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Live User-Guided Intrinsic Video for Static Scenes
Abhimitra Meka*, Gereon Fox*, Michael Zollhöfer, Christian Richardt and Christian Theobalt, Member, IEEE

Fig. 1. We propose a novel approach for live, user-guided intrinsic video decomposition. We �rst obtain a dense volumetric reconstruction
of the scene using a commodity RGB-D sensor. The reconstruction is leveraged to store re�ectance estimates and user-provided
constraints in 3D space to inform the ill-posed intrinsic video decomposition problem. Our approach runs at real-time frame rates, and
we apply it to applications such as relighting, recoloring and material editing.

Abstract�We present a novel real-time approach for user-guided intrinsic decomposition of static scenes captured by an RGB-D
sensor. In the �rst step, we acquire a three-dimensional representation of the scene using a dense volumetric reconstruction framework.
The obtained reconstruction serves as a proxy to densely fuse re�ectance estimates and to store user-provided constraints in
three-dimensional space. User constraints, in the form of constant shading and re�ectance strokes, can be placed directly on the
real-world geometry using an intuitive touch-based interaction metaphor, or using interactive mouse strokes. Fusing the decomposition
results and constraints in three-dimensional space allows for robust propagation of this information to novel views by re-projection.
We leverage this information to improve on the decomposition quality of existing intrinsic video decomposition techniques by further
constraining the ill-posed decomposition problem. In addition to improved decomposition quality, we show a variety of live augmented
reality applications such as recoloring of objects, relighting of scenes and editing of material appearance.

Index Terms�Intrinsic video decomposition, re�ectance fusion, user-guided shading re�nement

1 INTRODUCTION

The ability to edit the appearance of the real world seen through a
mobile device or a head-mounted see-through display � such as photo-
realistic recoloring and relighting of real scenes � is essential for many
augmented reality (AR) applications. Imagine a virtual refurnishing
application that allows a user to roam around and explore different
color choices for real-world objects, or different placements of virtual
lights, directly in their living room.

To enable this, an AR system needs to jointly track its position and
reconstruct the geometry of the scene � initial solutions to this hard
problem exist. The much harder problem, however, is that the system
needs to solve a complex inverse rendering problem in real time. Ideally,
from monocular or RGB-D sensors alone, the AR device has to esti-
mate detailed models of surface re�ectance and scene illumination, in
order to modify both through computer graphics overlays. As of today,
estimating �ne-grained light transport models in general uncontrolled
scenes from only one on-board camera is far from possible in real time.
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Meka et al. [25] recently showed that intrinsic RGB video decom-
position [5, 39], a simpler yet still highly complex inverse rendering
problem, is feasible in real time. Making the simplifying assumption
of only diffuse surfaces, intrinsic decomposition factors the video, per
pixel, into its re�ectance and shading components, enabling their inde-
pendent modi�cation. However, intrinsic decomposition is ill-posed [2],
as the separation of re�ectance color and illuminant color is ambiguous.
On heavily textured objects, this inherent ambiguity leads to re�ectance
texture information being erroneously ‘baked’ into the shading. In addi-
tion, high-frequency shading effects are often misinterpreted as texture.
Although regularization of re�ectance and shading can reduce such
artifacts, they cannot be entirely resolved in the existing techniques.
This leads to visual artifacts in the targeted AR applications.

To alleviate this problem and enable live realistic editing of re-
�ectance and lighting in augmented reality, we propose a novel inter-
active scene-level approach for real-time intrinsic decomposition of
static scenes captured by an RGB-D sensor. Our approach is based
on a volumetric representation of the scene that serves as a proxy to
store re�ectance estimates and sparse user-provided constraints, such
as constant shading and constant re�ectance strokes, directly in 3D.
This has several fundamental advantages compared to 2D-based ap-
proaches. Since the user constraints are stored in 3D space, they can
be robustly re-projected to arbitrary novel views of the scene to further
constrain the intrinsic decomposition problem. Similarly, we densely
fuse surface re�ectance estimates into the volumetric reconstruction
of the scene. This enables the re-projection of the estimates to novel
views to further constrain and jump-start the intrinsic decomposition
process. This also leads to more temporally stabilized decomposition
results as demonstrated in Sect. 7. Another bene�t of fusing re�ectance
estimates is that we obtain complete colored 3D models that are devoid
of shading information.

The user constraints are intuitively provided directly on the real-
world geometry with a touch-based interaction metaphor that allows



Fig. 2. Our novel user-guided intrinsic video approach enables real-time applications such as recoloring, relighting and material editing.

to de�ne strokes on the geometry or via live mouse interactions. By
providing shading and re�ectance strokes, the user can interactively
improve the decomposition result to resolve ambiguities and obtain
higher quality results than with previous fully-automatic approaches.

The obtained decomposition quality improves on Meka et al.’s real-
time approach [25], which does not consider user input and thus suffers
particularly in highly textured regions. Since our approach runs live,
the user can reexamine the decomposition result at any time, and place
additional strokes if required. In addition to photorealistic recoloring
and material editing, the availability of the underlying geometry model,
which we jointly recover, enables advanced editing effects, such as
physically correct relighting of objects. Note that our approach can also
be used to decompose standard RGB images, without geometry, in real
time, since we can also directly use 2D mouse strokes as constraints.
The motivation of our work is not interaction design itself, but the
design of the algorithms that enable the use of scene geometry and user
interaction for enhanced intrinsic decomposition of a live video stream
as well as its photorealistic augmentation. In summary, our method is
based on the following main technical contributions:

� A volumetric scene representation to densely store the obtained
re�ectance estimates, and user-provided strokes for constant shad-
ing and re�ectance in 3D.

� A real-time intrinsic decomposition approach that exploits these
constraints to solve the ill-posed decomposition problem.

� Prototype augmented reality applications such as live recoloring,
material editing and relighting at high quality.

2 RELATED WORK

Intrinsic image decomposition has a long history, stretching from the
seminal Retinex approach [22] all the way to the current day. The
key insight of Retinex, which helps to disambiguate shading and re-
�ectance, is that larger image gradients mostly correspond to gradients
in re�ectance rather than shading. Therefore, thresholding the image
gradients can be used for disambiguating these two components. This
idea has been extended by using learned classi�ers instead of �xed
thresholds [35], it has also been combined with non-local cues for
improving decompositions [13, 32], and closed-form solutions have
been proposed [41]. To further improve the quality of intrinsic de-
compositions, additional, increasingly complex priors have been pro-
posed to constrain the solution space. Many techniques assume that
the re�ectance distribution in a scene is sparse [10, 13, 32, 33], i.e. that
there are only a few different colors visible at the same time, which
can for example be determined using clustering [12], ef�cient infer-
ence via dense conditional random �elds [3] or image �attening [4].
Barron et al. [1] even model and estimate shape and illumination in
addition to re�ectance, and Kong and Black [19] also estimate con-
tours, depth and optical �ow from videos. Recently, more advanced
re�ectance priors have been learned directly from ground-truth intrinsic
decompositions [43, 45]. Image sequences can also provide tempo-
ral constraints, for example when re�ectance is constant but shading

varies temporally [20,21,24,38]. The additional depth channel captured
by consumer depth cameras has also been exploited to provide addi-
tional constraints [8, 16, 23]. We also use a depth camera for enabling
scene-consistent temporal propagation of re�ectance estimates and user
constraints that are densely stored in the reconstructed scene geometry.

In many cases, the existing priors fail to achieve intrinsic decom-
positions of high quality. Annotations such as scribbles provided by
a user can help to guide the intrinsic decomposition towards the de-
sired solution [6, 31]. Previous approaches for off-line intrinsic video
decomposition also make use of scribbles to obtain higher quality de-
composition results. Ye et al. [39] use a scribble-based technique for
decomposing the �rst video frame, and Bonneel et al. [5] allow strokes
for any video frame and use them as necessary. In contrast, Meka et
al.’s real-time, live intrinsic video technique [25] explicitly excludes
scribbles as they cannot be provided in real time at 30 Hz. In our work,
we show how to make scribbles work in a live setup by embedding them
in a dense volumetric 3D reconstruction of the scene that makes them
independent of the current camera viewpoint. In addition, we use the
reconstruction as a proxy to fuse and temporally propagate re�ectance
estimates.

Placing virtual objects into a real-world scene in a seamless, pho-
torealistic fashion requires an accurate estimate of the incident scene
illumination, so that the virtual object can be lit plausibly. Gruber et
al. [14] use spherical harmonics from the color observations of a jointly
reconstructed 3D scene model, which enables plausible illumination
effects in a virtual-reality rendering pipeline. Follow-up work extended
this approach to dynamic real-world scenes within an augmented-reality
rendering pipeline [15].

Scene reconstruction based on commodity RGB-D sensors em-
ploys spatiotemporal �ltering [28] or implicit surface representations
[9, 11, 42], since they allow to deal with the noisy depth data captured
by commodity sensors. The �rst online method for the reconstruction of
a static scene using a hand-held depth sensor was KinectFusion [17,26].
The scene’s geometry is approximated using a truncated signed dis-
tance �eld [9], into which per-frame data is fused. Camera tracking is
based on a fast variant of the iterative closest point (ICP) algorithm [30]
that uses projective correspondences. Many approaches that extend
KinectFusion have been proposed, with the focus on extending the
scale of the limited reconstruction volume [7, 26, 29, 34, 40]. Another
extension performs an illumination-invariant 3D reconstruction [18]
using time-of-�ight RGB-D cameras: illumination-independent surface
re�ectance is �rst computed in the infrared domain, and then transferred
to the color domain by solving an optimization problem. Our approach
enables the placement of user constraints via interactions in real time,
which allows to incrementally improve the decomposition results, and
alleviates the texture copy problem. The SemanticPaint [36] approach
combines dense volumetric reconstruction with a learning-based seg-
mentation strategy to obtain a semantic decomposition of the scanned
scene.



3 METHOD OVERVIEW

A high-level overview of our novel user-guided intrinsic video approach
is shown in Fig. 2. First, we reconstruct a volumetric representation
of the scene using the RGB-D data captured by a commodity depth
sensor. To this end, we employ a dense volumetric 3D reconstruction
approach [27] that obtains high-quality reconstructions of static scenes
in real time (Sect. 4). In contrast to Nießner et al. [27], we use this
representation as a proxy to densely fuse surface re�ectance estimates
instead of the input image colors. For this, we simultaneously compute
an intrinsic decomposition of the color video stream during volumet-
ric reconstruction, and fuse the obtained re�ectance estimates. The
fused re�ectance information is used to further inform the underly-
ing intrinsic video decomposition problem. In addition to the surface
re�ectance, we also store user-provided constraints in the form of con-
stant re�ectance and shading strokes. Such constraints can be provided
using live mouse input or using an intuitive touch-based interaction
metaphor. In the case of touch-based input, the user is automatically
detected by a foreground segmentation approach that utilizes the differ-
ence in geometry and color between the reconstructed model and the
current input RGB-D frame. This allows us to detect touch-based user
interaction on real-world geometry, and enables the user to interactively
place constraints in the scene (Sect. 5). We project these constraints
into novel views to further constrain the ill-posed intrinsic decomposi-
tion problem (Sect. 6). Our proposed approach facilitates a variety of
augmented reality applications, such as recoloring, material editing and
relighting (Sect. 8).

4 VOLUMETRIC REFLECTANCE FUSION

As the user walks around a scene with an RGB-D camera, which
could for example be integrated into a head-mounted AR device, we
obtain a virtual model of the scene using VoxelHashing, a large-scale
dense volumetric reconstruction technique [27]. The source code for
the VoxelHashing framework is publicly available1. The captured depth
maps are fused into a high-quality model using a truncated signed
distance �eld [9] (4 bytes per voxel). Memory is managed based on a
space and time ef�cient spatial hashing strategy. Internally, 3D space
is discretized into a set of discrete voxels, which are stored as blocks
consisting of 83 =512 voxels each. We track the camera’s rigid motion
using a fast variant of the iterative closest point (ICP) algorithm that
uses projective correspondence lookups.

In contrast to Nießner et al. [27], we do not fuse the observed color
samples in the volume, but directly fuse surface re�ectance estimates
(12 bytes per voxel). To this end, we decompose the simultaneously
captured color image into its shading and re�ectance layers (Sect. 6).
The surface re�ectance is devoid of illumination information and is
fused using temporal exponential averaging. Since multiple per-frame
re�ectance estimates are averaged, sensor noise and inconsistencies
in the decomposition results are signi�cantly reduced. In addition to
surface re�ectance, we use the dense volumetric reconstruction to store
additional user-provided constraints based on a stroke identi�er (1 byte
per voxel). Storing the constraints directly in 3D world space allows
us to re-project them to arbitrary novel camera views, and hence help
to solve the ill-posed intrinsic decomposition problem. In addition, we
exploit the spatial neighborhood information encoded in the volumetric
grid to propagate constraints in 3D space (see Sect. 5.2) to obtain a
basic segmentation of the scene. This is useful for applying constraints
directly to larger parts of the scene, and is used in several proposed AR
applications (see Sect. 8).

5 LIVE USER INTERACTION

After reconstruction of the scene’s geometry, the user can interact with
the scene using live mouse input or a touch-based interaction metaphor
to provide constraints to further inform the ill-posed intrinsic decompo-
sition problem. Constraints are given in the form of constant re�ectance
and constant shading strokes. We use the dense volumetric reconstruc-
tion of the scene as a proxy to store the constraints directly in world

1https://github.com/niessner/VoxelHashing

Fig. 3. The user’s hand is detected as foreground based on the dif-
ference between the input depth image and the reconstructed scene.
Touch points are detected (bright red) and propagated based on spatial
connectivity and re�ectance similarity.

space on a per-voxel level (using a stroke identi�er attribute). For exam-
ple, the user can place a constant shading stroke on a wall to alleviate
the texture copy problem encountered in previous approaches, where
high-frequency re�ectance is often erroneously copied to the shading
layer. In addition to these constraints, the user input is used in the
proposed live AR applications (see Sect. 8), where it enables recoloring,
material editing and relighting. The user can for example simply touch
a chair to assign a different color to it, or change the material of any
object in the scene. In summary, all supported interactions are:

� Constant Shading Stroke: All surface points belonging to the
same stroke are enforced to share the same shading value. Multi-
ple independent strokes of this type can be used.

� Constant Re�ectance Stroke: This constraint enforces all asso-
ciated surface points to share the same re�ectance color. Multiple
independent strokes of this type can be de�ned.

� Recoloring Stroke: The re�ectance of all associated surface
points is set to a �xed user-speci�ed color. Using this stroke
type, users can paint an arbitrary re�ectance map.

All strokes optionally support a region �lling strategy that allows to
directly select a complete subset of the scene. The propagation of stroke
attributes is based on spatial connectivity and re�ectance similarity, as
detailed below.

5.1 Detection of Touch Points
Once scene reconstruction is �nished, the integration of further geome-
try is stopped to allow the user to interact with the obtained reconstruc-
tion of the scene by placing constraints. Interactions are based either on
live mouse input or a touch-based interaction metaphor. Touch-based
interaction requires the user to closely interact with objects that are in
plain view of the camera (see Fig. 3). This might throw off the camera
tracker, since the motion of the user violates the assumption that the
scene is static. To alleviate this problem, we automatically detect the
pixels that correspond to the user and exclude them from tracking. To
this end, we prune correspondences in the ICP alignment strategy if
the distance between points is larger than edist =15 cm or the normals
deviate more than enorm =14 degrees. After alignment, all outliers in
the input depth map are considered foreground. In the next step, we de-
termine touch points based on the spatial proximity of the background
and skin-colored foreground pixels [37]. For every detected touch point,
we mark all voxels that fall within a small spherical neighborhood,
similar to a 3D brush. The radius of the sphere can be controlled by the
user. In the case of live mouse input, we use the rendered depth map to
back-project the strokes to 3D space.

5.2 Spatial Constraint Propagation
To enable fast and convenient editing, we provide the user the option to
automatically propagate constraints to appropriate spatial subregions.

https://github.com/niessner/VoxelHashing


Semantic segmentation is a challenging and ill-posed problem, espe-
cially at real-time rates. The SemanticPaint approach [36] presents
an impressive solution to this problem, but has a high memory foot-
print and is already quite computationally demanding. Since the goal
of our approach is user-guided intrinsic decomposition, we use our
own lightweight segmentation approach, which leaves enough compu-
tational resources for the other processing steps. For each stroke, we
compute the average re�ectance value of all in�uenced voxels and store
it for further processing. We then perform a data-parallel �ood �ll to all
neighboring voxels that have a suf�ciently similar re�ectance in RGB
color space to the stored value.

The data-parallel �ood �ll works by propagating a 3D voxel frontier
starting from a seed point. We manage the current frontier using an array
in global device memory that implements a list of voxels. The insertion
of new elements into the list is managed using an atomic counter. Given
the current frontier, we advance the frontier in space by starting one
thread per voxel in the list. Each thread examines its 3� 3� 3-voxel
neighborhood. We use a binary mask to store which voxels have already
been processed, and append unprocessed neighboring voxels that ful�ll
the �ood �ll criterion to a new voxel frontier list. In the �ood �ll
criterion, we threshold re�ectance similarity based on the distance in
RGB color space (e�ll =0:1) between the re�ectance of the currently
processed voxel and the stored average re�ectance of the current stroke.
Note that the �ood �ll implicitly takes the connectivity of the sparse
voxel grid into account.

6 SCENE-LEVEL INTRINSIC VIDEO DECOMPOSITION

The majority of intrinsic video decomposition techniques suffer from
the texture copy problem, leading to residual texture in the shading
layer. This is because it is highly challenging to correctly disambiguate
texture into its re�ectance and shading components in the absence of
additional constraints. A number of intrinsic decomposition techniques
have therefore resorted to user interaction in the form of strokes to
provide additional constraints [5, 6, 31, 39]. We propose to use live
mouse interactions or a touch-based interaction metaphor directly in
3D space for intuitive editing of the intrinsic decomposition. User input
is stored densely based on the obtained scene reconstruction. In addition,
we fuse computed re�ectance estimates using the volume. At run time,
re�ectance estimates and constraints are projected to novel views to
constrain the ambiguous intrinsic decomposition problem towards a
higher quality solution. Previous constraint-based approaches run off-
line and require long computation times. In contrast, our approach runs
at real-time frame rates, thus making it usable in the augmented reality
context.

6.1 Variational Intrinsic Video Decomposition
We cast �nding the optimal intrinsic decomposition D� as a general
non-linear energy minimization problem:

D� = argmin
D

E(D) (1)

D =
�
: : : ;r(x)> ; : : : ;s(x); : : :

�> , (2)

where the vector D contains all unknowns, i.e. log-space re�ectance
r(x)2 R3 and shading s(x)2 R for all pixels x2 W� N2. The employed
intrinsic video decomposition energy E is based on several objective
functions:

E(D) = E�t(D)+ wrEreg(D)+ wuEuser(D)+ wsEstab(D). (3)

The objective functions model the reproduction of the input image E�t,
spatio-temporal regularization Ereg, integration of the user constraints
Euser, and temporal stabilization Estab. The constant weights wr = 1,
wu =1000 and ws =10 control the in�uence of the different objectives.
In the following, we discuss all terms in more detail.

Reproduction of the Input Image The �tting objective E�t en-
forces that the decomposition reproduces all N pixels of the input color

image I. We formulate this constraint in the log-domain for linearity:

E�t(D) = å
x2W



 i(x) �

�
r(x)+ [1 1 1]> s(x)

� 



2
. (4)

Here, i(x)= lnI(x)2 R3 is the logarithm of the pixel color at pixel x,
r(x)= lnR(x) is the log-re�ectance, and s(x)= lnS(x) the log-shading
value of the same pixel.

Spatio-Temporal Regularization For regularization, we follow
the approach of Meka et al. [25] and employ a combination of four
different terms:

Ereg(D) = wpEp(D)+ wgEg(D)+ wmEm(D)+ wcEc(D). (5)

Since many man-made scenes contain a small, distinct number of
re�ectance values, we enforce sparsity based on a p-norm constraint:

Ep(D) = å
y2N(x)

wcs(x;y) � kr(x) � r(y)kp
2 , (6)

where wcs(x;y) = exp(� 15 � kc(x) � c(y))k2) measures the chroma
similarity of two adjacent pixels. Spatio-temporal coherence is incorpo-
rated based on a global prior Eg that takes long-range chroma similarity
into account. The prior Em enforces `2-spatial smoothness of the shad-
ing layer at chroma boundaries. Finally, a soft constraint on chroma
similarity Ec keeps the chroma of the re�ectance image close to the
chroma of the input. For a detailed discussion of the terms E� , the
sparsity norm ` p and parameters w� , we refer to Meka et al. [25].

Incorporation of User Constraints One of the main contribu-
tions of our work is a novel approach for incorporating the user con-
straints, in the form of constant re�ectance and constant shading strokes,
directly into the optimization problem:

Euser(D) = å
Si2S

å
x2Si

wi(x) � js(x)� �sij
2 +

å
Ri2R

å
x2Ri

wi(x) � kr(x)� �rik
2 . (7)

Here, S is the set of shading strokes, and Si the set of pixels belonging
to the i-th shading stroke. �si is the representative unknown shading
value associated with the i-th stroke. The same notation holds for the
re�ectance strokes Ri 2 R. Note that �si and �ri are unknown auxiliary
variables. For the i-th stroke, we de�ne a per-pixel stroke weight wi(x)
to fade out the in�uence of the strokes (squared fall-off) close to their
boundary.

Stabilization of Re�ectance Estimates Another important con-
tribution of our work is to densely fuse the obtained re�ectance esti-
mates into the volumetric scene representation. This allows to enforce
temporal coherence and further inform the intrinsic decomposition
problem. To this end, we propose the following novel stabilization
constraint:

Estab(D) = å
x2W

B(x) �
�
r(x) � rmodel(x)

� 2. (8)

The background mask B(x) (one for background, zero for foreground)
prunes any potentially dynamic foreground pixels. It encourages the
per-pixel log-re�ectance values r(x) to be close to the fused mean
log-re�ectance rmodel(x) stored in the volumetric scene model. This
per-pixel mean log-re�ectance is computed by extracting the log-
re�ectance-colored isosurface of the volumetric scene representation
via ray marching.



Fig. 4. Constant re�ectance strokes improve the decomposition by moving the high-frequency shading of the cloth to the shading layer.

Fig. 5. Temporal re�ectance constancy. We track �ve rectangular regions and compute the average albedo difference over time per region. Our
approach uses fused re�ectance estimates to further constrain and jump-start the intrinsic decomposition process. Therefore, it obtains a higher
temporal re�ectance consistency than the approach of Meka et al. [25].

6.2 Data-Parallel Optimization
Our goal is to compute the intrinsic decomposition of the RGB-D video
stream at real-time frame rates. We therefore require a fast and ef�cient
strategy to solve the underlying non-linear optimization problem. We
propose a highly ef�cient, data-parallel, iteratively reweighted least
squares (IRLS) solver that allows computing the optimum of the energy
E (see Equation 3) at real-time rates. In contrast to Meka et al. [25], our
decomposition objective does not have a sparse Jacobian, but contains
dense blocks due to the incorporation of the user constraints Euser
(see Equation 7). This is because every per-pixel unknown belonging
to the same stroke has a derivative with respect to the unknown per-
stroke auxiliary variable. Therefore, the data-parallel solver proposed in
previous work is not suf�cient to achieve real-time frame rates, since the
workload is not equally distributed between different threads. Such a
joint optimization of all variables would lead to faster convergence with
respect to the required number of iteration steps, but every iteration of
the solver would require signi�cantly more time, since the data-parallel
compute power of the GPU can not be fully exploited.

To tackle this problem, we propose an iterative �ip-�op strategy
that solves two simpler optimization problems in alternation. Given
an initial estimate of the per-pixel shading and re�ectance, we �rst
optimize for the auxiliary variables. Since the auxiliaries only appear
in the least-squares objective Euser, the optimum has a closed-form
solution, and can be obtained as the average of all associated per-
pixel values that belong to the same stroke. After this, we �x the
new values for the auxiliaries, and optimize for a new decomposition
using a data-parallel IRLS solution strategy. As the auxiliaries are
constant during this step, the Jacobian is again sparse, leading to high
performance. We assume convergence after 7 iteration steps. Internally,
the IRLS solver divides the problem into small rectangular sub-domains
and uses a data-parallel variant of the alternating Schwarz procedure
[44]. Each iteration solves the local problems in shared memory and
exchanges data with neighboring domains using global memory. We
apply this optimization using a coarse-to-�ne strategy (5 levels) for
faster convergence. Starting from the coarsest level, we solve the coarse
scale version of the problem to obtain an approximate solution. We then
upsample this solution to the next �ner level and use it for initialization.

7 RESULTS

We demonstrate our approach in a live setup. We use a PrimeSense
Carmine 1.09 close-range RGB-D sensor to obtain two 640� 480 video
streams of color and depth at 30 Hz. Note that our approach is agnostic
to the speci�c RGB-D sensor being used. We only require a spatially
and temporally aligned color and depth stream as input. After acquir-
ing an initial geometric model of the scene using dense volumetric

reconstruction, the decomposition quality is improved using strokes
that enforce constant re�ectance and shading. We make our test scenes,
including the results obtained by our approach, publicly available on
our project page2 to encourage follow-up work and enable others to
easily compare to our approach.

Decomposition Results Intrinsic decomposition of a scene al-
lows for independent modi�cation of the underlying physical layers
of a scene while preserving the photorealism on reconstruction. Even
for simple scenes with uniform, untextured regions, such photorealism
cannot be obtained by simple luminance�chrominance decomposition
due the problem of ‘chromaticity shift’, as described by Meka et al. [25].
For textured surfaces, current state-of-the-art intrinsic decomposition
approaches suffer from the texture-copy problem, if they do not rely
on additional user input. Texture-copy refers to texture variation being
misinterpreted as shading, as in Fig. 6 (top). Our approach allows to
resolve this problem via the incorporation of constant shading strokes
into the decomposition problem, see Fig. 6 (bottom). Without user
input, it is dif�cult to disambiguate between blocks of varying intensity,
and current state-of-the-art approaches fail in this regard. By adding
user constraints, the optimization approach better resolves the inherent
ambiguities of the intrinsic decomposition problem, and we obtain a
cleaner shading layer.

In addition, the decomposition of uniformly colored regions suffers
from the previously mentioned chromaticty-shift problem due to high-
frequency shading variation, which is easily improved using a constant
re�ectance stroke, as can be seen in Fig. 4. The clothing contains several
dark creases that wrongly end up in the re�ectance layer in the absence
of interaction. With an appropriate stroke, directly on the 3D geometry,
our approach mitigates this issue and ensures constant re�ectance over
the cloth.

Runtime Performance and Memory Requirements For the
reconstruction of the static scene geometry, we use a voxel resolution
of 1 cm. Camera tracking takes 2 ms and re�ectance fusion 0.6 ms. To
project the user constraints into the image, we use ray marching, which
takes 14 ms to compute the stroke map. Overall, our scene-level intrinsic
decomposition runs at real-time frame rates. We use 5 hierarchy levels
with 7 IRLS iterations on each. Each non-linear IRLS iteration performs
7 PCG steps internally. After each non-linear iteration, we perform a
�ip-�op step to update the auxiliary variables (Sect. 6.2). Intrinsic
decomposition takes in total 22 ms per frame. While performing the 3D
reconstruction of the scene, we achieve an average frame rate of 25 Hz.

2http://gvv.mpi-inf.mpg.de/projects/InteractiveIntrinsicAR/

http://gvv.mpi-inf.mpg.de/projects/InteractiveAR/


Table 1. Per-frame run time of our user-guided intrinsic video approach
averaged over the entire sequence for the scene in Figure 8.

Input ICP Decomposition Fusion Relighting
time (ms) 6.1 3.5 9.1 6.7 8.4

Input RGB frame Re�ectance Shading

w/o interaction (sshading =56:6)

ours, w/ interaction (sshading =6:4)

Fig. 6. Intrinsic decomposition results for a color chart. Without interaction,
the shading image suffers from texture-copy. Our approach improves
the decomposition by using a constant shading stroke. This reduces
the intensity variation of the shading layer (smaller standard deviation
sshading).

After the static reconstruction is completed, the frame rate increases
to more than 30 Hz. All timings are computed on a commodity Nvidia
GTX Titan graphics card. A more detailed breakdown of the timings of
our approach is shown in Table 1.

Our approach has a higher memory footprint than off-the-shelf Vox-
elHashing [27], since we store the surface log-re�ectance using four
bytes per color channel. The memory footprint could be decreased by
storing a discretized version of surface re�ectance, e.g. one byte per
color channel. For our scenes, this is not the limiting factor, since more
than 12 GB of global device memory are available on modern graphics
hardware. For example, the sequence shown in Fig. 8 requires in total
9.4 GB of global device memory for a voxel resolution of 4 mm (3.7 GB
for a voxel resolution of 1 cm). This also includes all the data structures
used during optimization and the memory to store the user constraints.

Re�ectance Initialization In addition to the user constraints, we
also densely fuse surface re�ectance estimates using the volumetric
reconstruction of the scene. This allows to project the re�ectance esti-
mates to arbitrary novel views, which can be used to further constrain
and jump-start the intrinsic decomposition process. The technique of
Meka et al. [25] initializes the re�ectance layer in every frame with
the input RGB image, which could be far from the correct re�ectance
values. In contrast, our approach only uses this initialization for the
�rst frame, and for subsequent frames synthesizes an initial re�ectance
map based on the projection of the fused re�ectance estimates to the
novel view. Occluded regions are initialized based on the corresponding
input RGB values. Our novel temporal stabilization term also helps to
stabilize the decomposition results, see Fig. 5. We track �ve rectangular
regions and compute the average albedo difference per region over time.
As can be seen, our approach obtains a higher temporal re�ectance sta-
bility than Meka et al. [25] (average norm of albedo variation: 0:0187
instead of 0:0241). We refer to the accompanying video for the com-
plete sequence. Another bene�t of fusing re�ectance estimates is that
we obtain a complete colored 3D model that is devoid of shading in-
formation, see Fig. 8, which is in contrast to the color reconstructed by
state-of-the-art volumetric reconstruction techniques [27].

Comparison to the State-of-the-Art We compare our approach
to the existing off-line intrinsic video approaches by Ye et al. [39] and
Bonneel et al. [5], which also use user-provided strokes for constraining

Fig. 8. Our approach reconstructs the re�ectance of the scene.

Fig. 9. Photorealistic recoloring of a shirt using our approach.

the result, as well as Meka et al.’s fully automatic real-time approach
[25]. Note that these techniques work in a slightly less constrained setup,
with a standard RGB camera, while our approach additionally leverages
the available depth information of commodity RGB-D sensors. As
these approaches operate on monocular color video alone (without
depth), we compare the decomposition quality on the ‘girl’ dataset in
Fig. 7, without using any geometry reconstruction and only 2D strokes
within our approach. This comparison shows that our approach obtains
comparable decompositions to state-of-the-art off-line approaches [5,
39], but at real-time frame rates. Our decomposition quality improves
on Meka et al.’s real-time approach which does not consider user input,
especially in regions with high texture variation, such as the logo on
the shirt (see inset in Fig. 7). Additional user constraints clearly help to
resolve the inherent ambiguities of the intrinsic decomposition problem.
Unlike existing methods, our approach works best with RGB-D video
streams, as strokes are placed directly on 3D geometry and can be
projected to novel views of the scene for initializing them. Since our
approach runs live, the user can reexamine the decomposition result at
any time, and place additional strokes if required.

8 INTERACTIVE APPLICATIONS

Our method enables a wide variety of interactive applications. In the
following, we show several examples, such as photorealistic recoloring,
material editing and geometry-based relighting.

Photorealistic Recoloring and Material Editing We support
interactive and intuitive recoloring and material editing of real-world
objects. Using the presented color-based volumetric segmentation strat-
egy, the complete geometry of the object that should be modi�ed is
�rst segmented. Since the segmentation is computed in 3D, we can
segment the entire object, even if it is not completely visible from the
current view. The selected 3D geometry is projected to novel views to
obtain the 2D mask that is later on used to modify the appearance of
the object. For recoloring, we replace an object’s color in the computed
re�ectance map of the current frame’s decomposition by a user-de�ned
color. For material editing, we apply a tone-mapping �lter (as used by
Ye et al. [39]) on the shading layer within the mask region. The modi-
�ed layer is then recombined with the other intrinsic layer to obtain the
�nal output, see Fig. 9. By simply touching an object, the user can also
choose to pick up a color from the environment. This color can then be
used to recolor other objects, as illustrated in Fig. 10. Instead of modi-
fying the re�ectance layer, we can also apply a tone-mapping function
to the shading layer to change the appearance of an arbitrary object’s
material. This enables us for example to manipulate the appearance of
a plaster cast such that it looks like metal, see Fig. 12.



Input Image Ye et al. [39] Bonneel et al. [5] Meka et al. [25] Our Result

Re�ectance

Shading

Fig. 7. Comparison to state-of-the-art intrinsic video decomposition techniques on the ‘girl’ dataset. Our approach matches the real-time performance
of Meka et al. [25], while achieving the same quality as previous off-line techniques [5,39] (see zooms).

Fig. 11. Dynamic geometry-based relighting. A virtual shading image is generated by rendering the scene geometry under a new light source. The
resulting shading map is blended with the shading layer before recombining it with the re�ectance to obtain a relighting effect.

Input RGB frame Recolored re�ectance map Recoloring result

Color Pick-up

First Touch

Second Touch

Result

Fig. 10. Interactive object recoloring. The re�ectance of the light green
chair is �rst picked up, and then transferred to the blue chair while
preserving its brightness.

Fig. 12. We modify the shading layer to convert plaster to metal.

Geometry-Based Relighting In addition to modi�cations of the
re�ectance layer, we also present geometry-based relighting via modi�-
cation of the shading layer. To this end, the user can place virtual light
sources in the scene, which interact with it. We use the reconstructed
3D geometry in conjunction with the virtual light sources to generate a
new shading image. The scene geometry is extracted using ray march-
ing, and the synthetic shading map is computed by a fragment shader.
We blend the shading layer of our decomposition with the synthesized
shading map, then recombine the new shading layer with the re�ectance
map to obtain a compelling relighting effect, as shown in Fig. 11.

9 LIMITATIONS

We demonstrated that high-quality user-guided live intrinsic decompo-
sition enables new scene modi�cation applications. Still, our approach
has a few limitations. The geometric model of the scene is currently
obtained beforehand in a pre-process, since it is required as the ba-
sis for foreground/background segmentation. In the future, alternative
segmentation strategies can be developed.

Our approach can only improve the decomposition quality of static
scene geometry, since the user constraints are placed in 3D, and tracked
based on a rigidly reconstructed scene model. Tracking dynamic time-
dependent motion of non-rigidly deforming surfaces to also add and
propagate constraints in such regions can be further investigated.

The improvement in decomposition quality via user constraints is of
local nature, since the placed strokes only in�uence the decomposition
result in a small surrounding neighborhood. Therefore, similar to other
stroke-based approaches, a lot of such constraints might be required
to completely correct an initially very erroneous decomposition result.
Fortunately, this is rarely the case and constraints are only required to
deal with the highly textured regions of the scene.

Our simple touch-based interaction strategy sometimes leads to
erroneous detections; more robust touch detection strategies are left for
future work. Constraint propagation based only on color and spatial
proximity can lead to suboptimal segmentation results. This could be
alleviated by the integration of a more sophisticated adaptive semantic
segmentation strategy, such as SemanticPaint [36].



Similar to other intrinsic decomposition approaches that rely on
user interaction, our approach assumes that the constraints provided
by the user are correct. If the user provides implausible constraints,
e.g. paints a constant re�ectance stroke across a highly textured region,
the optimization will blindly try to satisfy these incorrect constraints
thus leading to unrealistic results. Guiding the user and providing some
feedback regarding the satis�ability of the provided constraints is a
challenging, but interesting, problem for future work.

Finally, our approach is computationally quite demanding and cur-
rently requires a state-of-the-art graphics card to achieve real-time per-
formance. A robust, mobile and lightweight solution to the presented
problem can be an enabling technology for AR devices.

10 CONCLUSION

We presented a novel real-time approach for user-guided intrinsic de-
composition of static scenes. Users can improve the decomposition
quality based on live mouse input or an intuitive touch-based interac-
tion metaphor that allows to place decomposition constraints directly
in 3D space. The constraints are projected to 2D and used to further
constrain the ill-posed intrinsic decomposition problem. We also use
the dense reconstruction as a proxy to fuse the obtained re�ectance
estimates. Our novel stabilization term applies constraints based on
the projected fused re�ectance estimates leading to temporally more
coherent decomposition results. The intrinsic decompositions obtained
by our approach show state-of-the-art quality at real-time frame rates.
In addition, we demonstrated video editing tasks such as recoloring,
relighting and material editing based on the obtained decompositions.

We believe that the presented live setup is the foundation for many
augmented reality applications, such as virtual refurnishing, which
would allow the user to explore different color and design choices for
real-world objects directly in their living room.
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