER 2. LITERATURE SURVEY 11

logic, including variables, predicates, quanti�ers, terms and functions (the rest of the book
deals with logic topics outside the scope of this project.) As in Language, Proof and Logic,
these ideas are �rst introduced using illustrative sentences in written English, which are
then stripped of additional detail and written using �rst order logic sentences.

The exercises themselves consist of multiple choice questions; when a user selects an
answer, they are given immediate feedback. Users are told whether they are correct or
incorrect and are given a short explanation of why this is. Most of the questions on
propositional and predicate calculus involve translating English sentences to �rst order
logic. Interestingly, this con
icts with the strategy employed by Barwise et al. in Language,
Proof and Logic. Barwise et al. (2000, p.14) explicitly criticize this approach to learning �rst
order logic, arguing that it is better to allow students to learn by directly interacting with
objects in the language than to go via a spoken language - this was one of the motivations
for the Tarski’s World software.

The online exercises also di�er from Tarski’s World in that they are multiple choice
questions that do not provide an opportunity for exploration. However, the provision
of immediate feedback has been found to be useful. Like Language, Proof and Logic, this
package di�ers from my proposed project in that it consists of an application as an auxiliary
to a textbook, rather than a stand-alone. The exercises also do not employ gami�cation
methods.

2.4.4 Organon

Organon is another web-based application to aid the teaching of logic within a university
environment (Dostalova and Lang, 2011). It includes a range of logic topics, including �rst
order and propositional logic. Its primary purpose is to familiarise students with formal
notation and proof, but it also has features that allow course administration, such as the
storing of students’ grades on assessments.

Organon is split into three sections: a module of logic questions that can be used for
practice or assessment; a grading module that can generate unique homework for individual
students and grade these; and a ‘practicing module’. The practicing module contains
worked sample solutions and questions for students to complete. Questions require the
student to show the steps in their working, so that the application can check these and
provide more feedback than simply reporting whether the answer is correct or incorrect.
Students can use the practice module in three ways: they can ask for a model solution; they
can attempt to solve it themselves, with the application checking every step in their solution
as they go; or they can attempt to solve independently and have the answer checked at the
end.

CHAPTER 2. LITERATURE SURVEY 12

As students complete tasks, the di�culty is increased. Dostalova and Lang follow a
similar strategy to Mildner et al. (2015) in that the software is also able to choose the next
problem based on a student’s past performance. The application can recognise when a
student repeatedly makes similar mistakes and can select an easier question that uses the
problem technique.

Interestingly, Dostalova and Lang speci�cally state that the application facilitates the
practicing of skills as drills. The use of gami�cation merely for the practice of drills is some-
times discouraged by some authors on serious games (Charsky, 2010). However, Dostalova
and Lang argue that their application could help students learn the basics of logical ma-
nipulation faster, leaving more time for more advanced and interesting topics during the
face-to-face time that students have with instructors.

2.4.5 Logic and Proofs

Logic and Proofs is an online introductory logic course developed by the Open Learning
Initative at Carnegie Mellon University (Open Learning Initiative, 2015). It is intended
either as a stand-alone course, or as a tool to accompany a taught lecture course. It includes
a series of multimedia lectures on propositional and �rst order logic, and is accompanied
by two ‘virtual labs’ which allow interactive learning.

Each chapter contains quizzes that provide automatic and immediate feedback to users.
These include simple multiple choice questions which, like the quizzes that accompany
Logic in Computer Science, immediately repost whether the user is right or wrong and
provide a built-in explanation as to why this is.

One such lab is the ‘Proof Lab’ which is used for the construction of proofs. Like
Organon, it gives immediate feedback as soon as the user appears to be heading in the
wrong direction. It also attempts to encourage the user to try certain techniques �rst.

The online course, like the other tools for teaching logic, begins by explaining ideas
like propositions and arguments in English, without use of special notation. Whilst the
course is not a serious game, it employs game-like techniques, such as allowing independent
exploration but in a controlled way.

The course was found to be successful in some (but not all) contexts (Schunn and
Patchan, 2009). In one trial, it was found to possibly be responsible for decreasing the
number of students who withdrew from a course and in another there was a signi�cant
increase in student performance and content learnt.

CHAPTER 2. LITERATURE SURVEY 13

2.5 Summary

The review began with looking at de�nitions of serious games, and at how games can
be used in education. The use of serious games in education has expanded dramatically
in recent years, and the games themselves have improved in quality. Large-scale digital
applications such as Scratch and the LEGO Mindstorms have had a wide uptake within
schools, showing willingness on the part of teachers to employ digital applications for
teaching Computing. Additionally, research done within both schools and universities on
serious games developed for teaching Computer Science theory shows that such applications
can bene�t from gami�cation and produce successful results.

It was found that most existing resources for teaching �rst order logic were aimed at
degree level. Most introduced logic in similar ways, by explaining the concepts involved
using a written language and then introducing more formal notation, although they di�ered
on what kind of exercises students were asked to complete. Many resources for teaching logic
successfully employed game-like characteristics, such as instant feedback and interactivity,
but only Tarski’s World met the de�nition of a serious game fully. Despite this, the research
on serious games, including games designed for teaching Computer Science within schools,
shows that gami�cation can increase both student motivation and learning. It is reasonable
to speculate that a serious game for teaching �rst order logic to secondary school pupils
would be successful.

Chapter 3

Requirements

The requirements section begins with an overview of which sources were used to elicit
requirements. It then lists requirements, and justi�es their inclusion.

3.1 Sources for elicitation

The main source for requirements elicitation is the literature survey. The literature sur-
vey was split into two sections. The �rst, which looked at serious game and gami�cation
research, is useful for informing the design of the interface and for informing the level pro-
gression. The second part of the literature review focused on existing tools, textbooks and
courses for teaching �rst order logic. This section will be used to inform the pedagogical
requirements of the game - what the game should be expected to teach. The literature
review also looked at examples of interactive applications for teaching maths and computer
science topics to Secondary School students - these examples can be used during the re-
quirements gathering and in-depth design phases to inform the level of di�culty of the
game and kind of language that the game should use.

3.2 Requirements and their Justi�cation

The Requirements and their Justi�cation section is split into several sections based on
what aspect of design they relate to.

The requirements themselves are numbered, and justi�cation for a speci�c requirement
is given in italics immediately below it. Each requirement is also given a priority, with
1 meaning that the requirement ’must’ be met, 2 meaning ’should’ and 3 meaning ’may’.
Requirements with priority 3 are requirements that would add value to the game, but may
be omitted should the development need to be scaled down to keep within the scope of the

14

CHAPTER 3. REQUIREMENTS 15

project.

3.2.1 Gami�cation Requirements

This section describes requirements elicited from the research into serious games and
gami�cation conducted during the literature review.

1.1 { Must involve graphical visualisation of �rst order logic sentences.
Visual representations are useful for increasing motivation and demonstrating relevance to
Computer Science students (Hamada, 2008).
Priority: 1

1.2 { Must start at an easy level of di�culty and allow the user to progress through
increasingly complex levels.
The game should ensure that users are competent answering easier questions before moving
on to harder questions. It is important the games gradually increase in di�culty in order
to maintain the interest of the user (D�orner et al., 2016, p.11).
Priority: 1

1.3 { Must give immediate feedback if user is incorrect.
Instant feedback is important for allowing users to immediately assess their progress (D�orner
et al., 2016).
Priority: 1

1.4 { May give more involved feedback to incorrect answers, attempting to guess where
the user went wrong.
More detailed feedback would aid the user in �nding the
aw in their reasoning and modi-
fying it. This is one way of adapting a serious game to a user (D�orner et al., 2016, p.10).
Priority: 3

1.5 { Should introduce �rst order logic ideas and symbols gradually.
Introducing new ideas slowly will likely increase learning by reducing the strain on memory
(Gee, 2003).
Priority: 2

1.6 - May require the user to both understand �rst order logic sentences and to write
their own.
Researchers di�er on what serious games should be used for. Some believe that games are
better used to facilitate rote learning (Dostalova and Lang, 2011), and others believe that
games should foster creativity and exploration (Charsky, 2010). Levels where users are

CHAPTER 3. REQUIREMENTS 16

required to understand �rst order logic would be the former and levels where users have the
freedom to design their own sentences would be the latter. Including both means that the
game could incorporate both styles of learning.

3.2.2 Pedagogical Requirements

Description

This section describes requirements that specify what should be taught by the game.
These requirements are gathered by looking at existing courses and introductory texts to
�rst order logic.

Before an application for education can be developed, the learning outcomes must be
established. The learning outcomes describe what a user should be expected to learn
from playing the game (Hainey et al., 2012). Serious games are games developed with
another purpose besides enjoyment in mind (D�orner et al., 2016); establishing learning
outcomes speci�es this purpose. The requirements in this section specify learning outcomes
by detailing what the game should teach, i.e. what students should learn from it.

Designing pedagogical requirements involves resolving a tension between teaching the
subject well and making a game that is engaging. The length of the game is limited both
by the scale of this project and by the fact that making the game too long could make the
game less engaging. As discussed in the literature review, existing courses on �rst order logic
often take the form of several university level lectures (Barwise and Etchemendy, 1993; Huth
and Ryan, 2004b; Open Learning Initiative, 2015); teaching the topic with this level of
comprehensiveness within the game is not possible.

With a limit placed on the length of the game, a decision is needed on which aspects
of �rst order logic to include. The decision on what to include draws from the problem
description given in the introduction of this project. The aim of this serious game is to
introduce the notion of First Order Logic and some basic sentences.

Requirements

2.1 { Must require user to understand sentences involving a predicate and an object.
This is the simplest sentence form possible.
Priority: 1

2.2 { Must require user to understand sentences involving relations.
Relations are important for telling a story with the game. Sentences consisting of a relation

CHAPTER 3. REQUIREMENTS 17

between two objects are also amongst the simplest �rst order logic sentences.
Priority: 1

2.3 { Must require user to understand the logical connectives AND, OR and NOT.
Lack of familiarity with notation has been found to be a key reason why some undergraduates
within Computer Science struggle with mathematical courses (Fung et al., 1994). One of
the aims of the game is to introduce to secondary school students some of the notation that
is used in mathematics courses at university. Introducing these logical connectives allows
the introduction of the notation _, ^ and :.
Priority: 1

2.4 { May introduce the concepts of objects, predicates and relations formally.
There may be an explanation of �rst order logic that uses these terms. This is low priority
because such an explanation may make the game too complicated or involve large blocks of
text. The usability and enjoyability of the game should not be compromised too greatly.
Priority: 3

2.5 { Should require users to understand sentences using variables and quanti�ers.
As in 2.3, the quanti�ers 9 and 8 are commonly used in university level mathematics
courses. Variables are also an important concept in Computer Science.
Priority: 2

2.6 - May give some background on the development of �rst order logic.
This would give some context as to why �rst order logic was important.

3.2.3 Non-Functional Requirements

This section describes non-functional requirements. Many of these are based on the
characteristics found in successful serious games.

3.1 { Must not require complex installation or set-up.
A lengthy or tedious set-up process may harm user engagement and reduce enjoyment,
which are two of the key advantages of games for education.
Priority: 1

3.2 { Must not have restrictive or expensive hardware and software requirements.
The game should be accessible to the whole target user group. Users must be able to run
the game in their own time on their own computers; the learning should be as
exible as
possible.
Priority: 1

CHAPTER 3. REQUIREMENTS 18

3.3 { Should not take a long time to learn how to play the game.
As in 3.1, spending a long time learning the rules of the game is likely to damage engagement
and enjoyment.
Priority: 2

3.4 { May work on devices without a keyboard
Functioning on tablet devices would further increase the application’s accessibility. However,
this needs to be balanced against the limitations this places on the rest of the design.
Priority: 3

3.5 { Should be enjoyable
Increasing motivation increases learning (Malone, 1981).
Priority: 2

3.6 - Should be accessible to users with a range of mathematical backgrounds.
One advantage of using a graphical representation of sentences is that users do not require
prior knowledge of the mathematics or notation involved.
Priority: 2

Chapter 4

Design

4.1 Introduction

The design section begins by discussing the earliest decisions that needed to be made
during the design phase, which includes which aspects of �rst order logic to teach and the
choice of a story for the game to follow. Then, the earliest designs and prototypes are
discussed. The design chapter �nishes by discussing the design of the individual levels and
the �nal design for the user interface.

4.2 Pedagogical Design - What to Teach

As discussed in the Requirements chapter, the topics to be taught are:

� Predicates

� Objects

� Relations

� The Boolean connectives, ^, _ and :

� Variables

� Quanti�ers, 8 and 9

Most of the existing �rst order logic courses looked at in the literature review introduced
new ideas in roughly the same order, beginning with objects, predicates and relations, then
covering boolean operators and then variables and quanti�ers (Barwise and Etchemendy,
1993; Open Learning Initiative, 2015). It seems reasonable to keep this order for the game.

19

CHAPTER 4. DESIGN 20

4.3 Story

A story that users can progress through is one way of increasing motivation (D�orner
et al., 2016, p.4). This game requires a story with characters that can interact with the
world, so that sentences can be formed from a mixture of objects, predicates and relations.

Requirement 1.6 states that the game may provide some background on the development
of �rst order logic. This requirement can be met by using this background as the story for
the game. This choice of story allows the introduction of logicians and their theories as
objects, properties of these objects as predicates and relationships between characters and
theories as relations.

4.4 Input and Mechanics

Game mechanics refer to the ways in which users physically interact with the game and
are an important part of game design (D�orner et al., 2016, p.12).

The input method that was decided upon was a drag-and-drop interface. Drag-and-
drop can be made accessible to both mouse and touch-screen devices, which helps to meet
requirements 2.2 (not to have restrictive hardware requirements) and 2.4 (to work on devices
without a keyboard).

4.5 Prototypes

The �rst prototype game was developed using html and JavaScript. Each level has
its own html front end and JavaScript logic page. The levels share a single First Order
Logic JavaScript page, which, when implemented, will evaluate �rst order logic sentences
and return true or false. The structure of this prototype game is given in the following
sub-system diagram.

Figure 4.1: Sub-system diagram

CHAPTER 4. DESIGN 21

4.5.1 Level Prototypes

The �rst prototype game included three di�erent level designs. The �rst two required
the user to read a sentence written using �rst order logic and drag and drop symbols into
boxes in order to demonstrate understanding, and the third required users to write their
own sentences.

The �rst level had single character and would be used to introduce predicates. The icons
in the bottom row could be dragged to the box next to the person to assign a predicate to
the person/object.

Figure 4.2: First level prototype

The second level had two characters and would be used to introduce relations. Users
would be given a sentence with a relation and would drag arrows between the two characters
in order to make the sentence true.

CHAPTER 4. DESIGN 22

Figure 4.3: Second level prototype

The �nal level design had a di�erent form of input. Instead of being given sentences and
asked to manipulate the scene in order to make them true, users are given a �xed scene
and asked to write their own sentences to describe it. An onscreen keyboard is provided
for special characters.

CHAPTER 4. DESIGN 23

Figure 4.4: Third level prototype

At this point, it became apparent that a correct implementation of this �nal kind of level
would involve work beyond the scope of the project. In particular, allowing users to input
�rst order logic sentences without restriction would require a parser to convert ‘natural’
�rst order logic into the representation required by the program. Because of this, these
kinds of levels were removed from the game design.

4.6 Game Design - Sequence Diagram

With the prototype levels completed, the next step was to decide which features of the
prototype to keep and to design the �nal game.

It was decided to keep the structure of the prototype game based on the sub-system
diagram given in section 4.5. A sequence diagram for a single level is given below.

CHAPTER 4. DESIGN 24

Figure 4.5: Sequence diagram

Each level will have hard-coded sentences, which will be presented to the user. The user
must drag and drop icons into boxes such that the sentences would evaluate to true, and
then click submit. Once this has been done, the positions of icons on the screen will be used
to create a context { an array of true predicates. The hard-coded sentences will then be
evaluated against the user-created context using a function eval(), which will be the same
for all levels. Eval() will return true if the sentences have been made true and false if not.
If the value true is returned, a dialogue con�rming that the user is correct and containing
a link to the next level will be presented to the user. If the value false is returned, a help
message will be displayed instead.

CHAPTER 4. DESIGN 25

4.7 FirstOrderLogic Design

The FirstOrderLogic code will contain an implementation of �rst order logic as a lan-
guage. This will include the function eval(), which will be described in 4.7.3. Eval() must
evaluate sentences against a context and return true of false.

The implementation of �rst order logic therefore needs the following:

1. The program needs its own internal representation of �rst order logic sentences. Each
sentence needs to be stored in a form that can be evaluated against the context.

2. A representation of the context. The context will need to be computed from the scene
when the user clicks submit.

3. A function which can evaluate the representation of sentences against a context.

4.7.1 Representation of Sentences

First order logic sentences can be represented as tree structures.

_

x y

_

x ^

y z

Figure 4.6: Example �rst order logic trees

4.7.2 Representation of Context

Sentences are evaluated against a context, which is a list of atomic sentences that are
currently true. The context will be an array of these sentences.

4.7.3 Evaluate Sentences Function

There must be a function which takes all of the sentences and evaluates each one against
the context. This is shown in the following
ow chart:

CHAPTER 4. DESIGN 26

Figure 4.7: Evaluate all sentences
owchart

The eval() function is recursive and overloaded. Its function is described via the following
table and pseudo code:

CHAPTER 4. DESIGN 27

Table 4.1: Eval() function
Sentence Given Return
A where A=P (t1; :::; tn) (a
predicate or a relation)

True is A is in context, false otherwise.

A _B eval(context, A) OR eval(context, B)
A ^B eval(context, A) AND eval(context, B)
8x:A for all variables v1; :::; vn, eval(context, A(x = v1)

AND ... AND eval(context, A(x = vn)
9x:A for all variables v1; :::; vn, eval(context, A(x = v1) OR

... OR eval(context, A(x = vn)

Listing 4.1: Eval() pseudo-code

eva l (context , A ^ B) = eva l (context , A) && eva l (context , B)
eva l (context , A _ B) = eva l (context , A) j j eva l (context , B)
eva l (context , 8x=A = eva l (context++[x = v1] ,A) && . . . &&

eva l (context++[x = vn] ,A)
eva l (context , 9x=A = eva l (context++[x = v1] ,A) j j . . . j j

eva l (context++[x = vn] ,A)
eva l (context , P(t1 , . . . , tn) = lookup (P(f i n d (context , t1) , . . . ,

f i n d (context , tn))

4.8 Level-Logic Design

The back-end code for each level must take the position of elements on the page that
the user has manipulated and use these to build a context. This is done via a method,
makeContext().

It must check every space where a user is permitted to drag an element, and if there is an
element present, add an appropriate entry to the context. This is shown diagramatically
in the
owchart given below:

CHAPTER 4. DESIGN 28

Figure 4.8: MakeContext()
owchart

4.9 Level Design

A key part of designing an educational game is level design. Including a level progression
is one way of motivating users to keep playing a serious game (D�orner et al., 2016, p.19).

CHAPTER 4. DESIGN 29

Increasing the di�culty of tasks at the right speed is an important part of designing a
serious game. The di�culty of the game must increase in line with the increase in the
user’s skill level (D�orner et al., 2016, p.11). Too slow an increase causes the game to
become boring and ine�ective, too rapid an increase causes the game to become di�cult
and demotivating.

One of the challenges of story design is to progress the story and progress the di�culty
of the levels alongside each other. A simple sentence needed to tell the story may need to
be made challenging. Likewise, a more complicated aspect of the story may be di�cult to
describe early in the game if necessary notation has not yet been introduced. This tension
is re
ected in the level design for the game.

Level designs were drawn up as a table which detailed the sentences that a user would
need to understand in order to complete the level and the information that they would be
given before and after. A second table tracks the pedagogical reasoning behind that level.
The full level design can be found in the appendix, but a typical example is given below:

Table 4.2: Design for level 7
Level Before Story After Story Sentences
7 We can join more than

one sentence together
using the AND symbol,
which looks like ^

Logic also has an OR
symbol

Likes(Frege, Aristotle)
^ Logician(Frege)

Table 4.3: Rational design for level 7
Level Sentences To teach Rationale
7 Likes(Frege, Aristotle) ^ Lo-

gician(Frege)
^ Introduces ^ for the �rst time

by joining two familiar sen-
tences.

The level designs went through several modi�cations in order to re�ne the balance be-
tween telling the story and teaching the material e�ectively. Early level designs had a story
with a much larger scope; they covered more of history and involved more logicians inter-
acting with each other. This caused problems in level design because the story was often
too complication to explain well whilst limited to the notation that had already been in-
troduced. Additionally, introducing new notation was sometimes challenging because there
was little
exibility in the story. The �nal level design is the result of compromise between
the competing need to tell a story and the need to introduce new notation in a steady

CHAPTER 4. DESIGN 30

order. It instead focuses mostly on a single logician writing a theory, and includes more
mundane actions such as �nding a pen. This version is much less constrained by actual
history. Hence, some of the background on logic that was initially planned is omitted in
order to make the story more
exible.

Chapter 5

Implementation

5.1 Language

Requirement 2.1 states that the game must not require complex installation or set-up
and requirement 2.2 states that the game should be accessible and not have restrictive
hardware or software requirements. It was therefore decided to develop the game as a web-
based application because this ensures that the requirements 2.1 and 2.2 can be met. The
alternative option, to create an executable �le that could be installed, would only increase
installation time.

The game does not require any data storage so can be written as an entirely client
side application. With this in mind, JavaScript and HTML were chosen as the primary
languages.

The JavaScript used in the project conforms to the ECMAScript 5 standard. There is a
more recent version of the standard which contains features that would have been useful,
but it is not supported by Internet Explorer and older versions of Microsoft Edge. Reports
on browser market share vary, but the percentage of users still using the now outdated
Internet Explorer has been reported as being as high as 19.91% between December, 2016
to February, 2017 (NetApplications.com, 2017). Given that accessibility is an important
requirement for the game, working well on Internet Explorer is therefore important, so this
compromise must be made.

5.2 Environment

The WebStorms IDE was used for most of the development. It provides syntax checking
and code completion for HTML, JavaScript and CSS. It also allows quick testing of the

31

CHAPTER 5. IMPLEMENTATION 32

website in di�erent browsers and debugging for JavaScript.

5.3 Implementation Process

The subsystem diagram given in the Design chapter is repeated below:

Figure 5.1: Original sub-system diagram.

The �rst part of the system to be implemented is the First Order Logic JavaScript page.

As speci�ed in the sequence diagram 4.6, the FirstOrderLogic code will be interacted
with by the level logic by a single function, eval(). Eval takes a set of sentences and a
context (an array of true predicates for a scene) and returns true if the sentences are true
and false otherwise.

The modular nature of the design means that FirstOrderLogic can be implemented and
tested without any of the other components. A test page is set up testing the eval() function
with a range of possible sentences.

Once all of the tests returned the correct answer, the levels were implemented chrono-
logically, allowing the transition between levels to be tested as it will appear to the user.

After the implementation of the levels begun, the overall sub-system diagram was mod-
i�ed to reduce duplication of code, with code required by all levels being moved into its
own JavaScript �le, of which there is only one copy. The updated diagram is given below.

CHAPTER 5. IMPLEMENTATION 33

Figure 5.2: Updated sub-system diagram.

Additionally, the project makes use of the following open source libraries:

� jQuery - provides JavaScript utilities (jQuery Foundation, 2017).

� Bootstrap - provides CSS and JavaScript for a range of user interface elements, such as
tooltips and pop-up boxes, as well as css for the page layout (Bootstrap Contributors,
2017).

A diagram showing the boundary between the system and the external libraries is given
below.

CHAPTER 5. IMPLEMENTATION 34

Figure 5.3: System boundary diagram.

The game also makes use of some open source clip art, obtained from https://openclipart.org.

5.4 Final Level Implementation

An example of a typical level implementation is given below:

CHAPTER 5. IMPLEMENTATION 35

Figure 5.4: A typical level

The �nal level design includes drag-and-drop arrows; a space for objects to be dragged
into on the right-hand-side; and a separation of draggable boxes into predicates, relations
and objects.

Chapter 6

Testing

6.1 Introduction

There were three main phases for testing the game:

� Unit Testing

� Initial Game Testing

� Questionnaire

Unit Testing Unit testing was used to test the �rst order logic JavaScript code, before
the actual levels were developed. This was discussed in the Implementation chapter of this
report, section 5.3.

Initial Game Testing The Initial game testing took place immediately after all of the
levels had been implemented. Its aim was to identify problems with the user interface or
with the di�culty of the game. This was the �rst testing conducted by potential users of
the game. This is described in the next section of this chapter.

Questionnaire The questionnaire was the last testing technique employed. The ques-
tionnaire aimed to assess whether the game was enjoyable, motivating and successful as a
serious game, in short, whether it met some of the most important requirements laid out
for the game. The questionnaire was completed by a group of adults and by a group of
A-level students.

36

CHAPTER 6. TESTING 37

6.2 Initial Testing

The �rst test employed a think-aloud protocol (Lewis and Rieman, 1994) with three
users. Think-aloud testing involves asking users to use a system whilst verbalizing their
thoughts about what they are doing. It is used to check whether users naturally interact
with the user interface as the developers expect.

The test involved three users who used the game under supervision. The users were
asked to play the game and discuss their thoughts about what they were doing.

Tests using the think-aloud protocol often use video or audio recordings to gather data,
rather than simple note-taking (Lewis and Rieman, 1994, p85), as this means that all data
is captured. In this case, paper notes made by the observer were used instead to avoid
causing unnecessary unease to the users.

The test allowed for observation of points during the game which caused users to stop.
Notes were made at levels where there seemed to be confusion, or where users took longer
than normal. Users were only given help in situations where they would not otherwise have
been able to continue, as described by Lewis and Rieman (1994). Notable observations are
discussed below, and the full results are given in Appendix D.

6.2.1 First User

Notable observations from the �rst test user were:

� First level - they did not read the instructions the �rst time, and needed to click the
button to re-load them.

� Level 3 (the �rst level where arrows are used to show relations) - they needed help
to understand the user interface at this level.

� Level 5 - they read through the instructions three times at this level before coming
to an understanding.

� The levels where quanti�ers and variables are used took much more time than the
other levels.

Following testing with this user, the following changes were made:

� Some instruction modals were made harder to dismiss. This should make it less likely
that users will dismiss them without reading them.

CHAPTER 6. TESTING 38

� A help button was added to each level, containing instructions on how to use the user
interface.

� The instructions given on level 5 were changed, and an image was introduced to
illustrate the concept.

� The level design was modi�ed to introduce the idea of variables prior to the introduc-
tion of quanti�ers, with the intention of reducing the learning curve for levels using
both quanti�ers and variables.

6.2.2 Second User

The modi�ed game was then tested with a second user. Notable observations were:

� The user used the help button three times, so this was a helpful addition.

� They completed level 3 unaided, but still took longer than other levels.

� There were some problems with the tooltips not vanishing, and obstructing elements
of the interface.

Following this testing, the following additional changes were made:

� The amount of drag and drop the user is required to do for level 3 was reduced,
simplifying the relation interface for the �rst time it is used.

� The tooltip bug was investigated and found to occur when the game was run using
certain browsers. The bug was then �xed for the browsers in question.

6.2.3 Third User

The third user completed the game with smoothly. Some levels took longer than others,
but there were no di�culties with the user interface.

6.3 Adult Questionnaire

The next test involved asking users to play the game for twenty minutes, and complete
a short questionnaire before and after the game. The pre-game questionnaire aimed to
establish the users’ past experience with learning maths and logic and their attitude to this
sort of activity. The post-game questionnaire asked the users about how they found the
game and how much they learned from it. The questionnaire was completed by ten adult
users.

CHAPTER 6. TESTING 39

The results from the post-game questionnaire can be used to:

� Establish whether requirement 3.5 (the game should be enjoyable) has been met, by
looking at user responses to relevant questions.

� Establish whether requirements 2.1-2.5, which describe what the user should learn
from playing the game, have been met. This can be inferred from which level the
users reached; for example, if a user completed levels involving relations, then they
have su�cient understanding of that topic.

� Judge whether requirement 3.3 (the game should not take a long time to learn how
to play) has been met. Evidence to support this can be gathered from the number
of users completing all of the levels - if the game took too long to learn, then users
would not complete all levels in 20 minutes.

Comparing users’ responses to the pre-game questionnaire with their responses to the
post-game questionnaire allows us to see which kinds of user were most successful at playing
the game. This serves the following purposes:

� To see whether the users combined answers to questions before the game could predict
performance in the game.

� To examine whether requirement 3.6 (the game should be accessible to users with a
range of mathematical backgrounds) has been met by comparing the performance of
people with di�erent levels of mathematics quali�cation and experience.

� To establish if the game is pitched at the right level. It is likely that people who
have heard of �rst order logic before will �nd the game easier than those who have
not. Ideally people who have not heard of �rst order logic before should have success
playing the game.

� To see which factors predict success in the game the most. Ideally the game should be
accessible to a wide range of users, and responses to the pre-game questionnaire should
have as minimal impact on the results of the post-game questionnaire as possible.

6.3.1 Post-game Questionnaire Results

Most of the questions on the post-game questionnaire asked users to rate how strongly
they agreed or disagreed with some statements on a 1-5 scale. These results are summarised
below:

CHAPTER 6. TESTING 40

Question Mean Median
The game was easy to play 3.8 4
I always knew what I had to do to move on to the next
level

3.5 3.5

I always knew what the symbols in the sentences meant 4.4 5
First order logic is easy 3.8 4
The game was enjoyable 4.0 4
The game was interesting 4.4 4.5
Logic puzzles are di�cult 3.2 3
Maths is di�cult 3.8 4

Table 6.1: Summary of results from the post-game questionnaire

The mean answer for the game being enjoyable was 4 and the mean for the game being
interesting was 4.4. This indicates that the requirement for the game to be enjoyable was
met.

In addition to these questions, users were asked to state which level they reached within 20
minutes, and if any levels were too di�cult. Eight of the ten users completed the game, with
seven reporting that no level was too di�cult. All users got to at least level 18, indicating
that they had understood sentences involving predicates, relations, logical connectives and
a simple sentence using the existential quanti�er. This means that requirements 2.1-2.5
have been met. Further evidence to support this is given by users’ answers to the question
‘I always understood what the symbols meant’, with the mean response being 4.4 out of 5.

Levels 18 and 19 were the levels that users reported as being too di�cult. These are
levels that use quanti�ers, variables and a logical connective in a single sentence. It is
possible that users could bene�t from more practice with variables and quanti�ers before
introducing them into more complicated sentences.

6.3.2 Comparison of Pre-Game and Post-Game Results

One way of measuring whether user responses before and after the game correlate is to
sum their responses to each question before and after and compare the two measurements.
The pre-game score represents a measure of how likely a user was to enjoy the game and
learn from it based purely on their prior experience. The post-game score represents how
successful the game was based on whether the user found the game easy to play and
whether they enjoyed it. The �nal two questions on the post-game questionnaire were
omitted because they are repetitions of questions in the pre-game questionnaire, and this
could arti�cially increase the correlation between the two measures.

CHAPTER 6. TESTING 41

The validity of combining the responses in this way can be measured using Cronbach’s
Alpha, which measures the internal consistency of a group of variables. The Alpha for the
pre-game responses was 0.79, and the Alpha for the post-game responses was 0.86. These
measurements are high enough that comparing the two sums is valid.

Figure 6.1: Comparison of summed responses before and after playing the game

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

Before playing the game

A
ft

er
pl

ay
in

g
th

e
ga

m
e

The graph shows a slight positive correlation, with a Pearson correlation coe�cient of
0.328. This demonstrates that a user’s prior attitude towards learning maths and logic had
a small impact on the success of the game.

6.3.3 Level of Quali�cation

The next thing to be examined from the test results is how prior mathematics experi-
ence a�ected responses to the game. The game is aimed at A-Level students, and thus
should have been successful with users whose highest level of quali�cation was A-Level or
equivalent.

Of the sample, �ve were studying mathematics as part of their degrees and four had an
A-Level or equivalent in mathematics. Only one user gave GCSE or equivalent as their
highest level of mathematics quali�cation, so this was left out of the comparison.

CHAPTER 6. TESTING 42

Question A-Level in maths Undergraduate
study in maths

The game was easy 3.25 4.40
I always knew what to do to move on
to the next level

3.25 3.80

I understood what all of the symbols
meant

3.75 4.80

First order logic is easy 2.75 4.60
The game was enjoyable 4.00 4.40
The game was interesting 4.50 4.40

Table 6.2: Mean responses by highest mathematics quali�cation

Unsurprisingly, people holding or studying for degrees involving mathematics had higher
average responses for all measures relating to how easy they found the game. Despite this,
there was no evidence to suggest a link between level of mathematics quali�cation and
which level the user reached - 4 of the 5 users with maths as part of their degree and 3 of
the 4 users with an A-level completed the game.

The di�erence between the two groups with regards to how enjoyable and interesting the
game was is very small. This is pleasing, as it indicates that the game has a broad appeal
across both groups.

6.3.4 Factors that predict game success

The next thing to check was whether any individual score from the pre-game question-
naire predicated any of the results from the post-game questionnaire. This will determine
whether the game appealed more to certain types of user. To do this, the Pearson corre-
lation coe�cient between each response to the pre-game survey and each response to the
post-game survey was calculated. These are given in the table below.

CHAPTER 6. TESTING 43

I am
good at
maths

I like
logic
puzzles

I liked
maths
at
school

I am
good at
learning
theo-
retical
con-
cepts

Logic
puzzles
are
di�cult

Maths
is di�-
cult

The game was easy 0.421 0.267 0.225 -0.088 0.183 0.115
I knew what I had to
do to move on to the
next level

0.848 0.484 0.626 0.159 -0.372 -0.311

I knew what the sym-
bols meant

0.312 -0.046 0.066 -0.251 0.195 0.327

First order logic is
easy to understand

0.395 -0.068 -0.145 -0.267 0.287 0.380

The game was enjoy-
able

0.685 0.593 0.590 0.429 -0.111 -0.419

The game was inter-
esting

0.431 -0.064 -0.023 0.039 0.120 -0.113

Table 6.3: Pearson correlation coe�cients between pre-game and post-game mean answers

Most of the prior responses did not correlate strongly with the responses after the game.
This could be because the sample size is not large enough. However, it is possible that this
indicates that the game had a broad enough appeal that, for example, whether or not the
user likes maths did not matter.

Of the results that did have stronger correlations, most are not surprising. The �ve
strongest correlations were:

CHAPTER 6. TESTING 44

Pre-Game An-
swer

Post-Game An-
swer

Correlation Co-
e�cient

Remarks

Good at maths Knew how to get
to the next level

0.848 This is unsurprising.

Good at maths Found the game
enjoyable

0.685 It is impossible to say
whether this is a direct
correlation, or whether
both relate to a third
variable.

Liked maths at
school

Knew how to get
to the next level

0.626 It is impossible to say
whether this is a direct
correlation, or whether
both relate to a third
variable.

Likes logic puz-
zles

Found the game
enjoyable

0.593 It is not surprising that
people who like logic
puzzles enjoyed the
game more.

Liked maths at
school

Found the game
enjoyable

0.590 Again, people who en-
joy maths are more
likely to enjoy the game.

Table 6.4: Discussion of the �ve strongest correlations

6.3.5 Summary of Results from Adult Questionnaire

� Most users found the game enjoyable and interesting. Requirement 3.5 has been met.

� Most users �nished the game, and all users completed levels involving predicates,
relations, objects and logical connectives. Most users agreed that they understood
what all of the �rst order logic symbols meant. Requirements 2.1-2.3 have been met.

� Users who did not �nish or reported that some levels were too hard found the levels
with quanti�ers and logical connectives to be the most di�cult.

� There was a slight positive correlation between overall response pre-game and overall
response post-game.

� Whilst people with higher level mathematics quali�cations found the game and �rst
order logic easier, they were not necessarily more likely to �nish the game. Level of
quali�cation also had little impact on whether a user found the game enjoyable and
interesting.

CHAPTER 6. TESTING 45

� Users who considered themselves good at maths, enjoyed maths at school and like
logic puzzles were more likely to enjoy the game.

6.4 School Questionnaire

Following the questionnaire with adults, a similar test was completed with A-level stu-
dents, to see whether the game was as successful with the target audience. An A-Level
Computing class consisting of �ve students were asked to play the game and complete the
questionnaire before and after. The students were all studying for an A-level in Computing,
four were also studying Mathematics and none had heard of First Order Logic before.

The test had the following purposes:

� To establish whether the A-level students found the game enjoyable and interesting,
and how this compared to the adult responses.

� To investigate whether the game was pitched at the right level of di�culty for this user
group speci�cally. This can be deduced by looking which levels the users successfully
completed, whether they found any individual levels too di�cult and the extent to
which they agreed that the game was easy and that �rst order logic was easy.

6.4.1 Was the Game Interesting and Enjoyable?

The mean and median responses to the questions ’the game was interesting’ and ’the
game was enjoyable’ are given in the following table.

Question Mean Median
The game was enjoyable 3.2 3
The game was interesting 3.4 3

Table 6.5: Mean and median responses to whether the game was enjoyable and interesting

The results for the game being interesting and enjoyable were less encouraging with the
A-level students, with averages of 3.2 and 3.4 out of 5 respectively. Interestingly, these
results are also lower than the average for this question amongst adults with the same
level of education, and lower than the responses from adults who had not heard of �rst
order logic before. This is shown in the following bar charts (note that none of the A-level
students had heard of �rst order logic before):

CHAPTER 6. TESTING 46

UG AL Adults AL School

1

2

3

4

5
4:4

4

3:2

4:4 4:5

3:4

M
ea

n

Enjoyable Interesting

UG - adults currently studying for
or holding a degree that uses maths.
AL Adults - adults whose highest
maths quali�cation is an A-level or
equivalent.
AL School - A-level student respon-
dents.

Figure 6.2: Enjoyable and interesting mean responses by highest maths quali�cation

FOL No FOL A-level

1

2

3

4

5

4:25
3:83

3:2

4:25
4:5

3:4

M
ea

n

Enjoyable Interesting

FOL - Adult respondents who had
heard of �rst order logic before.
No FOL - Adult respondents who
had not heard of �rst order logic.
A-Level - A-level student respon-
dents (none of whom had heard of
�rst order logic before).

Figure 6.3: Enjoyable and interesting mean responses by prior knowledge of �rst order logic

It is not clear why adults and current A-level students di�er. Mildner and M�uller (2016,
p.62) state that whether or not a game appeals to a group of users is likely to depend on
demographic factors, so it is possible that this design was more appealing to older users
than to A-level students.

CHAPTER 6. TESTING 47

6.4.2 Di�culty of the game

How di�cult users found the game can be measured using the following results to the
post-game questionnaire:

1. The extent to which they agreed that the game was easy to play.

2. Whether they always knew what to do to move on to the next level.

3. The extent to which they agreed that �rst order logic was easy.

4. The level that the user reached.

5. Whether any levels were too di�cult.

Questions 1-3 in this list were measured by statements scored from 1-5, as in the adult
questionnaire. The results are summarised below:

Mean Median
The game was easy to play 3.8 4
I always knew what I had to
do to move on to the next level

3.2 3

First order logic is easy 3.4 3

Figure 6.4: Mean and median responses to questions relating to di�culty

The mean responses here were less than the means for adults, but not when compared
to adults who had not studied/were not studying mathematics or to adults who had not
heard of �rst order logic. This is shown in the bar charts below:

CHAPTER 6. TESTING 48

Next Level FOL Easy Game Easy

1

2

3

4

5

3:25
2:75

3:253:2 3:4
3:8

M
ea

n

Adults with maths A-level A-level students

Figure 6.5: Di�culty measures from adults with A-level as the highest maths quali�cation
and from the A-level students

Next Level FOL Easy Game Easy

1

2

3

4

5

3:5 3:33 3:5
3:2 3:4

3:8

M
ea

n

Adults who had not heard of FOL before A-level Students

Figure 6.6: Di�culty measures from adults who had no prior knowledge of �rst order logic
and from the A-level students

This indicates that there is little di�erence between how di�cult the game was for the
A-level students and for adults with similar levels of mathematical experience.

CHAPTER 6. TESTING 49

In addition to these �ndings, four of the �ve users completed the game, with one only
reaching level 19. Unsurprisingly, the one person who did not complete the game was also
the only student not studying A-level Mathematics. None of the students believed any level
was too di�cult. This supports the �nding from the adult questionnaire that requirements
2.1-2.5, which describe what users should learn from the game, have been met. Most of
the A-level students believed the game was easy to play, with an average rating of 3.8 and
a median rating of 4.

6.4.3 Summary of Findings from the School Questionnaire

A summary of �ndings from the testing with the class of A-level students is given below:

� A-level students found the game less interesting and enjoyable than adult users. This
holds even when the students are compared to adults with the same level of mathe-
matics education and who have never heard of �rst order logic before. It is unclear
why this is.

� A-level students found the game roughly as di�cult as adults with similar mathe-
matical backgrounds.

� Four of the �ve students completed the game, and all reached at least level 19. This
means that all students completed levels using predicates, objects, relations, logical
connectives and simple sentences using quanti�cation, which means that the game
meets its fundamental aim of teaching A-level students the basics of �rst order logic.

� Most of the students agreed that the game was easy to play, even if they did not
always know what to do to move on to the next level.

6.5 Summary of Testing

There were four di�erent phases of testing for the game. Unit testing was carried out
during the implementation of the game, to test whether the �rst order logic functions
worked as expected. Initial testing of the game used a think-aloud technique to uncover
usability problems in the design. Finally questionnaires were used with two groups of users,
adults and a class of A-level Computing students, to establish whether certain requirements
were met. This testing found that the game succeeded in teaching comprehension of �rst
order logic sentences to both groups, and thus meets its primary aim.

Chapter 7

Conclusions

7.1 Re
ections

7.1.1 Achievements

This project contributes a serious game for teaching �rst order logic to school students.
There are existing serious games that teach this topic, such as Tarski’s World (Barwise et al.,
2000), but none that are aimed at an audience other than University students studying
mathematics or computer science courses. The game also di�ers from most serious games in
logic in that it is entirely web-based, and therefore is accessible without complex installation
and is platform independent.

The results from the questionnaire showed that A-level students were able to complete
the game. This is an important �nding, because it demonstrates that this kind of logic is
not prohibitively di�cult for school-aged students, and can be taught to people without
strong mathematical backgrounds if gami�cation is used.

It was also found that adults who completed the questionnaires both enjoyed the game
and learned from it. This demonstrates that gami�cation and enjoyment do not detract
from learning.

7.1.2 Limitations and Future Work

The following section details the limitations of the project and, based on these, identi�es
ideas for future work.

50

CHAPTER 7. CONCLUSIONS 51

Type of user input

The requirements speci�cation for this project initially speci�ed that there should be two
kinds of level: one where users were expected to understand sentences, and another where
users were expected to write their own. This would have been advantageous, as it would
have allowed drill style activities (recognising sentences) and creativity (allowing users to
experiment with new sentences to see if they are true or false). Both of these styles of game
have been shown to be successful (Charsky, 2010; Dostalova and Lang, 2011). Despite this,
the second kind of level was removed from the design in order to keep the system within
the scope of the project, as discussed in the Implementation chapter.

The possibility of including levels where users were expected to enter their own sentences
could be investigated. Whilst it is possible that this feature would increase the quality of
learning from the game, it is possible that the additional constraints this would put on the
user interface would actually cause this feature to detract from user experience. Further
evaluation would be needed to determine the e�ect that this change would have.

Aesthetics

The design for the game used a ‘scrapbook’ theme, designed to be consistent with the
drag-and-drop interface. However, the design section paid very little attention to the
appearance of the game. Aesthetics are an important way of motivating users to play a
game (Mildner and M�uller, 2016, p.61). It would have been good to explore the appearance
of other similar games during the technology survey, as well as their functionality.

Requirements Elicitation

The requirements elicitation process for this project focussed mainly an existing games,
existing methods for teaching �rst order logic and research into serious games and gami�-
cation.

Requirements gathering could have involved prospective users, both students and edu-
cators. One problem identi�ed in testing was that A-level students did not �nd the game
as enjoyable or as interesting as adults did. Using participatory design techniques (Preece
et al., 2015) to involve A-level students in designing the game might result in a design more
appealing to these users.

Personalisation

D�orner et al. (2016, p.10) describes how more in-depth personalization can make serious
games more e�ective. Currently the game adapts to users in two basic ways: users progress

CHAPTER 7. CONCLUSIONS 52

to the next level only having completed the previous one; and a help message is supplied
if users submit an incorrect answer.

Future work could look at whether building in real-time assessments of how the user is
progressing could be used to adapt the game. For example, by increasing or decreasing
di�culty or providing hints that relate speci�cally to the user’s current actions. These
strategies were employed successfully by Dostalova and Lang (2011) and Mildner et al.
(2015). It is apparent from the questionnaire results that some users found the level 18
and 19 too di�cult, but others believed that the game was easy to play - it would be good
advantageous if the game was able to adapt to these di�erent users.

Development After Testing

Whilst the game underwent user testing, there was little time after testing to modify the
game based on user feedback. Serious games in particular are often modi�ed after testing
based on whether users found the game to be too di�cult or too easy (D�orner et al., 2016,
p.19).

Looking at the questionnaire results, it is likely that users need more practice with
quanti�ers and variables before introducing more complex sentences.

Evaluation Methods

The user testing conducted as part of this project used questionnaires to assess user’s
attitudes towards learning mathematics and logic before and after playing the game. How-
ever, the game was not compared to other methods for teaching �rst order logic.

With more time, more e�ective testing could be carried out. A �rst order logic course
with the same content as the game could be designed without gami�cation techniques,
for example, using a textbook. The test users could then be split into two groups, one
given the serious game and the other given the non-gami�cation course. The results of
the questionnaire for each of the group could be compared to establish whether the serious
game was as e�ective as traditional teaching methods.

Schunn and Patchan (2009) researched an online logic course by comparing the exam
results of students who used it with students who were taught using traditional methods.
Similarly, users of this serious game and users taught �rst order logic in a di�erent way
could also be given a test containing �rst order logic questions, to test which group learned
more.

CHAPTER 7. CONCLUSIONS 53

7.2 Summary

This dissertation has described the development of a serious game to teach �rst order
logic. The game was shown in testing to be successful at teaching �rst order logic to adults
with di�erent mathematical backgrounds and to A-Level Computing students. The �ndings
demonstrate that �rst order logic, which is normally only taught at degree level, can be
taught to secondary school students when gami�cation is employed. This shows that there
is a place for serious games in A-level Computer Science and Mathematics education.

Bibliography

Armoni, M. (2011), ‘Looking at secondary teacher preparation through the lens of computer
science’, ACM Transactions on Computing Education (TOCE) 11(4), 23.

Barwise, J. and Etchemendy, J. (1993), The language of First-Order logic, including the
Macintosh program Tarski’s world 4.0: Including the Macintosh Programme, Tarski’s
world 4.0, 3 edn, Center for the Study of Language and Information, United States.

Barwise, J., Etchemendy, J., Allwein, G., Barker-Plummer, D. and Liu, A. (2000), Lan-
guage, proof, and logic, Seven Bridges Press,U.S., United States.

Bootstrap Contributors (2017), ‘Bootstrap’, http://getbootstrap.com . Accessed: 10-04-
2017.

Brown, N. C. C., Sentance, S., Crick, T. and Humphreys, S. (2014), ‘Restart: The resur-
gence of computer science in uk schools’, ACM Transactions on Computing Education
14(2), 1{22.

Charsky, D. (2010), ‘From edutainment to serious games: A change in the use of game
characteristics’, Games and Culture 5(2), 177{198.
URL: http://gac.sagepub.com/content/5/2/177

Computing at School Working Group (2012), Computer science: A curriculum for schools,
Technical report.
URL: https://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf

de Aguilera, M. and Mendiz, A. (2003), ‘Video games and education’, Computers in En-
tertainment (CIE) 1(1), 1.
URL: http://dl.acm.org/citation.cfm?doid=950566.950583

Department for Education (2013), National curriculum in england: computing programmes
of study, Technical report, London, UK.
URL: https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study/national-curriculum-in-england-computing-
programmes-of-study

54

http://getbootstrap.com

BIBLIOGRAPHY 55

Deterding, S., Dixon, D., Khaled, R. and Nacke, L. (2011), From game design elements
to gamefulness: De�ning "gami�cation", in ‘Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media Environments’, MindTrek
’11, ACM, New York, NY, USA, pp. 9{15.
URL: http://doi.acm.org/10.1145/2181037.2181040

D�orner, R., G�obel, S., E�elsberg, W. and Wiemeyer, J. (2016), ‘Introduction’, Serious
Games pp. 1{34.

Dostalova, L. and Lang, J. (2011), ‘Organon: Learning management system for basic logic
courses’, Lecture Notes in Computer Science pp. 46{53.

European and Culture DG. (2008), The european quali�cations framework for lifelong
learning, Technical report, Luxembourg.
URL: https://ec.europa.eu/ploteus/sites/eac-eqf/�les/lea
et en.pdf

Eysink, T., Dijkstra, S. and Kuper, J. (2001), ‘Cognitive processes in solving variants
of computer-based problems used in logic teaching’, Computers in Human Behavior
17(1), 1{19.
URL: http://www.sciencedirect.com/science/article/pii/S0747563200000388

Fung, P., O’Shea, T., Goldson, D., Reeves, S. and Bornat, R. (1994), ‘Why computer science
students �nd formal reasoning frightening’, Journal of Computer Assisted Learning
10(4), 240{250.

Gee, J. P. (2003), ‘What video games have to teach us about learning and literacy’, Com-
puters in Entertainment 1(1), 20.

Glover, I. (2013), ‘Play as you learn: Gami�cation as a technique for motivating learners’,
World Conference on Educational Multimedia, Hypermedia and Telecommunications
2013(1), 1999{2008.
URL: http://shura.shu.ac.uk/7172/1/Glover - Play As You Learn - proceeding -
112246.pdf

Goldson, D. and Reeves, S. (1994), ‘Review: The language of �rst-order logic, includ-
ing the macintosh program tarski’s world’, The Philosophical Quarterly (1950-)
44(175), 272{275.
URL: http://www.jstor.org/stable/2219757?sid=primo&origin=crossref&seq=2#page -
scan tab contents

Goldson, D., Reeves, S. and Bornat, R. (1993), ‘A review of several programs for the
teaching of logic’, The Computer Journal 36(4), 373{386.
URL: http://comjnl.oxfordjournals.org/content/36/4/373.full.pdf+html

Hainey, T., Connolly, T., Baxter, G., Boyle, L. and Beeby, R. (2012), ‘Assessment integra-
tion in games-based learning: A preliminary review of the...: Ebscohost’, Proceedings
of the European Conference on Games Based Learning 1, 174{183.

BIBLIOGRAPHY 56

Hamada, M. (2008), ‘An integrated virtual environment for active and collaborative e-
learning in theory of computation’, IEEE Transactions on Learning Technologies
1(2), 117{130.

Hamada, M. (2009), ‘Pushdown automata simulator’, Learning by Playing. Game-based
Education System Design and Development pp. 328{338.

Hamari, J., Koivisto, J. and Sarsa, H. (2014), ‘Does gami�cation work? { a literature
review of empirical studies on gami�cation’, pp. 3025{3034.
URL: http://dl.acm.org/citation.cfm?id=2585491

Huth, M. and Ryan, M. D. (2004a), ‘Lics web tutor’. Accessed: 15-11-2016.
URL: http://www.cs.bham.ac.uk/research/projects/lics/tutor/index.html

Huth, M. and Ryan, M. D. (2004b), Logic in computer science: Modelling and reasoning
about systems, 2 edn, Cambridge University Press, Cambridge, United Kingdom.

Isayama, D., Ishiyama, M., Relator, R. and Yamazaki, K. (2016), ‘Computer science edu-
cation for primary and lower secondary school students’, ACM Transactions on Com-
puting Education (TOCE) 17(1), 2.

jQuery Foundation (2017), ‘jquery’, https://jquery.com . Accessed: 10-04-2017.

Kunkle, W. M. and Allen, R. B. (2016), ‘The impact of di�erent teaching approaches and
languages on student learning of introductory programming concepts’, ACM Transac-
tions on Computing Education (TOCE) 16(1), 3.

LEGO Group (2016), ‘Lego mindstorms ev3’, https://www.lego.com/en-gb/
mindstorms/products/mindstorms-ev3-31313 . Accessed: 03-11-2016.

Lewis, C. and Rieman, J. (1994), Task-Centered User Interface Design: A Practical Intro-
duction. [online] Available from: http://hcibib.org/tcuid/tcuid.pdf (Accessed:
20-03-17).

Lifelong Kindergarten Group (2016), ‘Scratch’, https://scratch.mit.edu/ . Accessed:
02-11-2016.

Malone, T. W. (1981), ‘Toward a theory of intrinsically motivating instruction’, Cognitive
Science 5(4), 333{369.
URL: http://www.sciencedirect.com/science/article/pii/S0364021381800171

Malone, T. W. and Lepper, M. R. (1987), ‘Making learning fun: A taxonomy of intrinsic
motivations for learning’, Aptitude, learning, and instruction 3(1987), 223{253.

Maloney, J., Resnick, M., Rusk, N., Silverman, B. and Eastmond, E. (2010), ‘The scratch
programming language and environment’, ACM Transactions on Computing Educa-
tion (TOCE) 10(4), 16.

https://jquery.com
https://www.lego.com/en-gb/mindstorms/products/mindstorms-ev3-31313
https://www.lego.com/en-gb/mindstorms/products/mindstorms-ev3-31313
http://hcibib.org/tcuid/tcuid.pdf
https://scratch.mit.edu/

BIBLIOGRAPHY 57

Mauch, E. (2001), ‘Using technological innovation to improve the problem-solving skills
of middle school students: Educators’ experiences with the lego mindstorms robotic
invention system’, The Clearing House: A Journal of Educational Strategies, Issues
and Ideas 74(4), 211{213.

Melchior, A., Cutter, T. and Cohen, F. (2005), Evaluation of �rst lego league underserved
initiative., Technical report, Executive summary, Brandeis University.

Mildner, P. and M�uller, F. F. (2016), Design of Serious Games, Springer International
Publishing, Cham, pp. 57{82.
URL: http://dx.doi.org/10.1007/978-3-319-40612-1 3

Mildner, P., Stamer, N. and E�elsberg, W. (2015), ‘From game characteristics to e�ective
learning games’, Lecture Notes in Computer Science pp. 51{62.

NetApplications.com (2017), ‘Browser market share’, https://www.netmarketshare.com/
browser-market-share . Accessed: 10-04-2017.

Open Learning Initiative (2015), ‘Logic and proofs - oli’, http://oli.cmu.edu/courses/
free-open/logic-proofs-course-details/ . Accessed: 18-11-2017.

Preece, J., Rogers, Y. and Sharp, H. (2015), Interaction Design: Beyond Human-Computer
Interaction, 4 edn, John Wiley & Sons, Chichester.

Resnick, M., Maloney, J., Monroy-Hern�andez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y. (2009), ‘Scratch:
Programming for all’, Communications of the ACM 52(11), 60{67.
URL: http://dl.acm.org/citation.cfm?id=1592779

Schunn, C. and Patchan, M. (2009), ‘An evaluation of accelerated learning in the cmu open
learning initiative course logic & proofs’, Learning Research and Development Center,
University of Pittsburgh .

The Openproof Project (2016), ‘Openproof courseware: Tarski’s world’, https://ggweb.
gradegrinder.net/tarskisworld . Accessed: 01-11-2017.

https://www.netmarketshare.com/browser-market-share
https://www.netmarketshare.com/browser-market-share
http://oli.cmu.edu/courses/free-open/logic-proofs-course-details/
http://oli.cmu.edu/courses/free-open/logic-proofs-course-details/
https://ggweb.gradegrinder.net/tarskisworld
https://ggweb.gradegrinder.net/tarskisworld

Appendix A

Level Designs

A.1 Early Level Design

Level Story Sentences Rationale
1 Frege is a logician.

We say this using Lo-
gician(Frege)

Logician(Frege) Introduces the user interface
and one of the characters.
The instructions for this level
have the most detailed in-
structions on how to use the
UI. Uses the most basic of
possible sentences. Omits
some of the options - restrict-
ing options for beginner users.

2 Frege wants to talk
about everything in
the world, just by us-
ing logic, but there
isn’t enough logic to
do this.

Sad(Frege) User should use the UI to do
a task of the same kind as in
level 1, but without explicit
instructions.

3 Frege has an idea. HasIdea(Frege) Further practice using the UI
and completing a simple drill.
A speech-bubble is used to
show Frege’s idea.

58

APPENDIX A. LEVEL DESIGNS 59

4 Frege owns a plant
that is green. A de-
tour from the main
story is made to in-
troduce the idea of
objects with proper-
ties.

Green(Frege’s
plant)

Introduces a theoretical idea
in the instructions (that all
things are objects). User is
then asked to complete a task
of similar di�culty to the one
before, to allow them to apply
this understanding. The end
of the level introduces the idea
that people are objects too.

4-1 We can also use the
not symbol to talk
about things that are
not true.

NOT
Black(Frege’s
plant)

Introduces the negation sym-
bol in the instructions. Keeps
the same scene and task as
previously given allows user to
apply the negation symbol to
a task.

5 We can use sentences
to talk about more
than two objects at
the same time.

Likes(Frege,
Frege’s Plant)

Introduces the idea of rela-
tions { predicates that can
take more than one argument.

6 Will take a detour
from the plot to ex-
plain quanti�ers.

7 Likewise
8 Frege wrote his story

down
HasTheory(Frege) For plot .

9 There exists x.
Likes(x, FregeThe-
ory)

Bertrand Russell
liked Frege’s the-
ory a lot.

For further application of the
existential quanti�er. Also
advances plot by introducing
Bertrand Russell { having two
characters means that more
interesting sentences can be
typed.

10 Likes(Russell, Frege)
AND Likes(Frege,
Russell)

Frege and Russell
liked each other.

For further practice of predi-
cates with two arguments. In-
troduces AND.

11 Sad(Russell) AND
Sad(Frege)

Russell �nds a
mistake in Frege’s
work, which
makes them both
sad.

Further practice of AND.

14 HasIdea(Russell) Russell has an
idea

Storytelling

APPENDIX A. LEVEL DESIGNS 60

15 HasIdea(Russell)
AND
HasIdea(Whitehead)

Russell and his
friend Whitehead
come up with
their own idea
on how to make
everything logic.

Practice AND. Introduce
Whitehead.

16 HasTheory(Russell)
AND HasThe-
ory(Whitehead)

Russell and his
friend Whitehead
write a new the-
ory.

Practice AND. Storytelling {
introduce Principia Mathe-
matica.

A.2 Final Level Design

Level Before Story After Story Sentences
1 Gottlob Frege is a logician.

We can say this by writ-
ing Logician(Frege). Frege
is always thinking about
logic - make the sen-
tence Logician(Frege) true
by dragging the logic sym-
bol into Frege’s thoughts.

Awesome! Logician(Frege)

2 Frege wants to make every-
thing logic.But it doesn’t
work! Make the sentence
at the top of the screen
true.

Like all famous logicians
when they’re sad, Frege
hides in his room and re-
fuses to let go of his teddy
bear. This is a bit em-
barrassing, but at least he
hasn’t developed a drink-
ing problem.

Sad(Frege)

3 Frege has a teddy bear
named after one of the
most famous logicians in
history - Aristotle. We can
talk about this using a re-
lation

3 A relation talks about how
two objects relate to each
other. Drag the arrow up
to between Frege and Aris-
totle and add an emotion.

Aristotle is all that stands
between Frege and a de-
scent into despair, but
this is hard to say in
logic, so we’ll settle with
Likes(Frege, Aristotle).

Likes(Frege, Aris-
totle)

APPENDIX A. LEVEL DESIGNS 61

4 Frege needs to invent some
more logic. But he has an
idea!

Nice! Has(Frege, Idea)

5 Frege’s idea is to make
everything in the world
an object with proper-
ties. Frege’s bed is
an object with the prop-
erty ’comfortable’. We
write that as Comfort-
able(Frege’s bed). Aristo-
tle is a bear. We write that
as Bear(Aristotle).

5 This way, all Frege needs
to do to make everything
logic is to give it a name
and say logic(object).

Well that seems easy
enough.

Picture with
logic(Frege) and
logic(Aristotle)

6 Frege’s teddy bear is an ob-
ject with the name Aristo-
tle and the property that it
is brown.

6 Objects are not always
physical objects. Frege’s
idea is still an object,
which is why we can write
Has(Frege, Idea)

Correct(you)! Has(Frege, Idea)

7 We can join more than one
sentence together using the
AND symbol, which looks
like ^

Logic also has an OR sym-
bol

Likes(Frege, Aris-
totle) AND Logi-
cian(Frege)

8 Frege,can either stay in
bed OR write his idea
down to form a theory.

He decides to do both. In
logic, this is allowed, be-
cause OR just means that
at least one of the sen-
tences is true.

9 Frege can write his theory
with a pen or a pencil.

Great! Has(Frege,
Frege’s pen)
OR Has(Frege,
Frege’s pencil)

APPENDIX A. LEVEL DESIGNS 62

10 While Frege is working,
his housekeeper shouts up:
"Would you like tea or hot
chocolate?". Frege replies
"Yes" because he is a logi-
cian.

The housekeeper doesn’t
think Frege’s joke is funny.
Not anymore.

Has(Frege, Tea)
OR Has(Frege,
Hot Chocolate)

11 Frege needs to choose a cup
to put his tea or hot choco-
late in.

Alarmed(Frege),
[picture of a stack
of cups]

11 But wait! The cups don’t
have names yet. They
haven’t been made logic.

12 Frege needs to name all the
cups

[picture of cups
all with names]

12 Frege can’t possibly name
everything in the world.

Poor Frege. . . Despairs(Frege)

13 As is his habit whenever he
is in despair, Frege heads
upstairs to �nd Aristotle.

13 But before he gets there,
he is interrupted by the
housekeeper. "Every day I
make you tea or hot choco-
late and every day you
refuse to drink it because
the cups are not logical
enough!"

\I don’t understand why
you need to name all of the
cups just to say that all of
the cups are logical!"

IsAngryWith
(Housekeeper,
Frege) AND
Despairs(Frege)

14 Frege realises that he could
just use a variable x that
can stand in for any of the
cups. Use the relation to
say that Frege a cup.

Fantastic! Has(Frege, x)

15 Logician(x). x can be any
object in the scene. If x
is Frege then Logician(x)
is true. If x is Aristotle,
then Logician(x) is false
because Aristotle is a bear
and bears cannot be logi-
cians.

APPENDIX A. LEVEL DESIGNS 63

16 To make talking about
variables easier, we use
two more symbols. The
�rst symbol is 9. 9means
’there exists’. 9x.Happy(x)
means that we can �nd
something to make x that
would make Happy(x)
true.

17 Make the sentence true. Well done! 9x Happy(x)
18 If we have more than

one,object without a name,
then we can use more than
one variable.

We could give x and y the
same value, or they could
be di�erent.

9xy. Happy(x)
AND Likes(Frege,
Aristotle)

19 If the same variable is used
more than once, it must
stand in for the same ob-
ject every time.

Super! 9xy. Logician(x)
AND Likes(x,y)

20 The next symbol we can
use is 8. 8 means ’for
all’. 8x.Sad(x) means that
every object in the scene
is sad. If Aristotle is in
the scene, then this is not
true because bears cannot
be sad.

21 If we take Aristotle out
of,the scene then we can
make this sentence true.

Fantastic! 8x. Sad(x)

22 Frege uses all of these sym-
bols to write down his
theory in his book { the
Begreschi�t. Drag the
theory book into Frege’s
thoughts...

Very good! Has(Frege,
Frege’s Theory)

23 Frege is happy because he
has,�xed logic

Well that’s good news! 9x Happy(x)

23 Hopefully none of the
other,logicians will �nd a
mistake in it. . .

APPENDIX A. LEVEL DESIGNS 64

Table A.3: Rationale for �nal level design
1 Sentences To Teach Rationale
1 Logician(Frege) Predicate Simplest level. Most icons omitted

from user interface to make ui famil-
iarisation easier.

2 Sad(Frege) Predicate Practice predicate, progress story.
3 Relations Introduce relations theory
3 Likes(Frege, Aristotle) Relations Introduce relations user interface,

with reduced action required from
the user.

4 Has(Frege, Idea) Relations Practice relations, introduce stan-
dard ui for the relations arrow.

5 Objects Introduce concept of objects.
5 Picture with

logic(Frege) and
logic(Aristotle)

Objects More objects and predicates.
Progress story.

6 Has(Frege, Idea) Objects More object theory, progress story,
practice relations

7 Likes(Frege, Aristotle)
^ Logician(Frege)

^ Introduce ^ and practice ^.

8 _ Introduce OR.
9 Has(Frege, Frege’s pen)

_ Has(Frege, Frege’s
pencil)

_ Practice _.

10 Has(Frege, Tea) _
Has(Frege, Hot Choco-
late)

_ Practice OR.

11 Alarmed(Frege),[picture
of a stack of cups]

Variables Progress story whilst introducing
variables.

12 [picture of cups all with
names] Despairs(Frege)

Variables Explain need for variables.

13 IsAngryWith(,Housekeeper,
Frege) ^ De-
spairs(Frege)

Variables Explain basic idea of variables.

14 Has(Frege, x) Variables Introduce variable x and use it.
15 Variables Further explanation of variables.
16 9 Introduce 9
17 9 x Happy(x) 9 Practice 9
18 9 xy. Happy(x) ^

Likes(Frege,Aristotle)
Variables Introduce use of multiple variables.

19 9xy. Logician(x) ^
Likes(x,y)

Variables Introduce use of repeated variable.

20 8 Introduce 8
21 8x. Sad(x) 8 Practice 8
22 Has(Frege, Frege’s The-

ory)
Relations Progress story, revise relations.

23 9x Happy(x) Progress story, revise 9
23 Leave cli�-hanger.

Appendix B

Code

The code for the game is too long to include in its entirety, so given in this appendix are
shared.js, FOL.js and the html and javascript pages for levels 1 and 3 (level 1 has a single
character, level 3 includes a relation).

65

A
P

P
E

N
D

IX
B

.
C

O
D

E
66

B.1 File: FOL.js

FOL.js contains JavaScript functions for evaluating a list of
�rst order logic sentences against a context.

const v a r i a b l e s =[" Frege " , " R u s s e l l "] ;

f unc t i on lookup (context , p r e d i c a t e) f
l e t returnValue = f a l s e ;

$. each (context , f unc t i on (i , l) f
l e t temp=i ;
l e t temp2=l ;

l e t currentTerm=$(t h i s) ;
i f (p r e d i c a t e==l) f

returnValue=true ;
g

g) ;

r e turn returnValue ;
g

f unc t i on eva l (context , formula) f
l e t tempFormula = formula ;
l e t returnValue = " e r r o r " ;
switch (tempFormula . type) f

case " p r e d i c a t e " :

l e t fu l lFormula =
contextElementMaker (formula .
formula , formula . args) ;

returnValue = lookup (context ,
fu l lFormula) ;

break ;
case " binary " :

switch (formula . formula) f
case "AND" :

returnValue = eva l (context ,
formula . pred 1) && eva l (
context , formula . pred 2) ;

break ;

case "OR" :
returnValue = eva l (context ,

formula . pred 1) j j eva l (
context , formula . pred 2) ;

break ;

d e f a u l t :
returnValue="binary formula

not r e cogn i s ed "
g
break ;

case " f o r A l l " :

returnValue = subAl lVar i ab l e s (
context , formula) ;

break ;

case " t h e r e E x i s t s " :

returnValue = subAl lVar i ab l e s (
context , formula) ;

break ;

case " negat ion " :

A
P

P
E

N
D

IX
B

.
C

O
D

E
67

returnValue = ! eva l (context , formula .
pred 1) ;

break ;

d e f a u l t :

returnValue = " eva l e r r o r " ;
break ;

g
re turn returnValue ;

g

f unc t i on f o r F o l P r i n t i n g () f
document . getElementById (" compOutput ") .

innerHTML=eva l (context , pred 11) ;
g
f unc t i on contextElementMaker (formula , args) f

l e t p r e d i c a t e = St r ing (formula) +"(";

$. each (args , f unc t i on (i , l) f
l e t temp2=i ;
l e t temp3=l ;

l e t arg=l ;
p r e d i c a t e = p r e d i c a t e+St r ing (arg)+"

" ;
g) ;

p r e d i c a t e = p r e d i c a t e +") " ;
r e turn p r e d i c a t e ;

g
f unc t i on subAl lVar i ab l e s (context , s entence) f

l e t tempPred = sentence . pred 1 ;

const rep laceVar = sentence . rep laceVar ;
l e t returnValue = " not as s i gned " ;
switch (tempPred . type) f

case " negat ion " :
i f (s entence . formula == " f o r A l l ") f

returnValue = true ;

f o r (l e t i =0; i<v a r i a b l e s . l ength ;
i++)f
const v a r i a b l e = v a r i a b l e s [i

] ;
l e t f r e shSentence = $. extend

(true ,fg , tempPred) ;
l e t newPredicate =

subVar iab le (replaceVar ,
f r e shSentence , v a r i a b l e) ;

i f (! eva l (context ,
newPredicate)) f
returnValue = f a l s e ;

g
g

g
e l s e i f (s entence . formula == "

t h e r e E x i s t s ") f
returnValue = f a l s e ;

f o r (l e t i =0; i<v a r i a b l e s . l ength ;
i++)f
const v a r i a b l e = v a r i a b l e s [i

] ;
l e t f r e shSentence = $. extend

(true ,fg , tempPred) ;
l e t newPredicate =

subVar iab le (replaceVar ,
f r e shSentence , v a r i a b l e) ;

A
P

P
E

N
D

IX
B

.
C

O
D

E
68

i f (eva l (context ,
newPredicate)) f
returnValue = true ;

g
g

g
break ;

case " p r e d i c a t e " :
returnValue = " subAl lVar i ab l e s e r r o r

" ;
switch (sentence . formula) f

case " t h e r e E x i s t s " :
returnValue = f a l s e ;

f o r (l e t i =0; i<v a r i a b l e s .
l ength ; i++)f
const v a r i a b l e =

v a r i a b l e s [i] ; // ge t s
a v a r i a b l e

l e t freshTempPred = $.
extend (true ,fg ,
tempPred) ; //makes a
copy o f temppred

l e t newPredicate =
subVar iab le (
replaceVar ,
freshTempPred ,
v a r i a b l e) ; // subs
v a r i a b l e in

i f (eva l (context ,
newPredicate)) f
returnValue = true ;

g
g
break ;

case " f o r A l l " :
returnValue = true ;
f o r (l e t i =0; i<v a r i a b l e s .

l ength ; i++)f
const v a r i a b l e =

v a r i a b l e s [i] ;
l e t f r e shSentence = $.

extend (true ,fg ,
tempPred) ;

l e t newPredicate =
subVar iab le (
replaceVar ,
f r e shSentence ,
v a r i a b l e) ;

i f (! eva l (context ,
newPredicate)) f
returnValue = f a l s e ;

g
g
break ;

d e f a u l t :
returnValue = " d e f a u l t e r r o r

" ;
break ;

g
break ;

case " binary " :

i f (s entence . formula == " f o r A l l ") f
returnValue = true ;

f o r (l e t i =0; i<v a r i a b l e s . l ength ;
i++)f
const v a r i a b l e = v a r i a b l e s [i

] ;

A
P

P
E

N
D

IX
B

.
C

O
D

E
69

l e t f r e shSentence = $. extend
(true ,fg , tempPred) ;

l e t newPredicate =
subVar iab le (replaceVar ,
f r e shSentence , v a r i a b l e) ;

i f (! eva l (context ,
newPredicate)) f
returnValue = f a l s e ;

g

g
g
e l s e i f (s entence . formula == "

t h e r e E x i s t s ") f
returnValue = f a l s e ;

f o r (l e t i =0; i<v a r i a b l e s . l ength ;
i++)f
const v a r i a b l e = v a r i a b l e s [i

] ;
l e t f r e shSentence = $. extend

(true ,fg , tempPred) ;
l e t newPredicate =

subVar iab le (replaceVar ,
f r e shSentence , v a r i a b l e) ;

i f (eva l (context ,
newPredicate)) f
returnValue = true ;

g
g

g
e l s e f

returnValue = " Binary formula
e r r o r " ;

g
break ;

d e f a u l t :
returnValue = " subAl lVar i ab l e s e r r o r " ;

break ;

g
re turn returnValue ;

g

f unc t i on subVar iab le (replaceVar , sentence ,
v a r i a b l e) f
const subPred icate = sentence ;
l e t returnValue = "notChanged " ;
l e t subPredicateType=subPred icate . type ;

switch (subPredicateType) f

case " p r e d i c a t e " :
// t h i s i s the base case
f o r (l e t i = 0 ; i < subPred icate .

a rgs . l ength ; i++) f
l e t currentArg = St r ing (

subPred icate . a rgs [i]) ;
i f (currentArg==replaceVar) f

subPred icate . a rgs [i] =
v a r i a b l e ;

g
g
returnValue= subPred icate ;
break ;

case " binary " :

A
P

P
E

N
D

IX
B

.
C

O
D

E
70

l e t f i r s t P r e d = subPred icate . pred 1 ;
l e t secondPred = subPred icate . pred 2 ;
i f (subPred icate . formula == "AND" j j

subPred icate . formula == "OR") f
f i r s t P r e d = subVar iable (

replaceVar , f i r s t P r e d ,
v a r i a b l e) ;

secondPred = subVar iable (
replaceVar , secondPred ,
v a r i a b l e) ;

returnValue = subPred icate ;
g
e l s e f

returnValue = " Binary
subVar iab le e r r o r " ;

g
break ;

case " negat ion " :
l e t s i ng l ePred = subPred icate . pred 1 ;
s i ng l ePred = subVar iable (replaceVar ,

s ing l ePred , v a r i a b l e) ;
returnValue = subPred icate ;
break ;

d e f a u l t :
returnValue = " subVar iab le e r r o r " ;
break ;

g
re turn returnValue ;

g

B.2 File: shared.js

Shared.js contains JavaScript functions shared across levels
that do not relate directly to �rst order logic. This mostly
involves methods that facilitate graphical interactions, such
as drag and drop.

l e t p r e d i c a t e s =["Happy" ," Log ic ian " ," Sad " ,"
Alarmed " ," Despa i r s "] ;

l e t r e l a t i o n s =[" Likes " ," IsAngryWith " ," Has "] ;
l e t o b j e c t s =["Theory " ," Idea " ,"Tea" ," HotChoc " ,"

Pen" ," Penc i l " , "HasTheory "] ;
$ (’ [r e l =" t o o l t i p "] ’) . on (’ c l i c k ’ , f unc t i on () f

$(t h i s) . t o o l t i p (’ hide ’)
g)
func t i on allowDrop (ev) f

ev . preventDefau l t () ;
g

f unc t i on drag (ev) f
ev . dataTrans fer . setData (" text " , ev . t a r g e t . id

) ;
g

f unc t i on drop (ev) f

ev . preventDefau l t () ;
l e t data = ev . dataTrans fer . getData (" text ") ;
i f (p r e d i c a t e s . indexOf (S t r ing (data))>�1 j j

o b j e c t s . indexOf (S t r ing (data))>�1 j j
St r ing (data) . charAt (0)==’x ’) f
l e t image = document . getElementById (data

) ,
c l one = image . cloneNode (t rue) ;

A
P

P
E

N
D

IX
B

.
C

O
D

E
71

c lone . id = " c loned"+Str ing (counter) ;
counter++;
ev . t a r g e t . appendChild (c l one) ;

g
e l s e f

$(’# unaryAlert ’) . show () ;
g

g
f unc t i on dropB (ev) f

ev . preventDefau l t () ;
l e t data = ev . dataTrans fer . getData (" text ") ;
i f (r e l a t i o n s . indexOf (S t r ing (data))>�1)f

l e t image = document . getElementById (data
) ,
c l one = image . cloneNode (t rue) ;

c l one . id = " c loned"+Str ing (counter) ;
counter++;
ev . t a r g e t . appendChild (c l one) ;

g
e l s e f

$(’# binaryAlert ’) . show () ;
g

g
f unc t i on dropArrow (event) f

event . preventDefau l t () ;
l e t data = event . dataTrans fer . getData (" text

") ;
i f (S t r ing (data)=="topArrow " j j St r ing (data)

=="bottomArrow " j j St r ing (data)=="
startArrowBox ") f
l e t image = document . getElementById (data

) ,
c l one = image . cloneNode (t rue) ;

c l one . id = " c loned"+St r ing (counter) ;
counter++;
event . t a r g e t . appendChild (c l one) ;

g
event . t a r g e t . s t y l e . border= "" ;

g

f unc t i on t r i gge rNextLeve lD ia logue () f
$(’# nextLevelDia logue ’) . modal (’ show ’) ;

g
f unc t i on tr iggerTryAgainDia logue () f

$(’# tryAgainDialogue ’) . modal (’ show ’) ;

g
$(document) . d b l c l i c k (func t i on (event) f

var element=event . t a r g e t . id ;
l e t x=St r ing (event . t a r g e t . tagName) ;
l e t t a r g e t = event . t a r g e t ;
whi l e (x==="TD" j j x==="TR" j j x==="TBODY" j j x

==="TABLE") f
l e t tempElement = t a r g e t . parentNode ;
x = St r ing (tempElement . tagName) ;
t a r g e t = tempElement ;

g
l e t parent = (t a r g e t . parentNode . id) ;
i f (parent=="arrowBox " j j parent=="

bottomArrowBox " j j parent=="topArrowBox ") f
document . getElementById (parent) . s t y l e .

border ="";
g
l e t c h i l d = t a r g e t . id ;
removeElement (ch i ld , parent) ;

g) ;
f unc t i on removeElement (element , parent) f

A
P

P
E

N
D

IX
B

.
C

O
D

E
72

var ho lder = document . getElementById (parent)
;

var image = document . getElementById (element)
;

l e t y = image . parentNode ;
ho lder . removeChild (image) ;

g
f unc t i on addBorder (event) f

l e t eventId = event . t a r g e t . id ;
i f (eventId =="arrowBox " j j eventId=="

bottomArrowBox " j j eventId=="topArrowBox ") f
event . t a r g e t . s t y l e . border= "10px dotted

green " ;
g

g
f unc t i on removeBorder (event) f

l e t eventId = event . t a r g e t . id ;
i f (eventId =="arrowBox " j j eventId=="

bottomArrowBox " j j eventId=="topArrowBox ") f
event . t a r g e t . s t y l e . border= "" ;

g
g

B.3 File: Level1.html

Level1.html is the simplest level, and as such its short
amount of JavaScript was included in the main html �le.

<!DOCTYPE html>
<html lang="en">
<head>

<meta cha r s e t="UTF�8">
<s c r i p t s r c="http :// ajax . g o o g l e a p i s . com/ ajax

/ l i b s / jquery / 2 . 0 . 0 / jquery . min . j s " type="

text / j a v a s c r i p t"></s c r i p t >

<s c r i p t s r c =". ./FOL. j s " type="text /
j a v a s c r i p t"></s c r i p t >

<!�� Latest compiled and m i n i f i e d CSS ��>
< l i n k r e l ="s t y l e s h e e t " h r e f="https : // maxcdn .

bootstrapcdn . com/ boots t rap / 3 . 3 . 7 / c s s /
boots t rap . min . c s s " i n t e g r i t y="sha384�
BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3
RYdg4Va+PmSTsz/K68vbdEjh4u" c r o s s o r i g i n ="
anonymous">

<!�� Optional theme��>
< l i n k r e l ="s t y l e s h e e t " h r e f="https : // maxcdn .

bootstrapcdn . com/ boots t rap / 3 . 3 . 7 / c s s /
bootstrap�theme . min . c s s " i n t e g r i t y ="sha
384�rHyoN1iRsVXV4nD0JutlnGaslCJuC7uwjduW9
SVrLvRYooPp2bWYgmgJQIXwl/Sp" c r o s s o r i g i n
="anonymous">

<!�� Latest compiled and m i n i f i e d JavaScr ipt
��>

<s c r i p t s r c="https : // maxcdn . bootstrapcdn . com
/ boots t rap / 3 . 3 . 7 / j s / boots t rap . min . j s "
i n t e g r i t y ="sha384�Tc5 IQib 027
qvyjSMfHjOMaLkfuWVxZxUPnCJA7 l 2mCWNIpG9
mGCD8wGNIcPD7Txa" c r o s s o r i g i n="anonymous
"></s c r i p t >

< l i n k r e l ="s t y l e s h e e t " type="text / c s s " h r e f
=". ./ Leve l s . c s s " media="sc r e en">

<t i t l e >Level 1</ t i t l e >
<s c r i p t s r c =". .n shared . j s "></s c r i p t >

<s c r i p t type="text / j a v a s c r i p t">

A
P

P
E

N
D

IX
B

.
C

O
D

E
73

$(window) . load (func t i on () f
$(’# l e v e l 1Modal ’) . modal (’ show ’) ;

g) ;

l e t context = [] ;
l e t s entence 1 = f type : " p r e d i c a t e " ,

formula : " Log ic ian " , args : [" Frege "] g ;
l e t s en t ence s = [sentence 1] ;
l e t counter =0;
l e t rus se l lEmot ion ;
func t i on makeContext () f

context = [] ;
l e t russe l lEmotionBox = document .

getElementById (" rus se l lEmot ion ") .
f i r s tE l ementCh i ld ;

rus se l lEmot ion = russe l lEmotionBox ?
russe l lEmotionBox . className :

f a l s e ;

i f (ru s s e l lEmot ion) f
context . push (rus se l lEmot ion +"(

Frege) ") ;
g

l e t output = true ;

$(s en t ence s) . each (func t i on () f
l e t s entence =$(t h i s) [0] ;
i f (! eva l (context , s entence)) f

output = f a l s e ;
g

g) ;
i f (output) f

t r i gge rNextLeve lD ia l ogue () ;
g

e l s e f
t r iggerTryAgainDia logue () ;

g
g

</s c r i p t >
</head>
<body>
<div c l a s s ="modal fade " id=" l e v e l 1Modal"

tabindex="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
myModalLabel">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

<button type="button " c l a s s ="
c l o s e " data�d i smi s s="modal"
ar ia�l a b e l="Close"><span ar ia
�hidden="true">× ;</button>

<h4 c l a s s ="modal�t i t l e " id="
myModalLabel"> I n s t r u c t i o n s </h
4>

</div>
<div c l a s s ="modal�body">

<p>
Gottlob Frege i s a l o g i c i a n .

We can say t h i s by
wr i t i ng Log ic ian (Frege) .

</p>
<p>

Frege i s always th ink ing
about l o g i c � make the
sentence Log ic ian (Frege)
t rue by dragging the

A
P

P
E

N
D

IX
B

.
C

O
D

E
74

l o g i c symbol i n to Frege ’ s
thoughts .

</p>

</div>
<div c l a s s ="modal�f o o t e r">

<button type="button " c l a s s ="btn
btn�primary " data�d i smi s s="

modal">Got i t !</button>
</div>

</div>
</div>

</div>
<div c l a s s ="modal fade " id="nextLeve lDia logue "

data�backdrop=" s t a t i c " data�keyboard=" f a l s e "
tabindex="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
myModalLabel">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

<h4 c l a s s ="modal�t i t l e ">Awesome
!</h4>

</div>

<div c l a s s ="modal�f o o t e r">
<a h r e f="Level 2 . html" c l a s s ="btn

btn�primary">Go to next
l e v e l </
div>

</div>
</div>

</div>
<div c l a s s ="modal fade " id="tryAgainDialogue "

tabindex="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
myModalLabel">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

<button type="button " c l a s s ="
c l o s e " data�d i smi s s="modal"
ar ia�l a b e l="Close"><span ar ia
�hidden="true">× ;</button>

<h4 c l a s s ="modal�t i t l e ">Bad luck
!</h4>

</div>
<div c l a s s ="modal�body">

<p>You haven ’ t got every
sentence t rue yet .</p>

<p>The symbol f o r l o g i c i a n i s
the ches s p i e c e .</p>

</div>
<div c l a s s ="modal�f o o t e r">

<button type="button " c l a s s ="btn
btn�primary " data�d i smi s s="

modal">Try again .</button>
</div>

</div>
</div>

</div>
<div c l a s s ="modal fade " id="s in g l e He lp "

tabindex="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
s i ng l eH e l p">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

<button type="button " c l a s s ="
c l o s e " data�d i smi s s="modal"
ar ia�l a b e l="Close"><span ar ia
�hidden="true">× ;</button>

A
P

P
E

N
D

IX
B

.
C

O
D

E
75

<h4 c l a s s ="modal�t i t l e ">Help</h
4>

</div>
<div c l a s s ="modal�body">

<p>S e l e c t one o f the symbols
from the bottom and drag i t
to the thought bubble .</p>

<p>I f you make a mistake , double

c l i c k an item to d e l e t e i t
and then try again .</p>

</div>
<div c l a s s ="modal�f o o t e r">
</div>

</div>
</div>

</div>
<div c l a s s = " conta iner�f l u i d ">

<div c l a s s ="row">
<div c l a s s ="col�md�12" s t y l e="text�a l i g n

: c en t e r">
<h2>Log ic ian (Frege)</h2>

</div>
</div>
<div c l a s s ="row">

<div c l a s s ="col�md�1"></div>
<div c l a s s ="col�md�9">

<div c l a s s ="ho lder">
<img s r c =". ./ images / f r e g e . png"

id=" r u s s e l l " width="250"
he ight ="300">

<div c l a s s ="box rece iverBox " id
="rus se l lEmot ion " ondrop="
drop (event) " ondragover="
allowDrop (event) " data�
t o g g l e="t o o l t i p " data�

placement=" l e f t " t i t l e ="Frege
’ s thoughts"></div>

</div>
</div>

</div>
<div c l a s s ="row">

<div c l a s s ="col�md�1"> </div>
<div c l a s s ="col�md�9" s t y l e="margin� l e f t

: 50 px">
<div c l a s s ="sentence s">

<button c l a s s ="btn btn�s u c c e s s "
id="contextMaker " o n c l i c k="
makeContext ()">Check</button>

<button type="button " c l a s s ="btn
btn�i n f o " data�t o g g l e="modal

" data�t a r g e t="#l e v e l 1Modal">
I n s t r u c t i o n s </button>

<button type="
button " c l a s s
="btn btn�
i n f o " data�
t o g g l e="modal
" data�t a r g e t
="#s i ng l eH e l p
">Help</
button>

</div>
</div>

</div>
<div c l a s s ="row">

<div c l a s s ="col�md�1"> </div>
<div c l a s s ="col�md�9" s t y l e="margin� l e f t

: 50 px">

A
P

P
E

N
D

IX
B

.
C

O
D

E
76

<div c l a s s ="box startBox " id="
startEmotion " ondrop="drop (event)
" ondragover="allowDrop (event)">
<img c l a s s ="Log ic ian " s r c =". ./

images / l o g i c . png" draggable="
true " ondrags tar t="drag (event
) " id="Happy" width="88"
he ight ="31" data�t o g g l e="
t o o l t i p " data�placement="
bottom" t i t l e ="Log ic ian ()">

</div>
</div>

</div>
</div>
</body>
</html>

B.4 File: Level3.html

Level3.html gives an example of the html for a more com-
plex level, this time involving relations.

<!DOCTYPE html>
<html lang="en">
<head>

<meta cha r s e t="UTF�8">
<s c r i p t s r c="http :// ajax . g o o g l e a p i s . com/ ajax

/ l i b s / jquery / 2 . 0 . 0 / jquery . min . j s " type="
text / j a v a s c r i p t"></s c r i p t >

<s c r i p t >$. widget . br idge (’ u i t o o l t i p ’ , $. u i .
t o o l t i p) ;</ s c r i p t >

<!�� Lates t compiled and m i n i f i e d CSS ��>
< l i n k r e l ="s t y l e s h e e t " h r e f="https : // maxcdn .

bootstrapcdn . com/ boots t rap / 3 . 3 . 7 / c s s /

boots t rap . min . c s s " i n t e g r i t y="sha384�
BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3
RYdg4Va+PmSTsz/K68vbdEjh4u" c r o s s o r i g i n ="
anonymous">

<!�� Optional theme��>
< l i n k r e l ="s t y l e s h e e t " h r e f="https : // maxcdn .

bootstrapcdn . com/ boots t rap / 3 . 3 . 7 / c s s /
bootstrap�theme . min . c s s " i n t e g r i t y ="sha
384�rHyoN1iRsVXV4nD0JutlnGaslCJuC7uwjduW9
SVrLvRYooPp2bWYgmgJQIXwl/Sp" c r o s s o r i g i n
="anonymous">

<!�� Latest compiled and m i n i f i e d JavaScr ipt
��>

<s c r i p t s r c="https : // maxcdn . bootstrapcdn . com
/ boots t rap / 3 . 3 . 7 / j s / boots t rap . min . j s "
i n t e g r i t y ="sha384�Tc5 IQib 027
qvyjSMfHjOMaLkfuWVxZxUPnCJA7 l 2mCWNIpG9
mGCD8wGNIcPD7Txa" c r o s s o r i g i n="anonymous
"></s c r i p t >

<s c r i p t s r c="https : // cdnj s . c l o u d f l a r e . com/
ajax / l i b s / jsPlumb / 2 . 2 . 9 / jsplumb . j s "></
s c r i p t >

<s c r i p t s r c =". .n shared . j s "></s c r i p t >

< l i n k r e l ="s t y l e s h e e t " type="text / c s s " h r e f
=". ./ Leve l s . c s s " media="sc r e en">

< l i n k r e l ="s t y l e s h e e t " type="text / c s s " h r e f
=". ./2 Item . c s s " media="sc r e en">

<t i t l e >Level 3</ t i t l e >
<s c r i p t s r c =". .nFOL. j s " type="text /

j a v a s c r i p t"></s c r i p t >

A
P

P
E

N
D

IX
B

.
C

O
D

E
77

<s c r i p t s r c =". .n Level 3 . j s " type="text /
j a v a s c r i p t"></s c r i p t >

</head>
<div c l a s s =" a l e r t a l e r t�danger a l e r t�d i s m i s s i b l e

c o l l a p s e " id="unaryAlert " r o l e=" a l e r t ">
<button type="button " c l a s s ="c l o s e " data�

d i smi s s=" a l e r t " ar ia�l a b e l="Close">× ;</button
>

Oops!</ strong> That box i s f o r
p r e d i c a t e s that d e s c r i b e one th ing .

<p>Remember that L ikes () and IsAngryWith ()
t a l k about two people </p>

</div>
<div c l a s s =" a l e r t a l e r t�danger a l e r t�d i s m i s s i b l e

c o l l a p s e " id="b inaryAle r t " r o l e=" a l e r t ">
<button type="button " c l a s s ="c l o s e " data�

d i smi s s=" a l e r t " ar ia�l a b e l="Close">× ;</button
>

Oops!</ strong> <p>That box i s f o r
p r e d i c a t e s that d e s c r i b e two th ing s .</p>

<p>Things l i k e Happy () and Log ic ian () can
only t a l k about one th ing at a time</p>

</div>
<div c l a s s ="modal fade " id="doubleHelp " tabindex

="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
s i ng l eH e l p">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

<button type="button " c l a s s ="
c l o s e " data�d i smi s s="modal"
ar ia�l a b e l="Close"><span ar ia
�hidden="true">× ;</span

></button>
<h4 c l a s s ="modal�t i t l e ">Help</h

4>
</div>
<div c l a s s ="modal�body">

<p>Drag the arrow by c l i c k i n g
the box in the middle</p>

<img s r c =". ./ images / help 2 . png"
width="50%" h e i g h t ="50%"
s t y l e ="border : 1 pt s o l i d
b l a c k">

<p>You w i l l s e e a green o u t l i n e
when i t i s in the r i g h t p lace
.</p>

<img s r c =". ./ images / help 3 . png"
width="50%" h e i g h t ="50%"
s t y l e ="border : 1 pt s o l i d
b l a c k">

<p>Remember that i f you make a
mistake , you can d e l e t e
th ing s by double c l i c k i n g
them.</p>

</div>
<div c l a s s ="modal�f o o t e r">
</div>

</div>
</div>

</div>
<div c l a s s ="modal fade " id="ins t ruct ionModa l "

data�backdrop=" s t a t i c " data�keyboard=" f a l s e "
tabindex="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
myModalLabel">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

A
P

P
E

N
D

IX
B

.
C

O
D

E
78

<button type="button " c l a s s ="
c l o s e " data�d i smi s s="modal"
ar ia�l a b e l="Close"><span ar ia
�hidden="true">× ;</button>

<h4 c l a s s ="modal�t i t l e " >
I n s t r u c t i o n s </h4>

</div>
<div c l a s s ="modal�body">

<p>Frege has a teddy bear named
a f t e r one o f the most famous
l o g i c i a n s in h i s t o r y �
A r i s t o t l e .</p>

<p>We can t a l k about t h i s us ing
a r e l a t i o n .</p>

</div>
<div c l a s s ="modal�f o o t e r">

<button type="button " c l a s s ="btn
btn�i n f o " data�d i smi s s="

modal" data�t o g g l e="modal"
data�t a r g e t="#modal2">Next</
button>

</div>
</div>

</div>
</div>
<div c l a s s ="modal fade " id="modal2" tabindex

="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
myModalLabel">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

<button type="button " c l a s s ="
c l o s e " data�d i smi s s="modal"

ar ia�l a b e l="Close"><span ar ia
�hidden="true">× ;</button>

<h4 c l a s s ="modal�t i t l e " id="
myModalLabel"> I n s t r u c t i o n s </h
4>

</div>
<div c l a s s ="modal�body">

<p>
A r e l a t i o n t a l k s about how

two o b j e c t s r e l a t e to
each other .

</p>
<p>

Drag the arrow up to between
Frege and A r i s t o t l e , and
add an emotion .

</p>
<p>

Remember , i f you make a
mistake , double c l i c k a
symbol to d e l e t e i t .

</p>
</div>
<div c l a s s ="modal�f o o t e r">

<button type="button " c l a s s ="btn
btn�primary " data�d i smi s s="

modal">Got i t !</button>
</div>

</div>
</div>

</div>
<div c l a s s ="modal fade " id="nextLeve lDia logue "

data�backdrop=" s t a t i c " data�keyboard=" f a l s e "
tabindex="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y

="myModalLabel">

A
P

P
E

N
D

IX
B

.
C

O
D

E
79

<div c l a s s ="modal�d i a l o g " r o l e="document">
<div c l a s s ="modal�content">

<div c l a s s ="modal�header">
<h4 c l a s s ="modal�t i t l e ">

Congratu lat ions </h4>
</div>
<div c l a s s ="modal�body">

<p>You made the sentence true </p
>

</div>
<div c l a s s ="modal�f o o t e r">

<a h r e f="Level 4 . html" c l a s s ="btn
btn�primary">Go to next

l e v e l </
div>

</div>
</div>

</div>
<div c l a s s ="modal fade " id="tryAgainDialogue "

tabindex="�1" r o l e="d i a l o g " ar ia�l a b e l l e d b y="
myModalLabel">
<div c l a s s ="modal�d i a l o g " r o l e="document">

<div c l a s s ="modal�content">
<div c l a s s ="modal�header">

<button type="button " c l a s s ="
c l o s e " data�d i smi s s="modal"
ar ia�l a b e l="Close"><span ar ia
�hidden="true">× ;</button>

<h4 c l a s s ="modal�t i t l e ">Bad luck
!</h4>

</div>
<div c l a s s ="modal�body">

<p>You haven ’ t got every
sentence t rue yet .</p>

<p>Drag the arrow from Frege to
the teddy bear </p>

</div>
<div c l a s s ="modal�f o o t e r">

<button type="button " c l a s s ="btn
btn�primary " data�d i smi s s="

modal">Try again .</button>
</div>

</div>
</div>

</div>
<body>
<div c l a s s = " conta iner�f l u i d ">

<div c l a s s ="row">

<div c l a s s ="col�md�12" s t y l e="text�a l i g n
: c en t e r">

<h2>Likes (Frege , A r i s t o t l e)</h2>
</div>

</div>
<div c l a s s ="row">

<div c l a s s ="col�md�1">
</div>
<div c l a s s ="col�md�9">

<div c l a s s ="ho lder">

<div c l a s s ="box rece iverBox " id
="rus se l lEmot ion " ondrop="
drop (event) " ondragover="
allowDrop (event)"></div>

<img s r c =". ./ images / f r e g e . png"
id=" r u s s e l l ">

<div c l a s s ="box rece iverBox
arrowBox topArrowBox" width

A
P

P
E

N
D

IX
B

.
C

O
D

E
80

="400" he ight ="200" ondrop="
dropArrow (event) " ondragover
="allowDrop (event) "
ondragenter="addBorder (event)
" ondrag leave="removeBorder (
event) " id="arrowBox"></div>

<img s r c =". ./ images / a r i s t o t l e .
png" o n c l i c k="t h i s . s r c = ’ . . /
images / a r i s t o t l e . png ’ " id="
f r e g e">

</div>
</div>

</div>
<div c l a s s ="row">

<div c l a s s ="col�md�1">

</div>
<div c l a s s ="col�md�9" s t y l e="margin� l e f t

: 50 px">
<button c l a s s ="btn btn�s u c c e s s " id="

contextMaker " o n c l i c k="
makeContext ()">Check.</button>

<button type="button " c l a s s ="btn btn
�i n f o " data�t o g g l e="modal" data�
t a r g e t="#inst ruct ionModa l">
I n s t r u c t i o n s

</button>
<button type="button " c l a s s ="btn btn

�i n f o " data�t o g g l e="modal" data�
t a r g e t="#doubleHelp">Help</button
>

</div>

</div>
<div c l a s s ="row">

<div c l a s s ="col�xs�1"></div>
<div c l a s s ="col�xs�3">

</div>
<div c l a s s ="col�xs�3">

<div c l a s s ="box startBox " id="
hea r tS ta r t " ondrop="dropB (event) "

ondragover="allowDrop (event)">
<img c l a s s ="Likes " s r c =". ./

images / heart . png" draggable="
true " ondrags tar t="drag (event
) " id="Likes " width="88"
he ight ="31" data�t o g g l e="
t o o l t i p " data�placement="
bottom" t i t l e ="Likes ()">

</div>
<div c l a s s ="box startBox " id="

l i g h t n i n g S t a r t " ondrop="dropB (
event) " ondragover="allowDrop (
event)">
<img c l a s s ="IsAngryWith" s r c

=". ./ images / l i g h t n i n g . png"
draggable="true " ondrags ta r t
="drag (event) " id="
IsAngryWith" width="88"
he ight ="31" data�t o g g l e="
t o o l t i p " data�placement="
bottom" t i t l e ="IsAngryWith ()
">

</div>
</div>
<div c l a s s ="col�xs�3">

</div>

A
P

P
E

N
D

IX
B

.
C

O
D

E
81

</div>
<div c l a s s ="row">

<div c l a s s ="col�xs�3"></div>
<div c l a s s ="col�xs�4">

<div c l a s s ="startArrowBox " id="
startArrowBox " draggable="true "
ondrags ta r t="drag (event) " id="
topArrow" width="500" he ight
="100" >

<div c l a s s ="topArrow">
<div c l a s s ="box1 rece iverBox

" id="r u s s e l l F r e g e "
ondrop="dropB (event) "
ondragover="allowDrop (
event) " data�t o g g l e="
t o o l t i p " data�placement="
top " t i t l e ="Frege ’ s
f e e l i n g s towards
A r i s t o t l e ">
<img c l a s s ="Likes " s r c

=". ./ images / heart . png
" draggable="true "
ondrags ta r t="drag (
event) " id="Likes 1"
width="88" he ight
="31" data�t o g g l e="
t o o l t i p " data�
placement="bottom"
t i t l e ="Likes ()">

</div>
</div>

</div>

</div>

</div>

</div>
</body>
</html>

B.5 File: Level3.js

The JavaScript for Level 3 is more complex than for level
1, so it is separated into a di�erent �le.

$(window) . load (func t i on () f
$(’# instruct ionModal ’) . modal (’ show ’) ;

g) ;
$(document) . ready (func t i on () f

$ (’ [data�t o g g l e="t o o l t i p "] ’) . t o o l t i p () ;
g) ;
l e t context = [] ;
l e t s entence 2 = f type : " p r e d i c a t e " , formula : "

L ikes " , args : [" Frege " , " A r i s t o t l e "] g ;
l e t s en t ence s = [sentence 2] ;
l e t counter = 0 ;

func t i on makeContext () f
context = [] ;
l e t russe l lEmot ion , fregeEmotion ,

r u s s e l l F r e g e , f r e g e R u s s e l l ;
i f (document . getElementById (" rus se l lEmot ion

")) f

A
P

P
E

N
D

IX
B

.
C

O
D

E
82

l e t russe l lEmotionBox = document .
getElementById (" rus se l lEmot ion ") .
f i r s tE l ementCh i ld ;

rus se l lEmot ion = russe l lEmotionBox ?
russe l lEmotionBox . className : f a l s e ;

c on so l e . l og (rus se l lEmot ion) ;
g

i f (document . getElementById (" fregeEmotion "))
f
l e t fregeEmotionBox = document .

getElementById (" fregeEmotion ") .
f i r s tE l ementCh i ld ;

fregeEmotion = fregeEmotionBox ?
fregeEmotionBox . className : f a l s e ;

g

i f (document . getElementById (" r u s s e l l F r e g e "))
f
l e t ru s s e l lFregeBox = document .

getElementById (" r u s s e l l F r e g e ") .
f i r s tE l ementCh i ld ;

r u s s e l l F r e g e = rus s e l lFregeBox ?
rus s e l lFregeBox . className : f a l s e ;

i f (! (document . getElementById (" arrowBox
") . hasChildNodes ()))

f
r u s s e l l F r e g e=f a l s e ;

g
g

i f (document . getElementById (" f r e g e R u s s e l l ")) f
l e t f r egeRusse l lBox = document .

getElementById (" f r e g e R u s s e l l ") .

f i r s tE l ementCh i ld ;
f r e g e R u s s e l l = f r egeRusse l lBox ?

f r egeRusse l lBox . className : f a l s e ;
g

i f (ru s s e l lEmot ion) f
context . push (rus se l lEmot ion +"(R u s s e l l)

") ;
g
i f (fregeEmotion) f

context . push (fregeEmotion +"(Frege) ") ;
g
i f (r u s s e l l F r e g e) f

context . push (r u s s e l l F r e g e +"(Frege
A r i s t o t l e) ") ;

g

l e t output = true ;

$(s en t ence s) . each (func t i on () f
l e t s entence =$(t h i s) [0] ;
i f (! eva l (context , s entence)) f

output = f a l s e ;
g

g) ;
i f (output) f

t r i gge rNextLeve lD ia l ogue () ;
g
e l s e f

t r iggerTryAgainDia logue () ;
g

g
f unc t i on addBorder (event) f

conso l e . l og (event . t a r g e t) ;
l e t eventId = event . t a r g e t . id ;

A
P

P
E

N
D

IX
B

.
C

O
D

E
83

i f (eventId =="arrowBox " j j eventId=="
bottomArrowBox " j j eventId=="topArrowBox ") f
event . t a r g e t . s t y l e . border= "10px dotted

green " ;
g

g
f unc t i on removeBorder (event) f

conso l e . l og (event . t a r g e t) ;
l e t eventId = event . t a r g e t . id ;
i f (eventId =="arrowBox " j j eventId=="

bottomArrowBox " j j eventId=="topArrowBox ") f
event . t a r g e t . s t y l e . border= "" ;

g
g
f unc t i on allowDrop (ev) f

ev . preventDefau l t () ;
g

f unc t i on drag (ev) f

ev . dataTrans fer . setData (" text " , ev . t a r g e t . id
) ;

g

f unc t i on drop (ev) f

ev . preventDefau l t () ;
l e t data = ev . dataTrans fer . getData (" text ") ;
i f (S t r ing (data)=="Happy" j j St r ing (data)=="

HasTheory" j j St r ing (data)=="Log ic ian " j j
St r ing (data)=="Sad" j j St r ing (data)=="

HasIdea ") f

l e t image = document . getElementById (data
) ;

c l one = image . cloneNode (t rue) ; //
t rue means c lone a l l ch i ldNodes
and a l l event hand le r s

c l one . id = " c loned"+St r ing (counter) ;
counter++;
ev . t a r g e t . appendChild (c l one) ;

g
e l s e f

$(’# unaryAlert ’) . show () ;

g

g
f unc t i on dropB (ev) f

ev . preventDefau l t () ;
l e t data = ev . dataTrans fer . getData (" text ") ;
i f (r e l a t i o n s . indexOf (S t r ing (data))>�1)f

l e t image = document . getElementById (data
) ;
c l one = image . cloneNode (t rue) ; //

t rue means c lone a l l ch i ldNodes
and a l l event hand le r s

c l one . id = " c loned"+St r ing (counter) ;
counter++;
ev . t a r g e t . appendChild (c l one) ;

g
e l s e f

$(’# binaryAlert ’) . show () ;
g

g
f unc t i on dropArrow (event) f

event . preventDefau l t () ;
l e t data = event . dataTrans fer . getData (" text

") ;

A
P

P
E

N
D

IX
B

.
C

O
D

E
84

i f (S t r ing (data)=="topArrow " j j St r ing (data)
=="bottomArrow " j j St r ing (data)=="
startArrowBox ") f

// event . t a r g e t . appendChild (document .
getElementById (data) . cloneNode (t rue))
;

l e t image = document . getElementById (data
) ;
c l one = image . cloneNode (t rue) ; //

t rue means c lone a l l ch i ldNodes
and a l l event hand le r s

c l one . id = " c loned"+Str ing (counter) ;
counter++;
event . t a r g e t . appendChild (c l one) ;
// need to put the counter code in here

g
event . t a r g e t . s t y l e . border= "" ;

g

f unc t i on t r i gge rNextLeve lD ia logue () f
$(’# nextLevelDia logue ’) . modal (’ show ’) ;

g
f unc t i on tr iggerTryAgainDia logue () f

$(’# tryAgainDialogue ’) . modal (’ show ’) ;

g
$(document) . d b l c l i c k (func t i on (event) f

var element=event . t a r g e t . id ;
l e t x=St r ing (event . t a r g e t . tagName) ;
l e t t a r g e t = event . t a r g e t ;
whi l e (x==="TD" j j x==="TR" j j x==="TBODY" j j x

==="TABLE") f
l e t tempElement = t a r g e t . parentNode ;
x = St r ing (tempElement . tagName) ;
t a r g e t = tempElement ;

g
l e t parent = (t a r g e t . parentNode . id) ;
c on so l e . l og (parent) ;
i f (parent=="arrowBox " j j parent=="

bottomArrowBox " j j parent=="topArrowBox ") f
document . getElementById (parent) . s t y l e .

border ="";
g
l e t c h i l d = t a r g e t . id ;
removeElement (ch i ld , parent) ;

g) ;
f unc t i on removeElement (element , parent) f

var ho lder = document . getElementById (parent)
;

var image = document . getElementById (element)
;

c on so l e . l og (ho lder) ;
c on so l e . l og (image) ;
l e t y = image . parentNode ;
ho lder . removeChild (image) ;

g

Appendix C

Ethics Checklists

C.1 Initial Testing Ethics

This chapter gives the 13-point ethics checklist for the initial user testing - ’think-aloud’
testing with three users in person.

C.1.1 Checklist

UNIVERSITY OF BATH

Department of Computer Science

13-POINT ETHICS CHECK LIST

This document describes the 13 issues that need to be considered carefully before students
or sta� involve other people (\participants") for the collection of information as part of
their project or research.

1. Have you prepared a brie�ng script for volunteers? You must explain to people what
they will be required to do, the kind of data you will be collecting from them and how it
will be used.

A paper brie�ng script will be given before the test begins.

2. Will the participants be using any non-standard hardware? Participants should not be
exposed to any risks associated with the use of non-standard equipment: anything other
than pen and paper or typical interaction with PCs on desks is considered non-standard.

There will be no non-standard hardware.

85

APPENDIX C. ETHICS CHECKLISTS 86

3. Is there any intentional deception of the participants? Withholding information or mis-
leading participants is unacceptable if participants are likely to object or show unease when
debriefed.

No - the brie�ng script details the purpose of the testing.

4. How will participants voluntarily give consent? If the results of the evaluation are likely
to be used beyond the term of the project (for example, the software is to be deployed,
or the data is to be published), then signed consent is necessary. A separate consent form
should be signed by each participant.

Participants will give consent after reading the brie�ng forms. The test examines the user
interface for this project in particular and will not be used outside of this project.

5. Will the participants be exposed to any risks greater than those encountered in their
normal work life? Investigators have a responsibility to protect participants from physical
and mental harm during the investigation. The risk of harm must be no greater than in
ordinary life.
No, playing the game involves no activity that would not be normal for using a web browser.

6. Are you o�ering any incentive to the participants? The payment of participants must
not be used to induce them to risk harm beyond that which they risk without payment in
their normal lifestyle.
There are no o�ered incentive.
7. Are any of your participants under the age of 16? Parental consent is required for
participants under the age of 16.
No

8. Do any of your participants have an impairment that will limit their understanding or
communication? Additional consent is required for participants with impairments.
No

9. Are you in a position of authority or in
uence over any of your participants? A position
of authority or in
uence over any participant must not be allowed to pressurise participants
to take part in, or remain in, any experiment.
I am not in any position of authority over the participants.

10. Will the participants be informed that they could withdraw at any time? All partic-
ipants have the right to withdraw at any time during the investigation. They should be
told this in the introductory script.
The brie�ng script informs participants that they can withdraw at any time.

APPENDIX C. ETHICS CHECKLISTS 87

11. Will the participants be informed of your contact details? All participants must be
able to contact the investigator after the investigation. They should be given the details of
the Unit Lecturer or Supervisor as part of the debrie�ng.
Participants will be given my email address and my supervisor’s email address in the de-
brie�ng.

12. Will participants be de-briefed? The student must provide the participants with
su�cient information in the debrie�ng to enable them to understand the nature of the
investigation.
Participants will be given a verbal debrief when the test is complete.

13. Will the data collected from the participants be stored in an anonymous form? All
participant data (hard copy and soft copy) should be stored securely, and in anonymous
form.
Notes will be made based on what the participant says, and these will be anonymous. There
will be no video or audio recordings.

C.2 Questionnaire Ethics

This chapter gives the 13-point ethics checklist and brie�ng script used for the question-
naire. The questionnaire was completed by participants remotely, and was completed by
adult participants and A-level students (aged 16-18). Also included is the letter notifying
parents/guardians of the A-level students that the testing will take place.

C.2.1 Checklist

UNIVERSITY OF BATH

Department of Computer Science

13-POINT ETHICS CHECK LIST

This document describes the 13 issues that need to be considered carefully before students
or sta� involve other people (\participants") for the collection of information as part of
their project or research.

1. Have you prepared a brie�ng script for volunteers? You must explain to people what
they will be required to do, the kind of data you will be collecting from them and how it
will be used.

An electronic brie�ng script will be given at the start of the questionnaire.

2. Will the participants be using any non-standard hardware? Participants should not be

APPENDIX C. ETHICS CHECKLISTS 88

exposed to any risks associated with the use of non-standard equipment: anything other
than pen and paper or typical interaction with PCs on desks is considered non-standard.

There will be no non-standard hardware.

3. Is there any intentional deception of the participants? Withholding information or mis-
leading participants is unacceptable if participants are likely to object or show unease when
debriefed.

No - the brie�ng script details the purpose of the testing.

4. How will participants voluntarily give consent? If the results of the evaluation are likely
to be used beyond the term of the project (for example, the software is to be deployed,
or the data is to be published), then signed consent is necessary. A separate consent form
should be signed by each participant.

The brie�ng script will invite users to click next only if they consent to the form. The
test will be completed remotely, so there will be no pressure from researchers to continue.

5. Will the participants be exposed to any risks greater than those encountered in their
normal work life? Investigators have a responsibility to protect participants from physical
and mental harm during the investigation. The risk of harm must be no greater than in
ordinary life.
No, playing the game and completing the questionnaire involves no activity that would not
be normal for using a web browser. With regards to the school students, the teacher will be
given a copy of the game and questionnaire before hand.

6. Are you o�ering any incentive to the participants? The payment of participants must
not be used to induce them to risk harm beyond that which they risk without payment in
their normal lifestyle.
There are no o�ered incentive.

7. Are any of your participants under the age of 16? Parental consent is required for
participants under the age of 16.
No - the school students who will be part of the test are A-level students between the age
of 16 and 18. They will be asked to consent to the survey themselves, but their parents/-
guardians will be noti�ed that the test will take place.

8. Do any of your participants have an impairment that will limit their understanding or
communication? Additional consent is required for participants with impairments.
No

APPENDIX C. ETHICS CHECKLISTS 89

9. Are you in a position of authority or in
uence over any of your participants? A position
of authority or in
uence over any participant must not be allowed to pressurise participants
to take part in, or remain in, any experiment.
I am not in any position of authority over the participants.

10. Will the participants be informed that they could withdraw at any time? All partic-
ipants have the right to withdraw at any time during the investigation. They should be
told this in the introductory script.
The brie�ng script informs participants that they can withdraw at any time, and their re-
sponses will not be stored if they withdraw.
11. Will the participants be informed of your contact details? All participants must be
able to contact the investigator after the investigation. They should be given the details of
the Unit Lecturer or Supervisor as part of the debrie�ng.
Participants will be given my email address and my supervisor’s email address in the debrief-
ing. These are also included in the letter to the parents/guardians of the A-level students.

12. Will participants be de-briefed? The student must provide the participants with
su�cient information in the debrie�ng to enable them to understand the nature of the
investigation.
All of the necessary information on the investigation is given in the brie�ng before the ex-
periment, the de-brie�ng reiterates the key points and provides contact details for myself
and my supervisor

13. Will the data collected from the participants be stored in an anonymous form? All
participant data (hard copy and soft copy) should be stored securely, and in anonymous
form.
All questionnaire response are anonymous, and will be stored securely in a spreadsheet.
There will be no hard copies of the data.

C.2.2 Brie�ng

The project being investigated is a serious game for teaching concepts relating to �rst order
logic, a way of expressing facts about the world in terms of true/false statements.

During the study you will be asked to play a game that aims to teach �rst order logic in
an accessible way, for up to twenty minutes. Before and after playing the game, you will
be asked to complete a short questionnaire which will ask about your past experience with
learning about maths and logic, and what you think of the game.

All data will be collected anonymously and none of the questions are compulsory. You can
withdraw from the study at any time - if you choose not to complete the survey then your

APPENDIX C. ETHICS CHECKLISTS 90

responses will not be recorded.

You need to be 16 or above to participate in this survey.

If you would like to participate, click next to begin the �rst questionnaire.

C.2.3 Parent Letter

Dear parent/guardian

I am a student at the University of Bath and am examining the potential of using a
serious game to teach �rst-order logic as part of my �nal year project. We are planning on
testing the game with students in the A-level Computing class.

The test will involve the completion of a questionnaire before and after playing the game.
No sensitive data will be collected and all data will be anonymised. The students do not
have to participate if they choose not to.

If you have any questions or concerns please do not hesitate to contact me at alh62@bath.ac.uk,
or my supervisor, Dr. Willem Heijltjes at W.B.Heijltjes@bath.ac.uk .

Yours faithfully

Amy Hooper

Appendix D

Initial User Testing

91

APPENDIX D. INITIAL USER TESTING 92

Table D.1: First User Observation
Level Notes
1 Did not read instructions �rst time round, had to click to

bring them back.
2
3 Needed help with the user interface - did not understand

how the drag and drop arrow worked.
4
5 Read the instructions through three times before under-

standing.
6
7
8
9
10
11
12
13
14
15
16
17 Took longer than usual
18 Took longer than usual
19
20
21
22
23

APPENDIX D. INITIAL USER TESTING 93

Table D.2: Second User Observation
Level Notes
1 Used the help
2
3 Used the help, still took longer than other levels.
4
5
6
7
8
9
10
11
12
13
14
15
16
17 Took longer than usual
18 Took longer than usual
19
20
21
22
23

Appendix E

Raw Questionnaire Results

E.1 Questionnaire with adults

E.1.1 Results

The table below gives the raw data from the adult questionnaire. Capital letters have been substituted for text in order to
�t the table on to a page. A key is given immediately after the table.

A B C D E F G H I J K L M N O P Q R S
1 UG Y 4 4 3 4 3 3 21 [T] 4 3 5 5 4 4 3 3
2 UG N 5 5 5 4 4 3 23 No 5 5 5 5 5 5 1 3
3 AL N 5 4 4 3 2 3 23 No 4 5 5 4 4 4 4 3
4 UG Y 5 5 5 4 2 3 23 No 5 5 5 5 5 5 2 2
5 UG Y 4 5 5 4 4 4 23 No 4 4 5 4 4 3 4 4
6 UG N 4 3 4 2 4 4 23 19 4 3 5 4 4 5 3 4
7 AL N 5 4 4 5 3 3 18 18 3 4 4 2 5 5 4 5
8 GCSE N 4 2 1 3 4 5 23 no 3 2 4 4 2 4 5 5
9 AL Y 4 4 2 4 5 4 23 [U] 4 2 4 4 4 5 3 4

94

A
P

P
E

N
D

IX
E

.
R

AW
Q

U
E

ST
IO

N
N

A
IR

E
R

E
SU

LT
S

95
A B C D E F G H I J K L M N O P Q R S
10 AL N 4 5 5 4 2 2 23 [V] 2 2 2 1 3 4 3 5

E.1.2 Key for adult results table

Letter Meaning
A Participant Number
B What is the highest level of quali�cation that you have or are currently

studying for in mathematics?
C Have you ever heard of First Order Logic before?
D I was good at maths at school
E I enjoy logic puzzles
F I enjoyed maths lessons at school
G I am good at learning theoretical concepts
H Logic puzzles are di�cult
I Maths is di�cult
J Which level did you reach?
K Were any levels too di�cult?
L The game was easy to play
M I always understood what I had to do to move on to the next level
N I understood what all of the symbols used in the sentences meant
O First order logic is easy to understand
P The game was enjoyable
Q The game was interesting
R Logic puzzles are di�cult
S Maths is di�cult

A
P

P
E

N
D

IX
E

.
R

AW
Q

U
E

ST
IO

N
N

A
IR

E
R

E
SU

LT
S

96
E.1.3 Comments from the adult questionnaire

Letter
Comment T No, though the �rst use of "exists" was a little unclear
Comment U No, though occasional tooltip issues made it slightly

confusing
Comment V I just struggle to understand what was going on which

made it di�cult, by the end i got understood what to
do so it wasnt di�cult

E.2 Questionnaire with A-level students

E.2.1 Results

The table below gives the raw data from the A-level student questionnaire. Capital letters have been substituted for text
in order to �t the table on to a page. A key is given immediately after the table.

A B C D E F G H I J K L M N O P Q R S T U V
1 17 Y Y N N 4 5 4 4 3 2 23 No 5 4 4 4 4 3 2 2
2 17 Y Y Y N 5 4 4 4 1 2 23 No 4 4 3 3 3 4 2 2
3 18 N Y N N 2 3 4 2 2 3 19 Not really 4 2 2 3 5 5 3 3
4 17 Y Y Y N 3 4 4 4 3 2 23 no 3 3 3 4 2 2 2 2
5 17 Y Y N N 3 3 3 3 3 3 23 nope 3 3 3 3 2 3 3 3

A
P

P
E

N
D

IX
E

.
R

AW
Q

U
E

ST
IO

N
N

A
IR

E
R

E
SU

LT
S

97
E.2.2 Key for A-level results table

Letter Meaning
A Participant Number
B What is your age?
C Are you studying A-level Maths?
D A-level Computing?
F Have you ever heard of First Order Logic before?
G I am good at maths
H I enjoy logic puzzles
I I enjoy/enjoyed maths lessons at school
J I am good at learning theoretical concepts
K Logic puzzles are di�cult
L Maths is di�cult
M What level did you reach?
N Were any levels too di�cult?
O The game was easy to play
P I always understood what I had to do to move on to the next level
Q I understood what all of the symbols used in the sentences meant
R First order logic is easy to understand
S The game was enjoyable
T The game was interesting
U Logic puzzles are di�cult
V Maths is di�cult

	Introduction
	Motivation
	Problem Description
	First Order Logic
	Serious Games

	Aims
	Structure

	Literature Survey
	Introduction
	About Serious Games
	Definition

	Serious Games in Computer Science
	First Order Logic
	Introduction

	Summary

	Requirements
	Sources for elicitation
	Requirements and their Justification
	Gamification Requirements

	Design
	Introduction

	Implementation

