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Stress dependent local oxidation of silicon

J.D. Evans ∗ and J.R. King †

October 19, 2017

Abstract

The two-dimensional isolation oxidation of silicon is considered for stress dependent reaction and diffusion
coefficients. The influence of such parameters is investigated numerically and asymptotically in the bird’s beak
problem and for curved geometries arising in the oxidation of cylindrical and spherical structures. In the bird’s
beak problem, the limit of large activation volume is described for a stress dependent reaction coefficient,
illustrating the significant growth retardation of the silicon/silicon oxide interface and reduced stresses in the
silicon oxide. Novel high order nonlinear evolution type PDEs are derived and investigated using asymptotic
and numerical techniques.
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1 Introduction

The local oxidation of silicon (LOCOS) is a well-studied process (first reported by Appels et al. [4]) in which
oxide is selectively grown on part of a silicon wafer during the fabrication of an integrated circuit. This selective
oxidation is achieved by masking the parts of the silicon surface where devices will be formed with silicon nitride.
Growth of oxide (known as the field oxide) then occurs by the thermal oxidation of the unmasked silicon, the
nitride being impervious to oxidant. Before the deposition of the nitride mask, a thin oxide (known as the pad
oxide) is grown on the silicon in order to reduce the stresses that result from, in particular, the different thermal
expansion coefficients of the silicon and the nitride. Since oxidant is able to diffuse laterally under the mask
through the pad oxide, the resulting oxide has a characteristic shape known as a ‘bird’s beak’. An alternative
isolation technique to LOCOS is trench isolation, particularly for sub-0.5µm devices. Here a trench is etched
into the silicon substrate and subsequently oxidised and then filled with oxide [36, 6].

However, stress effects in silicon oxidation have been suspected since Marcus and Sheng [25] observed oxida-
tion rate retardation around convex and concave corners of silicon trenches. These effects were clarified through
experiment by Kao et al. [16, 17] in which the oxidation of concave and convex cylindrical structures were
measured. The quantified stress effects were incorporated into the oxidation model through stress-dependent
parameters, the key ones being the silicon/oxide surface reaction rate k̄s, the oxidant diffusivity in the oxide D̄s,
the equilibrium oxidant concentration c̄∗s and the oxide viscosity µ̄s. These were originally suggested by Kao et
al. [17] for the cylindrical geometries and subsequently used by other authors (for example, [34, 39, 40]) in mod-
elling LOCOS and trench oxidation. Recent applications include the oxidation of silicon nanostructures, such
as Si nanowires (SiNW), Si nanocrystals and Si nanotrenches [7, 33, 28, 19]. Stress effects and understanding
retarded oxidation rates are now even more pressing as dimensions are substantially smaller [1, 12, 13, 23, 14, 15].

In this work, we propose to investigate the effect of stress-dependent parameters on the higher-dimensional
generalisation of the classical Deal-Grove model for silicon oxidation [9] in both cylindrical structures and the
LOCOS process. Attention will be focused upon the effect of the stress-dependent reaction coefficient, which
will be taken to depend upon the normal stress acting on the Si/SiO2 interface. This dependence is taken in
the form

k̄s =

{
k̄0exp

(
Vk
kT
σ̄nn

)
, if σ̄nn ≤ 0,

k̄0, if σ̄nn > 0,
(1.1)

in accordance with [40, 34, 32]. Here, k̄0 is the stress free value of k̄s, k is Boltzman’s constant, T is temperature,
Vk being the so-called ‘reaction jump or activation volume’ and σ̄nn is the normal stress exerted on the oxide
by the silicon at the silicon/oxide interface. In the original work of [17], Vk = 25Å3 is taken as the difference
between the molecular volume of SiO2 and atomic volume of Si, so that the product Vkσnn gives the additional
work carried out by the expanding new oxide and is added to the activation energy. In [34], half the value
Vk = 12.5Å3 is taken, the authors arguing that only one bridging oxygen atom is placed between each broken
Si-Si bond.
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Kao et al. [17] also refer to early work on high-pressure effects (see [5] and [27]) to suggest that the oxi-
dant diffusivity and equilibrium concentration (i.e. oxidant solubility) are decreased under high pressure. The
proposed empirical forms are

D̄s =

{
D0exp

(
− Vd
kT
p̄
)
, if p̄ ≥ 0,

D0, if p̄ < 0,
c̄∗s =

{
c∗0exp

(
− Vc
kT
p̄
)
, if p̄ ≥ 0,

c∗0, if p̄ < 0,
(1.2)

where D0 and c∗0 are the stress free values, p̄ denotes the pressure in the oxide, Vd and Vc are the diffusion and
solubility activation volumes. The temperature dependence of the solubility coefficient is questionnable (see [9])
and has a weaker dependence on the oxide stress than either the reaction or diffusion coefficients. It is argued
in [34] that it should be treated as constant. It is worth remarking that all the activation volumes Vk, Vd, Vc are
usually treated as fitting parameters by various authors and determined from experimental data of the oxidation
of concave and convex silicon structures e.g. [39, 34]. The diffusion activation volume Vd is particularly difficult
to obtain a consistent temperature-independent value from experimental data. For this reason it was discarded
in the original work of [17], whilst in [34] a cut off value is introduced for it. The numerical simulations of [39]
suggest it may influence the oxidation of concave corners, but not convex corners. A first-principles study for
the variation of the O2 diffusion coefficient at a microscopic level and its retardation under pressure is given
in [2], which supports the use of the form above in (1.2). A similar investigation for the reaction coefficient is
given in [3]. As such, it seems that the principle of macroscopic work appears plausible in applicability to the
reaction on an atomic scale.

In regard to the oxide viscosity, [17], Seidl et al. [30] and [39] assume a simple exponential pressure depen-
dence,

µ̄s =

{
µ0exp(ᾱv p̄), if p̄ ≤ 0,
µ0, if p̄ > 0,

(1.3)

where µ0 is the stress free value and ᾱv is an empirical parameter. Typical values for these parameters over a
range of temperatures are given in [17]. In [34], it is argued that the shear-stress is a more important factor
than pressure in determining the oxide’s viscosity. Consequently the authors adopt a functional form for shear-
stress-dependent oxide viscosity based on Eyring’s nonlinear flow model (see also [32]). However, as remarked
by King [20], an analysis of the relevant models shows that the behaviour typically depends much more strongly
on the oxidant transport model than on the flow model. Furthermore, since little empirical evidence is available
to guide the choice of constitutive relation for the oxide (although [37, 38] and [32] have tried to address this
issue), the added complexity introduced by a stress-dependent viscosity is unnecessary at this stage. This is
further supported by [39], who found that the viscosity form (1.3) had little effect on the altering oxide thickness
at corners.

In summary, our main focus will be on the stress-dependent reaction and diffusion coefficients, there being
more certainty in regards to their modelling and physical basis for stress variation. Although we retain a pressure
dependent diffusion coefficient, we only quantify its effects in cylindrical geometries, where it is known to play
a role. The other parameters of solubility and viscosity will be treated as constant. It is worth explicitly stating
that the elastic deformation time-scale during new oxide creation is far shorter than the subsequent viscous flow
deformation and oxidant diffusion. This is due to the fast nature of the oxide reaction and thus we neglect such
elastic effects. Treatment of the oxide as viscoelastic (or even elastic at lower temperatures) requires specifying
the stress for new oxide formation and will thus include the neglected elastic effects. However, these more
complicated constitutive models will be pursued elsewhere.

The model equations for the two-dimensional LOCOS problem are discussed in detail in [21, 22] and form
a moving boundary problem. Important goals of the modelling are to determine conditions that minimize both
the lateral extent of oxidation (the length of the bird’s beak) and the oxidation-induced stresses. Here then, we
shall consider the effect of a stress-dependent reaction coefficient on the development of the moving boundaries.
The model takes the oxidant diffusion to be quasi-steady, since the diffusion time-scale is far smaller than that
associated with the movement of the Si/SiO2 interface from the reaction. The oxide is treated as a highly viscous
incompressible Newtonian fluid, satisfying the slow flow equations with inertia neglected. The nitride mask is
treated as a light plate or elastica, with bending rigidity but negligible mass and silicon is treated as rigid and
impervious to the oxidant. The relevant geometry is illustrated in Fig. 1. A key aspect of the process is that
the oxide occupies γ ≈ 2.27 times the volume of silicon from which it was formed. It is this volume expansion
which drives the flow of the oxide. Following [21] and modifying for stress-dependent parameters, the resulting
non-dimensional model for the oxidant concentration c(x, y, t) is

∂

∂x

(
Ds

∂c

∂x

)
+

∂

∂y

(
Ds

∂c

∂y

)
= 0,
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Figure 1: Schematic illustration of the bird’s beak geometry. The dashed lines indicate the edges of the initial pad
oxide.

on y = −f Ds
∂c

∂n
= −ks c, γ

∂f

∂t
= Ds

(
∂c

∂y
+
∂f

∂x

∂c

∂x

)
,

on y = h Ds
∂c

∂n
= H(1− c),

on y = η
∂c

∂n
= 0,

as x→ −∞ ∂c

∂x
→ 0,

as x→ +∞ c→ 0, f → 0, η → 1,

at t = 0 f = 0, η = 1, h = 1, (1.4)

whilst that for the flow problem is

µs

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
= − ∂2A

∂x∂y
,

∂2A

∂y2
− ∂2A

∂x2
= 4µs

∂2ψ

∂x∂y
, p = −1

2
∇2A,

on y = −f ∂ψ

∂n
= 0,

∂ψ

∂s
= (γ − 1)

∂f

∂t

(
1 +

(
∂f

∂x

)2
)−1/2

,

on y = η
∂ψ

∂n
= 0, A = −F ∗ ∂

2η

∂x2

(
1 +

(
∂η

∂x

)2
)−3/2

,
∂η

∂t
= −

(
∂ψ

∂x
+
∂η

∂x

∂ψ

∂y

)
,

on y = h A =
∂A

∂n
= 0,

∂h

∂t
= −

(
∂ψ

∂x
+
∂h

∂x

∂ψ

∂y

)
,

as x→ −∞ A→ 0,
∂ψ

∂y
→ 0,

as x→ +∞ A→ β(t)(y − 1), ψ → 0. (1.5)

All lengths have been made dimensionless with the initial pad oxide thickness a. Here, ψ and A are the stream
function and Airy stress function of the oxide, with the latter being a convenient representation for the inertialess
momentum equation. The coupled relationships in (1.5) follow from the constitutive equation of a Newtonian
viscous fluid and retained in this form for a dimensionless viscosity function µs. In the constant viscosity
case µs = 1, decoupling the equations gives rise to the biharmonic equation for both variables. In (1.4) and
(1.5), y = −f(x, t) is the oxide/silicon interface, y = h(x, t) is the oxide/gas interface and y = η(x, t) is the
oxide/nitride interface. All three interfaces must be determined as part of the solution as does the far-field
function β(t) in the Airy stress function. The constants H and F ∗ are the non-dimensional gas phase transport
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T 0C k̄0 (cm/s) D0 (cm2/s) c∗0 (cm−3) µ0 (poise) µ0D0/λa
2 (Pa) k0 αk

800
(dry)
(wet)

3.61 × 10−5

1.89 × 10−6
9.00 × 10−10

1.87 × 10−10
5.2 × 1016

3.0 × 1019
1.0 × 1015

1.0 × 1015
8.51 × 1011

5.09 × 1013
2.01 × 10−4

5.05 × 10−5
14
859

900
(dry)
(wet)

2.07 × 10−4

1.16 × 10−5
2.65 × 10−9

3.89 × 10−10
5.2 × 1016

3.0 × 1019
3.0 × 1014

3.0 × 1014
7.52 × 1011

3.18 × 1013
3.91 × 10−4

1.49 × 10−4
11
490

1000
(dry)
(wet)

8.53 × 10−4

5.30 × 10−5
6.58 × 10−9

7.21 × 10−10
5.2 × 1016

3.0 × 1019
3.0 × 1013

3.0 × 1013
1.87 × 1010

5.89 × 1012
6.48 × 10−4

3.68 × 10−4
2.7
84

1100
(dry)
(wet)

3.61 × 10−3

1.94 × 10−4
1.43 × 10−8

1.22 × 10−9
5.2 × 1016

3.0 × 1019
6.0 × 1012

6.0 × 1012
8.11 × 1010

1.99 × 1012
1.26 × 10−3

7.99 × 10−4
1
26

1200
(dry)
(wet)

1.32 × 10−2

5.87 × 10−4
3.53 × 10−8

2.29 × 10−9
5.2 × 1016

3.0 × 1019
6.0 × 1011

6.0 × 1011
2.00 × 1010

3.74 × 1011
1.87 × 10−3

1.28 × 10−3
2.5
46

Table 1: Selected parameter values for dry and wet oxidation over a range of processing temperatures taken from
[17, 42]. Calculated are the stress scaling as well as the non-dimensional stress-free reaction coefficient and activation
volume. A representative pad-oxide thickness of a = 50Å has been used together with λ as given in the text.

coefficient and nitride rigidity. The non-dimensional stress dependent reaction and diffusion coefficients ks, Ds
take the form,

ks =

{
k0exp (αkσnn) , if σnn ≤ 0,
k0, if σnn > 0,

Ds =

{
exp(−αdp), if p ≥ 0,
1, if p < 0,

(1.6)

where k0 is the dimensionless stress free reaction coefficient and the dimensionless activation parameters αk, αd
are defined as

k0 =
ak̄0

D0
, αk =

Vkµ0D0

kTλa2
, αd =

Vd
Vk
αk. (1.7)

Here µ0D0/λa
2 is the characteristic stress scaling with a denoting the initial pad oxide thickness, λ = N/c∗0γ

and N being the number of oxidant molecules which react with a unit volume of silicon. Oxidation may take
place using oxygen (dry) or steam (wet), the chemical reaction being different for each oxidant (see [35]). We
have

N =

{
5× 1022 (dry),
10× 1022 (wet),

λ =

{
4.23× 105 (dry),
1.47× 103 (wet),

using values for N from [35] and the equilibrium concentration c∗0 in Table 1 to determine the ratio λ. Table 1
then gives estimates of the characteristic stress scaling as well as the dimensionless stress free reaction coefficient
k0 and dimensionless reaction activation volume αk. Consequently we have the parameter ranges

10−3 ≤ k0 ≤ 10−6, 1 ≤ αk ≤ 103, (1.8)

suggesting that we are in the asymptotic regime of the reaction-controlled case (k0 � 1) with potentially large
activation volume αk ≥ O(1).The ratio Vd/Vk can vary between 4 and 8 (when extracted from experimental
data fitting [31]), suggesting that the diffusion coefficient is more sensitive to the oxide stress than is the reaction
coefficient. The normal stress σnn has the following expression,

σnn = −p+ 2µs(γ − 1)
∂f

∂t

∂2f

∂x2

(
1 +

(
∂f

∂x

)2
)−3/2

, (1.9)

which is derived in Appendix A. In a similar manner, we may calculate the components of the total force exerted
by the oxide on the nitride interface y = η(x, t). From [21], we have that∫ +∞

0

σnxds = −
[
∂A

∂y

]+∞

0

= −β(t),

∫ +∞

0

σnyds =

[
∂A

∂x

]+∞

0

= 0, (1.10)

where is s is the distance along the interface and n the outward normal from the oxide. As such we may interpret
β as representing the the total force exerted by the oxide on the nitride in the x-direction, whilst we note that
the total vertical force on the nitride is zero.

The layout of the paper is as follows. In Section 2 we consider the two-dimensional case of the bird’s beak
problem in the reaction-controlled limit. Using slowly-varying behaviour (due to the small aspect ratio geometry
under the nitride mask), a coupled system of PDEs is derived to describe the pressure in the oxide and growth
of the interfaces. The system is investigated numerically and in the asymptotic limit of large activation volume.
In Section 3, we discuss the oxidation of curved surfaces for cylindrical and spherical geometries, which aids
understanding and comparison of the effect of stress dependent parameters to experimental work. The viscosity
will be treated as constant µs = 1 from now on, although our derivation of (1.9) and the form of the oxide’s
slow flow equations, show that a varying viscosity function can easily be included.
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2 The bird’s beak problem: reaction-controlled case

In this section, we discuss the case of reaction-controlled oxidation, concerning ourselves with the behaviour of
the oxide beneath the nitride mask. We state the leading order problem describing the slowly-varying behaviour
under the mask for the most complicated coupling between the concentration and flow problems. The method
of derivation closely follows the stress independent case discussed in [22], so much of the detail is omitted. The
stress-independent case is given by taking αk = 0 in the analysis below.

The limit k0 → 0, corresponds to the reaction controlled case in which the oxidation reaction at the Si/SiO2

interface is the rate-limiting step. We introduce the scalings

k0 = ε2 κ0, τ = ε2 t, (2.1)

where ε � 1 and κ0 = O(1). Table 1 gives estimates of ε from 10−1 to 10−3 and which will be even smaller
for thinner pad oxides. Two regions need to be considered, namely that near the mask edge in which x = O(1)
and a slowly-varying region far under the mask where x = O(ε−1). In the mask edge region, stresses and flow
are smaller than under the mask (see [22]) i.e. p = O(ε) and consequently we may use the one-dimensional
stress-independent solution for the oxidant concentration and growth of the Si/SiO2 interface, namely

c ∼ 1, f ∼ κ0

γ
τ, (2.2)

We are thus within the linear growth regime of the Deal-Grove solution [9]. The oxidation process ceases to be
reaction controlled when τ = O(ε−2), when the quadratic correction terms for the Si/SiO2 interface growth are
no longer small compared to the leading order linear growth term. Although the nitride is assumed inextensible,
the edge of the nitride during its bending may be taken at x = 0 since its variation is O(ε) and thus small (see
[21]).

Under the mask, we introduce the slowly varying x variable

X = ε x,

where X > 0 and now consider the region X = O(1). In the limit ε→ 0, the concentration problem leads to the
expansions

f ∼ f0(X, τ), η ∼ η0(X, τ), c ∼ γ

κs0

∂f0

∂τ
, p ∼ p0(X, τ),

in X = O(1), X > 0, where f0 is governed by

∂f0

∂τ
=

∂

∂X

(
(η0 + f0)Ds0(p0)

∂

∂X

(
1

κs0(p0)

∂f0

∂τ

))
, (2.3)

with

κs0(p0) =

{
κ0e
−αkp0 , if p0 > 0,

κ0, if p0 ≤ 0,
Ds0 =

{
e−αdp0 , if p0 > 0,
1, if p0 ≤ 0.

(2.4)

Here p0(X, τ) is the leading-order pressure in the oxide, which is given below in (2.8). Since (2.2) hold in
x = O(1) i.e. X = O(ε), we have the following boundary condition from matching at the mask edge,

at X = 0 f0 =
κ0

γ
τ, (2.5)

together with the far-field condition
as X → +∞ f0 → 0 (2.6)

and the initial condition
at τ = 0 f0 = 0. (2.7)

This then brings us to the flow problem which depends on the rigidity of the nitride. The most complicated
balance (i.e. the distinguished limit) is given by

F ∗ = Rε−4,

where R = O(1). The normal stresses are O(1) within the oxide and thus have a significant effect on the reaction
and diffusion coefficients. We have at leading order

σ11 =
∂2A

∂x2
, σ22 =

∂2A

∂y2
∼ −R∂

4η0

∂X4
, σ12 = − ∂2A

∂x∂y
∼ εR∂

5η0

∂X5

(
y − 1

2
(η0 − f0)

)
, p ∼ p0 = R

∂4η0

∂X4
, (2.8)

on using similar expansions to those in section 2.2 of [22], which give the normal and shear stresses, as well as
the pressure. The leading order equations for the motion of the interfaces are then completed by the lubrication
equation

∂η0

∂τ
− (γ − 1)

∂f0

∂τ
=
R

12

∂

∂X

(
(η0 + f0)3 ∂

5η0

∂X5

)
, (2.9)
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together with the boundary conditions (after matching into x = O(1)),

at X = 0
∂2η0

∂X2
=
∂3η0

∂X3
=
∂4η0

∂X4
= 0, (2.10)

as X → +∞ η0 → 1, (2.11)

at τ = 0 η0 = 1. (2.12)

We remark that the third condition in (2.10) when used in (2.8), is consistent with the pressure being small in
the mask edge region. The expression for the leading order pressure is as expected from Euler-Bernoulli beam
theory for an elastica and its independence of depth consistent with lubrication theory.

The complete system is now given by (2.3)–(2.7) together with (2.9)–(2.12). We remark that the pressure
p = O(1) in X = O(1) and is substantially smaller p = O(ε) in the mask edge region X = O(ε) (as stated earlier).
Thus stress-independent growth is appropriate for the mask edge condition in (2.5) if αk = o(1/ε). However, if
αk = O(1/ε), then stress-dependent growth becomes appropriate at the mask edge and the matching conditions
(2.5) and (2.10) require modification. Table 1 suggests that both activation volume regimes are appropriate.
We consider first, numerical solution of the system appropriate to αk = o(1/ε), before addressing the large
activation volume asymptotics relevant to αk = O(1/ε) case.

2.1 Numerical results

Numerical solution of the system (2.3)–(2.7), (2.9)–(2.12) was obtained using COMSOL Multiphysics. The
system can be written in terms of second-order equations using the dependent variables u1 = f0, u2 = η0, u3 =
γf0τ/κs0, u4 = η0XX , u5 = p0, so that the governing equations take the form

∂u1

∂τ
− κs0

γ
u3 = 0,

∂u2

∂τ
−
(
γ − 1

γ

)
κs0u3 −

∂

∂X

(
(u1 + u2)3

12

∂u5

∂X

)
= 0,

− ∂

∂X

(
(u1 + u2)Ds0

∂u3

∂X

)
+ κs0u3 = 0, −∂

2u2

∂X2
+ u4 = 0, −R∂

2u4

∂X2
+ u5 = 0.

These were then implemented in the PDE, Coefficient Form Application Mode using the Time-Dependent
Analysis solver. The numerical spatial domain was taken as [0, 50] with 7680 equal length quadratic Lagrange
elements. Solver tolerances were set at Abs= 10−3, Rel= 10−2 with default BDF time-stepping and linear system
solver Direct (UMFPACK). Figures 2 and 3 illustrate the effect of the stress-dependent reaction coefficient on
the oxide interfaces −f0, η0 and the pressure p0 under the nitride mask. Model parameters used are given in
the figure legend. The stress-dependent reaction coefficient does not appear to have a discernable affect on
the pressure nor the interfaces until the larger values of the stress dependent parameter αk in Figure 3. The
oscillatory nature of the pressure is a consequence of the total vertical force on the nitride needing to be zero
from (1.10), and thus the stress-dependent reaction coefficient does not deviate uniformly from its stress-free
value with lateral distance under the mask. Added to which, the relatively small numerical values of the pressure
indicates that large values of αk are required before significant stress effects are noticeable. The pressure profiles
shown here, are qualitatively similar to the normal stress plots in [8] using full 2D LOCOS simulation software.
Large compressive stress peak is found near to the nitride mask edge and a large tensile peak further under it.

2.2 Large activation volume asymptotics

We consider here the large αk limit, corresponding to large activation volume for the reaction coefficient. Further,
we’ll address the the distinguished limit αk = O(1/ε), in which stress-dependent growth now occurs at the mask
edge as well as under far under the mask. Since p = O(ε) (we’ll take p = εP0 for definiteness) in the mask edge
region X = O(ε), the matching conditions (2.5) and (2.12) for the X = O(1) problem require modification to

at X = 0 f0 =
κ̂s0(P0)

γ
τ,

∂2η0

∂X2
=
∂3η0

∂X3
= 0,

∂4η0

∂X4
=

P0

Rαk
(2.13)

where

κ̂s0(P0) =

{
κ0e
−P0 , if P0 > 0,

κ0, if P0 ≤ 0.
(2.14)

Here P0 is prescribed e.g. from the one-dimensional solution of the field-oxide growth and although can be
time-varying, we will take it to be constant. The fourth condition in (2.13) is the pressure matching condition
p0 ∼ P0/αk as X → 0.

The large αk limit gives a three-region structure, where we will need to consider an outer region X = O(α
1
4
k )

in which a moving front X = S(τ) arises where the Si/SiO2 interface vanishes, an inner region of width α
− 1

4
k

6



FIG1S.pdf

Figure 2: Effect of a stress-dependent reaction coefficient for moderate αk. Plotted are the interfaces −f0, η0 and the pressure
p0 at selected times for the three values αk = 0, 1, 10. The other model parameter values being R = 1, κ0 = 1, γ = 2.27, Ds0 =
1.
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FIG2Sb.pdf

Figure 3: Effect of a stress-dependent reaction coefficient for large values of αk. Plotted are the interfaces −f0, η0, the
pressure p0 at selected times for large values αk = 100 and 1000. The other model parameter values being R = 1, κ0 = 1, γ =
2.27, Ds0 = 1.

about the moving front and finally a region ahead of this front where the Si/SiO2 interface is exponentially
small. For convenience, we introduce the the variable

u =
∂2η0

∂X2
, (2.15)

where p0 = RuXX . We first introduce the scalings

X = α
1
4
k X̂, τ = α

1
2
k τ̂ , f0 = α

1
2
k f̂ , η0 = η̂, u =

û

α
1
2
k

, p0 =
1

αk
p̂, (2.16)

into the system (2.3)–(2.7), (2.9)–(2.12) with modification (2.13) to obtain

∂f̂

∂τ̂
=

∂

∂X̂

 η̂

α
1
2
k

+ f̂

 ∂

∂X̂

(
1

κs0(p̂)

∂f̂

∂τ̂

) ,
1

α
1
2
k

∂η̂

∂τ̂
− (γ − 1)

∂f̂

∂τ̂
=
R

12

∂

∂X̂

 η̂

α
1
2
k

+ f̂

3

∂3û

∂X̂3

 , (2.17)

at X̂ = 0 f̂ =
κs0(P0)

γ
τ̂ , û =

∂û

∂X̂
= 0,

∂2û

∂X̂2
=
P0

R
, (2.18)

as X̂ → +∞ f̂ → 0, η̂ → 1, (2.19)

at τ̂ = 0 f̂ = 0, η̂ = 1, (2.20)

with û = η̂X̂X̂ , p̂ = Rη̂X̂X̂X̂X̂ = RûX̂X̂ , and κs0 as defined in (2.14) for argument p̂ as well.

In the outer region X̂ = O(1) we pose

f̂ = f̂0 + o(α
− 1

4
k ), û = û0 + o(1), p̂ = p̂0 + o(1),
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with the form of the expansion for η̂ being determined later after consideration of the inner and third regions.
We focus here on the main time-scale τ̂ = O(1), with consideration of earlier times needed to incorporate initial
conditions for the nitride mask. At leading order we have

∂f̂0

∂τ̂
=

∂

∂X̂

(
f̂0

∂

∂X̂

(
1

κs0(p̂0)

∂f̂0

∂τ̂

))
, −(γ − 1)

∂f̂0

∂τ̂
=
R

12

∂

∂X̂

(
f̂3

0
∂3û0

∂X̂3

)
, (2.21)

at X̂ = 0 f̂0 =
κs0(P0)

γ
τ̂ , û0 =

∂û0

∂X̂
= 0,

∂2û0

∂X̂2
=
P0

R
, (2.22)

as X̂ → +∞ f̂0 → 0, (2.23)

at τ̂ = 0 f̂0 = 0, (2.24)

and p̂0 = Rû0X̂X̂ . In passing, it is worth remarking that when κs0 is a constant then this system possesses a
similarity solution in the form

f̂0 =


κs0τ̂

γ

(
1− X̂

Ŝ(τ̂)

)2

, X̂ < Ŝ(τ̂),

0, X̂ > Ŝ(τ̂),

(2.25)

and for X̂ < Ŝ(τ̂),

p̂0 = P0 +
4γ(γ − 1)

κ2
s0τ̂

2

((
1− X̂

Ŝ(τ̂)

)−3

− 1

)
, û0 =

P0

2R
X̂2 +

4(γ − 1)

Rκ2
s0τ̂

 ( X̂

Ŝ(τ̂)
)3(

1− X̂

Ŝ(τ̂)

)
 , (2.26)

where

Ŝ(τ̂) =

√
2τ̂

γ
. (2.27)

However, of interest here is the case of non constant κs0, for which such an analytical solution is not available.
The system (2.21)–(2.24) still possesses a weak solution with the necessary smooth continuity conditions of f̂0

and f̂0X̂ vanishing at finite location X̂ = Ŝ(τ̂), but which now needs to be determined numerically. It is worth

remarking that the scaling η̂ = α
1
2
k η0 in (2.17)–(2.20) gives the original system (2.3)–(2.7), (2.9)–(2.10) (with

modification (2.13)) but with a scaled rigidity coefficient α
1
2
k R and initial, far-field conditions for the nitride

being
at τ = 0 η0 = δ, as X → +∞ η0 → δ, (2.28)

with δ = α
− 1

2
k in place of (2.11) and (2.12). Thus the large activation volume limit is equivalent to the αk = O(1)

activation volume problem but with large nitride rigidity and vanishingly thin initial pad-oxide. This scaled
equivalent formulation may be considered as a suitable regularisation of the leading outer problem (2.21)–(2.24)
and used accordingly to generate numerical solutions. Taking δ = 0.01, R/δ = 1 we may fit the leading term
of the expansion (2.42) for η0 (which is not fully determined until resolution of the inner and third regions)
to give an estimate of the moving front Ŝ(τ̂). The numerical solution has a least-squares fit Ŝ = aτ̂ b with
a = 1.38, b = 0.46, which compares with a = (2/γ)0.5 ≈ 0.94, b = 0.5 of the similarity solution.

In the inner region we write

X̂ = Ŝ(τ̂) +
z

α
1
4
k

, f̂ =
f̃

α
1
2
k

, η̂ = η̃, û = α
1
2
k ũ, p̂ = αkp̃, (2.29)

so that for z = O(1)

1

α
1
4
k

∂f̃

∂τ̂
− Ŝ′ ∂f̃

∂z
=

∂

∂z

(η̃ + f̃
) ∂

∂z

 1

κs0(p̃)

 1

α
1
4
k

∂f̃

∂τ̂
− Ŝ′ ∂f̃

∂z

 , (2.30)

1

α
1
2
k

(
∂η̃

∂τ̂
− (γ − 1)

∂f̃

∂z

)
− Ŝ′

α
1
4
k

(
∂η̃

∂z
− (γ − 1)

∂f̃

∂z

)
=
R

12

∂

∂z

((
η̃ + f̃

)3 ∂3ũ

∂z3

)
, (2.31)

where

Ŝ′ =
dŜ

dτ̂
, ũ =

∂2η̃

∂z2
, p̃ = R

∂2ũ

∂z2
, κs0(p̃) =

{
0, if p̃ > 0,
κ0, if p̃ ≤ 0.

(2.32)
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We pose

η̃ ∼ a0(τ̂) + α
− 1

20
k (a1(τ̂) + b1(τ̂)z) + α

− 2
20

k (a2(τ̂) + b2(τ̂)z) + α
− 3

20
k (a3(τ̂) + b3(τ̂)z)

+α
− 4

20
k (a4(τ̂) + b4(τ̂)z) + α

− 5
20

k M̃(z, τ̂),

ũ ∼ α−
1
4

k ũ0(z, τ̂), p̃ ∼ α−
1
4

k p̃0(z, τ̂), f̃ = f̃0 + o(1), (2.33)

with ũ0 = M̃zz and where the ai and bi are to be determined (the powers of α
− 1

20
k arising due to matching with

the third region, which is described next). We thus obtain

∂f̃0

∂z
=

∂

∂z

((
η̃0 + f̃0

) ∂

∂z

(
1

κs0(p̃0)

∂f̃0

∂z

))
, (γ − 1)

∂f̃0

∂z
=
R

12

∂

∂z

((
η̃0 + f̃0

)3 ∂3ũ0

∂z3

)
, (2.34)

with κs0(p̃0) as defined in (2.32).
In the third region we take

z = α
1
20
k ξ, ξ > 0, η̃ = q, ũ = α

− 1
10

k

∂2q

∂ξ2
, p̃ = α

− 1
5

k R
∂4q

∂ξ4
, (2.35)

with ξ > 0 or equivalently X̂ = Ŝ(τ̂) + α
− 1

5
k ξ. In ξ = O(1) we have f̂ exponentially small and

1

α
1
5
k

∂q

∂τ̂
− Ŝ′ ∂q

∂ξ
=
R

12

∂

∂ξ

(
q3 ∂

5q

∂ξ5

)
. (2.36)

Writing

q ∼ q0 +
1

α
1
20
k

q1,

we obtain the leading order problem

−Ŝ′ ∂q0
∂ξ

=
R

12

∂

∂ξ

(
q3
0
∂5q0
∂ξ5

)
, (2.37)

at ξ = 0
∂2q0
∂ξ2

=
∂3q0
∂ξ3

=
∂4q0
∂ξ4

= 0, (2.38)

as ξ → +∞ q0 = 1, (2.39)

where the conditions (2.38) follow from matching to (2.33). The solution is q0 = 1, and matching back into
z = O(1) gives a0 = 1, b1 = 0, limz→∞ ũ0zzz = 0. Consequently, we obtain in z = O(1),

∂

∂z

(
1

κs0(p̃0)

∂f̃0

∂z

)
=

f̃0

(1 + f̃0)
,

∂3ũ0

∂z3
=

12(γ − 1)Ŝ′

R

f̃0

(1 + f̃0)3
. (2.40)

We remark that we may obtain the following quadrature expression from (2.40),

∂2ũ0

∂z2
=

12(γ − 1)Ŝ′

R

∫ z

−∞

f̃0(z̃)

(1 + f̃0(z̃))3
dz̃,

which has the limiting behaviour as z → +∞

∂2ũ0

∂z2
→ 12(γ − 1)

R
S′C, where C =

∫ ∞
−∞

f̃0(z̃)

(1 + f̃0(z̃))3
dz̃

is a constant. The first order problem in ξ = O(1) is now

−Ŝ′ ∂q1
∂ξ
∼ R

12

∂

∂ξ

(
∂5q1
∂ξ5

)
,

at ξ = 0
∂2q1
∂ξ2

=
∂3q1
∂ξ3

= 0,
∂4q1
∂ξ4

=
12(γ − 1)

R
S′C,

as ξ → +∞ q1 = 0,

with solution

q1 =
(γ − 1)ωC

(cos(2π/5) + cos(π/5))

(
cos(π/5)e−ωξ + cos(ωξ sin(2π/5))e−ωξ cos(2π/5)

)
, ω =

(
12Ŝ′

R

) 1
5

. (2.41)

10



Matching back into z = O(1) gives

a1 =
(γ − 1)ωC(1 + cos(π/5))

(cos(2π/5) + cos(π/5))
, b1 = −(γ − 1)ω2C.

In the outer region X̂ = O(1) we finally have

η̂ ∼ α−
3
20

k

(
X̂ − Ŝ

)
b2(τ̂) + α

− 1
10

k

(
X̂ − Ŝ

)
b3(τ̂) + α

− 1
20

k

(
X̂ − Ŝ

)
b4(τ̂) +M(X̂, τ̂), (2.42)

where û = MX̂X̂ , which determines the expansion for η̂ in the X̂ = O(1) region.
We may summarise the main regions with the pressure scalings as follows,

in X = O(α
1
4
k ) p = O(α−1

k ), in X = S(τ) +O(1) p = O(α
− 1

4
k ), in X = S(τ) +O(α

1
20
k ) p = O(α

− 1
4

k ),

where S(τ) = α
1
4
k Ŝ(τ/α

1
2
k ) is a moving front that marks the lateral extent of oxidation under the nitride mask.

This front is not obtained until significantly large times τ = O(α
1
2
k ) and follows a power-law behaviour in time,

not too different from the similarity solution (2.27) (for which S(τ) =
√

2τ/γ ). The largest pressures are

obtained at the front and ahead of it, the activation energy being large αkp = O(α
3
4
k ). The reaction is thus

switched off in the these regions where the pressure is positive and only retained where the pressure is negative.
The oscillatory nature of the pressure thus gives an on-off behaviour to the reaction with lateral extent under
the mask.

Before leaving the bird’s beak problem, we remark that the generalised lubrication equation (2.9) simplifies
in the limits of small and large rigidity. These limits are discussed briefly in Appendix B for the αk = o(1/ε)
case, giving rise to particular novel forms of nonlinear evolution equations.

3 Cylindrical and spherical oxidation

Oxidation of cylindrical and spherical structures are higher-dimensional situations in which quantitative effects
of stress-dependent parameters can be studied. Results in the stress independent cases for cylindrical geometries
have been obtained by King [20] and Wilson and Marcus [42]. The stress dependent case in a cylindrical geometry
was originally considered by Kao et al. [16], with both cylindrical and spherical cases considered in Evans [10].
Throughout we treat the silicon as rigid, though this assumption will of course cease to be valid if the stresses in
the silicon become too large. A pressure dependent diffusion coefficient will be retained throughout, to determine
its influence.

The non-dimensionalised governing equations that we consider are

∇.(Ds∇c) = 0, ∇.v = 0, 0 = −∇p+∇2v,

corresponding to quasi-steady diffusion of oxidant and the creeping flow equations for the oxide. In a structure
with cylindrical symmetry, introducing cylindrical polar coordinates (r, θ, z), leads (since a pressure dependent
diffusion coefficient Ds will be a function of time only) to the solutions

c = a1(t) ln r + a2(t), vr =
a3(t)

r
, vθ = 0, vz = 0,

where ai(t), i = 1, 2, 3 are functions to be determined. The stress components are consequently given by

σrr = −p− 2
a3(t)

r2
, σθθ = −p+ 2

a3(t)

r2
, σrθ = 0, p = p(t),

where p(t) is also to be determined. For structures with spherical symmetry, introducing spherical polar coor-
dinates (r, θ, φ), we have solutions of the form

c =
b1(t)

r
+ b2(t), vr =

b3(t)

r2
, vθ = 0, vφ = 0,

where the bi(t), i = 1, 2, 3 are functions to be determined. The stress components in this case are given by

σrr = −p− 4b3(t)

r3
, σθθ = σφφ = −p+

2b3(t)

r3
, σrθ = σrφ = σθφ = 0, p = p(t),

with p(t) again to be determined.
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3.1 Silicon cylinders and spheres

We consider first the oxidation of silicon cylinders and spheres as examples of convex structures. In both cases we
denote the Si/SiO2 interface by r = d(t) and the SiO2/gas by r = b(t), with initial values d(0) = d0 < b(0) = b0
at t = 0. The initial oxide thickness is used for nondimensionalising lengths, so that b0 = d0 + 1. The boundary
conditions we take are

on r = d Ds
∂c

∂r
= ksc, vr =

γ − 1

γ
Ds

∂c

∂r
, γḋ = −Ds

∂c

∂r
, (3.1)

on r = b Ds
∂c

∂r
= H(1− c), ḃ = vr, σrr = 0. (3.2)

In the cylindrical case we therefore obtain

c =
Hks bd ln(r/d) + HDsb

Hks db ln

(
b

d

)
+ HDsb + Dsksd

(3.3)

vr =

(
γ − 1

γ

)
Hks db

r

(
Hks db ln

(
b

d

)
+ HDsb + Dsksd

) , (3.4)

γḋ = − Hks b

Hks db ln b/d + HDsb + Dsksd
, (3.5)

ḃ =
γ − 1

γ

Hks d

Hks db ln

(
b

d

)
+ HDsb + Dsksd

, (3.6)

where (γ − 1)dḋ + bḃ = 0 and therefore

(γ − 1)d2 + b2 = (γ − 1)d2
0 + b20, (3.7)

as would be expected by conservation of mass. The stress components in the oxide are

σrr = 2bḃ

(
1

b2
− 1

r2

)
, σθθ = 2bḃ

(
1

b2
+

1

r2

)
, p = −2

ḃ

b
. (3.8)

We remark that the effect of the diffusion coefficient can be removed by suitable redefinition of the parameters ks
and H (the latter now becoming time-dependent). Further, since p < 0, the diffusion coefficient of dimensional
form (1.2) would take its stress free value Ds = 1 in such geometries and thus have no influence from the
stress-independent case. This is consistent with the findings of [39] at convex corners.

In the case of a constant reaction coefficient (ks = k0), (3.5) and (3.6) can be integrated to give

d

k0
− b

H(γ − 1)
− 1

2(γ − 1)
b2 ln b− 1

2
d2 ln d = − t

γ
+
d0

k0
− b0
H(γ − 1)

− 1

2(γ − 1)
b20 ln b0 −

1

2
d2

0 ln d0. (3.9)

The cylinder is thus completely oxidised (d = 0) at finite time t∗ given by

t∗

γ
=
d0

k0
− 1

2
d2

0 ln d0 +
(be − b0)

H(γ − 1)
+

1

2(γ − 1)

(
b2e ln be − b20 ln b0

)
, be =

(
(γ − 1)d2

0 + b20
) 1

2 , (3.10)

the solution being physically meaningless for t > t∗. In the limit of complete oxidation, we have

ḃ ∼ γ − 1

γ

k0d

b
as d→ 0,

which gives the prediction of unbounded stresses on the Si/SiO2 interface.
The stress-dependent case gives a qualitatively different behaviour. We have on the Si/SiO2 interface r = d

that

σnn = σrr(d) = 2bḃ

(
1

b2
− 1

d2

)
, (3.11)

and adopting the exponential dependence (1.6), then (3.5) gives the asymptotic behaviour

ḋ ∼ −k0

γ
exp

(
2(γ − 1)αk

ḋ

d

)
as d→ 0. (3.12)

This implies that the time for complete oxidation is no longer bounded with instead the hyper-exponential
large-time behaviour of the form

d ∼ e−B1e
t/(2(γ−1)αk)

as t→∞,
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CylOx.pdf

Figure 4: Geometry for oxidation of silicon cylinders/spheres and cavities.

for some positive constant B1, the build up of compressive stress thus leading to very slow oxidation at large
times. Numerical solution of (3.5)–(3.7) may be obtained using the implicit Matlab solver ode15i. Plots in Figure
5 illustrate the already remarked qualitative difference in behaviours that are obtained in the stress independent
and dependent cases of the reaction coefficient. Results for the evolution of the radii and their speed are shown
in Figure 5 for a representative case d0 = 10. Plots for the stress σrr(d) and pressure are similar to the ḋ and
ḃ curves in 5(A2). Further plots for a greater range of initial radii can be found in [10], which are qualitatively
similar. Figure 5 (B1) and (B2) quantify the effect of the reaction coefficient on the oxide thickness at the
stress-independent complete oxidation time t∗ from (3.10) and time to saturation (arbitrarily defined to be time
when d = 10−3) for different initial radii.

It is worth remarking that in the case of large initial radii, we recover the Deal-Grove solution, the surfaces
being planar at leading order. The details of the asymptotics in this case are given in Appendix B.

For spherical oxidation, we have the corresponding results

c =
Hb2

(Hksdb(b− d) + ksDsd2 +HDsb2)

(
Ds + ksd− ks

d2

r

)
, (3.13)

vr =

(
γ − 1

γ

)
Hksd

2b2

r2 (Hksdb(b− d) + ksDsd2 +HDsb2)
, (3.14)

γḋ = − Hks b
2

Hksdb(b− d) + ksDsd2 +HDsb2
, (3.15)

ḃ =

(
γ − 1

γ

)
Hks d

2

Hksdb(b− d) + ksDsd2 +HDsb2
, (3.16)

with
b3 + (γ − 1)d3 = b30 + (γ − 1)d3

0.

The stress components in the oxide are now

σrr = 4 b2ḃ

(
1

b3
− 1

r3

)
, σθθ = σφφ = 2b2ḃ

(
1

r3
− 2

b3

)
, p = −4

ḃ

b
, (3.17)

and again since p < 0 (due to ḃ > 0) the diffusion coefficient would take its stress free value Ds = 1.
In the stress-independent reaction coefficient case we have

d

k0
− b

H(γ − 1)
+

1

2
d2 +

b2

2(γ − 1)
= − t

γ
+
d0

k0
− b0
H(γ − 1)

+
1

2
d2

0 +
b20

2(γ − 1)
,
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FigCyl.pdf

Figure 5: Oxidation of a silicon cylinder. (A1) and (A2) show numerical solution for the evolution of the radii and their
speeds (ḃ > 0, ḋ < 0) in the particular case of initial radii d0 = 10, b0 = 11, obtained by solving (3.5)–(3.7) with Matlab
solver ode15i (error tolerances AbsTol= 10−6, RelTol= 10−3). Parameter values are γ = 2.27, k0 = 1, H = 1, Ds = 1 with
αk = 0 in the stress independent case and αk = 1, 10, 100, 1000 for the stress dependent case. (B1) and (B2) show the oxide
thickness at the stress-independent complete oxidation time t∗ and time to saturation (when d = 10−3) for different initial
radii d0.

with complete oxidation at finite time t∗ given by

t∗

γ
=
d0

k0
+

1

2
d2

0 +
(be − b0)

H(γ − 1)
+

(b20 − b2e)
2(γ − 1)

, be =
(
b30 + (γ − 1)d3

0

) 1
3 .

As in the cylindrical case, stresses on the Si/SiO2 interface become unbounded as complete oxidation is ap-
proached.

In the stress-dependent case, the normal stress on the Si/SiO2 boundary is

σnn = σrr(d) = 4b2ḃ

(
1

b3
− 1

d3

)
,

and we have the asymptotic behaviours

σnn ∼ 4(γ − 1)
ḋ

d
, p ∼ 4(γ − 1)

d2ḋ

(b30 + (γ − 1)d3
0)

as d→ 0.

Taking the exponential functional dependence (1.6), (3.15) gives

ḋ ∼ −k0

γ
exp

(
4(γ − 1)αk

ḋ

d

)
as d→ 0 (3.18)
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and the time for complete oxidation is now unbounded with the large-time behaviour

ln d ∼ −B2e
t/4(γ−1)αk as t→∞,

for some positive constant B2. It is noteworthy that the controlling asymptotic behaviour (3.18) is similar to
that in the cylindrical case (3.12) due to the similar dependence of the limiting behaviour of the normal stress
on the Si/SiO2 interface location in both geometries.

The results for oxidation inhibition of silicon in the stress-dependent spherical case, are in qualitative agree-
ment with experimentally observed results of Okada and Lijima [26], and may provide an explanation of the
types of silicon tips observed experimentally by Marcus and Sheng [25]. These results suggest that a stress-
dependent reaction coefficient will be important in regions of high curvature, particularly for convex structures,
with a stress-dependent diffusion coefficient being less so if it has a pressure dependence.

3.2 Silicon cavities

We now consider the oxidation of silicon cavities, as examples of concave structures. Again, we denote the
Si/SiO2 interface by r = d(t) and the SiO2/gas interface by r = b(t) with initial values d(0) = d0 > b(0) = b0,
b0 = d0 − 1 at t = 0. The boundary conditions are now

on r = d −Ds
∂c

∂r
= ksc, vr =

γ − 1

γ
Ds

∂c

∂r
, γḋ = −Ds

∂c

∂r
,

on r = b −Ds
∂c

∂r
= H(1− c), ḃ = vr, σrr = 0.

We remark that we may deduce the results from the convex case by changing the sign of H and ks in the results
of section 3.1.

In the cylindrical case we obtain

c =
Hksdb ln(r/d)−HDsb

Hksdb ln(b/d)−HDsb− ksDsd
, (3.19)

vr =

(
γ − 1

γ

)
Hksdb

r

(
Hksdb ln

(
b

d

)
−HDsb− ksDsd

) , (3.20)

γḋ = − Hksb

Hksdb ln

(
b

d

)
−HDsb− ksDsd

, (3.21)

ḃ =

(
γ − 1

γ

)
Hksd

Hksdb ln

(
b

d

)
−HDsb− ksDsd

, (3.22)

with
(γ − 1)d2 + b2 = (γ − 1)d2

0 + b20,

and the stress components are given in (3.8). Since p > 0 and σnn = σrr(d) < 0, then the stress dependent
reaction and diffusion coefficients are expected to vary from their stress free values.

In the stress-independent case we have

d

k0
− b

H(γ − 1)
+

1

2(γ − 1)
b2 ln b +

1

2
d2 ln d =

t

γ
+

d0

k0
− b0

H(γ − 1)
+

b20
2(γ − 1)

ln b0 +
1

2
d2

0 ln d0,

and the cavity becomes completely filled (b = 0) in finite time t = t∗c given by

t∗c
γ

=
(de − d0)

k0
+

1

2

(
d2
e ln de − d2

0 ln d0

)
+

b0
H(γ − 1)

− 1

2(γ − 1)
b20 ln b0, de =

(
d2

0 +
b20

γ − 1

) 1
2

.

As b → 0 the stresses σrr and σθθ become unbounded throughout the oxide, rather than just at the Si/SiO2

interface as in the silicon cylinder case.
We contrast this with the stress-dependent case, in which

σnn = σrr(d) ∼ 2
ḃ

b
, p ∼ −2

ḃ

b
as b→ 0.

Considering first, the effect of a stress-dependent reaction coefficient only (and taking Ds = 1), then (3.22) gives
the asymptotic behaviour

ḃ ∼ −γ − 1

γ

d

b
exp

(
2αk

ḃ

b

)
as b→ 0, (3.23)
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and thus, as in the convex case, complete filling of the cavity now occurs in unbounded time, with

ln b ∼ −B3e
t/2αk as t→∞,

for some positive constant B3. However, also allowing the diffusion coefficient to vary from its stress free value,
implies that complete filling of the cavity occurs in finite time where

b ln b ḃ ∼ γ − 1

γ
as b→ 0,

and thus

b2 ln b ∼ 2

(
γ − 1

γ

)
(tc − t) as t→ t−c , (3.24)

where tc is the time at which the cavity is filled. These two contrasting cases are illustrated numerically in
Figure 6. Numerical solution of (3.21)–(3.22) is again obtained using the implicit Matlab solver ode15i. Results
for the evolution of the oxide thickness are given in Figure 6(A1) and (A2) for a stress-dependent reaction
coefficient only. (A1) shows the slowing of growth of the oxide thickness as the activation volume increases
for a representative initial radius b0 = 10. (A2) gives the oxide thickness at the stress-independent complete
oxidation time t∗c for a range of initial radii. The reduction in oxide growth is significant for the larger αk
values. In contrast, 6(B1) and (B2) show the effect of both stress-dependent reaction and diffusion coefficients.
Complete oxidation time in the stress-dependent case is now finite, as predicted by (3.24). (B1) shows that
this reduces as the activation volume increases. This is mainly due to larger initial speeds of the radii as αk
increases. If stress-free initial speeds are used in the stress-dependent cases, then the finite oxidation times are
longer than in the stress-free case as would be expected. (B2) shows the variation of the saturation time tc with
a range of initial radii, for selected activation volumes.

For the spherical cavity case, qualitatively similar results are obtained. Expressions for the concentration
c, radial velocity vr and surface speeds can be deduced from the (3.13)–(3.16) in the spherical case by simply
changing the sign of H and ks in those expressions. The stress components are again as given in (3.17). Similar to
the cylindrical cavity case, have p > 0, σnn = σrr(d) < 0, indicating that both reaction and diffusion coefficients
will vary from their stress free value.

The stress-independent case gives

d

k0
− b

H(γ − 1)
− 1

2
d2 − b2

2(γ − 1)
=
t

γ
+
d0

k0
− b0
H(γ − 1)

− 1

2
d2

0 −
b20

2(γ − 1)
,

with complete filling of the spherical cavity (b = 0) in finite time t = t∗s given by

t∗s
γ

=
(de − d0)

k0
+

1

2
(d2

0 − d2
e) +

b0
H(γ − 1)

+
b20

2(γ − 1)
, de =

(
d3

0 +
b30

γ − 1

) 1
3

.

Since the stresses become unbounded throughout the oxide in these concave structures as the limit of complete
oxidation is reached, a stress-dependent diffusion coefficient would be expected to have comparable oxide-growth
retardation effects as the stress-dependent reaction coefficient.

In the stress-dependent case with constant diffusion coefficient (Ds ≡ 1), the time for the complete filling of
the spherical cavity is now unbounded with the behaviour,

b2ḃ ∼ −
(
γ − 1

γ

)
dk0exp

(
4αk

ḃ

b

)
as b→ 0,

and hence
ln b ∼ −B4e

3t/4αk as t→∞,
for some constant B4 > 0. If the diffusion coefficient is also allowed to vary from its stress free value as well,
then the spherical hole fills in finite time ts,

b2ḃ ∼ −
(
γ − 1

γ

)
as b→ 0,

and thus

b3 ∼ 3

(
γ − 1

γ

)
(ts − t) as t→ t−s ,

where ts is now the time at which the spherical cavity is filled.
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FigCavNew.pdf

Figure 6: Oxidation of a silicon cavity. Numerical solution of (3.21)–(3.22) with Matlab solver ode15i and error tolerances
AbsTol= 10−6, RelTol= 10−3. (A1) and (A2) consider a stress-dependent reaction coefficient only, whilst (B1) and (B2)
include the additional effect of a stress-dependent diffusion coefficient. Parameter values are γ = 2.27, k0 = 1, H = 1. In (A1)
and (A2) αd = 0, whilst for (B1) and (B2) αd = 4αk for use of Ds in (1.6). (A1) and (B1) show the growth of oxide thickness
for an initial starting radius of b0 = 10. (A2) gives the oxide thickness at the stress-independent complete oxidation time t∗c .
(B2) is the complete oxidation times tc for a range of initial radii.

4 Discussion

The main objectives in modelling the isolation oxidation of silicon is to predict the lateral extent of oxidation
under the nitride mask and the stresses within the silicon oxide. Both aspects become increasingly important
as device dimensions shrink deep into the submicron range. The results of Section 2 show the significant effect
that a stress dependent reaction coefficient has on reducing both the lateral extent of oxidation and the stresses
within the silicon oxide. The former feature allows a larger region to be available for active device location,
whilst the latter preserves crystal integrity of the silicon preventing dislocations from forming. Thus as packing
density of integrated circuits in VLSI technology increases, incorporation of stress dependent features in the
model are essential for software to give accurate predictions for use in process CAD.

An immediate extension of this work is to the consideration of 3D LOCOS structures. Three typical mask
structures worthy of investigation are the so called hole, island and line structures (see [41]). Again, the behaviour
of the bird’s beak length and oxide flow stresses are the key features to ascertain in understanding the three-
dimensional behaviour of the oxide growth. The effect at the corners of the nitride mask will be of particular
interest.

A future aspect of the modelling that needs addressing is that of consideration of a viscoelastic oxide. This
will increase the range of processing conditions for which the model can be used. However, there are several
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complications in developing a fully nonlinear flow model, the most significant being the continual creation of new
silicon oxide through the interface reaction, as well as choice of a suitable viscoelastic constitutive law. Finally,
we remark that the viscous flow model as presented here is valid for temperatures above 960o. Incorporating a
pressure-dependent viscosity of the form (1.3), modifies the generalised lubrication equation (2.9) to

∂η0

∂τ
− (γ − 1)

∂f0

∂τ
=
R

12

∂

∂X

(
(η0 + f0)3 1

µs

∂5η0

∂X5

)
,

with µs a dimensionless viscosity function of the leading order pressure p0 = Rη0XXXX . This equation is also
relevant if the oxide is treated as a power-law fluid, with µs now an appropriate power of the leading order
pressure gradient p0X = Rη0XXXXX .

Finally, it is worth remarking that the forms of the lubrication equation for small and large nitride rigidity
(see (B.25) and (B.28) in Appendix B) admit travelling wave solutions with varying speed in the stress inde-
pendent case [21, 22]. Examining if such solutions play a role for the stress-dependent forms of these equations,
particularly with more general mask edge conditions, is an aspect which merits further attention.
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Figure 7: Notation for the Si/SiO2 interface.

A Stress on the Si/SiO2 boundary in terms of the stream func-
tion.

The moving boundary y = −f(x, t) (or n = 0) is denoted by the plane curve r = r(s, t) ≡ (x(s, t), y(s, t)) where
y(s, t) = −f(x(s, t), t) and s is arc length. We let t and n be the tangential and normal vectors respectively, as
shown in Figure 7. If θ is the angle that t makes with the horizontal then

t = (− cos θ,− sin θ), n = (sin θ,− cos θ),

and on n = 0
∂x

∂s
= − cos θ,

∂y

∂s
= − sin θ,

∂x

∂n
= sin θ,

∂y

∂n
= − cos θ,

∂2x

∂s2
= sin θ

∂θ

∂s
,

∂2y

∂s2
= − cos θ

∂θ

∂s
,

∂2x

∂s∂n
= cos θ

∂θ

∂s
,

∂2y

∂s∂n
= sin θ

∂θ

∂s
.

The chain rule gives

∂ψ

∂s
= − cos θ

∂ψ

∂x
− sin θ

∂ψ

∂y
,

∂ψ

∂n
= sin θ

∂ψ

∂x
− cos θ

∂ψ

∂y
,

∂2ψ

∂s∂n
= cos θ

∂θ

∂s

∂ψ

∂x
+ sin θ

∂θ

∂s

∂ψ

∂y
− sin θ cos θ

∂2ψ

∂x2
+ (cos2 θ − sin2 θ)

∂2ψ

∂x∂y
+ sin θ cos θ

∂2ψ

∂y2
.

We have

σnn = σijninj = −p+ 2µs

(
(sin2 θ − cos2 θ)

∂2ψ

∂x∂y
+ sin θ cos θ

(
∂2ψ

∂x2
− ∂2ψ

∂y2

))
,

so that

σnn = −p− 2µs

(
∂2ψ

∂s∂n
+
∂θ

∂s

∂ψ

∂s

)
.

Now, the first condition of no slip on y = −f for the flow problem (1.5) gives ∂ψ/∂n = 0, and using the condition
in (1.5) for ∂ψ/∂s together with the usual expression for the curvature of the interface

∂θ

∂s
= −∂

2f

∂x2

(
1 +

(
∂f

∂x

)2
)−3/2

,

then gives (1.9) as the normal stress on the Si/SiO2 boundary.

B Nitride rigidity limits

Here we consider the limits of small and large nitride rigidity coefficient, corresponding to a thin (flexible) and
a thick (stiff) nitride mask, respectively. Estimates of the nitride rigidity in [11], suggest that 10−4 ≤ R ≤ 104,
which motivates the two limits we now take.
(i) Small nitride rigidity. In the limit R→ 0 we have p0 = O(R) and thus for (αk, αd) = O(1), the stresses in the
oxide are not sufficiently large to affect the reaction coefficient at leading order (in R) and the results for the
stress independent case apply. Consequently, we rescale as follows α̂k = Rαk, α̂d = Rαd, so that in X = O(1),
we pose the expansions

f0 = f̂0 +O(R), η0 = η̂0 +O(R),

to obtain
η̂0 = (γ − 1)f̂0 + 1,
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and
∂f̂0

∂τ
=

∂

∂X

(
(γf̂0 + 1)Ds0(p̂0)

∂

∂X

(
1

κs0(p̂0)

∂f̂0

∂τ

))
, (B.25)

together with

at X = 0 f̂0 =
κ0

γ
τ,

∂2f̂0

∂X2
=
∂3f̂0

∂X3
=
∂4f̂0

∂X4
= 0,

and
as X → +∞ f̂0 → 0, at τ = 0 f̂0 = 0.

Here,

p̂0 = (γ − 1)
∂4f̂0

∂X4
(B.26)

and now

κs0 =

{
κ0e
−α̂k p̂0 , if p̂0 > 0,

κ0, if p̂0 ≤ 0,
Ds0 =

{
e−α̂dp̂0 , if p̂0 > 0,
1, if p̂0 ≤ 0.

From (B.25), (B.26), the problem can be written as a novel single high order evolution equation for f̂0.
(ii) Large nitride rigidity. In the limit R→∞, the nitride acts at leading order as if it were rigid, i.e.

η0 = 1 + o(1).

Writing
∂2η0

∂X2
=

1

R
ζ and f0 = f̄0 +O(1/R), (B.27)

(2.3) then gives at leading order,

∂f̄0

∂τ
=

∂

∂X

(
(1 + f̄0)Ds0

∂

∂X

(
1

κs0

∂f̄0

∂τ

))
, (B.28)

together with (2.5)–(2.7), and (2.9)–(2.12) become

−(γ − 1)
∂f̄0

∂τ
=

1

12

∂

∂X

(
(1 + f̄0)3 1

µs0

∂3ζ

∂X3

)
, (B.29)

at X = 0 ζ =
∂ζ

∂X
=

∂2ζ

∂X2
= 0, as X → +∞ ∂3ζ

∂X3
→ 0. (B.30)

This system is better rewritten in terms of the pressure p0 = ζXX , as follows

∂f̄0

∂τ
=

∂

∂X

(
(1 + f̄0)

∂

∂X

(
1

κs0(p0)

∂f̄0

∂τ

))
,

∂p0

∂X
= −12(γ − 1)

(1 + f̄0)2

Ds0(p0)

µs0(p0)

∂

∂X

(
1

κs0(p0)

∂f̄0

∂τ

)
,(B.31)

at X = 0 f̄0 =
κ0

γ
τ, p0 = 0, as X → +∞ f̄0 → 0, at τ = 0 f̄0 = 0, (B.32)

with
∫∞

0
p0 dX = 0, corresponding to the requirement that the net upward force on the nitride be zero. To

obtain (B.31), (B.28) and (B.29) have been used, together with the condition in (B.30).
The solution in this region will not satisfy p0 = ζXX → 0 as X → ∞. To fully determine it, an additional

region is required with scaling X = R1/6χ. In χ = O(1), f̄0 is exponentially small, and thus we pose

η0 ∼ 1 +R−1/3η∗,

with
∂η∗

∂τ
=

1

12

∂6η∗

∂χ6
,

at χ = 0
∂2η∗

∂χ2
=
∂3η∗

∂χ3
= 0,

∂4η∗

∂χ4
= lim
X→∞

∂ζ

∂X2
,

as χ→ +∞ η∗ → 0, at τ = 0 η∗ = 0.

The leading order pressure in this region is p0 = η∗χχχχ, which is O(1), implying that the largest stresses occur
in both this and the X = O(1) regions.
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C Cylindrical oxidation for large initial radii

Here we examine the limit of large initial radii in the regime of cylindrical oxidation considered in section 3.1.
The spherical case is similar, with analogous results also holding for the cavity case of section 3.2. We introduce
a small parameter ε > 0 through the scaling of the initial Si/SiO2 interface

d0 =
d̄0

ε
,

where d̄0 = O(1), and thus b0 = d̄0
ε

+ 1. Posing

d =
d̄0

ε
+ d1 +O(ε), b =

d̄0

ε
+ 1 + b1 +O(ε),

as ε→ 0, then (3.7) gives
b1 = −(γ − 1)d1

and (3.5) can yields

ḋ1

(
1 +Ds

(
1

ks
+

1

H

)
− γd1

)
= − 1

γ
. (C.1)

Now the normal stress (3.11) and pressure are

σnn ∼ −
4

d̄2
0

εḃ1(1− γd1), p ∼ −2εḃ1,

which are both small. Thus, if the stress dependent parameters αk, αd are O(1), then the reaction and diffusion
coefficients are their stress free values. Consequently ks = k0, Ds = 1 and (C.1) may be integrated to give

γ

2
d2

1 −
(

1 +
1

k0
+

1

H

)
d1 =

t

γ
, (C.2)

using d1(0) = 0, which is the one-dimensional Deal-Grove solution. It may also be stated in terms of the leading
order oxide thickness r0 = 1 + b1 − d1 = 1− γd1, giving a dimensionless expression analogous to that in [9, 35].
The stress dependent coefficients thus have little effect for large radii, unless the parameters αk, αd, αν are
large and O(1/ε). This is consistent with the experimental results of [16], where stress inhibited growth is more
significant for small radii.
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