Citation for published version:

Publication date:
2017

Link to publication

© The Author

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
STOICHIOMETRIC AND CATALYTIC
REACTIONS OF RUTHENIUM MULTI
N-HETEROCYCLIC CARBENE
COMPLEXES

Mateusz Krzysztof Cybulski

A thesis submitted in partial fulfilment of the requirements for the
degree of
Doctor of Philosophy

University of Bath
Department of Chemistry
September 2017

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of
this thesis has been supplied on condition that anyone who consults it is understood to
recognise that its copyright rests with the author and they must not copy it or use material
from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and may be
photocopied or lent to other libraries for the purposes of consultation.

Signed………………………………. Date……………………………….
Contents

ACKNOWLEDGEMENTS ... i
ABSTRACT .. ii
ABBREVIATIONS .. iv
 Analytical ... iv
 Units .. v
 Chemical ... v

Chapter 1: Introduction

1.1. C-F bonds and applications of organofluorine compounds .. 1
1.2. Fluorine incorporation ... 2
1.3. Catalytic HDF by late transition metal complexes ... 7
 1.3.1. Group 8: Iron and ruthenium ... 7
 1.3.2. Group 9: Cobalt, rhodium and iridium ... 10
 1.3.3. Group 10: Nickel, palladium and platinum ... 20
 1.3.4. Group 11: Copper and gold ... 26
 1.3.5. Heterodimetallic systems ... 29
1.4. Ruthenium N-heterocyclic carbene dihydride complexes ... 31
1.5. Thesis synopsis .. 36
1.6. References for Chapter 1 ... 36

Chapter 2: C-F bond activation using trans-[Ru(NHC)₄H₂] complexes

2.1. Synthesis of trans-[Ru(NHC)₄H₂] complexes .. 41
2.2. Stoichiometric C-F activation of fluoroarenes and synthesis of trans-[Ru(NHC)₄HF] complexes .. 44
2.3. Catalytic HDF of fluoroarenes using trans-[Ru(NHC)₄H₂] complexes 49
2.4. Mechanistic studies of catalytic HDF ... 54
2.4.1. Reactivity of trans-[Ru(IMe)₂HF] (4) with silanes .. 54
2.4.2. Probing NHC dissociation in catalytic C-F activation 57
2.4.3. DFT study of catalytic HDF ... 65
2.5. Summary ... 69
2.6. References for Chapter 2 ... 70

Chapter 3: C-F bond activation using [Ru(NHC)₂L₂H₂] complexes

3.1. Introduction ... 73
3.2. Stoichiometric C-F and C-H activation of C₆F₆ and C₆F₃H using
 [Ru(IEt₂Me₂)₂(PPh₃)₂H₃] (cct-8) .. 74
 3.2.1. Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)HF] (cct-10) and
 [Ru(IEt₂Me₂)₂(PPh₃)₂H][H₂F₃] (13) ... 76
 3.2.2. Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)₃(C₆F₃)H] (11) 81
 3.2.3. Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)₂(C₆F₃)H] (12) 83
3.3. Stoichiometric C-F and C-H activation of C₆F₃H using trans-
 [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) ... 86
3.4. Isolation of trans-[Ru(IMe₄)₂(PPh₃)₂HF] (ttt-14) ... 88
3.5. Reactivity of [Ru(NHC)₂(PPh₃)₂HF] with silanes ... 89
 3.5.1. Characterisation of [Ru(IMe₄)₂(PPh₃)(SiR₃)H₃] complexes 91
 3.5.2. Characterisation of [Ru(IEt₂Me₂)₂(PPh₃)(SiEt₃)H₃] (19) and
 [Ru(IEt₂Me₂)₂(PPh₃)(SiPh₃)H₃] (20) ... 95
3.6. Reactivity of [Ru(IEt₂Me₂)₂(PPh₃)(C₆F₃)H] (11) and
 [Ru(IEt₂Me₂)(PPh₃)₂(C₆F₃)H] (12) with Et₃SiH .. 98
3.7. Synthesis and stoichiometric reactivity of [Ru(NHC)₂(P-P)HF] complexes 98
3.8. Characterisation of [Ru(NHC)₂(P-P)HX] complexes 101
3.9. Catalytic HDF of C₆F₆ using [Ru(NHC)₂L₂H₂] complexes 106
3.10. Summary ... 112
3.11. References for Chapter 3 .. 113

References for Chapter 3

Summary
Catalytic HDF of C₆F₆
Characterisation of [Ru(NHC)₂(P-P)HX] complexes
Reactivity of [Ru(IEt₂Me₂)(PPh₃)₂(C₆F₃)H] (12) with Et₃SiH
Probing NHC dissociation in catalytic C-F activation
DFT study of catalytic HDF
Stoichiometric C₆F₆
Reactivity of [Ru(NHC)₂(P-P)HX] complexes
Stoichiometric C₆F₆
Isolation of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9)
Isolation of trans-[Ru(IMe₄)₂(PPh₃)₂HF] (ttt-14)
Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)HF] (cct-10) and
[Ru(IEt₂Me₂)₂(PPh₃)₂H][H₂F₃] (13)
Isolation and characterisation of [Ru(IMe₄)₂(PPh₃)(SiR₃)H₃] complexes
Isolation and characterisation of [Ru(IMe₄)₂(PPh₃)₃(C₆F₃)H] (11)
Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)₂(C₆F₃)H] (12)
Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)₃(C₆F₃)H] (13)
Isolation and characterisation of [Ru(IMe₄)₂(PPh₃)(SiEt₃)H₃] complexes
Isolation and characterisation of [Ru(IEt₂Me₂)(PPh₃)(SiEt₃)H₃] (19)
Isolation and characterisation of [Ru(IEt₂Me₂)(PPh₃)(SiPh₃)H₃] (20)
Isolation and characterisation of [Ru(IMe₄)₂(PPh₃)(SiPh₃)H₃] complexes
Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)(SiPh₃)H₃] (20)
3.2. Stoichiometric C-F and C-H activation of C₆F₆ and C₆F₃H using
 [Ru(IEt₂Me₂)₂(PPh₃)₂H₃] (cct-8) .. 74
Chapter 4: C-O Bond Activation of DPEphos via Attack of Nucleophilic Ru-H in RuL₄H₂

4.1. Introduction .. 116

4.2. Reactivity of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) .. 117

4.2.1. Reaction of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) with DPEphos .. 117

4.2.2. Reaction of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) with diphenyl(2-methoxyphenylphosphine) 122

4.2.3. Reaction of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) with DCEphos .. 123

4.2.4. Reaction of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) with xantphos ... 124

4.3. Reaction of [Ru(IEt₂Me₂)₂(PPh₃)₂H₂] (cct-8) with DPEphos ... 126

4.4. Reaction of [Ru(PPh₃)₄H₂] (32) with DPEphos ... 132

4.5. DFT studies of C-O activation by [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) ... 137

4.6. Discussion .. 140

4.7. Summary ... 148

4.8. References for Chapter 4 .. 149

Chapter 5: Reactivity of ruthenium dihydride complexes with P(C₆F₅)₃

5.1. Introduction .. 154

5.2. Reaction of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) with PCF ... 154

5.3. Reaction of [Ru(PPh₃)₄H₂] (32) with PCF and characterisation of [Ru(PPh₃)₃HF] (37) 158

5.4. Reactivity of [Ru(PPh₃)₃HF] (37) ... 165

5.4.1. Reactivity of [Ru(PPh₃)₃HF] (37) with silanes .. 166

5.4.1.1. Reaction of [Ru(PPh₃)₃HF] (37) with R₃SiH (R= Et, Ph) and characterisation of [Ru(PPh₃)₃(SiR₃)H₃] (38, R= Et; 39, R= Ph) ... 166

5.4.1.2. Reactivity of [Ru(PPh₃)₃HF] (37) with CF₃SiMe₃ ... 169

5.4.2. Reactivity of [Ru(PPh₃)₃HF] (37) with boranes ... 170

5.4.2.1. Reactivity of [Ru(PPh₃)₃HF] (37) with B₂Pin₂ ... 170
5.4.2.2. Reactivity of [Ru(PPh$_3$)$_3$HF] (37) with HBPin..........................173

5.5. Discussion ... 179

5.6. Summary ... 182

5.7. References for Chapter 5 ... 183

Chapter 6: Experimental procedures and characterising data

6.1. General procedures ... 187

6.2. Physical and analytical techniques: ... 188

6.3. Preparation of starting materials .. 188

6.3.1. Preparation of NHC precursors .. 188
6.3.1.1. 1,3,4,5-tetramethylimidazole-2-thione (IMe$_4=S$) 188
6.3.1.2. 1,3-diethyl-4,5-dimethylimidazole-2-thione (IEt$_2$Me$_2=S$) 189
6.3.1.3. 1,3-di(methyl)imidazolium iodide ([IMe$_2$H][I]) 189

6.3.2. Preparation of NHC ligands ... 190
6.3.2.1. 1,3,4,5-tetramethylimidazol-2-ylidene (IMe$_4$) 190
6.3.2.2. 1,3-diethyl-4,5-dimethylimidazol-2-ylidene (IEt$_2$Me$_2$) 190

6.3.3. Preparation of ruthenium precursor complexes ... 191
6.3.3.1. [Ru(PPh$_3$)$_3$H$_2$] (32) ... 191
6.3.3.2. [Ru(IMe$_4$)$_4$Cl$_2$] ... 192
6.3.3.3. [Ru(IMe$_2$)$_4$Cl$_2$] ... 192

6.3.4. KC$_8$.. 193

6.4. Experimental procedures and characterising data for Chapter 2 194
6.4.1. [Ru(IMe$_4$)$_4$H$_2$] (1) .. 194
6.4.2. [Ru(IMe$_2$)$_4$H$_2$] (2) .. 195
6.4.3. [Ru(IMe$_4$)$_4$HF] (3) ... 196
6.4.4. [Ru(IMe$_2$)$_4$HF] (4) ... 196
6.4.5. [Ru(IMe$_2$)$_4$H(MeCN)][F/HF$_2$] .. 197
6.6. Experimental procedures and characterising data for Chapter 4 .. 216

6.6.1. [Ru(IMe4)2(PPh3)(Ph2PC6H4O)H] (29) .. 216

6.6.2. [Ru(IEt2Me2)(IEtMe2(C6H4)PPh2)(Ph2PC6H4O)H] (31) .. 217

6.6.3. [Ru(DPEphos)2H2] (33) ... 218

6.6.4. [Ru(DPEphos)(Ph2PC6H4O)H] (34) ... 219

6.6.5. [Ru(DPEphos)(Ph2PC6H4O)Cl] (35) ... 219

6.7. Experimental procedures and characterising data for Chapter 5 .. 220
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my boss, capo di tutti capi Professor Mike Whitlesey for giving me the opportunity to work in his lab as a final year MChem and then a PhD student. I have been very fortunate to have you as my supervisor and I will always be grateful for your support and kindness.

Many thanks go my lab mates, both past and present, who have created a great atmosphere to work in and made my time in Bath most enjoyable and unforgettable. In particular, I would like to thank Dr Ian Riddlestone for his invaluable help and advice, Dr Lee Collins for teaching me to be thorough and ‘doing things properly’ and Dr Rebecca Poulten for sharing all the goss and animal facts! Without you, BOTTY time would have been just a boring coffee break! I would also like to acknowledge Dr Sara Sabater for constantly pushing me to come up with fresh stuff to annoy her with and a steady supply of Hobonobonobos, and Dr Maialen Espinal-Viguri for her hospitality.

I would like to express my gratitude to Dr Mary Mahon and Dr John Lowe for their help with X-ray crystallography and NMR spectroscopy. Their knowledge, expertise and patience have been of great value. I would like to show my greatest appreciation to Prof. Stuart Macgregor, Dr David McKay and Nick Beattie for their work on DFT calculations. It has been a real pleasure collaborating with you!

Finally, I would like to thank my parents and my brother Pawel, without whom I would have never decided to come to the UK and embark on this fascinating journey with chemistry. Your continuous love, support and encouragement mean a lot to me and will never be forgotten!
ABSTRACT

This thesis describes the stoichiometric and catalytic C-F bond activation of fluoroarenes using a series of N-heterocyclic carbene (NHC) containing \textit{trans}-dihydride complexes of ruthenium; the tetrakis-carbene complexes $[\text{Ru(NHC)}_4\text{H}_2]$ (NHC = IMe$_4$, IMe$_2$) and the mixed carbene-phosphine species $[\text{Ru(NHC)}_2(\text{PPh}_3)_2\text{H}_2]$ and $[\text{Ru(NHC)}_2(\text{P-P})\text{H}_2]$ (NHC = IMe$_4$, IEt$_2$Me$_2$; P-P = dppe, dppp, dppm). On the basis of a combination of experimental and computational evidence that these complexes react via attack of their nucleophilic hydride ligands, related and altogether serendipitous discoveries involving bond cleavage of DPEphos and tris(pentafluorophenyl)phosphine are also described.

The tetrakis-NHC complex, $[\text{Ru(IME}_4)_4\text{H}_2]$ (1), proved to be a remarkably efficient and regioselective catalyst for the hydrodefluorination (HDF) of C$_6$F$_6$ to the 1,4-substituted isomer of C$_6$F$_2$H$_4$ at room temperature. Experimental studies showed that 1 reacted without any creation of a vacant coordination site at the metal involving loss of an NHC. DFT calculations provided complete support for this and showed that reactivity involved nucleophilic attack of the Ru-H in a concerted manner to account for the observed selectivities.

$[\text{Ru(NHC)}_2(\text{PPh}_3)_2\text{H}_2]$ (NHC = IEt$_2$Me$_2$ (8), IMe$_4$ (9)) were capable of bringing about up to 5 HDF steps on C$_6$F$_6$ to afford C$_6$FH$_5$, but only at elevated temperature. The activity was compromised by poor regioselectivity, which was attributed to the reaction occurring through both five- and six-coordinate Ru species, as well as competitive C-H activation and PPh$_3$/HSiR$_3$ substitution processes. This was circumvented by use of bidentate phosphines, which allowed for almost
quantitative HDF of C$_6$F$_6$ to C$_6$FH$_5$ using [Ru(IMe$_4$)$_2$(P-P)HF] (P-P = dppe (22), dppp (23)).

C-O bond cleavage of DPEphos was observed upon thermolysis with 9 to afford the phosphinophenolate product, [Ru(IMe$_4$)$_2$(PPh$_3$)(Ph$_2$PC$_6$H$_4$O)H] (29). In the case of the N-ethyl substituted precursor 8, C-O activation was accompanied by C-N cleavage of the carbene to give the phosphinocarbene phosphinophenolate complex, [Ru(IEtMe$_2$)(IEtMe$_2$(C$_6$H$_4$)PPh$_2$)(Ph$_2$PC$_6$H$_4$O)H] (31). Whereas the reactivity of both 8 and 9 (suggested computationally) is believed to arise as a result of the nucleophilic trans-H-Ru-H geometry, DPEphos activation was also found to occur with the cis-dihydride [Ru(DPEphos)$_2$H$_2$] (33) to give [Ru(DPEphos)(Ph$_2$PC$_6$H$_4$O)H] (34).

P(C$_6$F$_5$)$_3$ underwent facile C-F activation with both 9 and [Ru(PPh$_3$)$_4$H$_2$] (32) to give [Ru(IMe$_4$)$_2$(PF$_2$(C$_6$F$_5$))(C$_6$F$_5$)H] (36) and [Ru(PPh$_3$)$_3$HF] (37) respectively. The latter reacted with tertiary silanes and HBpin to afford the silyl trihydride complexes [Ru(PPh$_3$)$_3$(SiR$_3$)H$_3$] (R= Et (38), Ph (39)) and σ-borane dihydride species ([Ru(PPh$_3$)$_3$(HBpin)H$_2$)] respectively.
Abbreviations

Analytical

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalent(s)</td>
</tr>
<tr>
<td>EXSY</td>
<td>exchange spectroscopy</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>HMQC</td>
<td>heteronuclear multiple quantum coherence</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum coherence</td>
</tr>
<tr>
<td>i</td>
<td>ipso</td>
</tr>
<tr>
<td>IRC</td>
<td>intrinsic reaction coordinate</td>
</tr>
<tr>
<td>$^{n}J_{xy}$</td>
<td>coupling constant of X to Y across n bonds</td>
</tr>
<tr>
<td>m</td>
<td>meta</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>TOF</td>
<td>turnover frequency (TON h$^{-1}$)</td>
</tr>
<tr>
<td>TON</td>
<td>turnover number = (moles of fluoroaromatic product(s) x number of HDF steps)/ moles of catalyst</td>
</tr>
<tr>
<td>w_h</td>
<td>peak width at half height</td>
</tr>
<tr>
<td>VT</td>
<td>variable temperature</td>
</tr>
<tr>
<td>’vt’</td>
<td>virtual triplet</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>δ</td>
<td>NMR chemical shift</td>
</tr>
<tr>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>°</td>
<td>degrees</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>Å</td>
<td>Ångström</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>µL</td>
<td>microlitre(s)</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre(s)</td>
</tr>
<tr>
<td>µmol</td>
<td>micromole(s)</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole(s)</td>
</tr>
<tr>
<td>mol</td>
<td>mole(s)</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
</tr>
<tr>
<td>Acac</td>
<td>acetylacetonate</td>
</tr>
<tr>
<td>Ar</td>
<td>generic aryl group</td>
</tr>
<tr>
<td>ArF</td>
<td>fluoroaryl group</td>
</tr>
<tr>
<td>BArF₄</td>
<td>tetrakis(3,5-bis(trifluoromethyl)phenyl)borate</td>
</tr>
<tr>
<td>BDP</td>
<td>bis(diphenylphosphino)benzene</td>
</tr>
<tr>
<td>bpy</td>
<td>2,2'-bipyridine</td>
</tr>
<tr>
<td>COD</td>
<td>1,5-cyclooctadiene</td>
</tr>
<tr>
<td>Cp</td>
<td>cyclopentadienyl</td>
</tr>
<tr>
<td>Cp*</td>
<td>pentamethylcyclopentadienyl</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>Dipp</td>
<td>2,6-diisopropylphenyl</td>
</tr>
<tr>
<td>Dippp</td>
<td>1,3-bis(diisopropylphosphino)propane</td>
</tr>
<tr>
<td>DMAP</td>
<td>p-N,N-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>Dppm</td>
<td>1,1-bis(diphenylphosphino)methane</td>
</tr>
<tr>
<td>Dppe</td>
<td>1,2-bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>Dppp</td>
<td>1,3-bis(diphenylphosphino)propane</td>
</tr>
<tr>
<td>DCEphos</td>
<td>bis[2-(dicyclohexylphosphino)phenyl]ether</td>
</tr>
<tr>
<td>DPEphos</td>
<td>bis[(2-diphenylphosphino)phenyl]ether</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>HDF</td>
<td>hydrodefluorination</td>
</tr>
<tr>
<td>ICy</td>
<td>1,3-dicyclohexylimidazol-2-ylidene</td>
</tr>
<tr>
<td>IEt₂Me₂</td>
<td>1,3-diethyl-4,5-dimethylimidazol-2-ylidene</td>
</tr>
<tr>
<td>IMe₂</td>
<td>1,3-di(methyl)imidazol-2-ylidene</td>
</tr>
<tr>
<td>IMe₄</td>
<td>1,3,4,5-tetramethylimidazol-2-ylidene</td>
</tr>
<tr>
<td>IMes</td>
<td>1,3-di(2,4,6-trimethylphenyl)imidazol-2-ylidene</td>
</tr>
<tr>
<td>iPr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>IPr</td>
<td>1,3-di(2,6-diisopropylphenyl)imidazol-2-ylidene</td>
</tr>
<tr>
<td>FPr₂</td>
<td>1,3-di(isopropyl)imidazol-2-ylidene</td>
</tr>
<tr>
<td>L</td>
<td>generic ligand</td>
</tr>
<tr>
<td>M</td>
<td>generic metal</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>NaBAr₄⁵</td>
<td>tetrakis[3,5-bis(trifluoromethyl)phenyl]borate</td>
</tr>
<tr>
<td>NHC</td>
<td>N-heterocyclic carbene</td>
</tr>
<tr>
<td>PCF</td>
<td>tris(pentafluorophenyl)phosphine</td>
</tr>
<tr>
<td>PFNB</td>
<td>pentafluoronitrobenzene</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Phen</td>
<td>phenanthroline</td>
</tr>
<tr>
<td>Pin</td>
<td>pinacolato group</td>
</tr>
<tr>
<td>R</td>
<td>alkyl or aryl</td>
</tr>
<tr>
<td>tBu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>TEMPO</td>
<td>(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>X</td>
<td>generic anion</td>
</tr>
<tr>
<td>Xantphos</td>
<td>4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene</td>
</tr>
</tbody>
</table>
CHAPTER ONE

Introduction

1.1. **C-F bonds and applications of organofluorine compounds**

The C-F bond is the strongest single carbon-element bond (105.4 kcal mol\(^{-1}\) in CH\(_3\)F) in organic chemistry.\(^1\)\(^,\)\(^2\) The strength of the C-F bond arises from the high electronegativity of fluorine (Pauling electronegativity, \(\chi = 3.98\)), which imparts a significant ionic bond character and consequently a relatively large dipole. The small size of the fluorine atom (Table 1.1; occupying a smaller volume than methyl, amino or hydroxyl groups, but larger than a hydrogen atom)\(^3\) means that its introduction into an organic molecule does not increase significantly the overall molecular size. However, fluorine incorporation carries important implications for the electronic and hence physicochemical properties (e.g. acidity/basicity, dipole moment or lipophilicity) of the target organic compound. The high polarity of the C-F bond leads to a low energy \(\sigma^*\) antibonding orbital, which can accept electron density from the adjacent electron donating groups and ultimately reduce the net basicity. A decrease in the \(pK_a\) can quite often result in an improved membrane permeation and thus enhanced bioavailability of drug molecules.\(^4\)\(^,\)\(^5\) Moreover, the replacement of an oxidisable C-H group by an inert C-F unit increases the metabolic stability of medicinal compounds, whereas the electrostatic interactions associated with the C-F bond (e.g. dipole-dipole, charge-dipole, hyperconjugation, hydrogen bonding) influence the conformations of organofluorine compounds and their binding affinity to enzymes/proteins. Recent surveys report that approximately 20% of all pharmaceuticals contain fluorine,\(^6\)\(^-\)\(^10\) including “blockbuster” drugs such as Lipitor or Risperdal (Figure 1.1). Fluorine containing compounds have been also extensively
employed in the synthesis of agrochemicals11,12 (ca. 25\% of all marketed herbicides)13 and in the development of novel functional materials,14 such as liquid crystals, plastics, dyes, membranes and polymers.

Table 1.1: The Van der Waals radii and average C-X bond lengths of selected elements.

<table>
<thead>
<tr>
<th>X =</th>
<th>H</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Waals radii [Å]</td>
<td>1.20</td>
<td>1.70</td>
<td>1.55</td>
<td>1.52</td>
<td>1.47</td>
</tr>
<tr>
<td>C-X bond lengths [Å]</td>
<td>1.09</td>
<td>1.54</td>
<td>1.47</td>
<td>1.43</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Figure 1.1: Examples of important partially fluorinated aromatics.

1.2. Fluorine incorporation

Despite the integral and pivotal role of fluorine and carbon-fluorine bonds in all aspects of the modern chemical industry, introduction of fluorine into organic
molecules remains challenging. Industrially, selective monofluorination of aromatic compounds is achieved in the Balz-Schiemann reaction (Scheme 1.1), developed as early as 1927.\(^\text{15}\) Despite large scale applications, the process suffers from considerable drawbacks such as harsh conditions involving high temperatures or the presence of toxic, corrosive and potentially explosive arenediazonium salts.

![Scheme 1.1: The Balz-Schiemann reaction for the monofluorination of aromatic compounds.](image)

Although recent years have witnessed a dramatic development in methods for the installation of fluorine, practical and broadly useful late-stage fluorination reactions, i.e. such that would allow chemo- and stereoselective fluorination of molecules with high structural and functional complexity, remain underdeveloped.\(^\text{16}\) An example of recently developed methodology for the fluorination of pharmaceutically active molecules is shown in Scheme 1.2. The combination of Ag\(_2\)O and the electrophilic fluorinating agent, F-TEDA-PF\(_6\), exhibited remarkable functional group tolerance and facilitated \(sp^2\) C-F bond formation under mild reaction conditions. However, the strategy suffered from the need for the preparation of toxic organotin compounds as starting materials.\(^\text{17}\) Contemporary carbon-fluorine bond forming reactions have been extensively covered in several reviews by Ritter and will not be discussed in this section.\(^\text{18-22}\)
Scheme 1.2: Silver-catalysed late-stage fluorination of complex aryl stannanes using Ag$_2$O and F-TEDA-PF$_6$ (top) to obtain fluorinated derivatives of taxol (anticancer; left) and rifamycin (antibiotic; right).

Another way to envisage incorporation of fluorine is the reverse process in which fluorine is selectively removed from a more fluorinated substrate to afford a product with a defined partial substitution pattern. The simplest derivatisation of a C-F bond is the replacement of fluorine with hydrogen, a reaction referred to as hydrodefluorination (HDF).$^{23-28}$ This approach benefits from the abundance of perfluorinated compounds and represents a promising alternative to the fluorination reactions, which commonly suffer from functional-group interference. For example, current method for the synthesis of the key intermediate 2,4,5-trifluorobenzeneacetic acid en route to the antidiabetic drug Sitagliptin requires seven steps (Scheme 1.3).29 Conceivably, a more sustainable and atom-efficient HDF approach could considerably shorten the synthetic sequence to just a single step.
The HDF methodology could also be potentially implemented in the conversion of chlorofluorocarbons (CFCs) to their hydrogenated derivatives (HCFCs). CFCs have been associated with ozone layer depletion and global warming as they are highly resistant to oxidative degradation and hence have an extremely long half-life. However, the HDF process is fundamentally difficult on both thermodynamic and kinetic grounds. Firstly, the energetic penalty associated with the C-F bond cleavage has to be compensated for by the formation of a stronger X-F bond (X= Si, B, Sn, Al or transition metal). Formation of a C-H bond (CH$_3$-H = 105 kcal mol$^{-1}$; C$_6$H$_5$-H = 113 kcal mol$^{-1}$) is not exothermic enough to provide the necessary driving force for the reaction. Secondly, fluorine substituents are weak Lewis bases and fluoride is a poor leaving group, which renders the C-F bond kinetically inert. This issue can be overcome by the employment of organometallic complexes, which facilitate C-F bond activation by lowering activation barriers and consequently M-F and/or M-C bond formation.

Scheme 1.3: Potential expedient synthesis of key Sitagliptin intermediate via HDF.
In order to develop a truly applicable, and hence catalytic, HDF system and turn it into a viable synthetic tool for the preparation of complex fluorinated molecules, fundamental studies on small and simple perfluorinated model substrates are required to understand the underpinning aspects of the process, such as regio- and chemoselectivity, as well as catalyst activity. Control of regiochemistry is crucial for the synthesis of compounds with a well-defined pattern of fluorine substituents. As will become apparent, in the majority of reported metal catalysed HDF reactions that employ a common model substrate such as pentafluorobenzene (C\(_6\)F\(_5\)H), it is the C-F bond \textit{para} to the hydrogen that undergoes functionalisation to afford 1,2,4,5-C\(_6\)F\(_4\)H\(_2\). Such reactivity is not unexpected as the same isomer of tetrafluorobenzene is also generated in a traditional stoichiometric nucleophilic aromatic substitution reaction, where LiAlH\(_4\) is used as a hydride source (Scheme 1.4).\(^{31}\) Similarly, chemoselective activation of C-F bonds in the presence of C-H bonds is another potential obstacle that needs to be overcome to realise an efficient HDF system.\(^{32}\) Although the former is more thermodynamically favourable to cleave, the latter is often kinetically accessible and many second and third row late transition metal complexes display lower activation barriers for C-H bond activation.\(^{33-37}\)

\[\text{Scheme 1.4: Example of non-catalytic HDF in which a nucleophilic aromatic substitution reaction of C}_6\text{F}_5\text{H and LiAlH}_4 \text{ leads to the formation of the \textit{para}-substituted isomer of tetrafluorobenzene.} \]
The following sections provide an overview of late transition metal mediated HDF processes, with particular focus on the most recent advances in fluoroaromatic HDF strategies, mechanistic considerations, substrate scope and catalytic performance.

1.3. Catalytic HDF by late transition metal complexes

1.3.1. Group 8: Iron and ruthenium

The only example of iron catalysed HDF was reported by Holland and co-workers, who showed that three- and four-coordinate iron(II) fluorides with bulky β-diketiminate (nacnac) ligands (Fe1 and Fe2 respectively) were capable of bringing about catalytic HDF of simple perfluoroarenes in the presence of tertiary silanes (Scheme 1.5). Thus, hexafluorobenzene (C6F6), pentafluoropyridine (C5F5N) and octafluorotoluene (C6F5CF3) each underwent a single HDF step to afford C6F5H, 2,3,5,6-C5F4HN and 2,3,5,6-C6F4HCF3 respectively, consistent with high selectivity for the C-F bond para to the most electron-withdrawing group (N or CF3). Despite high catalyst loading (20 mol %), the reactions did not exceed five turnovers due to catalyst decomposition. Moreover, HDF was found to be greatly influenced by solvent polarity and the silane employed. The highest conversions were achieved with Et3SiH in THF at just 45°C, while use of PhSiH3 in the same solvent led to complete catalyst deactivation at room temperature. Although catalyst instability hindered detailed mechanistic investigation, it was proposed that the rate-limiting step for the HDF of perfluoroarenes was the generation of an undetected active iron hydride intermediate formed from the iron fluoride and the silane. As no C-F activation was found in the absence of R3SiH and there was no evidence of reaction between isolated hydride complexes, [(nacnac)FeH]2 (Fe3) and fluoroarenes, the
unseen species was proposed to be the silane adduct of the hydride i.e. [(nacnac)Fe(η²-R₃SiH)H] or, alternatively, the silyl complex [(nacnac)FeSiR₃], which would activate aromatic C-F bonds by a nucleophilic attack mechanism. HDF of C₆F₅CF₃ with and without dihydroanthracene (DHA) as a radical trap gave an almost identical extent of conversion to 2,3,5,6-C₆F₄HCF₃, indicating that outer-sphere electron transfer was unlikely to be in operation. An oxidative addition pathway was also ruled out, as insertion of either of the iron(II) complexes into a C-F bond would result in a formation of uncommon, high-valent (nacnac)Fe(IV) species. There was no catalysis when H₂ was used as the terminal reductant.

![Scheme 1.5: Iron (II) fluoride catalysed HDF of fluoroarenes.](image)

More recent studies on iron promoted C-F activation focused on the stoichiometric reactivity of the electron-rich Fe(0) complex [Fe(PMe₃)₄] with fluorinated substrates bearing imine³⁹ or ketone⁴⁰ directing groups, as well as with more common perfluorinated reagents such as octafluorotoluene, hexafluorobenzene and pentafluoropyridine.⁴¹

For the purpose of this thesis, all work on ruthenium catalysed HDF reported by our group is reviewed in detail in Section 1.4. To date, the only other
example of Ru mediated catalytic HDF is a recent study by Nikonov and Mai who showed that [Cp’Ru(NHC)H₃] (Cp’ = Cp, Cp*; NHC = IMes, IPr) complexes can act as efficient precursors for the catalytic HDF of a range of fluoroaromatics using iPrOH as the reducing agent.⁴² Catalytic performance was found to be influenced by the steric bulk of the NHC and Cp’ ligands, with the highest activity observed for [Cp*Ru(IPr)H₃]. Importantly, C₆F₅H could be converted to a mixture of 1,2,4,5-C₆F₄H₂, 1,2,4-C₆F₃H₃ and 1,4-C₆F₂H₄ (60, 21 and 7% respectively) in 4 h at 70°C with a catalyst loading of 0.5 mol% in the presence of Na₂CO₃ (1.2 equiv). Kinetic studies were consistent with a mechanism based on NHC dissociation to generate the electron-deficient [Cp*RuH₃] fragment (Ru1) which reversibly coordinated fluoroarene (to give Ru2; Scheme 1.6). The HDF step was postulated to proceed via a nucleophilic attack of a Ru-bound hydride on the fluoroaromatic substrate. Of note was the proposed transition state (TS(Ru1-Ru2)) featuring a σ-C-F rather than η²-(C=C) bond coordination of the fluorinated aromatic ring to the metal centre. Subsequent displacement of the ruthenium bound fluoride ligand in Ru3 by iPrOH gave the alkoxide intermediate (Ru4), which upon β-H elimination regenerated the catalytically active trihydride species (via Ru5). Accumulation of HF inhibited the catalysis, although in the presence of stoichiometric amounts of Na₂CO₃, this could be trapped to facilitate the catalytic process.
Scheme 1.6: Proposed catalytic cycle for the HDF of fluoroaromatics by [Cp*Ru(IPr)H3] using iPrOH.

1.3.2. Group 9: Cobalt, rhodium and iridium

In 2013, Li and coworkers reported the monohydrodefluorination of perfluoroarenes catalysed by [Co(PMe3)4] using sodium formate as the hydrogen source. Selective para-C-F bond activation was observed for octafluorotoluene, pentafluoropyridine and pentafluorobenzene to afford 2,3,5,6-C6F4HCF3, 2,3,5,6-
C₅F₄HN and 1,2,4,5-C₆F₄H₂ respectively. The reactions proceeded with high conversions (73-100%) under relatively mild conditions (80°C) using 10 mol% of cobalt precursor. The reaction mechanism was studied by NMR and in situ IR spectroscopy, which allowed the identification of key intermediates shown in Scheme 1.7. The first step of the proposed catalytic cycle involved oxidative addition of the C-F bond of the perfluoroarene substrate at the Co(0) centre to afford the Co(II) aryl fluoride complex (Co₁). This was followed by F/HCOO⁻ ligand exchange (to generate Co₂) and subsequent decarboxylation of the carboxyl group to give the Co(II) aryl hydride species (Co₃). Subsequent reductive elimination of the HDF product completed the cycle.

Scheme 1.7: Catalytic cycle for the HDF of perfluoroarenes by [Co(PMe₃)₄].

Rhodium complexes have proved to be among the most efficient and most prevalent compounds for C-F activation. Indeed, the Rh(I) silyl complex,
Chapter 1

[Rh(PMe$_3$)$_3$(SiMe$_2$Ph)], was the first homogeneous catalyst for the HDF of C$_6$F$_6$ and C$_6$F$_3$H (Scheme 1.8). The initial C-F bond activation step to bring about metathesis of the silyl complex (Rh1) to the fluoroaryl species (Rh2) was postulated to involve either electron transfer from the metal centre to the substrate with generation of a perfluorobenzyl radical followed by F$^-$ attack on silicon, or a redox process featuring insertion of rhodium into a C-F bond followed by elimination of Si-F. Regeneration of Rh1 was achieved by oxidative addition of R$_3$Si-H to give a six-coordinate Rh(III) species (Rh3) followed by C-H reductive elimination. Turnover numbers of up to 38 and 33 were achieved for C$_6$F$_6$ and C$_6$F$_3$H respectively. High chemo- and (para-) regioselectivity was evidenced by a selective conversion of C$_6$F$_5$H to 1,2,4,5-C$_6$F$_4$H$_2$. Hydrogenolysis of C-F bonds was also achieved using H$_2$ as a hydrogen source. However, in this case base was required for the C-F activation step to take place. The exact mechanism for this central step of the catalytic cycle was postulated to involve electron transfer from the rhodium hydride complex (E= H; Rh4) to the fluoroaromatic substrate and concomitant release of the F$^-$ anion.
Grushin employed \([\text{Rh}(\text{PCy}_3)_2(\text{H})\text{Cl}_2]\) (5 mol%) for the catalytic hydrogenolysis of the C-F bond in the nonactivated substrate 1-fluoronaphthalene substrate, which was converted to naphthalene in >90% selectivity at 45% conversion under 5.5 atm H\(_2\) and highly basic conditions (40% NaOH).\(^{46}\) Due to the generation of a mixture of electron-rich Rh hydride complexes, the exact nature of the catalytically active species was unclear, making mechanistic considerations impossible. Interestingly, residual air rendered the reaction heterogeneous and allowed for the reduction of highly unreactive fluorobenzene to benzene with 55% conversion and a TON value of 88. Formation of toluene, anisole or aniline was also achieved from the HDF of the corresponding monofluoroarenes with 35, 29 and 95% conversion respectively.

Braun’s laboratory described catalytic HDF of pentafluoropyridine to 2,3,5,6-tetrafluoropyridine using \([\text{Rh}(\text{PEt}_3)_3(4-\text{C}_5\text{NF}_4)]\) as the catalyst and H\(_2\) (1 atm)
as the reductant, with turnover numbers of up to 12 after 2 days at room temperature. The same research group later reported HDF of a range of fluorinated aromatics (hexa- and pentafluorobenzene, pentafluoropyridine and 2,3,5,6-tetrafluoropyridine) catalysed by the dimetallic rhodium hydride complex, $\{\text{[Rh(dippp)(µ-H)]}_2\}$ (Rh5) in the presence of Et3SiH. With a modest catalyst loading of 5 mol %, turnover numbers of up to 19 were achieved after 48 h at 50°C. Under stoichiometric conditions, Rh5 reacted with 2,3,5,6-C5F3HN and C6F5H to give the corresponding (µ-F)2 bridged dimer $\{\text{[Rh(dippp)(µ-F)]}_2\}$ (Rh6) and the 1,2-hydrodefluorinated products, 2,3,6-C5F3H2N and 1,2,3,4-C6F4H2 respectively. This ortho-regioselectivity contrasted to the para-regioselectivity observed under catalytic conditions. The difference was suggested to be a consequence of two competing catalytic cycles (Scheme 1.9). Rh6 was found to react with Et3SiH to give Et3SiF and either Rh5 to close the cyclic process, or alternatively form the η^2-silane hydride intermediate (Rh7), which rapidly releases Et3SiH to generate the highly reactive mononuclear rhodium hydride species, [Rh(dippp)H] (Rh8). This could undergo dimerisation to regenerate Rh5 or react with fluoroarene with para-regioselectivity to complete the second catalytic cycle.
Ogo and co-workers developed a new Rh(I) catalyst, [Cp*Rh(bpy)] (Rh9) for the efficient HDF of C$_6$F$_5$CF$_3$, C$_6$F$_5$CH$_3$, C$_6$F$_6$ and C$_6$F$_5$H. The highest turnover number of 380 was achieved after 48 h at room temperature for hexafluorobenzene using 0.1 mol % catalyst loading and ~8 atm H$_2$. HDF of octafluorotoluene, 2,3,4,5,6-pentafluorotoluene and pentafluorobenzene proceeded with high para-regioselectivity to afford 2,3,5,6-C$_6$F$_4$HCF$_3$, 2,3,5,6-C$_6$F$_4$HCH$_3$ and 1,2,4,5-C$_6$F$_4$H$_2$ respectively. C-F bond activation was shown to occur via a nucleophilic aromatic substitution pathway to afford the isolable cationic Rh(III) fluoroaryl complex (Rh10; Scheme 1.10), which reacted with H$_2$ to release the HDF product and generate the undetectable Rh(III) hydride species Rh11. Base (Et$_2$NH) assisted Rh-H cleavage, releasing H and reforming Rh9.
Scheme 1.10: Catalytic cycle for the HDF of C₆F₆ by [Cp*Rh(bpy)].

Around the same time, Crimmin’s group reported the use of [Cp*Rh(μ-Cl)Cl]₂ as a highly efficient and selective precatalyst for the HDF of a series of partially fluorinated arenes using a β-diketiminate aluminium dihydride ((nacnac)AlH₂) as the terminal reductant. Of note was the highly regioselective activation of a C-F bond ortho to an existing C-H bond (Scheme 1.11; Section 1.4), such that for example pentafluorobenzene was converted to a mixture of 1,2,3,4-C₆F₄H₂, 1,2,3-C₆F₃H₃ and 1,2-C₆F₂H₄. The optimal reaction conditions employed a temperature of 100°C and 2 mol% catalyst loading in the presence of 1 equiv of (nacnac)AlH₂. This particular reductant proved to be crucial for the overall HDF process, as no HDF took place with Et₃SiH or PhSiH₃. Moreover, a stoichiometric reaction between (nacnac)AlH₂
and the rhodium chloride precatalyst afforded a new, catalytically competent heterobimetallic complex featuring an uncommon Rh-H-Al interaction.

\[
\begin{array}{c}
\text{F} & \text{F} & \text{F} & \text{F} \\
\text{F} & \text{F} & \text{F} & \text{F} \\
\end{array}
\] \\
\text{Mes} \text{N} \text{Al} \text{H} \text{H} \text{Mes} \] \\
\text{[Cp*Rh} \text{µ-Cl)}\text{Cl}_2 \] \\
\text{2 mol %} \text{(nacnac)AlH}_2

\[
\begin{array}{c}
\text{F} & \text{F} & \text{F} & \text{F} \\
\text{F} & \text{F} & \text{F} & \text{F} \\
\end{array}
\] \\
\text{Mes} \text{N} \text{Al} \text{H} \text{H} \text{Mes} \] \\
\text{[Cp*Rh} \text{µ-Cl)}\text{Cl}_2 \] \\
\text{2 mol %} \text{(nacnac)AlH}_2

Scheme 1.11: Catalytic HDF of C₆F₅H using [Cp*Rh(µ-Cl)]Cl₂ and (nacnac)AlH₂ (top), and synthesis of the Rh/Al heterobimetallic species (bottom).

Schwartsburd et al. carried out mechanistic studies on the catalytic HDF of polyfluorotoluenes (C₆F₃CF₃ and 2-C₆F₄HCF₃) in the presence of Et₃SiH using 6-membered ring NHC rhodium hydride complexes, [Rh(6-NHC)(PPh₃)₂H] (NHC = 6′Pr (Rh12), 6-Et, 6-Me; Scheme 1.12). These were shown to facilitate up to three HDF steps on octafluorotoluene to afford 2,5-C₆F₂H₃CF₃ and a corresponding Rh-F complex (e.g. [Rh(6′-Pr)(PPh₃)₂F] (Rh13)). However, their effectiveness was suppressed by the competing C-H activation of lower fluorine containing aromatics (e.g. 2,3,5,6-C₆F₄HCF₃) and irreversible formation of Rh-fluoroaryl complexes, such as [Rh(6′-Pr)(PPh₃)₂(C₆F₄CF₃)] (Rh14).
Scheme 1.12: Competing C-F (HDF) and C-H activation pathways of [Rh(6-iPr)(PPh₃)₂H] with 2,3,5,6-C₆F₄HCF₃.

Weaver exploited the tris[2-phenylpyridinato-C,N]iridium(III) ([Ir(ppy)₃]) complex for the first photocatalytic HDF of a series of fluorinated aromatics via an outer-sphere electron transfer mechanism using Et'Pr₂N as the hydrogen source. The choice of the catalyst was based on its coordinative saturation and hence inability to form a M-F bond, which in turn avoided the need for fluorophilic terminal reductants. The proposed mechanism for the reaction is shown in Scheme 1.13. The initially generated C₆F₆⁻ species was postulated to fragment into a fluoride anion and a C₆F₅⁻ radical, which would abstract a proton from the amine radical cation to ultimately afford C₆F₅H and an iminium cation. A number of perfluoroarenes containing a variety of functional groups such as trifluoromethyl, ketone, ester, nitrile, oxazole or aliphatic amine, could be quantitatively monohydrodefluorinated. The effectiveness of the catalyst was evaluated by
determining the TON in the presence of \(C_3F_3N \). The outstanding value of 22,550 was achieved after 96 h at 45°C.

![Scheme 1.13: Potential mechanism for the photocatalytic HDF of hexafluorobenzene by [Ir(ppy)] in the presence of Et\(^{1}Pr_2N\).

More recently, the efficient HDF of fluorinated aromatics was achieved with transfer hydrogenation catalysts possessing a bifunctional Ir/NH moiety.\(^{53}\) Half sandwich complexes bearing a C-N chelating ligand derived from benzylic amines (Ir\(^1\) and Ir\(^2\)) promoted HDF of a variety of electron-deficient perfluoroarenes (\(C_6F_5CN\), \(C_6F_5NO_2\), \(C_6F_5SO_2NMe_2\), \(C_6F_5CF_3\), \(C_6F_5COCH_3\), \(C_6F_5COOCH_3\)) in the presence of \(^{1}PrOH\) or \(K_2CO_2H\) (Scheme 1.14). The remarkable activity of the system was demonstrated in the conversion of pentafluoropyridine to 2,3,4,6-C\(_5\)F\(_4\)HN after 1 h at room temperature. The TON for this reaction exceeded 250 at a catalyst loading of 0.2 mol\%. Preliminary mechanistic studies involving treatment of a model for the catalytic intermediate (Ir\(^3\)) with stoichiometric amounts of \(C_3F_3N\) indicated that the reaction involved nucleophilic attack of the Ir-H on the fluoroarene substrate.
1.3.3. **Group 10: Nickel, palladium and platinum**

HDF of fluoronaphthalene, fluorotoluene, fluoroanisole and fluoropyridine by a postulated monocoordinate Ni(0) IMes complex Ni1 (generated *in situ* from Ni(acac)$_2$, Et$_2$CHONa and NaH) was the first example of homogeneous catalytic C-F bond reduction using nickel and the first example of an HDF process in which a transfer hydrogenation approach strategy was adopted (Scheme 1.15). After 3 h at 100°C, substrates such as 2-fluoroanisole and 2-fluoronaphthalene were converted to the corresponding HDF products in quantitative yield. The catalysis was thought to be initiated by the insertion of Ni1 into the C-F bond of a substrate to afford a Ni(II) fluoroaryl fluoride complex (Ni2), which underwent F/Et$_2$CHO$^-$ exchange to give the alkoxide species Ni3. Loss of ketone gave a Ni(II) fluoroaryl hydride intermediate (Ni4), which then reductively eliminated ArF-H to complete the cycle.

Scheme 1.14: Catalytic HDF of pentafluoropyridine by iridium amine and amido complexes.
Scheme 1.15: Proposed catalytic cycle for the HDF of fluoroarenes by an in-situ generated “[Ni(NHC)]” fragment.

Cao and co-workers employed LiBEt$_3$H and LiAl(O’Bu)$_3$H as the reductants for the HDF of a variety of fluoroarenes and trifluorotoluenes with NiCl$_2$ and [Ni(PCy$_3$)$_2$Cl$_2$] as precatalysts. The combination of NiCl$_2$/LiBEt$_3$H reduced both sp^2 and sp^3 hybridised C-F bonds, albeit at a high catalyst loading (40 mol%), whilst the bisphosphine complex was selective for aromatic C-F bonds at a significantly lower concentration (5 mol%).55 An improved catalytic protocol utilised both nickel precursors as cocatalysts at 2 mol % loading,56 while the replacement of LiBEt$_3$H by the cheaper and safer LiAl(O’Bu)$_3$H allowed for the use of just [Ni(PCy$_3$)$_2$Cl$_2$].57 This system was capable of multiple HDF steps, converting both C$_6$F$_5$CF$_3$ and C$_6$H$_5$CF$_3$ to toluene, and hexafluorobenzene to benzene, in yields of 73, 80 and 53% respectively. The reaction was postulated to involve a PCy$_3$ supported Ni(0)/Ni(II)
redox couple (Scheme 1.16), akin to that in the aforementioned Ni-NHC system. Thus, the dichloride precatalyst was reduced with LiAl(OtBu\textsubscript{3})\textsubscript{3}H to the two-coordinate Ni(0) complex, [Ni(PCy\textsubscript{3})\textsubscript{2}] (Ni\textsubscript{5}) which oxidatively added the C-F bond of the aryl fluoride to give the new Ni(II) fluoroaryl fluoride species Ni\textsubscript{6}. Fluoride abstraction (to generate Ni\textsubscript{7}) and reductive elimination from the nickel aryl hydride complex (Ni\textsubscript{8}) furnished the HDF product regenerating the active Ni(0) species Ni\textsubscript{5}.

\textbf{Scheme 1.16:} Catalytic cycle for the HDF of fluoroarenes by [Ni(PCy\textsubscript{3})\textsubscript{2}Cl\textsubscript{2}].

Radius developed a dimeric Ni-NHC complex, [Ni\textsubscript{2}(l\textsuperscript{Pr\textsubscript{2}})\textsubscript{4}(COD)] for the \textit{para}-regioselective HDF of hexafluorobenzene and octafluorotoluene in the presence of silanes.58 Thus, with C\textsubscript{6}F\textsubscript{6}, 1,2,4,5-C\textsubscript{6}F\textsubscript{4}H\textsubscript{2} was formed after 2 days at 60°C with 5 mol % of the Ni(0) catalyst. Experimental findings pointed to a mechanism (Scheme 1.17) involving fluoroarene coordination to the mononuclear fragment [Ni(l\textsuperscript{Pr\textsubscript{2}})] (Ni\textsubscript{9}), C-F oxidative addition (at Ni\textsubscript{10}) to give a Ni(II) fluoroaryl fluoride species (Ni\textsubscript{11}), H/F exchange with the silane reductant and lastly
reductive elimination of the HDF product from the Ni(II) fluoroaryl hydride complex Ni12, via Ni13.

Scheme 1.17: Catalytic cycle for the HDF of octafluorotoluene by [Ni(iPr2)2].

The η2-coordination of perfluoroarene could be directly observed in the reaction of C6F6 with a different dinuclear nickel complex, [Ni(dippe)(μ-H)]2. The hexafluorobenzene ring was found to insert between the two [Ni(dippe)] fragments prior to oxidative addition of the C-F bond to afford [Ni(dippe)(C6F5)H]. At 5 mol % catalyst loading, the hydride bridged dimer promoted HDF of a series of perfluoroarenes (C6F6, C6F5H, 1,2,3,4-C6F4H2 and C5F5N) in the presence of excess PEt3 and Et3SiH to yield para-substituted products (1,2,4,5-C6F4H2, 1,2,4-C6F3H3 and 2,3,5,6-C5F4HN respectively) in high yields (94-100%) with turnover numbers of ca. 40 after 3 days at 120°C. In the absence of added phosphine, lower yields, poorer selectivities and catalyst degradation were observed. Further investigation
revealed that PEt$_3$ was capable of mediating HDF of fluoroarenes by itself, rendering the process metal- and silane-free with quantitative yields under the exact conditions used previously in the presence of Ni. The proposed mechanism for the uncatalysed formation of the HDF products involved nucleophilic attack by the very basic PEt$_3$ followed by F-migration to phosphorus, β-hydride elimination to release ethene, nucleophilic hydride addition and finally elimination of the fluorophosphine Et$_2$FP (Scheme 1.18).

Scheme 1.18: Proposed mechanism for the phosphine mediated HDF of perfluoroarenes.

Zhang’s group developed an efficient method for the preparation of partially fluorinated aromatics in nickel and palladium catalysed, chelation-assisted HDF of N-heterocycle-substituted polyfluoroarenes (e.g. 2-(pentafluorophenyl)-pyridine) with Et$_3$SiH (Scheme 1.19). Simple and readily available Ni60 and Pd61 complexes (NiCl$_2$·6H$_2$O and [Pd(C$_3$H$_8$)Cl]$_2$) in the presence of ancillary ligands (phen or dppe) afforded ortho-hydrodefluorinated products in moderate to high yields.
Scheme 1.19: A) Palladium- and nickel-catalysed ortho-selective HDF of N-containing-heterocycle polyfluoroarenes, B) Proposed mechanism for the Pd mediated, chelation-assisted HDF process.

The bisphosphine palladium (0) complexes, [Pd(PR)₃]₂ (R = iPr, Cy) were shown to catalyse HDF of pentafluoropyridine using HBPin as the hydrogen source. After 3 days at 60°C, 2,3,5,6-tetrafluoropyridine was selectively obtained in yields of 44 and 30% with 10 mol% [Pd(PPr)₃]₂ and [Pd(PCy)₃]₂ respectively. Employment of [Pd(PPr₂(CH₂CH₂OCH₃))₃] led to superior catalytic performance and led to higher conversions (80%) at lower catalyst loading (5 mol %) over shorter reaction time (2 days). The catalytic cycle resembled those for previously described nickel systems and involved a Pd(0)/Pd(II) redox couple (Scheme 1.20).
Scheme 1.20: Catalytic cycle for the HDF of pentafluoropyridine by [Pd(PR₃)₂] complexes.

1.3.4. **Group 11: Copper and gold**

In the presence of PhMe₂SiH, the combination of CuCl, KO'Bu and bis(diphenylphosphino)benzene (BDP) exhibited high HDF reactivity towards a broad scope of polyfluoroarenes with preferred *para*-regioselectivity. For example, after 12 h, 3 mol% CuCl/KO'Bu together with 1 mol% BDP gave conversions of 60 and 95% of pentafluorobenzene and pentafluoropyridine to 1,2,4,5-C₆F₄H₂ and 2,3,5,6-C₅F₄HN respectively. NMR studies suggested a copper hydride complex, [(BDP)CuH] to be the catalytically active species, which interconverted to the copper fluoride intermediate, [(BDP)CuF] in the HDF step (Scheme 1.21). DFT calculations supported a mechanism involving a concerted nucleophilic attack of Cu-H on the C-F bond.
Scheme 1.21: Catalytic cycle for the HDF of fluoroarenes by BDP stabilised copper hydride species.

Tricoordinate gold(I) complexes supported by xantphos-type ligands proved to be remarkably active catalysts for the HDF of a series of perfluoroarenes. For example, up to 1000 turnovers could be achieved for pentafluoronitrobenzene with 1 mol% of [(t-BuXantphos)Au][AuCl₂] and diphenylsilane after 24 h at 80°C. The system tolerated a broad range of functional groups, allowing selective HDF to be performed in the presence of ketone, ester, carboxylate, alkenyl, alkynyl and amide groups. DFT studies on a model pentafluoropyridine substrate indicated that the key step in the catalytic cycle (Scheme 1.22) was the direct oxidative addition of a C-F bond to the two-coordinate cationic Au(I) centre Au₁ to give the tetrafluoropyridyl fluoride intermediate Au₂. Release of the HDF product from Au₂ and regeneration of Au₁ occurred via an unusual 5-membered ring transition state in which the silane was bound to both the Au-F and the ipso-carbon of the coordinated fluoroaryl ligand (Au₃).
Scheme 1.22: Catalytic cycle for the HDF of pentafluoropyridine by a tBuXantphos supported Au(I) complex.

An unusual HDF mechanism rationalised the reactivity of the NHC supported gold(I) hydride complexes shown in Scheme 1.23. Although [(IMes)AuH] (Au4) failed to activate C-F bonds of C₆F₅NO₂, a π-π interaction between the two reagents could be detected by NMR and UV-vis spectroscopy. In the presence of silane, poor conversions to tetrafluoronitrobenzene were achieved (18%) due to the high calculated activation barrier of 40.8 kcal mol⁻¹. However, upon addition of strongly electron-donating p-N,N-dimethylaminopyridine (DMAP), the reaction became catalytic, affording the para-substituted HDF product 2,3,5,6-HC₆F₄NO₂ in a high yield (90%). The formation of a π-π interaction between DMAP and C₆F₅NO₂ facilitated hydrogen transfer from Au4 to the pyridyl N atom of DMAP and lowered the C-F bond activation barrier from an unrealistic 40.8 kcal mol⁻¹ to 31.6 kcal mol⁻¹. Two possible mechanisms for the catalytic HDF cycle were proposed on the basis of combined experimental and theoretical studies. In the absence of DMAP, the π-π complex formed between Au4 and C₆F₅NO₂ promotes oxidative addition of the C-F bond to afford the gold (III) species,
[(IMes)Au(C₆F₄NO₂)HF] (Au⁵), which subsequently converts to gold (I) fluoride, [(IMes)AuF] (Au⁶) upon reductive elimination of 2,3,5,6-HC₆F₄NO₂. In the presence of DMAP, Au⁴ interacts with the π-π stacked DMAP/C₆F₅NO₂ intermediate leading to protonation of the pyridyl nitrogen prior to HDF of C₆F₅NO₂, release of 2,3,5,6-HC₆F₄NO₂, and formation of Au⁶.

Scheme 1.23: Computed catalytic cycle for the HDF of C₆F₅NO₂ by [(IMes)AuH] in the absence (Mechanism I) and presence (Mechanism II) of DMAP.

1.3.5. Heterodimetallic systems

Mata et al. designed a heterodimetallic triazolyl-di-ylidene bridged ruthenium-palladium complex (RuPd), which proved to be a very efficient catalyst for the HDF of aromatic and aliphatic C-F bonds of low fluorine content arenes (e.g.
1,4-C₆F₄H₄, 1,2-C₆F₂H₄ and C₆FH₅) and trifluoromethyltoluenes respectively (Scheme 1.24).⁶⁷ Quantitative yields could be achieved for most substrates in short reaction times and under mild reaction conditions (0.5-5 mol % catalyst loading, 80°C, 1-2 h), with TON values as high as 660. However, the catalyst showed poor C-F bond chemoselectivity, as the reduction of C-Br, C-Cl and C=O bonds was also observed. A 1:1 mixture of the two respective homobimetallic complexes (Pd/Pd and Ru/Ru) led to poorer product yields (e.g. 49 % of C₆H₆ in the reaction with C₆FH₅), while the two individual species were totally inactive. This indicated the synergistic action of the two metals within the single-frame ligand. It was proposed that the Pd centre mediated C-F activation and that the Ru centre brought about reduction of the substrate via transfer hydrogenation from iPrOH/NaO'Bu. The same research group later co-immobilised related pyrene-tagged palladium and ruthenium monomeric complexes onto a reduced graphene oxide surface to obtain a heterogeneous system that was a highly effective catalyst for the HDF of a range of fluoroarenes.⁶⁸

Scheme 1.24: Catalytic HDF of aromatic and aliphatic C-F bonds by the heterodimetallic Ru/Pd complex (RuPd). Numbers in parentheses are the reported yields and reaction times respectively.
1.4. Ruthenium N-heterocyclic carbene dihydride complexes

In 2009, our group developed a series of ruthenium NHC dihydride complexes, \([\text{Ru}(\text{NHC})(\text{PPh}_3)_2(\text{CO})\text{H}_2]\) (NHC= IPr (I), IMes (II)) for the catalytic HDF of \(\text{C}_6\text{F}_6\), \(\text{C}_6\text{F}_5\text{H}\) and \(\text{C}_5\text{F}_5\text{N}\) with alkylsilanes (Scheme 1.25A).\(^{69}\) Most remarkable was the very high (98%) and unusual ortho-regioselectivity (Section 1.3) exhibited by I (10 mol%), which converted pentafluorobenzene to the 1,2,3,4-isomer of \(\text{C}_6\text{F}_4\text{H}_2\) in 20 h at 70°C in THF with \(\text{Et}_3\text{SiH}\) (TON= 7.0, TOF= 0.36 h\(^{-1}\)). Kinetic studies indicated that the process was initiated by the loss of PPh\(_3\) to give the 16 electron species, \([\text{Ru}(\text{NHC})(\text{PPh}_3)(\text{CO})\text{H}_2]\) which carried out stoichiometric C-F activation of \(\text{C}_6\text{F}_5\text{H}\) to afford isolable, coordinatively unsaturated hydride fluoride complexes, \([\text{Ru}(\text{NHC})(\text{PPh}_3)(\text{CO})\text{HF}]\). The catalytic cycle was closed by the silane acting as a terminal reductant and providing hydrogen to regenerate the catalytically active dihydride. A driving force for the reaction was the formation of the strong Si-F bond in the fluoroisilane byproduct. The unusual selectivity of the reaction was investigated with the aid of DFT calculations on the IMes system (II), which revealed two possible pathways for the HDF process (Scheme 1.25B).\(^{70,71}\) The stepwise pathway begins with the coordination of \(\text{C}_6\text{F}_5\text{H}\) to the five-coordinate monophosphine dihydride species A \((E = + 5.5 \text{ kcal mol}^{-1})\) to give the \(\eta^2\)-fluoroarene adduct B \((E = +8.6 \text{ kcal mol}^{-1})\), followed by the intramolecular nucleophilic attack of the ruthenium hydride ligand at the ortho-position on the bound \(\text{C}_6\text{F}_5\text{H}\) ring. The resultant Meisenheimer type intermediate C \((E = +15.9 \text{ kcal mol}^{-1})\) is stabilised by the interaction between the metal centre and the aromatic carbon ortho to the C-H bond. The rate determining C-F bond cleavage step leads to the elimination of HF and simultaneous formation of the Ru-\(\sigma\)-fluoroaryl complex D \((E = -8.4 \text{ kcal mol}^{-1})\). Finally, protonolysis of the Ru-C bond by a weakly associated HF molecule,
accompanied by the transfer of F to Ru, affords the hydride fluoride complex E ($E = -36.3$ kcal mol$^{-1}$) and the HDF product, 1,2,3,4-C$_6$F$_4$H$_2$. In the concerted pathway, direct Ru-H/C-F exchange takes place in an intramolecular fashion to afford the para-substituted isomer of tetrafluorobenzene, 1,2,4,5-C$_6$F$_4$H$_2$ in a single step. The stepwise mechanism was found to be more kinetically accessible with an overall computed energy barrier 4.7 kcal mol$^{-1}$ below that for the concerted mechanism, consistent with the ortho-selectivity observed experimentally. Moreover, the nature of the NHC ligands was shown to play a crucial role in both promoting the HDF process and dictating the regioselectivity. The full experimental system (II) facilitated the PPh$_3$/C$_6$F$_5$H substitution and stabilised the key C-F bond breaking transition state through F···HC interactions, which also accounted for a modest computed activation barrier (20.0 kcal mol$^{-1}$) for the generation of 1,2,3,4-C$_6$F$_4$H$_2$, significantly lower than for the other tetrafluorobenzene isomers, 1,2,3,5- and 1,2,4,5-C$_6$F$_4$H$_2$ (22.9 and 22.8 kcal mol$^{-1}$ respectively). In comparison, a less sterically encumbered model system for calculations, [Ru(IMe$_2$)(PH$_3$)$_2$(CO)H$_2$] yielded higher barriers for both steps. Although C-H activation of C$_6$F$_5$H was predicted to be kinetically accessible, its reversibility implied that activation of C-F bonds could be targeted in the presence of C-H bonds. Theoretical studies were extended to define the scope and regioselectivity of HDF in other C$_6$F$_{6-n}$H$_n$ species (Figure 1.2). The results showed that the C-F bond dissociation energies not only increased with larger n, but were also determined by the number of ortho-F and, to a lesser extent, meta-F substituents present. For the concerted pathway, HDF occurred preferentially at sites with two ortho-fluorines (e.g. 2-position in 1,2,3,4-C$_6$F$_4$H$_2$ and 1,2,3-C$_6$F$_3$H$_3$), as these have the most activated and hence weakest C-F bonds (energy barriers were calculated at 23.7 and 25.7 kcal mol$^{-1}$ for 1,2,3,4-C$_6$F$_4$H$_2$ and
1,2,3-\text{C}_6\text{F}_3\text{H}_3 \text{ respectively). In contrast, for the stepwise pathway, HDF was directed to sites with only one} \text{ortho-fluorine (e.g. 1-position in 1,2,3,4-\text{C}_6\text{F}_4\text{H}_2 (22.6 kcal mol}^{-1}) \text{ and 1,2,3-\text{C}_6\text{F}_3\text{H}_3 (23.2 kcal mol}^{-1}) \text{ as the presence of a second} \text{ortho-F substituent resulted in an increased strain and thus higher energy of the C-F bond breaking transition state. In the case of 1,2,4-\text{C}_6\text{F}_3\text{H}_3 \text{ where two distinct C-F bonds are ortho to each other, HDF was governed by the number of meta-fluorines. Thus, the C-F bond at the 2-position was calculated to be weaker than that at the 1-position, due to the presence of one} \text{ortho-} \text{ and one meta-F substituent (c.f. one} \text{ortho but no meta-fluorines for the C-F bond at 1-position). Although the two mechanisms had complementary regioselectivities, the stepwise pathway was predicted to have the lowest energy profile for the HDF reaction.}
Scheme 1.25: A) Catalytic cycle for the HDF of C₆F₅H to 1,2,3,4-C₆F₄H₂ by [Ru(NHC)(PPh₃)₂(CO)H₂], B) Mechanisms of nucleophilic attack by the Ru-H ligand in [Ru(IMes)(PPh₃)₂(CO)H₂] (II) at C₆F₅H established by DFT calculations.
Figure 1.2: Calculated activation barriers (kcal mol\(^{-1}\)) for HDF of C\(_6\)F\(_{6-n}\)H\(_n\) species at [Ru(IMes)(PPh\(_3\))\(_2\)(CO)H\(_2\)] (II). Values in bold are for the stepwise pathway and those in plain text are for the concerted pathway.\(^{71}\)

Further experimental and computational studies focused on the HDF of C\(_5\)F\(_3\)N at [Ru(NHC)(PPh\(_3\))\(_2\)(CO)H\(_2\)] (I and II).\(^{72}\) Again, this proved to be highly dependent on the NHC ligand (Scheme 1.26). With IPr catalyst (I), reaction took place preferentially at the ortho-position to give as the major product 2,3,4,5-C\(_5\)F\(_4\)HN; this could undergo further HDF to afford a mixture of 2,3,5-C\(_5\)F\(_3\)H\(_2\)N (32\%) and C\(_5\)F\(_2\)H\(_3\)N isomers (3,5- (27%) and 2,5- (41%)). The pattern of reactivity was attributed to operation of the stepwise mechanism, in which a N→Ru \(\sigma\)-interaction stabilised the C-F bond activation transition state. In contrast, the IMes counterpart (II) was predicted to react along a concerted pathway and favoured para-HDF, also seen experimentally. However, competing C-H activation of 2,3,5,6-C\(_5\)F\(_4\)HN ultimately led to the formation of the catalytically inactive Ru-fluoropyridyl complex, [Ru(IMes)(PPh\(_3\))(CO)(4-C\(_3\)F\(_4\)N)H].
Scheme 1.26: Catalytic HDF of C$_3$F$_3$N at [Ru(NHC)(PPh$_3$)$_2$(CO)H$_2$] (I and II).

1.5. Thesis synopsis

This thesis is primarily focused on the catalytic HDF of hexafluorobenzene using ruthenium hydride complexes bearing NHC ligands. **Chapter 2** describes the synthesis of [Ru(NHC)$_4$H$_2$] compounds and their application in both stoichiometric and catalytic C-F bond activation reactions. Details on joint experimental and computational studies are provided. HDF chemistry is explored further in **Chapter 3**, which compares the catalytic performance of the species in **Chapter 2** to those of a series of mixed carbene/phosphine complexes. Competitive C-H activation and PPh$_3$/HSiR$_3$ substitution pathways are discussed. **Chapter 4** illustrates the ability of Ru(NHC) and Ru(PR$_3$)$_3$ precursors to bring about the unprecedented C-O activation of a DPEphos ligand. Mechanistic insights gained through DFT calculations are outlined. **Chapter 5** describes the synthesis and characterisation of [Ru(PPh$_3$)$_3$HF] and outlines studies of its reactivity towards fluorophilic substrates.

1.6. References for Chapter 1

(46) Young, R. J.; Grushin, V. V. *Organometallics* 1999, 18, 294.

(57) Xiao, J.; Wu, J.; Zhao, W.; Cao, S. J. Fluorine Chem. 2013, 146, 76.
CHAPTER TWO
C-F bond activation using \textit{trans-}[Ru(NHC)\textsubscript{4}H\textsubscript{2}] complexes

2.1. Synthesis of \textit{trans-}[Ru(NHC)\textsubscript{4}H\textsubscript{2}] complexes

Building on the previous work on catalytic HDF using ruthenium NHC hydride complexes (Section 1.4) which highlighted the importance of hydride nucleophilicity, the development of new systems which would display improved activity and regioselectivity was targeted. It was reasoned that the presence of four highly electron donating NHC ligands and the unusual \textit{trans}-disposition of strong \textit{trans}-influence hydride ligands in \textit{trans-}[Ru(IMe\textsubscript{4})\textsubscript{4}H\textsubscript{2}] (I), would not only render the complex coordinatively saturated throughout any catalytic cycle (c.f. PPh\textsubscript{3} loss from I and II), but also impart strong nucleophilic character to Ru-H. Previously reported by Wolf et al.,1 I could only be isolated as an impure solid in low yield from the reduction of \textit{trans-}[Ru(IMe\textsubscript{4})\textsubscript{4}Cl\textsubscript{2}] with LiAlH\textsubscript{4} in THF. A new synthetic protocol involving KC\textsubscript{8}/H\textsubscript{2} in THF as the reductant allowed the isolation of I as an analytically pure, yellow, microcrystalline solid in high (80\%) yield (Scheme 2.1). The complex proved to be extremely moisture sensitive and decomposed rapidly upon exposure to air or even adventitious water as demonstrated by an apparent change in colour to pink during cannula filtration using standard Schlenk line techniques. This necessitated the full work-up to be carried out in a glovebox. Additional steps were also required to ensure complete exclusion of H\textsubscript{2}O, including prolonged drying of glass microfiber filter papers (days at 140\(^\circ\)C and vacuum overnight), followed by treatment (rinsing) with dry Et\textsubscript{2}O prior to their use for removal of graphite from the reaction mixture.
Scheme 2.1: Formation of trans-[Ru(NHC)₄H₂] complexes (1 and 2) from [Ru(NHC)₄Cl₂] and KC₆/H₂ and subsequent HDF of C₆F₆ to generate the corresponding trans-[Ru(NHC)₄HF] complexes (3 and 4) and C₆F₅H.

The highly symmetric nature of 1 was reflected by a very simple 1H NMR spectrum in THF-d_8 consisting of just three singlet resonances at δ 3.37, 1.97 and -8.14 in a 24:24:2 ratio. 1 underwent facile H/D exchange in C₆D₆ within the time of dissolution as indicated by the appearance of two signals at δ -7.45 and δ -7.29, assigned as RuH₂ and RuHD isotopologues respectively (Figure 2.1). Moreover, these were accompanied by splitting of the resonance at δ 3.80, most likely arising from H/D exchange into the N-Me groups. Adopting the same synthetic procedure, an IMe₂ analogue, trans-[Ru(IMe₂)₄H₂] (2) could be prepared from the parent dichloride, trans-[Ru(IMe₂)₄Cl₂] in 78% yield. The complex exhibited increased air and moisture stability compared to 1, as well as reduced propensity for H/D scrambling in C₆D₆.¹ The formation of the RuHD isotopologue of 2 was observed only after prolonged heating at high temperatures (90°C).
\(^1\)H NMR spectrum of 2 displayed a similar pattern of singlet resonances at \(\delta 6.43, 3.49\) and \(-7.45\) integrating in an 8:24:2 ratio, while the carbenic carbon (Ru-C\(_{NHC}\)) gave rise to a sharp singlet at \(\delta 212.6\) in the \(^{13}\)C\(_{\{1^H\}}\) NMR spectrum (c.f. \(\delta 212.0\) for 1). The molecular structure of 2 is shown in Figure 2.2 and features a square bipyramidal arrangement of four carbenes and a \textit{trans}-H-Ru-H geometry, akin to the structure of 1. The asymmetric unit comprised of 1/8 of a molecule with identical Ru-C bond distances (2.056(2) Å, c.f. 2.058(2)-2.064(2) Å for 1) and (\textit{cis}-) C-Ru-C bond angles (90.00°). Similarly to 1, the carbene ligands were tilted with respect to the H-Ru-H axis (H1-Ru1-C1-N1 40.4°, c.f. 42.3° and 44.0° in 1).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{\(^1\)H NMR spectrum (C\(_6\)D\(_6\), 500 MHz, 25°C) of [Ru(IMe\(_4\))\(_4\)H\(_2\)] (1). Insets show H/D exchange into N-Me groups and RuH\(_2\).}
\end{figure}

Attempts to synthesise \textit{trans}-[Ru(IEt\(_2\)Me\(_2\))\(_4\)H\(_2\)] met with limited success as the species could only be generated \textit{in-situ} in a reaction between \textit{trans}-[Ru(IEt\(_2\)Me\(_2\))\(_4\)Cl\(_2\)] with KC\(_8\)/H\(_2\) in THF-\(d_8\) at 70°C for 2 h. Analysis of the pale yellow reaction mixture by
1H NMR spectroscopy revealed a characteristic RuH singlet at δ -8.05 (2H), a triplet methyl (NCH$_2$CH$_3$) signal at δ 0.43 (2J$_{HH}$ = 6.9 Hz, 24H), a singlet backbone methyl resonance at δ 2.00 (24H) and two sets of multiplets at δ 3.67 (8H) and 6.08 (8H) arising from diastereotopic methylene (NCH$_2$CH$_3$) protons. No solid could be isolated following the same work-up procedure used for 1, possibly due to the even greater sensitivity of the N-Et analogue.

\[\text{Figure 2.2: Molecular structure of } \text{trans-}[\text{Ru(IMe$_2$)$_4$H$_2$}] (2). \text{ Thermal ellipsoids are represented at 30\% probability. Hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity.} \]

2.2. Stoichiometric C-F activation of fluoroarenes and synthesis of \textit{trans-}[Ru(NHC)$_4$HF] complexes

Addition of 1 equiv of C$_6$F$_6$ to benzene solutions of 1 and 2 brought about rapid formation of \textit{trans-}[Ru(IMe$_4$)$_4$HF] (3) and \textit{trans-}[Ru(IMe$_2$)$_4$HF] (4) respectively (Scheme 2.1) within the time of mixing.ii As expected, analysis of the reaction volatiles

ii Both species were also formed cleanly upon reaction of corresponding dihydride complexes with the less fluorinated substrate 1,2,4-C$_6$F$_3$H$_3$, although more slowly.
by 19F NMR spectroscopy revealed the presence of three sets of resonances at δ -138.3 (m), -153.3 (t, $^3J_{FF} = 20.7$ Hz) and -161.5 (m), which integrated in a 2:1:2 ratio and were assigned as ortho-, para- and meta-fluorines of the HDF product, C$_6$F$_5$H.

Single-crystal X-ray structures of 3 and 4 are presented in Figure 2.3. The molecules resided on crystallographic C_2 and C_{4i} axes respectively and showed retention of an octahedral coordination sphere at ruthenium comprising of four NHC ligands and the mutually trans hydride and fluoride substituents. Table 2.1 shows a comparison of selected metrics. The Ru-C bond distances in both 3 and 4 were slightly elongated compared to their parent dihydride complexes. In contrast to 1 and 3, the H1-Ru1-C1-N1 torsion angle in 4, defining the twist of the NHC plane with respect to the H-Ru-F axis, was markedly reduced compared to that in 2. This could be a consequence of weak hydrogen bonding between the N-Me protons and the fluoride ligand (C-H···F 2.144(4) Å; C···F 3.013(3) Å; C-H-F 149.9(5)$^\circ$) that helps to lock the carbene positions. Some degree of H-bonding was also observed in 3 (C-H···F 2.132(17) Å; C···F 3.055(4) Å; C-H-F 157.0(3)$^\circ$). Of particular interest were the long ruthenium-fluorine distances (2.3070(18) Å for 3 and 2.384(4) Å for 4), which were comparable to the value of 2.284(5) Å found in trans-[Ru(dmpe)$_2$H(FHF)], the only other example of a structurally characterised trans-H-Ru-F complex in the literature. The Ru-H (and Ru-F) NMR resonances in 3 and 4 appeared at δ -23.19 (δ -281.6) and δ -22.94 (δ -302.4) respectively. The number of proton NHC resonances doubled on going from the ruthenium dihydride complexes (1 and 2) to the corresponding hydride fluoride species (3 and 4) which reflected both the decrease in symmetry at Ru, as well as the restricted rotation about the Ru-C$_{\text{NHC}}$ bonds.
Figure 2.3: Molecular structures of \([\text{Ru(IMe}_4]\text{HF}]\) (3, left) and \([\text{Ru(IMe}_2]\text{HF}]\) (4, right). Thermal ellipsoids are represented at 30\% probability. Hydrogen atoms, with the exception of hydride ligands and those on the N-methyl groups showing H-bonding contacts to Ru-F, have been omitted for clarity.

Table 2.1: Selected bond lengths (Å) and angles (°) for complexes 1-4.

<table>
<thead>
<tr>
<th></th>
<th>1(^1)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru-C</td>
<td>2.058(2), 2.064(2)</td>
<td>2.056(2)</td>
<td>2.074(15), 2.063(15)</td>
<td>2.069(2)</td>
</tr>
<tr>
<td>H-Ru-C-N</td>
<td>42.3, 44.0</td>
<td>40.4</td>
<td>42.6, 40.2</td>
<td>33.7</td>
</tr>
<tr>
<td>trans-C-Ru-C</td>
<td>178.13(8)</td>
<td>180.00(7)</td>
<td>178.15(6)</td>
<td>174.6(3)</td>
</tr>
<tr>
<td>cis-C-Ru-C</td>
<td>87.41(11)</td>
<td>90.0</td>
<td>87.65(8)</td>
<td>89.874(15)</td>
</tr>
<tr>
<td>Ru-F</td>
<td>-</td>
<td>-</td>
<td>2.3070(18)</td>
<td>2.384(4)</td>
</tr>
<tr>
<td>C-H···F</td>
<td>-</td>
<td>-</td>
<td>2.144(4)</td>
<td>2.132(12)</td>
</tr>
</tbody>
</table>

It is worth noting that \(^{13}\text{C}\) NMR analysis of 4 was not possible due to its insolubility in common organic solvents such as THF, \(\text{C}_6\text{FH}_5\), DMSO, pyridine or \(\text{CH}_2\text{Cl}_2\). Although 4 dissolved readily in acetonitrile, it reacted to give a mixture of
fluoride and bifluoride salts of [Ru(IMe\textsubscript{2})\textsubscript{4}H(MeCN)]+,3 which was assigned through comparison of the spectroscopic data for the cation to that of the known IMe\textsubscript{4} analogue, [Ru(IMe\textsubscript{4})\textsubscript{4}H(MeCN)][BA\textsubscript{4}F\textsubscript{4}].4 Thus, the Ru-H resonated at \(\delta -15.20\) in the \(^1\text{H}\) NMR spectrum, while the [F]- and [HF\textsubscript{2}]- anions appeared as a broad singlet at \(\delta -70.2\) and a doublet at \(\delta -147.2\) \((^{1}J_{FH} = 121 \text{ Hz})\) in the \(^{19}\text{F}\) NMR spectrum respectively.

Employment of THF as the reaction solvent had a perplexing effect on the appearance of the reaction between \textbf{1} and \(\text{C}_6\text{F}_6\) or \(\text{C}_6\text{F}_5\text{H}\). Thus, upon addition of 1 equiv of hexa- or pentafluorobenzene to a THF-\textsubscript{d\textsubscript{8}} solution of \textbf{1}, the instantaneous formation of black solid was observed. Immediate analysis of the reaction mixture by \(^1\text{H}\) and \(^{19}\text{F}\) NMR spectroscopy revealed complete loss of signals for \textbf{1} and the presence of \textbf{3} along with the HDF products, \(\text{C}_6\text{F}_3\text{H}\) and \(1,2,4,5-\text{C}_6\text{F}_4\text{H}_2\) \((\delta -138.6, \text{ t}, J_{FH} = 8.6 \text{ Hz})\) respectively. Following separation of the solid and mother liquor, the precipitate proved to be insoluble in organic solvents, as well as \(\text{H}_2\text{O}\), but dissolved in aqua regia, implying that the generated heterogeneous suspension consisted of metal particles. No further attempts were made to elucidate the nature of the isolated solid. Nonetheless, we speculated that the unexpected deposition of black material could result from radical processes taking place. To probe this, the reaction was repeated in the presence of TEMPO (5 equiv), a common radical trap. Although no change in colour or sample homogeneity was observed, a yellow precipitate, along with a small amount of yellow crystals were formed after leaving the reaction mixture at room temperature overnight. \(^1\text{H}\) and \(^{19}\text{F}\) NMR spectra were broad and did not show any signals for \textbf{1} or \textbf{3}. Unfortunately, subsequent X-ray diffraction analysis of the isolated crystalline material proved elusive. Preliminary refinement of the obtained crystal structure indicated that the unit cell comprised of half a molecule of [Ru(IMe\textsubscript{4})\textsubscript{4}HF], albeit with a significantly shorter Ru-F bond (ca. 1.990 Å). However, the high disorder and the presence of
significant residual electron density in the lattice impeded the final refinement. Dissolution of the crystals in acetonitrile suggested the formation of a bifluoride salt with a molecule of MeCN coordinated trans to the Ru-H, [Ru(IMe₄)₄H(MeCN)][HF₂], analogous to the aforementioned IMe₂ complex. The same difficulties were encountered upon repeating the experiment several times. The fate of TEMPO remains unknown, although given the absence of black precipitate, it is reasonable to assume that the reaction between 1 and C₆F₅H in THF might proceed via a radical pathway. Perutz and co-workers reported the formation of trans-[Ru(dmpe)₂(C₆F₅)H] from the reaction of cis-[Ru(dmpe)₂H₂] and C₆F₆ at -78°C in THF. The authors postulated a mechanism involving electron transfer from the electron rich metal dihydride to hexafluorobenzene to generate a solvent caged radical pair {[RuH₂]⁺ [C₆F₆]⁻}. The resulting radical anion would then lose F⁻, which would deprotonate the radical cation to liberate a molecule of HF as a thermodynamic sink. Radical recombination would account for the product formation. Attempts to provide support for an electron transfer process through use of 9,10-dihydroanthracene (DHA) as a radical trap gave disappointingly only trace amounts of anthracene. This was postulated to be due to radicals being trapped in the solvent cage. It might be desirable in future studies on 1 to investigate the effect of other radical quenchers such as DHA or galvinoxyl, as well as repeat the reaction in the presence of TEMPO at lower temperatures.

Interestingly, addition of stoichiometric amounts of C₆F₆ or C₆F₅H to a THF solution of 2 led to an instantaneous precipitation of orange solid, most likely 4, and no deposition of black solid was observed. As expected, ¹⁹F NMR analysis of the reaction mixture confirmed the formation of the HDF products C₆F₅H and 1,2,4,5-C₆F₄H₂ respectively.
2.3. Catalytic HDF of fluoroarenes using trans-[Ru(NHC)₄H₂] complexes

In light of the facile conversion of complexes 1 and 2 to 3 and 4 upon reaction with C₆F₆ under stoichiometric conditions, catalytic HDF of aromatic fluorocarbons was explored. The activity of complexes 1 and 2 was screened at 5 mol% loading in C₆H₆ with 50 equiv of Et₃SiH (with respect to catalyst) as a reductant. The outcomes of HDF reactions are summarised in Table 2.2. Complex 1 proved to be a remarkably active catalyst, capable of converting C₆F₆ to 1,2,4,5-C₆F₄H₂ within ca. 5 minutes at room temperature, which translates to a TOF value exceeding 480 h⁻¹ (Scheme 2.2). The mild reaction conditions and observed para-regioselectivity were in a striking contrast to the observations with complexes I and II, that required elevated temperatures to promote ortho-C-F activation of C₆F₃H to give 1,2,3,4-C₆F₄H₂. Two subsequent HDF steps on 1,2,4,5-C₆F₄H₂ by 1 were complete over ca. 1 month to yield 1,4-C₆F₂H₄ (identified by the appearance of a ¹⁹F NMR resonance at δ -118.7) in quantitative yield (Table 2.2, entry 1). Increasing the reaction temperature to 90°C significantly reduced the reaction time to just 10 h (Table 2.2, entry 1; Figure 2.4).

Scheme 2.2: Catalytic HDF by trans-[Ru(IMe)₄H₂] (1).
Figure 2.4: 19F NMR spectra (470 MHz, 25°C) showing the progression of a catalytic HDF reaction of C$_6$F$_6$ with 1 (5 mol%) and Et$_3$SiH (100 equiv) in C$_6$H$_6$ after 10 min at 25°C (top), 4 h heating at 90°C (middle) and a total of 10 h at 90°C (bottom).

In order to define the scope and regioselectivity of HDF, catalysis was carried out with a range of low fluorine containing substrates (entries 2-5). As anticipated, HDF of 1,2,4,5-C$_6$F$_4$H$_2$ first afforded 1,2,4-C$_6$F$_3$H$_3$, which was then converted to 1,4-C$_6$F$_2$H$_4$ (entries 2 and 3). HDF of 1,4-C$_6$F$_2$H$_4$ to fluorobenzene did not occur, although C$_6$FH$_5$ could be formed from both 1,2- and 1,3- isomers of C$_6$F$_2$H$_4$ (entries 4 and 5). No further reduction to C$_6$H$_6$ was observed, consistent with the general paucity of catalytic systems able to react with monofluorinated substrates. Nonetheless, the catalyst was still active as shown by the further propagation of HDF following the addition of more C$_6$F$_6$ (20 equiv) at the end of a catalytic run using 1,3-C$_6$F$_2$H$_4$ of 539 h duration at 120°C. However, a drop in activity was apparent as full conversion to 1,2,4,5-C$_6$F$_4$H$_2$ was achieved only in ca. 1 h (i.e. TOF \approx 40 h$^{-1}$), rather than <5 minutes (i.e. TOF \approx 480 h$^{-1}$).
The study was further extended to investigate the effect of the silane reductant on the catalytic activity of 1 (entries 6-10). It was established that silanes containing mixed aryl/alkyl substituents (PhMe$_2$SiH and Ph$_2$MeSiH), as well as secondary alkyl silanes (Et$_2$SiH$_2$) performed comparably to Et$_3$SiH, although a drop in activity was observed upon switching to the aryl silanes Ph$_3$SiH or Ph$_2$SiH$_2$.

Complex 2 turned out to be less effective for catalytic HDF, requiring longer reaction times to achieve similar conversions (entries 11-12). This is perhaps due to the poor solubility of the fluoride derivative 4, as indicated by the presence of a fine yellow precipitate in catalytic reactions carried out at 90°C.
Table 2.2: trans-[Ru(NHC)$_4$H$_2$] catalysed HDF.\(^{[a]}\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat.</th>
<th>Substrate</th>
<th>Reductant</th>
<th>Product</th>
<th>T [°]</th>
<th>t [h]</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>C$_6$F$_6$</td>
<td>Et$_3$SiH</td>
<td>1,4-C$_6$F$_2$H$_4$</td>
<td>25/90$^{[b]}$</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1,2,4,5-C$_6$F$_4$H$_2$</td>
<td>Et$_3$SiH</td>
<td>1,4-C$_6$F$_2$H$_4$</td>
<td>90</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1,2,4-C$_6$F$_3$H$_3$</td>
<td>Et$_3$SiH</td>
<td>1,4-C$_6$F$_2$H$_4$</td>
<td>90</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>4$^{[c]}$</td>
<td>1</td>
<td>1,2-C$_6$F$_4$H$_2$</td>
<td>Et$_3$SiH</td>
<td>C$_6$FH$_5$</td>
<td>120</td>
<td>157</td>
<td>20</td>
</tr>
<tr>
<td>5$^{[c]}$</td>
<td>1</td>
<td>1,3-C$_6$F$_4$H$_2$</td>
<td>Et$_3$SiH</td>
<td>C$_6$FH$_5$</td>
<td>120</td>
<td>539</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>C$_6$F$_6$</td>
<td>PhMe$_2$SiH</td>
<td>1,4-C$_6$F$_2$H$_4$</td>
<td>25</td>
<td>740</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>C$_6$F$_6$</td>
<td>Ph$_2$MeSiH</td>
<td>1,4-C$_6$F$_2$H$_4$</td>
<td>90</td>
<td>17</td>
<td>80</td>
</tr>
<tr>
<td>8$^{[d]}$</td>
<td>1</td>
<td>C$_6$F$_6$</td>
<td>Ph$_3$SiH</td>
<td>C$_6$F$_5$H (79%) + 1,2,4,5-C$_6$F$_4$H$_2$ (21%)</td>
<td>25</td>
<td>740</td>
<td>18.5</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>C$_6$F$_6$</td>
<td>Et$_2$SiH$_2$</td>
<td>1,4-C$_6$F$_2$H$_4$</td>
<td>25/90$^{[b]}$</td>
<td>9</td>
<td>80</td>
</tr>
</tbody>
</table>

\(^{[a]}\)

\(^{[b]}\)

\(^{[c]}\)

\(^{[d]}\)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>C₆F₆</td>
<td>Ph₂SiH₂</td>
<td>1,2,4,5-C₆F₄H₂</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>C₆F₆</td>
<td>Et₃SiH</td>
<td>1,2,4,5-C₆F₄H₂</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>C₆F₆</td>
<td>Et₃SiH</td>
<td>1,4-C₆F₂H₄</td>
<td>90</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: 0.1 M fluoroarene, 0.5 M silane, 5 mol% 1 or 2, 0.5 mL C₆H₆, conversions determined by ¹⁹F NMR spectroscopy. [b] Temperature raised to 90°C after ca. 5 min at 25°C. [c] Solvent = C₆H₅CH₃. [d] Product distribution is % of main products/total % of all HDF products.
2.4. Mechanistic studies of catalytic HDF

2.4.1. Reactivity of trans-[Ru(IMe)₄HF] (4) with silanes

The dependence of catalytic conversion on the employed silane suggested that the regeneration of the parent dihydride species from the corresponding fluoride complex, necessary to close the catalytic cycle, might be the rate-limiting step in the HDF of fluoroarenes. Thus, the reactivity of 3 towards HSiR₃ (R = Et, Ph) was investigated (Scheme 2.1).

Addition of 5 equiv of Et₃SiH to a C₆H₆ solution of 3 resulted in the immediate and clean reformation of 1. Since aryl silanes were shown to significantly impair the rate of catalytic HDF, 3 was similarly reacted with Ph₃SiH. Upon addition of 1.5 equiv of C₆F₆ to a C₆H₆ solution of 1 and Ph₃SiH (1:5 ratio), an immediate change in colour from pale yellow to deep purple was apparent, indicative of the formation of the 16 electron cationic species, [Ru(IMe)₄H]⁺. Addition of pentane to the reaction mixture led to the precipitation of [Ru(IMe)₄H][Ph₃SiF₂] (5), which was fully characterised by NMR spectroscopy and single crystal X-ray diffraction. The Ru-H chemical shift (δ -40.16) matched the value of δ -40.71 reported for [Ru(IMe)₄H][BARF₄]⁻, while the [Ph₃SiF₂]⁻ anion gave rise to a sharp singlet (with Si satellites) in the ¹⁹F NMR spectrum at δ -103.0 (¹JFSi = 259 Hz), consistent with data reported for previously isolated [K([2.2.2.]cryptand)][Ph₃SiF₂] (δ -102.2, ¹JFSi = 259 Hz) and [K([18]crown-6)][Ph₃SiF₂] (δ -101.7, ¹JFSi = 255 Hz) salts. The molecular structure of 5 is shown in Figure 2.5. The hypervalent pentacordinate

iii It is worth noting that in all catalytic HDF reactions with aryl silanes (Ph₃SiH, Ph₂SiH₂, Ph₂MeSiH), a pink-purple tinge to the reaction mixture was observed.
difluorosilicate anion contains an approximately linear F-Si-F unit (177.1(2)°) with three phenyl groups occupying the equatorial positions of the trigonal bipyramid. There was no significant deviation of bond lengths (Si-F, Si-C) or angles (F-Si-F, C-Si-C) from other known [Ph$_3$SiF$_2$]$^-$ compounds.7,8

Figure 2.5: Molecular structure of [Ru(IMe$_4$)$_4$H][Ph$_3$SiF$_2$] (5). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) for the anion: Si(1)-F(1) 1.736(4), Si(1)-F(2) 1.731(4), Si(1)-C(64) 1.896(6), Si(1)-C(70) 1.909(8), Si(1)-C(76) 1.898(6), F(1)-Si(1)-F(2) 177.1(2), C(64)-Si(1)-C(70) 120.5(3), C(64)-Si(1)-C(76) 114.9(3), C(70)-Si(1)-C(76) 124.6(3).

A proposed mechanism for the formation of 5 is presented in Scheme 2.3 and involves two HDF steps of C$_6$F$_6$ to give C$_6$F$_4$H$_2$ and 3, which subsequently undergoes fluoride abstraction by the in-situ generated Ph$_3$SiF to yield 5. Addition of excess Ph$_3$SiH to a C$_6$H$_6$ suspension of 5 and vigorous shaking of the reaction mixture at room temperature overnight resulted in a clean reformation of 1 and Ph$_3$SiF. Related reactivity has been observed previously with [(IPr)CuF], which was
activated by fluorosilanes R_3SiF to generate a tight ion pair between $[(\text{IPr})\text{Cu}]^+$ and a difluorosilicate $[(\text{IPr})\text{Cu}]^+$. The formed species were assumed to assist the hydride transfer from the silane to the copper atom to afford $[(\text{IPr})\text{CuH}]$.

Trialkyldifluorosilicates are not known, presumably due to the low Lewis acidity/fluorophilicity of the silicon centre when substituted with electron donating alkyl groups. Consequently, efforts to isolate or observe a triethylsilicate analogue of 5 in the reaction with Et_3SiH proved unsuccessful. The findings from the stoichiometric experiments with Ph_3SiH and Et_3SiH may help to rationalise the variations seen with silanes in the catalytic HDF experiments in Table 2.2 simply on the basis of different reactivity in the first instance with the hydride fluoride complex 3. The results certainly do suggest that the reaction of the H-Ru-F with R_3SiH is more complex than a simple bond metathesis reaction of Ru-F and Si-H.

\[
\text{Scheme 2.3: Putative reaction scheme and a balanced reaction (below) for the formation of } [\text{Ru}(\text{IME}_4)_4\text{H}][\text{Ph}_3\text{SiF}_2]\text{ (5) (black) and its reaction with } \text{Ph}_3\text{SiH} \text{ (grey).}
\]

Having shown that alkyl and mixed alkyl/aryl silanes (Table 2.2, entries 6-10) impacted HDF very similarly, and that it is only aryl silanes that showed markedly different behaviour, additional studies aimed at elucidating the effect of
silane concentration on the rate of HDF were conducted. Figure 2.6 shows kinetic profiles of two catalytic HDF experiments starting with 1,2,4-C₆F₃H₃ and 1 at 90°C in the presence of 20 equiv of Et₃SiH in one case, and 100 equiv of Et₃SiH in the second case. The results clearly demonstrate that the 5-fold change in silane concentration has no impact on the rate of conversion of 1,2,4-C₆F₃H₃ to 1,4-C₆F₂H₄ suggesting that the rate-determining step for the catalytic HDF of fluorobenzenes is the C-F bond activation.

Figure 2.6: Time course plots of the catalytic HDF of 1,2,4-C₆F₃H₃ by 1 (5 mol%, C₆H₅CH₃, 90°C) showing the consumption profiles (■, ♦) of 1,2,4-C₆F₃H₃ and the formation profiles (▲, ●) of 1,4-C₆F₂H₄ upon varying the concentrations of Et₃SiH. (■, ▲ = 100 equiv Et₃SiH; ●, ♦ = 20 equiv Et₃SiH).

2.4.2. Probing NHC dissociation in catalytic C-F activation

NHCs have been demonstrated to play an important role in their own right in organofluorine chemistry,¹⁰ mediating catalytic fluorination reactions,¹¹–¹³ as well as stoichiometric C-F bond activations of simple fluoroarenes and fluoroalkenes.¹⁴,¹⁵
For example, Kuhn and co-workers reported that N-alkyl carbenes (tetraalkylimidazol-2-ylidenes) effect nucleophilic aromatic substitution in pentafluoropyridine16 and hexafluorobenzene17 to afford perfluoroaryl-substituted imidazolium salts (Scheme 2.4A). Kim and Lee18 described a sequential reaction of an N-aryl carbene (IPr) with two molecules of octafluorotoluene to give a tetrasubstituted imidazolium salt with perfluoro substituents bound at both the C2 and C4 positions (Scheme 2.4B). However, employment of the more electron-rich and thus less activated 1-fluoro-4-trifluoromethylbenzene as a substrate led to just one C-F activation step at the C2 site in IPr or IMes. In contrast, the more nucleophilic (σ-donating) and more electrophilic (π-accepting) cyclic alkyl amino carbenes (CAACs) displayed different reactivity to their diamino counterparts and inserted into the C-F bonds of C\textsubscript{5}F\textsubscript{5}N (Scheme 2.4C)19 and C\textsubscript{6}F\textsubscript{5}X (X = F, H; Scheme 2.4D)20 to afford single and double C-F activation adducts respectively.21 The group of Chaplin discovered that the bioxazoline-derived carbene IBioxMe\textsubscript{4} enacted selective single and double C-F bond activation of octafluorotoluene and hexafluorobenzene, respectively (Scheme 2.4E).22 The postulated mechanism for the formation of the fluoroarene substituted zwitterionic imidazoliumolate products involved nucleophilic aromatic substitution by the NHC ligand and concurrent oxazoline ring opening by the liberated fluoride.
Scheme 2.4: Known examples of C-F activation of perfluoroarenes by NHCS.
The remarkable electron donating properties of NHCs have led to them being regarded as innocent spectator ligands, which bind strongly to late-transition metals and do not dissociate readily from metal centres. This was also found to be true for coordinatively saturated 1, which was probed for carbene loss. No exchange between 1 and IEt2Me2 (3 equiv) was observed at room temperature. This indicated that any involvement of a five-coordinate species (such as [Ru(IMe4)3H2]) in the HDF reactions carried out at room temperature could be discounted, i.e. room temperature HDF took place at a six-coordinate species via a concerted mechanism. However, upon elevating the temperature to 90°C, new hydride resonances appeared in the same δ ~ -8 ppm hydride region of the 1H NMR spectrum as 1, suggesting that NHC dissociation and exchange was possible at higher temperature.

To investigate if IMe4 could itself enact C-F bond activation of fluorobenzenes without the need for ruthenium, the free carbene was heated with 1,2,4-C6F3H3 (1 equiv) at 70-90°C in the presence of 6 equiv of Et3SiH. This led to the formation of the addition product, (IMe4)C6F2H3(H) (6) (Scheme 2.5) and Et3SiF in a 1:1 ratio. 6 was isolated as pale yellow oil and fully characterised by multinuclear NMR spectroscopy (Table 2.3) and mass spectrometry. The backbone methyl groups and the N-Me protons resonated at δ 1.50 and 2.16 respectively. A very small doublet splitting of the latter (6JHF = 0.7 Hz) was a consequence of coupling to the ortho-fluorine in the difluorophenyl ring. The NCN bound proton coupled to both ortho- and meta-fluorine substituents and appeared as a doublet of doublets at δ 4.46 (4JHF = 2.4 Hz, 5JHF = 0.8 Hz). The aromatic proton signals were unambiguously assigned on the basis of 1H and 1H{19F} NMR spectra. Thus, the ortho-H gave rise to a high frequency (δ 7.87) doublet of doublet of doublets due to coupling to meta- and ortho-fluorines (3JHF = 9.2 Hz, 4JHF = 5.4 Hz), as well as
N(CH)N proton ($^4J_{HH} = 3.2$ Hz). The \textit{meta}- and \textit{para}-protons appeared as multiplets at δ 6.57 and 6.54 respectively, which collapsed into a doublet ($^3J_{HH} = 9.0$ Hz) and a doublet of doublets ($^2J_{HH} = 9.0$ Hz, $^4J_{HH} = 3.2$ Hz) upon 19F decoupling. The \textit{meta}- and \textit{ortho}-fluorines resonated as multiplets at δ -118.1 and -128.4 respectively, which resolved into doublets ($^5J_{FF} = 18.1$ Hz) in the 19F\{ 1H\} NMR spectrum. 13C\{ 1H\} HSQC and HMBC experiments allowed for an unequivocal assignment of all 13C\{ 1H\} resonances, with the most pertinent resonances perhaps arising from the NCN (δ 86.5, s) and \textit{ipso}-C$_6$F$_2$H$_3$ (δ 131.0, dd, $^2J_{CF} = 17.2$ Hz, $^3J_{CF} = 6.4$ Hz) carbons.

\textbf{Scheme 2.5:} Formation of (IME$_4$)(C$_6$F$_2$H$_3$)(H) (6) and [IME$_4$C$_6$F$_2$H$_3$][BF$_4$] (7) from stoichiometric C-F activation reactions of 1,2,4-C$_6$F$_3$H$_3$ with IMe$_4$.
Table 2.3: 1H, 19F and selected 13C{1H} NMR data for (IMe$_4$)C$_6$H$_3$F$_2$(H) (6) and [IMe$_4$C$_6$H$_3$F$_2$][BF$_4$] (7).

<table>
<thead>
<tr>
<th></th>
<th>1H</th>
<th>19F</th>
<th>13C{1H}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NCCH$_3$</td>
<td>1.50 (s)</td>
<td>2.33 (s)</td>
</tr>
<tr>
<td>1H</td>
<td>NCH$_3$</td>
<td>2.16 (d, 6J$_{HF}$ = 0.7 Hz)</td>
<td>3.56 (d, 6J$_{HF}$ = 0.6 Hz)</td>
</tr>
<tr>
<td></td>
<td>NCHN</td>
<td>4.46 (dd, 4J${HF}$ = 2.4 Hz, 5J${HF}$ = 0.8 Hz)</td>
<td>-</td>
</tr>
<tr>
<td>1H</td>
<td>α-C$_6$F$_2$H$_3$</td>
<td>7.87 (ddd, 3J${HF}$ = 9.2 Hz, 4J${HF}$ = 5.4 Hz, 4J$_{HH}$ = 3.2 Hz)</td>
<td>7.49 (m, 4J$_{HH}$ = 3 Hz)</td>
</tr>
<tr>
<td>1H</td>
<td>m-C$_6$F$_2$H$_3$</td>
<td>6.57 (m, 3J$_{HH}$ = 9.0 Hz)</td>
<td>7.36 (m, 3J$_{HH}$ = 9.2 Hz)</td>
</tr>
<tr>
<td>1H</td>
<td>p-C$_6$F$_2$H$_3$</td>
<td>6.54 (m, 3J${HH}$ = 9.0 Hz, 4J${HH}$ = 3.2 Hz)</td>
<td>7.45 (m, 3J${HH}$ = 9.2 Hz, 4J${HH}$ = 3 Hz)</td>
</tr>
<tr>
<td>19F</td>
<td>m-C$_6$F$_2$H$_3$</td>
<td>-118.1 (m, 5J$_{FF}$ = 18.1 Hz)</td>
<td>-114.9 (dtd, 5J${FF}$ = 17.2 Hz, 3J${FH}$ = 7.8 Hz, 4J$_{FH}$ = 4.3 Hz)</td>
</tr>
<tr>
<td>19F</td>
<td>p-C$_6$F$_2$H$_3$</td>
<td>-128.4 (m, 5J$_{FF}$ = 18.1 Hz)</td>
<td>-117.5 (m, 5J$_{FF}$ = 17.2 Hz)</td>
</tr>
<tr>
<td>13C{1H}</td>
<td>$ipso$-C$_6$F$_2$H$_3$</td>
<td>131.0 (dd, 3J${CF}$ = 17.2 Hz, 3J${CF}$ = 6.4 Hz)</td>
<td>111.3 (2J${CF}$ = 17.2 Hz, 3J${CF}$ = 9.2 Hz)</td>
</tr>
<tr>
<td>13C{1H}</td>
<td>NCN</td>
<td>86.5 (s)</td>
<td>136.9 (s)</td>
</tr>
</tbody>
</table>
Although 6 could not be isolated for structural verification, activation at the C2 position was confirmed by an X-ray structure of the imidazolium salt, [IMe₄C₆F₂H₃][BF₄] (7) (Figure 2.7), which was obtained upon thermolysis of IMe₄ and 1,2,4-C₆H₃F₃ in the absence of any silane (to afford (IMe₄)(C₆F₂H₃)(F)), followed by halide extraction with NaBF₄. iv Similarly to 6, compound 7 was fully characterised by NMR spectroscopy and all relevant ¹H, ¹⁹F and ¹³C{¹H} resonances and coupling constants are listed in Table 2.3. The change in NCN hybridisation from sp³ in 6 to sp² in 7 was reflected in a significant shift of the ¹³C{¹H} NMR signal to higher frequency (from δ 86.5 to 136.9), consistent with decreased shielding.

iv Ion exchange was carried out in order to overcome any potential issues arising from the presence of different anions as indicated by ¹H and ¹⁹F NMR analysis, which implied that at least some of the anion accompanying the cation was bifluoride [HF₂]⁻, presumably formed by hydrolysis. Selected NMR data for “[IMe₄C₆H₃F₂][HF₂]”: ¹H NMR (500 MHz, CD₂Cl₂, 25°C): δ 16.08 (t, JHF = 121.6 Hz, HF₂⁻). ¹⁹F NMR (470 MHz, CD₂Cl₂, 25°C): δ -156.5 (d, JFH = 121.6 Hz, HF₂⁻). c.f. δ -156.7 for the imidazolium salt shown in Scheme 2.5B.
Figure 2.7: Molecular structure of \([\text{IME}_4\text{C}_6\text{F}_2\text{H}_3][\text{BF}_4]\) (7). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) for the cation: C1-N1 (1.335(2)), C1-N2 (1.386(2)), C1-C8 (1.469(2)), N1-C2 (1.386(2)), N2-C3 (1.385(2)), C2-C3 (1.356(2)), N2-C1-N1 (107.72(13)), C1-N1-C2 (109.31(13)), N1-C2-C3 (106.91(14)), C2-C3-N2 (106.91(14)), C3-N2-C1 (109.15(13)).

To address the possibility that 6 could eliminate 1,4-C\(_6\)F\(_2\)H\(_4\) and hence catalyse the HDF of 1,2,4-C\(_6\)F\(_3\)H\(_3\), an isolated sample of 6 was heated at 90°C in both the presence and absence of Et\(_3\)SiH. In both cases \(^{19}\)F NMR analysis showed <15% conversion to 1,4-C\(_6\)F\(_2\)H\(_4\), implying only a very low level of NHC-mediated stoichiometric HDF. In addition, the absence of any 6 resulting from carbene loss at the end of catalytic runs with 1 provided further evidence that the coordinatively unsaturated species, [Ru(IMe\(_4\))\(_3\)H\(_2\)], was not catalytically relevant even in the high temperature HDF experiments.

The abovementioned studies were reinforced by monitoring the consumption of 1,2,4-C\(_6\)F\(_3\)H\(_3\) in the presence of 1 by \(^{19}\)F NMR spectroscopy in a series of kinetic experiments summarised in the time course plots shown in Figure 2.8. These revealed
that the rate of HDF of 1,2,4-C₆F₃H₃ was increased by the presence of 10 equiv of IMe₄ (---), compared to a reference experiment where only 1 and Et₃SiH were used (XXX). However, in a substoichiometric reaction between IMe₄ and 1,2,4-C₆F₃H₃ (1:2 ratio = 50 mol% [IME₄] loading; ▲▲▲) only one equiv of fluoroarene was consumed (50% conversion), and so the faster decay profile for the experiment with both 1 and IMe₄ resulted from synergistic catalytic and stoichiometric C-F activation, respectively.

![Graph showing consumption profile of 1,2,4-C₆F₃H₃](image)

Figure 2.8: Time course plots showing the consumption profile of 1,2,4-C₆F₃H₃ in a catalytic HDF reaction using 1 (5 mol%, 100 equiv Et₃SiH, C₆H₆, 70°C) in the absence of any additional IMe₄ (XXX), a catalytic HDF reaction using 1 (5 mol%, 100 equiv Et₃SiH, C₆H₆, 70°C) in the presence of 10 equiv IMe₄ (---) and the stoichiometric reaction of 1,2,4-C₆F₃H₃ and IMe₄ (2:1 ratio) in C₆H₆ at 70°C (▲▲▲).

2.4.3. DFT study of catalytic HDF

DFT calculations were undertaken by McKay and Macgregor (Heriot-Watt University) to account for the selectivity of the catalytic HDF by 1 of fluoroarenes observed experimentally and to survey the scope of HDF of other fluorobenzenes across
the range C_{6-n}(n = 0-5). Given the importance of the NHC ligand architecture in both facilitating HDF and determining the selectivity of the process, the study employed the full experimental system, i.e. using IMe₄ ligands. Having discounted experimentally a stepwise HDF process involving NHC/fluoroarene substitution, the study focused on the concerted mechanism using 1,2,4-C₆F₃H₃ as a model substrate. The full reaction profile is presented in Figure 2.9. The most accessible pathway, with a free energy barrier of +16.2 kcal mol\(^{-1}\), involved attack of the hydride ligand of I at the C2 position of 1,2,4-C₆F₃H₃. The corresponding transition state (TS(1-3)₂F) showed a slight bending of the \{Ru⋯H\(^a\)⋯C₂\} moiety (171.9°) and an elongation of Ru⋯H\(^b\) and C2-F2 bonds to 1.90 Å and 1.41 Å respectively. At this point, the new C2-H\(^a\) bond formation (1.64 Å) and the contraction of the Ru-H\(^b\) (1.65 Å) distance occurred, the latter being a consequence of a weakening Ru-H\(^a\) interaction. The approaching fluoroarene, defined by the C₆ plane, was tilted towards the best-fit plane containing Ru and four carbenic carbons of the NHC ligands. The \{C₆F₃H₄\}⁻ moiety resembled a Meisenheimer intermediate featuring elongated C\(_{ipso}\)-C\(_{ortho}\) distances, although H-transfer onto C2 was more advanced than the F-displacement, as indicated by negligible increase in the C2-F2 bond length with respect to the free 1,2,4-C₆F₃H₃, as well as the long Ru⋯F2 distance (3.70 Å). Nonetheless, characterisation via IRC calculations confirmed direct migration of F2 onto Ru to form 3 and release 1,4-C₆F₂H₄. Overall, the HDF process proved to be highly exothermic (\(\Delta G = -49.9\) kcal mol\(^{-1}\)).

To assess the overall regioselectivity of 1,2,4-C₆F₃H₃ at I, the reactions at C1 and C4 were also considered. These proceeded via transition states TS(1-3)₁F and TS(1-3)₄F at +19.7 kcal mol\(^{-1}\) and +21.4 kcal mol\(^{-1}\), respectively. The geometry of both transition states were similar to TS(1-3)₂F, although with slightly longer Ru⋯H\(^a\) (1.93 Å) and shorter C1/C4⋯H\(^a\) distances (1.58 and 1.56 Å respectively), in line with higher
calculated energy barriers. Thus, formation of 1,4-C₆F₂H₄ was a consequence of a clear kinetic preference for the Ru-H attack to occur at the 2-position, as borne out experimentally (Table 2.2, entry 3).

Figure 2.9: Computed reaction profile for HDF of 1,2,4-C₆F₃H₃ at trans-[Ru(IMe₄)₄H₂] (1). Energies (kcal mol⁻¹) are quoted relative to 1 and 1,2,4-C₆F₃H₃ computed separately. Selected distances are shown in Å.

Figure 2.10 shows the computed scope of HDF for a range of fluoroarenes at 1. Consistent with previous reports,²⁸,²⁹ the C-F bond energy increased as the number of fluorine substituents was reduced. Moreover, the substitution pattern on the aromatic ring dictated the selectivity of HDF and the process was mostly facilitated by the
presence of ortho-substituents, which lowered the strength of the target C-F bond. meta-F substituents had the same effect, although to a lesser extent, while para-F substitution led to higher energy barriers. These predicted trends were supported experimentally, with more forcing conditions required for the HDF of lower fluorinated substrates. Thus, for C₆F₅H (Figure 2.10a), reaction at the C4-position (para to H and adjacent to two ortho- and two meta-F substituents) was favoured over the C2-position with only one ortho- and one para-F substituent (9.7 vs 13.2 kcal mol⁻¹, respectively). Both 1,2,3,4- and 1,2,3,5- isomers of C₆F₄H₂ were calculated to give 1,2,4-C₆F₃H₃ and ultimately 1,4-C₆F₂H₄ (Figure 2.10b), which did not undergo further HDF due to the unfavourable para-arrangement and consequently high barrier of 25.6 kcal mol⁻¹. For 1,2,3,5-C₆F₄H₃, reaction at C1-position (ΔG‡ = 13.0 kcal mol⁻¹) was only marginally favoured over the C2-position (ΔG‡ = 13.6 kcal mol⁻¹), which again reflected a subtle balance of directing effects i.e. the combination of one ortho- and two meta-substituents at the C1 position led to a decreased barrier, while the presence of two ortho-F substituents at C2 was mitigated by one para-F substituent. Figure 2.10c suggests that HDF of 1,2,3- and 1,3,5-C₆F₃H₃ was possible (barriers of 15.4 kcal mol⁻¹ and 18.6 kcal mol⁻¹, respectively) and proceeded to form 1,3-C₆F₂H₄. In contrast to 1,4-C₆F₂H₄, the HDF of the 1,3 isomer to C₆FH₅ was predicted to occur via a barrier of 21.9 kcal mol⁻¹, thanks to the meta-arrangement of F-substituents in this isomer. The formation of fluorobenzene was predicted to be even more accessible starting from 1,2-C₆F₂H₄ (barrier of 20.3 kcal mol⁻¹), which contained F-substituents in the most favourable ortho-disposition. Reduction of fluorobenzene to benzene was too energetically expensive (ΔG‡ = 26.1 kcal mol⁻¹) and did not take place.
2.5. Summary

In conclusion, a joint experimental and computational study of the catalytic HDF of aromatic fluorocarbons at highly electron rich trans-[Ru(NHC)₄]H₂ complexes has been attempted. The trans-[Ru(IMe)₄]H₂ complex 1 exhibits outstanding activity and is capable of converting C₆F₆ to 1,4-C₆F₂H₄ at room temperature in the presence of alkyl silanes. 1,2- and 1,3- isomers of C₆F₂H₄ could be further reduced to fluorobenzene albeit only at 120°C. The high para-regioselectivity observed on going from C₆F₅H to 1,2,4,5-C₆F₄H₂ contrasts with that of the original system [Ru(IPr)(PPh₃)₂(CO)H₂] (I)²⁸⁻³⁰ and can be rationalised by the DFT calculations, which show that HDF proceeds via a concerted nucleophilic attack mechanism at a six-coordinate species. No role for free carbene promoted HDF was proven by the absence of any appreciable elimination of 1,4-C₆F₂H₄ from (IMe)C₆H₃F₂(H) (6) and the absence of the latter at the end of catalytic runs with 1. Selective reduction of 1,2,4-C₆F₃H₃ to 1,4-C₆F₂H₄ is attributed to the kinetic proclivity for HDF at the C2 position. The rate of catalytic HDF reactions was unaffected by the concentration of the terminal silane reductant, indicating that the
rate-limiting step in the catalytic cycle involved activation of the fluoroarene. However, lower conversions were observed with aryl silanes, most likely due to their propensity to form charge separated species such as the structurally characterised \([\text{Ru(Ime}_4\text{H)}][\text{Ph}_3\text{SiF}_2]\) \(5\). The remarkable performance of 1 clearly illustrates the importance of rational catalyst design in controlling the mechanism and thus the synthetic outcome of the HDF reaction.

2.6. References for Chapter 2

CHAPTER THREE
C-F bond activation using [Ru(NHC)$_2$L$_2$H$_2$] complexes

3.1. Introduction

Our group has previously reported the synthesis and small molecule reactivity of trans-dihydrde isomers of [Ru(NHC)$_2$(PPh$_3$)$_2$H$_2$] (NHC = IEt$_2$Me$_2$ (cct-8), IMe$_4$ (ttt-9)).1 Both complexes were shown to react similarly with CO and CO$_2$ to give [Ru(NHC)$_2$(CO)$_3$] and [Ru(NHC)$_2$(PPh$_3$)(OCHO)H] respectively, demonstrating facile phosphine loss from Ru (Scheme 3.1). The trans-arrangement of the two hydride ligands in cct-8 and ttt-9 imparted highly nucleophilic character of Ru-H, which was evidenced by the formation of [Ru(NHC)$_2$(PPh$_3$)$_2$H][I] and CH$_4$ in the reactions with electrophile MeI. This suggested that cct-8 and ttt-9 could act as (pre)catalysts for the HDF of fluoroarenes. It was anticipated that mixed NHC/PPh$_3$ trans-dihydride species would show enhanced HDF activity over the original system, [Ru(ImPr)(PPh$_3$)$_2$(CO)H]$_2$ (I), but display poorer control of HDF regioselectivity than the corresponding tetracarbene species, [Ru(NHC)$_4$H$_2$] (I and 2), as the process could proceed via both concerted and stepwise pathways at five-coordinate species, i.e. [Ru(NHC)$_2$(PPh$_3$)H$_2$], as well as along a concerted pathway at six-coordinate complexes.

1 cct- and ttt- stand for cis,cis,trans- and trans,trans,trans- respectively and correspond to the relative arrangement of carbene, phosphine and hydride (or hydride/ fluoride) ligands respectively. Figure 3.10 summarises all possible isomers of complex 9.
Scheme 3.1: Reactivity of [Ru(IEt₂Me₂)₂(PPh₃)₂H₂] (cct-8) and [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) with CO, CO₂ and MeI.

3.2. Stoichiometric C-F and C-H activation of C₆F₆ and C₆F₅H using [Ru(IEt₂Me₂)₂(PPh₃)₂H₂] (cct-8)

The reaction of cct-8 with 10 equiv of either C₆F₆ or C₆F₅H in a C₆H₆ solution proceeded at room temperature with full consumption of the starting material after ca. 5 h, as indicated by ³¹P NMR spectroscopy. This showed the appearance of two new product peaks at δ 45 and 59, in an approximate ratio of 1:0.2 from C₆F₆ and 1:0.5 with C₆F₅H. These were assigned to the hydride fluoride

* C₆D₆ needs to be avoided due to the facile H/D exchange in 8.
complex [Ru(IEt₂Me₂)₂(PPh₃)₂HF] (cct-10) and the biscarbene pentafluorophenyl complex [Ru(IEt₂Me₂)₂(PPh₃)(C₆F₅)H] (11) respectively (Scheme 3.2).

Scheme 3.2: Stoichiometric C-F and C-H activation of C₆F₅H using [Ru(IEt₂Me₂)₂(PPh)₂H₂] (cct-8).

Formation of cct-10 and 11 arose from competing C-F and C-H activation respectively. The latter process could be reversed, as shown by subjecting an in situ generated mixture of cct-10, 11 and PPh₃ to 4 atm H₂, which brought about disappearance of 11 over ca. 4 h at room temperature. The reversibility of the C-H activation pathway was proven categorically in a more controlled experiment whereby a solution containing an isolated, crystalline sample of 11 and an equivalent of PPh₃ was exposed to 4 atm H₂. This led to the complete conversion of 1 to a mixture of cct-8 and cct-10 within 4 h at room temperature.
Analysis of the volatile materials from the reaction of cct-8 with C₆F₆ by ¹H and ¹⁹F NMR spectroscopy helped to explain the observed stoichiometric bond activation steps. The presence of the HDF products C₅F₅H, as well as both 1,2,3,4- and 1,2,4,5-C₆F₄H₂, indicated that cct-8 initially activates the C-F bond in C₆F₆ to give the hydride fluoride complex cct-10 and C₆F₅H. The released C₆F₅H displayed comparable reactivity as a substrate to C₆F₆ and could undergo C-F activation to generate C₆F₄H₂ isomers (and additional cct-10), as well as C-H activation to yield 11. Attempts to accelerate the reaction of cct-8 with C₆F₅H by employing higher temperatures led to formation of the new bisphosphine pentafluorophenyl complex, [Ru(IEt₂Me₂)(PPh₃)₂(C₆F₅)H] (12). The corresponding resonance at δ 52 in the ³¹P NMR spectrum could also be observed in room temperature experiments, although only after significantly longer times (ca. 100 h) and in negligible amounts (<7% of all Ru containing species). Efforts to convert 11 to its bisphosphine analogue 12 by heating in the presence of PPh₃ (2 equiv) proved unsuccessful, implying that simple NHC/phosphine substitution is not responsible for the formation of the latter. As described in the following sections, all of the organometallic species were isolated and fully characterised by X-ray diffraction and multinuclear NMR spectroscopy.

3.2.1. Isolation and characterisation of [Ru(IEt₂Me₂)₂(PPh₃)₂HF] (cct-10) and [Ru(IEt₂Me₂)₂(PPh₃)₂H][H₂F₃] (13)

Although cct-10 was initially isolated from the reaction of cct-8 with C₆F₅H, a more efficient, higher yielding route involved treatment of a C₆H₆ solution of cct-8 with precisely 0.33 equiv of Et₃N·3HF (TREAT-HF). Use of a full equivalent of TREAT-HF instead resulted in the formation of the previously reported cation,¹ [Ru(IEt₂Me₂)₂(PPh₃)₂H]⁺ with the relatively uncommon [H₂F₃]⁻ present as
the anion (13). An optimised synthetic procedure that allowed use of excess TREAT-HF involved \textit{in situ} generation of 13 followed by subsequent salt metathesis with CsF (Scheme 3.3).

\textbf{Scheme 3.3:} Synthesis of [Ru(IEt\textsubscript{2}Me\textsubscript{2})\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}HF] (cct-10) and [Ru(IEt\textsubscript{2}Me\textsubscript{2})\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}H][H\textsubscript{2}F\textsubscript{3}] (13).

The hydride fluoride complex (cct-10) is isostructural with the parent dihydride cct-8 and hence there is very little change in either Ru-C/Ru-P distances or C-Ru-C/P-Ru-P angles. The X-ray structure of cct-10 (Figure 3.1) confirmed the same \textit{trans}-H-Ru-F geometry as found in the [Ru(NHC),HF] complexes, 3 and 4, albeit with a shortening of the Ru-F distance (cct-10: 2.264(2) Å; 3: 2.3070(18) Å; 4: 2.384(4) Å). A diagnostic hydride resonance was recorded in the room temperature 1H NMR spectrum in toluene-\textit{d}_8 at \(\delta\) -21.70 as a doublet of triplets with couplings of 52.0 Hz (\(^2J_{HF}\)) and 19.7 Hz (\(^2J_{HP}\)). The IEt\textsubscript{2}Me\textsubscript{2} resonances were broad and overlapping, but resolved upon cooling to -45°C into eight sets of methylene (NCH\textsubscript{2}) and four sets of methyl (NCH\textsubscript{2}CH\textsubscript{3}) signals (Figure 3.2). At this temperature, the hydride resonance was split into a doublet of doublets of doublets (\(^2J_{HF} = 51.6\) Hz, \(^2J_{HP} = 25.0\) Hz, \(^2J_{HP} = 14.1\) Hz), indicating that the two PPh\textsubscript{3} ligands are inequivalent.
at low temperature. In accordance with this were the changes observed in the \(^{31}\text{P}\{^{1}\text{H}\}\) NMR spectrum. A broad singlet at room temperature was replaced by two very broad, overlapping multiplets at -45°C, with no distinct \(J_{PP}\) or \(J_{PF}\) splittings. The room temperature \(^{19}\text{F}\) NMR spectrum in toluene-\(d_8\) exhibited a broad RuF resonance at \(\delta\) -354, which partially resolved into a doublet (\(\Delta J_{FH} = 52.0\) Hz) when the solvent was changed to THF-\(d_8\).

Figure 3.1: Molecular structure of \([\text{Ru}(\text{IEt}_2\text{Me}_2)_2(\text{PPh}_3)_2\text{HF}]\) (**cct-10**). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of the hydride ligand, have been omitted for clarity. Selected bond lengths and angles are listed in Table 3.1.
Figure 3.2: Sections of 1H NMR spectra (C$_6$D$_5$CD$_3$, 400 MHz; not to scale) of cct-10 at 25°C (top) and -45°C (bottom).

The molecular structure of 13 is shown in Figure 3.3. The Ru-C and Ru-P bond lengths were almost identical to those found in [Ru(I Et$_2$Me$_2$)$_2$(PPh$_3$)$_2$H][I], while the P-Ru-P and C-Ru-C angles were somewhat more acute (161.13(2)° and 165.39(10)° for 13 vs. 165.56(3)° and 169.02(12)° for the iodide counterpart respectively), which is most likely due to different crystal packing of the complexes as in both cases the ions are fully charge separated. The F···F···F bond angle in the anion (124.77(16)°) was found to be smaller than in the simple salt KH$_2$F$_3$, which contained two inequivalent [H$_2$F$_3$]$^-$ ions with F···F···F angles of ca. 130 and 139°. The F···F bond distances in 13 were 2.281(5) and 2.294(4) Å, within the range of F···F bond lengths reported for KH$_2$F$_3$ (2.29-2.35 Å). Since two hydrogen atoms associated with three fluorines could not be reliably located for refinement of the crystal structure, it is not possible to comment on the H···F separations expected in the trifluorodihydride anion.

Despite previous solid-state characterisation of the iodide salt of [Ru(I Et$_2$Me$_2$)$_2$(PPh$_3$)$_2$H]$^+$, in solution, the complex rearranged to the neutral mono-
PPh₃ hydride iodide complex [Ru(IEt₂Me₂)₂(PPh₃)]HI, as indicated by the appearance of a doublet splitting (\(^2J_{HP} = 41 \text{ Hz} \)) on the low frequency hydride resonance (\(\delta -30.45 \)). The room temperature \(^1\text{H} \) NMR spectrum of 13 in THF-\(d_8 \) showed a triplet (\(^2J_{HP} = 24.0 \text{ Hz} \)) signal at \(\delta -29.65 \), confirming the coordination of two phosphine ligands to the Ru centre. The IEt₂Me₂ ligands were equivalent and gave rise to six resonances at \(\delta 0.44 \) and 0.88 (t, \(^3J_{HH} = 7.3 \text{ Hz} \); NCH₂CH₃), 1.81 and 2.01 (s, NCCCH₃), and 2.75 and 3.36 (q, \(^3J_{HH} = 7.3 \text{ Hz} \), NCH₂CH₃), which can be accounted for by restricted rotation about the Ru-CNHC bonds. A broad singlet at \(\delta 13.68 \) was attributed to the [H₂F₃⁻] anion and integrated in a 2:1 ratio with Ru-H signal. The downfield chemical shift of the anion matched the value of \(\delta 13.8 \) reported for [Mn(dmpe)₂(alkynyl)]₂[H₂F₃⁻] complexes.\(^4\) The \(^{19}\text{F} \) NMR spectrum consisted of a single broad resonance at \(\delta -115.2 \), which contrasts with the chemical shift of \(\delta -172.2 \) for the aforementioned manganese compounds.
Figure 3.3: Molecular structure of [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)$_2$H][H$_2$F$_3$] (13). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of the hydride ligand, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-C1 2.072(3), Ru1-C10 2.094(2), Ru1-P1 2.3473(6), Ru1-P2 2.3219(6), P1-Ru1-P2 161.13(2), C1-Ru1-P1 90.84(7), C1-Ru1-C10 165.39(10).

3.2.2. Isolation and characterisation of [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)(C$_6$F$_5$)H] (11)

The selective preparation of 11 was achieved upon vigorous stirring of a hexane suspension of cct-8 in the presence of C$_6$F$_5$H at room temperature for 24 h, which gave the product as a dark orange precipitate. Recrystallisation from C$_6$H$_6$/hexane gave 11 in crystalline form. The X-ray structure (Figure 3.4) revealed that the mutually trans NHC ligands (C-Ru-C 173.39(15)°) were arranged at the base of a square pyramid, with the hydride ligand in the apical position. Consequently, the C$_6$F$_5$ substituent was positioned opposite PPh$_3$ (C-Ru-P 172.21(12)°). The angle
formed between the plane of the fluorophenyl ring and the base of the square pyramid was 69.93°, while the Ru-C_{fluoroaryl} bond measured 2.136(4) Å.iii

Figure 3.4: Molecular structure of [Ru(IEt₂Me₂)₂(PPh₃)(C₆F₅)H] (11). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of the hydride ligand, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-C1 2.090(3), Ru1-C10 2.088(3), Ru1-C19 2.136(4), Ru1-P1 2.2783(11), C1-Ru1-C10 173.39(15), C1-Ru1-C19 88.43(14).

The ¹H NMR spectrum of 11 revealed a highly shielded doublet of triplets hydride resonance at δ -33.0 (2J_{HP} = 30.6 Hz, 4J_{HF} = 7.2 Hz), reflecting the positioning of the hydride ligand opposite a vacant coordination site. ¹⁹F NMR spectroscopy revealed three sets of resonances at δ -111.5, -165.6 and -166.4 in a

iii The Ru-C_{fluoroaryl} distance in 11 was comparable to those found in the related ruthenium NHC hydride complexes bearing a perfluorinated aryl ligand, such as [Ru(ICy)(dppp)(CO)(Ar^F)H] (Ar^F = C₆F₅, C₆F₄CF₃, C₃F₄N)⁸ or [Ru(IMes)(PPh₃)(CO)(C₃F₄N)H].⁹
2:2:1 ratio, consistent with a freely rotating C₆F₅ ligand. 19F COSY and 1H-19F HMBC experiments allowed for an unequivocal assignment of the peaks to ortho-, meta- and para-fluorines on the pentafluorophenyl ring respectively. In line with this, the phosphorus signal resolved into a triplet of triplets ($^{4}J_{PF} = 20.7$ Hz, $^{5}J_{PF} = 9.7$ Hz), arising from the coupling to ortho- and meta-fluorines respectively. The appearance of a single doublet signal at 195.9 ($^{2}J_{CP} = 4.4$ Hz) in the 13C{1H} NMR spectrum confirmed the equivalence of the two NHC ligands.

3.2.3. Isolation and characterisation of [Ru(IEt₂Me₂)(PPh₃)₂(C₆F₅)H] (12)

The structure of 12 displayed a distorted octahedral geometry, due to the presence of an agostic interaction to the CH₃ group of the N-ethyl arm, occupying the site opposite the Ru-H (Figure 3.5). The agostic distances, Ru⋯C (2.754(0) Å) and Ru⋯H (2.065(1) Å), were shorter than the corresponding values found in the previously reported chloride complex [Ru(IEt₂Me₂)(PPh₃)₂HCl] (2.823(4) and 2.083(4) Å respectively),¹⁰ suggestive of a strong interaction.¹¹,¹² The angle between the fluoroaryl ring and the mean-plane subtended by the ruthenium centre, the carbenic carbon, the ipso-carbon of the fluoroaryl ring and the phosphorus atoms was 85.71°, which contrasted with the corresponding angle found in 11 (69.93°), suggesting that the position of the pentafluorophenyl substituent was locked and enforced by the sterically demanding PPh₃ ligands. The presence of bulky phosphines and the trans-arrangement of IEt₂Me₂ and C₆F₅ ligands accounted for the elongation of the Ru-C$_{fluoroaryl}$ distance to 2.160(2) Å.
Figure 3.5: Molecular structure of \([\text{Ru}(\text{IEt}_2\text{Me}_2)(\text{PPh}_3)_2(\text{C}_6\text{F}_5)\text{H}] \) (12). Thermal ellipsoids are represented at 30\% probability. Hydrogen atoms, with the exception of the hydride ligand and those on the N-methyl group involved in the agostic interaction, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-C1 2.060(2), Ru1-C10 2.160(2), Ru1-P1 2.3452(6), Ru1-P2 2.318(6), P1-Ru1-P2 168.093(19), C10-Ru1-P1 91.56(6), C1-Ru1-P2 89.41(6).

The restricted rotation about the Ru-C fluorobenzyl bond was substantiated further by 19F NMR spectroscopy, which revealed five distinct resonances at δ -105.5, -111.8, -168.9, -170.1 and -171.5 in a 1:1:1:1:1 ratio. The agostic interaction was retained in solution as evidenced by a low frequency triplet of doublets Ru···H-C resonance at δ 0.48 ($^3J_{HH} = 7.3$ Hz, $^4J_{HF} = 1.5$ Hz) and a corresponding doublet signal at δ 6.4 ($^3J_{CP} = 7.2$ Hz) in the 1H and 13C{1H} NMR spectra respectively (Figure 3.6). The four bond J_{HF} splitting of the methyl agostic protons by one of the ortho-fluorines (δ -111.8) on the C$_6$F$_5$ ring was established by 1H-19F HMBC spectroscopy (Figure 3.7). The hydride signal appeared as a triplet of doublets ($^2J_{HF} = 23.5$ Hz, $^4J_{HF} = 6.9$ Hz; Figure 3.6) and resonated at a higher frequency (δ -24.7)
than in the case of the five-coordinate, non-agostic 11 (δ -33.0). The J_{HF} splitting was a consequence of coupling to the other ortho-F (δ -105.5) as shown by correlation spectroscopy (Figure 3.7).

Figure 3.6: Expanded regions of the 1H NMR spectra of [Ru(IEt$_2$Me$_2$)(PPh$_3$)$_2$(C$_6$F$_5$)H] (12) (THF-d_8, 500 MHz, 25°C) under a variety of multinuclear decoupling conditions: 1H only (top), 1H{31P} (middle), 1H{19F} (bottom).
Figure 3.7: Expanded regions of the 1H-19F HMBC (THF-d_8, 500 MHz, 25°C) spectrum of [Ru(IEt$_2$Me$_2$)(PPh$_3$)$_2$(C$_6$F$_5$)H] (12) showing contacts between methyl protons at δ 0.48 and fluorine at δ -112, and between hydride at δ -24.7 and fluorine at δ -105 ppm.

3.3. Stoichiometric C-F and C-H activation of C$_6$F$_5$H using trans-[Ru(IME$_4$)$_2$(PPh$_3$)$_2$H$_2$] (ttt-9)

In contrast to cct-8, the reaction of the analogous N-Me carbene derivative ttt-9 with C$_6$F$_5$H (2 equiv) in C$_6$H$_6$ required longer reaction times and more forcing conditions to bring about the complete disappearance of the starting dihydride complex. Thus, only after 48 h at 70°C, ttt-9 was fully converted to [Ru(IME$_4$)$_2$(PPh$_3$)$_2$HF] (ttt-14), as established by 1H, 31P{1H}, 19F and 13C{1H} NMR spectra. 1H-31P{1H} HSQC spectroscopy showed a clear correlation between a hydride signal at δ -21.0 (2J$_{HF}$ = 48.0 Hz, 2J$_{HP}$ = 22.4 Hz) assigned to ttt-14 and a doublet resonance at δ 50.1 (2J$_{PF}$ = 18 Hz). The number of NCH$_3$ and CCH$_3$ signals was doubled with respect to ttt-9, consistent with the reduced symmetry at ruthenium. The corresponding 19F NMR spectrum revealed a broad, low frequency...
Ru-F signal at δ -332, while the carbenic carbon was resolved into a triplet ($^2J_{CP} = 15$ Hz) in the 13C{1H} NMR spectrum, consistent with the presence of two equivalent, mutually trans IMe$_4$ ligands situated cis to the two phosphines.

Scheme 3.4: Stoichiometric C-F and C-H activation of C$_6$F$_5$H using [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H$_2$] (ttt-9) and synthesis of [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$HF] (14) from ttt-9 and TREAT-HF.

Monitoring the reaction at earlier stages by both 1H and 31P{1H} NMR spectroscopy revealed that the C-F activation of C$_6$F$_5$H to give ttt-14 was accompanied by C-H activation of the substrate to afford another ruthenium containing species, assigned as [Ru(IMe$_4$)$_2$(PPh$_3$)(C$_6$F$_5$)H] (15) on the basis of the similarity of its NMR spectra to that of the structurally characterised IEt$_2$Me$_2$ counterpart, 11 (Scheme 3.4). Thus, the Ru-H signal appeared in the low frequency region of the 1H NMR spectrum (δ =34.0) as a doublet of triplets ($^2J_{HP} = 32.0$ Hz, $^4J_{HF} = 7.3$ H), while the phosphorus signal was observed as a broad singlet at δ 59.5. The absence of 15 at the end of reaction, together with the fact that its formation was
suppressed when \textit{ttt-9} was heated with C\textsubscript{6}F\textsubscript{5}H under 4 atm H\textsubscript{2}, implied that the C-H activation process was reversible, corroborating the previous findings on \textit{cct-8}.

3.4. \textbf{Isolation of \textit{trans}-[Ru(IMe\textsubscript{4})\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}HF]} (\textit{ttt-14})

The hydride fluoride complex (\textit{ttt-14}) could also be conveniently prepared in the same manner as its IEt\textsubscript{2}Me\textsubscript{2} analogue (\textit{cct-10}) upon treatment of \textit{ttt-14} with 1 equiv TREAT-HF (to generate \textit{in situ} the ionic complex, [Ru(IMe\textsubscript{4})\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}H][H\textsubscript{2}F\textsubscript{3}])iv followed by anion exchange with CsF. Figure 3.8 shows the molecular structure of \textit{ttt-14}, which confirmed retention of the same \textit{trans}-carbene/\textit{trans}-phosphine geometry as in \textit{ttt-9}. The Ru-F distance (2.2694(18) Å) was comparable to those in 3, 4 and \textit{cct-10}.

iv Selected 1H NMR (THF-\textit{d\textsubscript{8}}, 500 MHz, 25°C): \(\delta\) 13.36 (br s, 2H, [H\textsubscript{2}F\textsubscript{3}]), -30.33 (t, \(^2\textit{J}\textsubscript{HP} = 22.4\) Hz, 1H, RuH); 31P{1H} NMR (THF-\textit{d\textsubscript{8}}, 202 MHz, 25°C): \(\delta\) 49.1 (s); 19F NMR (THF-\textit{d\textsubscript{8}}, 470 MHz, 25°C): \(\delta\) -114.3 (m, [H\textsubscript{2}F\textsubscript{3}]).
Figure 3.8: Molecular structure of [Ru(IMe)$_4$$_2$(PPh$_3$)$_3$HF] (ttt-14). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of the hydride ligand, have been omitted for clarity. Selected bond lengths and angles are listed in Table 3.1.

3.5. Reactivity of [Ru(NHC)$_2$(PPh$_3$)$_2$HF] with silanes

In order to establish the potential of cct-8 and ttt-9 for catalysing HDF of fluoroaromatics, the back reaction of the hydride fluoride compounds cct-10 and ttt-14 with silanes was investigated. Spectroscopic monitoring by 31P{1H} NMR revealed that treatment of ttt-14 with excess Et$_3$SiH (3 equiv) led to the full consumption of the former within 20 min at room temperature to afford two new species, neither of which was the parent dihydride ttt-9 (Figure 3.9). The two products were identified as the ctc-isomer of 9 (Figure 3.10) and the silyl trihydride complex, [Ru(IMe)$_4$$_2$(PPh$_3$)(SiEt$_3$)H$_3$] (16, δ 58.8, vide infra). Over a course of two days, both species disappeared, while a series of new resonances arising from cct-, tcc- and ttt-isomers of 9 were observed. Elevating the temperature to 70°C resulted in full conversion to the latter after 2 h.
Figure 3.9: 31P(1H) NMR spectra (C$_6$H$_6$, 202 MHz, 25°C) of A) [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$HF] (ttt-14) prior to the room temperature addition of Et$_3$SiH, B) 20 min after addition of Et$_3$SiH, C) ca. 12 h after addition of Et$_3$SiH and D) after heating at 70°C for 2 h.

Figure 3.10: Possible isomers of [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H$_2$] (9). The prefix indicates the relative arrangement of IMe$_4$, PPh$_3$ and H ligands respectively.
3.5.1. Characterisation of [Ru(IMe₄)₂(PPh₃)(SiR₃)H₃] complexes

The presence of both 16 and tcc-9 at early reaction times indicated that the former species might result from the PPh₃/Et₃SiH substitution at tcc-9. This hypothesis was reinforced by the absence of 16 upon immediate addition of Et₃SiH to a mixture of cct- and ctc-isomers of 9 generated in-situ in the reaction of [Ru(PPh₃)₄H₂] with IMe₄. It was only after 12 h at room temperature that trace amounts of 16 were detected by both ³¹P{¹H} and ¹H NMR spectroscopy (δ -6.00, d, ²J_HP = 12.0 Hz, 1H; δ -6.86, d, ²J_HP = 11.3 Hz, 2H), consistent with slow isomerisation of either cct-9 and/or ctc-9 to tcc-9, followed by a rapid phosphine/silane exchange. 16 could not be accessed directly from ttt-9, even in the presence of a large excess of Et₃SiH, use of high temperatures (120°C) or long reaction times. However, changing the R-groups on silicon from ethyl to phenyl allowed the isolation of the triphenylsilyl analogue, [Ru(IMe₄)₂(PPh₃)(SiPh₃)H₃] (17), following thermolysis of ttt-9 with Ph₃SiH (3 equiv) at 90°C overnight. 17 exhibited a similar set of upfield proton NMR resonances and coupling constants to 16 (δ -4.82, ²J_HP = 10.8 Hz; δ -6.07, ²J_HP = 9.2 Hz).

Scheme 3.5: Si-H bond activation: a continuum between σ-silane complex and the product of oxidative addition, silyl hydride complex.

The coordination mode of a Si-H bond to a transition metal complex can range from weak, nonclassical σ-silane interaction (generally three-centre, two-electron bond; η²-HSiR₃) to classical silyl hydride species with two-centre, two-electron M-H and M-Si bonds formed upon complete oxidative addition to the metal.
In order to evaluate where along this continuum a particular complex lies, a whole range of analytical methods must be employed, including NMR and IR spectroscopy, as well as diffraction techniques. In the case of 17, the combined experimental data suggested that the compound was best formulated as the silyl trihydride, \([\text{Ru(IME}_4]_2(\text{PPh}_3)(\text{SiPh}_3)\text{H}_3]\), rather than the \(\sigma\)-silane dihydride complex, \([\text{Ru(IME}_4]_2(\text{PPh}_3)(\text{Ph}_3\text{SiH})\text{H}_2]\). By extension, 16 was formulated the same way. The classical nature of the hydride and silyl ligands in 17 was supported by the \(-40^\circ\text{C} \text{ }^1\text{H}-^{29}\text{Si} \text{HSQC}\) spectrum, which showed a clear coupling from the doublet \(^{29}\text{Si}\) resonance at \(\delta 22.7\) \((^{2}J_{\text{SiP}} = 29.3 \text{ Hz})\) to the two low frequency proton resonances at \(\delta -4.82\) and \(-6.07\) with respective \(J_{\text{SiH}}\) values of 45 Hz and 16 Hz (Figure 3.11). The magnitude of the couplings is below the lower limit of 65 Hz proposed by Sabo-Etienne for the presence of an intact \(\sigma\) Si-H bond. The possibility of 17 being a silyl hydride dihydrogen complex, i.e. \([\text{Ru(IME}_4]_2(\text{PPh}_3)(\text{SiPh}_3)(\eta^2\text{-H}_2)\text{H}]\) was discounted on the basis of the magnitude of the \(T_1\) values measured at both 25 and \(-50^\circ\text{C} \) (25°C, 400 MHz, 350 ms \((\delta -4.77)\), 361 \((\delta -6.16)\); -50°C, 400 MHz, 387 ms \((\delta -4.82)\), 432 ms \((\delta -6.06)\)).
Figure 3.11: 1H–29Si HMBC spectrum (C$_6$D$_5$CD$_3$, 400 MHz, -50°C) of [Ru(IMe$_4$)$_2$(PPh$_3$)(SiPh$_3$)H$_3$] (17).

Single crystal X-ray diffraction (Figure 3.12) was less informative as it was impossible to differentiate the SiPh$_3$ ligand from PPh$_3$. Nonetheless, closer inspection of the molecular structure revealed that the shortest possible Si···H distance could be 2.075 Å, outside the 1.7-1.9 Å range considered to support σ-bond coordination. However, this value was also significantly shorter than the sum of the Si and H van der Waals radii (3.4 Å), indicating some degree of interaction between the two centres in the H$_3$SiPh$_3$ fragment, akin to that seen in [Ru(PMe$_3$)$_3$(SiMe$_3$)H$_3$]. On the basis of the review by Sabo-Etienne, the presence of a band at 1776 cm$^{-1}$ in the IR spectrum of 17 was consistent with the existence of a Si···H interaction.
Figure 3.12: Molecular structure of [Ru(IMe$_4$)$_2$(PPh$_3$)(SiPh$_3$)H] (17). Hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity. Ellipsoids are shown at the 30% probability level. Selected bond lengths (Å) and angles (°): Ru1-P1 2.430(5), Ru1-Si1 2.311(6), Ru1-P1 2.414(5), Ru1-Si1 2.318(6), Ru1-C1 2.091(3), Ru1-C8 2.082(2), P1-Ru1-Si1 155.72(14), C1-Ru1-C8 173.48(10), C8-Ru1-Si1 95.96(13).

It is perhaps worth reiterating that the bonding types formed by the 3-membered Si, H, M molecular moiety span a continuum with the M(σ-silane) and M-silyl hydride species representing the two extremes. In the presence of other hydrogen atoms in the coordination sphere of the metal, as in the case of 17, secondary interactions between silicon and hydrogen atoms become increasingly important in the exchange processes that are often present in these highly dynamic systems.24 Although the solid state study on 17 indicated the presence of weak remanent Si···H interaction, their direct observation by solution spectroscopic techniques was not possible, most likely due to the fast exchange of hydride ligands at the ruthenium metal centre.
Scheme 3.6: Synthesis of [Ru(IMe$_4$)$_2$(PPh$_3$)(SiPh$_3$)H] (17) from [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H] (ttt-9) and Ph$_3$SiH, and subsequent H$_2$ loss to afford [Ru(IMe$_4$)$_2$(PPh$_3$)(SiPh$_3$)H] (18).

Interestingly, prolonged exposure of an isolated sample of 17 to vacuum and subsequent analysis by both 1H and 31P{$_1$H} NMR spectroscopy revealed the formation of a new species resonating at δ -33.0 (d, $^2J_{HP} = 15.5$ Hz) and δ 41.3 respectively. The doublet splitting of the upfield shifted hydride signal and the purple colouration of the sample supported the formation of the five-coordinate 16 electron species, [Ru(IMe$_4$)$_2$(PPh$_3$)(SiPh$_3$)H] (18; Scheme 3.6), resulting from reductive elimination of H$_2$. This process is consistent with the ability of silicon to labilise other ligands as described in the chemistry of [Ru(PMe$_3$)$_3$(SiR$_3$)H$_3$].

3.5.2. Characterisation of [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)(SiR$_3$)H$_3$] complexes

Analogous experiments of cct-10 with silanes were less conclusive than for ttt-14. Thus, addition of Et$_3$SiH (1 equiv) to cct-10 led to the rapid regeneration of cct-8. Although no intermediate species or alternative isomers of 8 were observed, increasing the silane concentration led to the appearance of a 1:1:1 ratio of three low frequency doublet Ru-H signals at δ -5.48 (d, $^2J_{HP} = 34.7$ Hz), -5.77 (d, $^2J_{HP} = 9.0$ Hz) and -10.38 (dd, $J = 16.8$ Hz, $J = 6.2$ Hz), all of which correlated to a singlet phosphorus resonance at δ 61.1 by 31P-1H HSQC. This, together with a release of
free PPh₃, implied that phosphine/silane exchange was taking place and suggested that the new species was most likely [Ru(IEt₂Me₂)₂(PPh₃)(SiEt₃)H₃] (19). The appearance of three inequivalent hydrides contrasted with the appearance of the IMe₄ complex 16 perhaps due to the different geometry at the metal centre, with a retained cis-arrangement of IEt₂Me₂ ligands from cct-8. However, as in the case of 16, full structural assignment of 19 could not be confirmed in the solid state as the complex was only ever present as a part of a mixture of species.

Unlike with ttt-9, cct-8 reacted with Ph₃SiH (3 equiv) at room temperature to afford a single new ruthenium species within 2 h, which could be crystallised from toluene/pentane at -40°C. The isolated complex was tentatively assigned as [Ru(IEt₂Me₂)₂(PPh₃)(SiPh₃)H₃] (20). The room temperature ¹H NMR spectrum of the crystalline sample in toluene-d₈ revealed two doublets at δ -4.56 and -4.88, both with ²J_HP couplings of 10.2 Hz, and a broad singlet at δ -6.27, all of which correlated to a sharp singlet phosphorus resonance at δ 59.5. However, the three low frequency signals showed a non-integer ratio (1:0.7:1.4), which was initially thought to result from H/D exchange with the solvent. This was discounted since the relative integration of the three hydride signals was virtually unchanged over ca. two weeks in toluene-d₈ solution at room temperature, and the fact that it was only when the sample was heated at 50°C overnight that the H/D scrambling and the formation of H/D isotopologues became apparent (Figure 3.13).
Figure 3.13: Sections of the 1H NMR spectrum (C$_6$D$_5$CD$_3$, 500 MHz, 25°C) of [Ru(IEt$_2$Me)$_2$(PPh$_3$)(SiPh$_3$)H$_3$] (20) immediately after dissolution (top), after ca. two weeks at room temperature (middle), after heating the sample at 50°C overnight (bottom).

To rule out any possibility of 20 being fluxional on the NMR timescale, a toluene-d_8 solution was cooled to -65°C in the hope of restricting any potential exchange processes. Unfortunately, the experiment proved unsuccessful as the employment of low temperatures resulted in overall broadening of the low frequency signals in the 1H NMR spectrum and emergence of additional, new low frequency peaks.

Single crystal X-ray diffraction analysis did not provide any additional insight into the exact nature of the isolated species due to the highly disordered nature of the crystal. This prevented unambiguous differentiation of PPh$_3$ and SiPh$_3$ ligands and location of the hydride components. The full characterisation of 20 remains to be carried out.
Chapter 3

3.6. Reactivity of [Ru(IEt₂Me₂)₂(PPh₃)(C₆F₅)] (11) and [Ru(IEt₂Me₂)(PPh₃)₂(C₆F₅)]H (12) with Et₃SiH

Given the mixture of C-F and C-H activation products furnished in the stoichiometric reactions of cct-8 and C₆F₆ or C₆F₅H, the individual stoichiometric reactions of the Ru-fluoroaryl complexes 11 and 12 with Et₃SiH were also investigated to establish the viability of the return reduction steps necessary to complete the catalytic HDF cycle. There was no reaction between the bis-NHC pentafluorophenyl complex 11 and Et₃SiH (5 equiv) in C₆D₆ at room temperature or upon heating at 70°C. Similarly, the bis-PPh₃ analogue 12 also proved unreactive towards Et₃SiH at ambient temperature overnight. However, addition of free IEt₂Me₂ to the latter reaction mixture resulted in a rapid formation of both C₆F₄H₂ and Et₃SiF at room temperature by ¹⁹F NMR spectroscopy. Over the period of ca. 2 h at room temperature, deposition of black solid material was observed, indicating sample decomposition.

3.7. Synthesis and stoichiometric reactivity of [Ru(NHC)₂(P-P)HF] complexes

Given the presence of free PPh₃ and the formation of biscarbene fluoroaryl species 11 and 15 in the stoichiometric reactions of both cct-8 and ttt-9 with C₆F₆ and C₆F₅H, it was assumed that the five-coordinate intermediate species, [Ru(NHC)₂(PPh₃)H₂], were generated and that these were responsible for the competing C-H activation process. Moreover, the coordinative unsaturation of these transient moieties suggested they could also access both stepwise and concerted C-F activation pathways. For these reasons, it was anticipated that the resulting mixture of five- and six-coordinate Ru species in solution and the possibility of unselective
bond activation would impact on both the activity and the overall regioselectivity of the HDF of fluorinated aromatics. In order to assess and try to circumvent this, the synthesis of a series of complexes bearing chelating phosphines, \([\text{Ru(NHC)}_2(\text{P-P})_2\text{H}_2]\) (P-P = dppe, dppp, dppm), was targeted (Scheme 3.7).

![Scheme 3.7: Synthesis of cct-[Ru(IMe_4)_2(P-P)HX] complexes (P-P = dppe, dppp, dppm; X = H, F).](image)

Preliminary substitution reactions of \(\text{ttt-9}\) with dppm, dppe and dppp were monitored by \(^1\text{H}\) and \(^{31}\text{P}\{^1\text{H}\} NMR spectroscopy. Although prolonged heating of samples in the presence of 5 equiv of the appropriate chelating phosphine in \(\text{C}_6\text{D}_6\) at 70°C led to complete conversion to the desired P-P substituted products, their isolation was hampered by their high solubility in hexane, employed initially to remove the eliminated PPh₃ and excess free P-P. In contrast, stirring the hydride
fluoride complex \textbf{ttt-14} with a single equivalent of chelating phosphine at room temperature provided an effective route to the corresponding hydride fluoride derivatives \([\text{Ru(IME}_4]_2(P-P)\text{HF}] (P-P = \text{dppm (cct-21), dppe (cct-22), dppp (cct-23)})\), which could be easily isolated upon precipitation from toluene/pentane in low to moderate yields (49, 64 and 31 % respectively). The preparation of \([\text{Ru(IET}_2\text{Me}_2]_2(\text{dppe})\text{HF}] (\text{cct-24})\) was also achieved by substituting both PPh$_3$ ligands in \textbf{cct-8} by dppe.

All cct-[Ru(NHC)$_2$(P-P)$_2$H] complexes (\textbf{21-24}) reacted cleanly with 2 equiv of Et$_3$SiH in C$_6$H$_6$ to afford the trans-dihydride complexes, cct-[Ru(NHC)$_2$(P-P)$_2$H$_2$] (NHC = IMe$_4$, P-P = dppm (cct-25), dppe (cct-26), dppp (cct-27); NHC = IET$_2$Me$_2$, P-P = dppe (28)), over the course of two days at room temperature. Of note is complex 26, which underwent slow isomerisation from the initial cct-isomer to the highly insoluble ccc-isomer in C$_6$D$_6$ solution.v This was characterised by single crystal X-ray diffraction and is described further in Section 3.8 (\textit{vide infra}). In the case of its IET$_2$Me$_2$ counterpart (28), both cct- and ccc-isomers were present in a 1:1 ratio in solution as indicated by 1H and 31P{1H} NMR spectroscopy.vi

v Isomerisation could be accelerated by heating the sample at 70°C, which led to the precipitation of crystalline 26 from the reaction mixture.

vi Selected NMR data for complex [Ru(IET$_2$Me$_2]_2(dppe)H$_2$] (28): 1H NMR (500 MHz, C$_6$D$_6$, 25°C): δ -7.34 (t, 2J$_{HP} = 19.2$ Hz, cct-RuH$_2$), -7.91 (dd, 2J$_{HP} = 92.1$ Hz, 2J$_{HP} = 28.1$ Hz, ccc-RuH$_2$), -11.86 (dd, 2J$_{HP} = 32.7$ Hz, 2J$_{HP} = 22.9$ Hz, ccc-RuH$_2$).

31P NMR (C$_6$D$_6$, 202 MHz, 25°C): δ 88.9 (s, ccc-RuH$_2$), 82.2 (s, cct-RuH$_2$), 47.1 (s, ccc-RuH$_2$).
3.8. Characterisation of [Ru(NHC)₂(P-P)HX] complexes

The molecular structures of compounds 21-24 are illustrated in Figure 3.14. The most pertinent features are the trans-H-Ru-F geometry and the cis-arrangement of the NHC ligands which is imposed by the presence of the chelating phosphines. A distorted octahedral geometry at the ruthenium centre is observed in all cases and stems from the different bite angles of the utilised P-P ligands. As shown in Table 3.1, the Ru-F bond is elongated as the P-Ru-P angle increases (compounds 21-23), however changing the N-alkyl carbene substituent from methyl (cct-22) to ethyl (cct-24) results in shortening of this distance. Closer investigation of the X-ray structures of complexes 21-24 suggested some degree of hydrogen bonding between methyl hydrogen atoms and the fluoride ligands. Most indicative were weak H···F interactions in cct-23 (C-H···F 1.955(4) Å, 2.059(5) Å; C···F 2.887(3) Å, 2.990(3) Å; C-H-F 157.8(7)°, 158.0(1)°). Key bond lengths and angles are summarised in Table 3.1.
Figure 3.14: Molecular structures of $[\text{Ru(IMe}_4\text{)}_2\text{(dppm)HF}]$ (cct-21, top left), $[\text{Ru(IMe}_4\text{)}_2\text{(dppe)HF}]$ (cct-22, top right), $[\text{Ru(IMe}_4\text{)}_2\text{(dppp)HF}]$ (cct-23, bottom left) and $[\text{Ru(IEt}_2\text{Me}_2\text{)}_2\text{(dppe)HF}]$ (cct-24, bottom right). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity. Selected bond lengths and angles are listed in Table 3.1.
Table 3.1: Selected single crystal X-ray data for cct-[Ru(NHC)2(P-P)2HF] complexes (21-24). Data for compounds cct-10 and ttt-14 are included for comparison.

<table>
<thead>
<tr>
<th></th>
<th>Ru-F [Å]</th>
<th>Ru-C [Å]</th>
<th>Ru-P [Å]</th>
<th>P-Ru-P [°]</th>
<th>C-Ru-C [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cct-21</td>
<td>2.2109(16)</td>
<td>2.092(3), 2.113(3)</td>
<td>2.2585(7), 2.3135(8)</td>
<td>70.92(3)</td>
<td>94.32(11)</td>
</tr>
<tr>
<td>cct-22</td>
<td>2.250(17)</td>
<td>2.123(3), 2.146(3)</td>
<td>2.2594(7), 2.2745(7)</td>
<td>83.71(2)</td>
<td>90.03(10)</td>
</tr>
<tr>
<td>cct-23</td>
<td>2.2684(13)</td>
<td>2.103(2), 2.107(2)</td>
<td>2.2833(6), 2.2861(6)</td>
<td>88.72(2)</td>
<td>85.04(8)</td>
</tr>
<tr>
<td>cct-24</td>
<td>2.1841(12)</td>
<td>2.1076(17), 2.1379(19)</td>
<td>2.2464(5), 2.3095(5)</td>
<td>82.723(18)</td>
<td>92.50(7)</td>
</tr>
<tr>
<td>ttt-14</td>
<td>2.2684(18)</td>
<td>2.112(3), 2.115(3)</td>
<td>2.2891(7), 2.3404(7)</td>
<td>178.78(3)</td>
<td>176.04(11)</td>
</tr>
<tr>
<td>cct-10</td>
<td>2.264(2)</td>
<td>2.109(2), 2.115(2)</td>
<td>2.3343(6), 2.3493(6)</td>
<td>98.66(2)</td>
<td>88.61(8)</td>
</tr>
</tbody>
</table>

In solution, all four complexes displayed a characteristic doublet of triplets Ru-H NMR resonance at δ -21 ±2 ppm ($^2J_{HF} = 50 \pm 2$ Hz, $^2J_{HP} = 20 \pm 2$ Hz), along with a Ru-F signal in the range δ -330 to δ -342 (Table 3.2). The chemical shifts and coupling constants were in agreement with the NMR metrics for the parent bis-PPh₃ compounds (cct-10 and ttt-14). Some degree of fluxional behaviour was apparent for the dppm complex cct-21, as the NCH₃ and NCCCH₃ resonances of the two NHC ligands were averaged to a broad peak at δ 3.62 and a sharp signal at δ 1.55 respectively, indicating unrestricted rotation around the Ru-C_NHC bond (Figure 3.15). Upon cooling a toluene-d_8 solution of cct-21 to -45°C, the N-methyl protons resolved into three singlets at δ 4.18, 4.17 and 3.14, integrating in a 3:3:6 ratio,
whereas the backbone protons appeared as two distinct signals at δ 1.48 and 1.38 (6:6 ratio).

Table 3.2: Selected NMR data for cct-[Ru(NHC)2(P-P)2HF] complexes (21-24).

Data for compounds cct-10 and ttt-14 are included for comparison.

<table>
<thead>
<tr>
<th></th>
<th>¹H δ [ppm]</th>
<th>²JHF [Hz]</th>
<th>²JHP [Hz]</th>
<th>³¹P δ [ppm]</th>
<th>¹⁹F δ [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cct-21</td>
<td>-19.68</td>
<td>52.8</td>
<td>20.3</td>
<td>3.5</td>
<td>-342.2</td>
</tr>
<tr>
<td>cct-22</td>
<td>-22.90</td>
<td>51.9</td>
<td>22.1</td>
<td>64.8</td>
<td>-330.4</td>
</tr>
<tr>
<td>cct-23</td>
<td>-21.90</td>
<td>52.7</td>
<td>20.0</td>
<td>32.9</td>
<td>-332.9</td>
</tr>
<tr>
<td>cct-24</td>
<td>-22.32</td>
<td>54.5</td>
<td>21.6</td>
<td>63.8</td>
<td>-348.1</td>
</tr>
<tr>
<td>ttt-14</td>
<td>-21.94</td>
<td>48.0</td>
<td>21.0</td>
<td>50.1</td>
<td>-331.5</td>
</tr>
<tr>
<td>cct-10</td>
<td>-21.70</td>
<td>51.6</td>
<td>18.7</td>
<td>43.1</td>
<td>-354.4</td>
</tr>
</tbody>
</table>

Figure 3.15: Sections of the ¹H NMR spectrum (C₆D₅CD₃, 400 MHz) of [Ru(IMe₄)₂(dppm)HF] (cct-21) showing NCH₃ and NCCH₃ resonances at 25°C (top) and -45°C (bottom).

The corresponding cct-[Ru(NHC)₂(P-P)H₂] complexes 25-28 were characterised by multinuclear NMR spectroscopy. ¹H and ³¹P{¹H} NMR chemical shifts, along with JHP coupling constants, are listed in Table 3.3. All metrics were consistent with the corresponding data for cct-8 and ttt-9 and fully supported the
presence of trans-dihydride geometries in solution. Compounds cct-25 and 26 were additionally analysed by X-ray diffraction studies (Figure 3.16). The structure of the former confirmed the original NMR assignment of a cct-isomer, while the latter revealed the mutual cis-arrangement of both IMe₄ and hydride ligands. In both cases, a slight increase in the P-Ru-P bite angle, with respect to the fluoride counterparts, was observed.

Table 3.3: Selected NMR data for cct-[Ru(NHC)ₓ(P-P)H₂] complexes (24-27). Data for compounds cct-8 and ttt-9 are included for comparison.

<table>
<thead>
<tr>
<th></th>
<th>¹H δ [ppm]</th>
<th>²J₃P [Hz]</th>
<th>³¹P δ [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cct-25</td>
<td>-5.37</td>
<td>16.9</td>
<td>10.9</td>
</tr>
<tr>
<td>cct-26</td>
<td>-7.20</td>
<td>19.1</td>
<td>86.0</td>
</tr>
<tr>
<td>cct-27</td>
<td>-6.64</td>
<td>19.2</td>
<td>47.0</td>
</tr>
<tr>
<td>cct-28</td>
<td>-7.34</td>
<td>19.2</td>
<td>82.2</td>
</tr>
<tr>
<td>ttt-9</td>
<td>-6.54</td>
<td>20.4</td>
<td>72.4</td>
</tr>
<tr>
<td>cct-8</td>
<td>-6.74</td>
<td>20.4</td>
<td>69.7</td>
</tr>
</tbody>
</table>
Figure 3.16: Molecular structures of cct-[Ru(IMe$_4$)$_2$(dppe)H$_2$] (cct-25, left) and ccc-[Ru(IMe$_4$)$_2$(dppe)H$_2$] (ccc-26, right). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity. Selected bond lengths (Å) and angles (°) for cct-25: Ru1-C1 2.088(2), Ru1-C8 2.090(2), Ru1-P1 2.2860(6), Ru1-P2 2.2740(6), P1-Ru1-P2 72.31(2), C1-Ru1-P1 169.80(6), C1-Ru1-C8 87.66(9). Selected bond lengths (Å) and angles (°) for cct-26: Ru1-C1 2.098(2), Ru1-C8 2.123(2), Ru1-P1 2.2526(5), Ru1-P2 2.2874(5), P1-Ru1-P2 85.676(17), C1-Ru1-P1 174.65(5), C1-Ru1-C8 90.96(7).

3.9. Catalytic HDF of C$_6$F$_6$ using [Ru(NHC)$_2$L$_2$H$_2$] complexes

In light of the stoichiometric studies described in previous sections, catalytic HDF of C$_6$F$_6$ by the various ruthenium precursors was attempted. The results are summarised in Table 3.4. The activity of all complexes was screened at 10 mol% catalyst loading in toluene,$^\text{vii}$ and quantified by TON and TOF values. An

vii Toluene, rather than benzene, was used due to the much better solubility of 17 in the former.
elevated temperature (90°C) and a large excess of reductant (80 equiv wrt catalyst) were employed in an effort to afford reasonable reaction rates and to maximise the conversions to low fluorine containing products. Remarkably, both cct-8 and ttt-9 were capable of performing up to five HDF steps to generate fluorobenzene (entries 1-3). The formation of less C₆F₅H₃ with cct-8 (25%, c.f. 52% for ttt-9) might be a consequence of one or more of the following factors; (i) intrinsically lower activity (ii) relative stability of the precursor or (iii) more facile formation of catalytically inactive Ru-fluoroaryl species (11 and 12). It might also reflect a difference in regioselectivity to give larger amounts of 1,4-C₆F₂H₄, which has a higher predicted barrier for HDF compared to the 1,2- and 1,3- isomers (Section 2.4.3) and might therefore be regarded as a catalytic dead-end. For these reasons, ttt-9 was selected for further studies.
Table 3.4: Ru(NHC)$_2$L$_2$H$_2$ catalysed HDF of C$_6$F$_6$.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ru source</th>
<th>t (h)</th>
<th>Silane</th>
<th>1,2- C$_6$F$_2$H$_4$</th>
<th>1,3- C$_6$F$_2$H$_4$</th>
<th>1,4- C$_6$F$_2$H$_4$</th>
<th>C$_6$FH$_5$</th>
<th>Other products</th>
<th>TON</th>
<th>TOF (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ttt-9</td>
<td>72</td>
<td>Et$_3$SiH</td>
<td>65</td>
<td>4</td>
<td>10</td>
<td>16</td>
<td>1,2,3- C$_6$F$_3$H$_3$ (5 %)</td>
<td>41.1</td>
<td>0.57</td>
</tr>
<tr>
<td>2</td>
<td>ttt-9</td>
<td>144</td>
<td>Et$_3$SiH</td>
<td>36</td>
<td>3</td>
<td>9</td>
<td>52</td>
<td>-</td>
<td>45.2</td>
<td>0.31</td>
</tr>
<tr>
<td>3</td>
<td>cct-8</td>
<td>144</td>
<td>Et$_3$SiH</td>
<td>32</td>
<td>11</td>
<td>32</td>
<td>25</td>
<td>-</td>
<td>42.6</td>
<td>0.30</td>
</tr>
<tr>
<td>4b</td>
<td>ttt-9</td>
<td>144</td>
<td>Et$_3$SiH</td>
<td>25</td>
<td>-</td>
<td>10</td>
<td>65</td>
<td>-</td>
<td>46.5</td>
<td>0.32</td>
</tr>
<tr>
<td>5c</td>
<td>ttt-9</td>
<td>144</td>
<td>Et$_3$SiH</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,2,3,4- C$_6$F$_3$H$_2$ (36 %), 1,2,4,5- C$_6$F$_4$H$_2$ (1 %), 1,2,3- C$_6$F$_3$H$_3$ (45 %), 1,2,4- C$_6$F$_3$H$_3$ (8 %)</td>
<td>27.2</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>ttt-9</td>
<td>144</td>
<td>iPr$_3$SiH</td>
<td>66</td>
<td>-</td>
<td>4</td>
<td>24</td>
<td>1,2,3- C$_6$F$_3$H$_3$ (6 %)</td>
<td>41.8</td>
<td>0.29</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>72</td>
<td>Et$_3$SiH</td>
<td>42</td>
<td>4</td>
<td>34</td>
<td>20</td>
<td>-</td>
<td>42.0</td>
<td>0.58</td>
</tr>
<tr>
<td>8</td>
<td>cct-23</td>
<td>24</td>
<td>Et$_3$SiH</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>95</td>
<td>-</td>
<td>49.5</td>
<td>2.06</td>
</tr>
<tr>
<td>9</td>
<td>cct-23</td>
<td>24</td>
<td>iPr$_3$SiH</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>99</td>
<td>-</td>
<td>49.9</td>
<td>2.08</td>
</tr>
<tr>
<td>10</td>
<td>cct-22</td>
<td>24</td>
<td>Et$_3$SiH</td>
<td>10</td>
<td>-</td>
<td>5</td>
<td>85</td>
<td>-</td>
<td>48.5</td>
<td>2.02</td>
</tr>
<tr>
<td>11</td>
<td>cct-22</td>
<td>24</td>
<td>iPr$_3$SiH</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>97</td>
<td>-</td>
<td>49.7</td>
<td>2.07</td>
</tr>
<tr>
<td>12</td>
<td>cct-21</td>
<td>24</td>
<td>Et$_3$SiH</td>
<td>49</td>
<td>4</td>
<td>29</td>
<td>18</td>
<td>-</td>
<td>41.8</td>
<td>1.74</td>
</tr>
<tr>
<td>13</td>
<td>cct-21</td>
<td>24</td>
<td>iPr$_3$SiH</td>
<td>12</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>C$_6$F$_6$ (1 %), 1,2,3,4- C$_6$F$_4$H$_2$ (31 %), 1,2,4,5- C$_6$F$_4$H$_2$ (4 %), 1,2,3- C$_6$F$_3$H$_3$ (27 %), 1,2,4- C$_6$F$_3$H$_3$ (20 %)</td>
<td>44.2</td>
<td>0.61</td>
</tr>
<tr>
<td>14</td>
<td>cct-24</td>
<td>24</td>
<td>Et$_3$SiH</td>
<td>6</td>
<td>-</td>
<td>9</td>
<td>85</td>
<td>-</td>
<td>48.5</td>
<td>2.02</td>
</tr>
<tr>
<td>15</td>
<td>cct-24</td>
<td>24</td>
<td>iPr$_3$SiH</td>
<td>38</td>
<td>-</td>
<td>8</td>
<td>54</td>
<td>-</td>
<td>45.4</td>
<td>1.89</td>
</tr>
</tbody>
</table>

*a*Reaction conditions: 10 mol% Ru, 0.005 mmol substrate, 0.04 mmol silane, toluene, 90°C. *b*Reaction run under 4 atm H$_2$. *c*Reaction performed in presence of 10 equiv PPh$_3$. *d*Product assignments and yields determined by 19F NMR spectroscopy.
HDF of C6F6 under 4 atm H2 resulted in an increased yield of C6FH5 (entry 4), consistent with reduction in the extent of competing C-H activation. Retardation of catalysis was observed upon addition of PPh3 (entry 5), which supports the premise that at least some HDF occurred at a five-coordinate intermediate, most likely the previously postulated mono-phosphine species [Ru(IMe4)2(PPh3)H2] (Sections 3.1 and 3.6). However, the presence of tetra-, tri- and difluorobenzenes indicated that ligand dissociation is not necessary for the catalysis to propagate. The triphenylsilyl trihydride precursor (17) performed comparably to ttt-9 (entries 1 and 7). The results obtained with chelating phosphine complexes 21-24 can be roughly correlated with the P-Ru-P bite angles measured in their crystal structures. Thus, the dppp derivative cct-23 proved to be the most active of all of the NHC/phosphine precursors, affording fluorobenzene in an exceptionally high 95% yield (entry 8) over only 24 h, cct-22 showed slightly lower activity with 85% conversion to C6FH5 (entry 10), while the dppm analogue cct-21 gave a mixture of C6F2H4 isomers and C6FH5 (18%, entry 12). Changing the N-alkyl substituents on the NHC ligands from methyl to ethyl had a negligible effect on catalysis (entry 14). Replacement of Et3SiH by iPr3SiH accelerated the HDF with cct-23 and cct-22 as demonstrated by almost quantitative formation of C6FH5 (entries 9 and 11 compared to entries 8 and 10). In contrast, a drop in catalytic activity was apparent for cct-21 and cct-24 (entries 13 and 15). This could be due to the more bulky isopropyl groups on silicon and hence greater steric encumbrance upon approaching a crowded ruthenium centre with a narrow P-Ru-P bite angle (70.92(3)°) or larger IEt2Me2 ligands respectively. HDF with ttt-9 was also affected upon changing the silane to iPr3SiH (entry 6). In this case, the slightly reduced catalytic performance might reflect the ability of different silanes to form catalytically competent ruthenium silyl trihydride complexes, akin to 16, 17, 19 and 20. However, these hypotheses should be considered
as mere speculation only since variations in catalytic performance as a function of terminal reductant can be difficult to rationalise.

As noted earlier (Section 3.7), the chelating phosphines were utilised with hope of rendering their ruthenium complexes coordinatively saturated and hence driving HDF along a concerted pathway. The high concentration of C₆F₅H₅ formed with complexes 22-24 implied that either (i) the assumption was correct, although 1,4-C₆F₂H₄ (predicted by DFT to be the most favoured isomer of difluorobenzene formed along a concerted pathway; Section 2.4.3) was then required to undergo a further HDF step to fluorobenzene (contradicting the findings with 1 under similar reaction conditions; Section 2.3) or (ii) the assumption was incorrect and catalysis proceeded along a stepwise pathway necessitating ligand dissociation from 22-24, to give 1,2-C₆F₂H₄ and subsequently C₆F₃H. A third interpretation is that there could be other factors influencing the regioselectivity of C-F bond activation (such as subtle F···HC interactions in the key C-F bond breaking transition state during HDF with II; Section 1.4) or that the DFT findings on the related [Ru(NHC)(PPh₃)₂(CO)H₂]²⁶,²⁷ (I and II) and [Ru(NHC)₄H₂]²⁸ (1-2) systems cannot be extrapolated to explain the observed product distributions with 22-24. The ¹⁹F NMR spectrum of a catalytic run with cct-22 (5 mol%) stopped after 7 h at 90°C showed the presence of C₆F₆ (9%), 1,2,3,4-C₆F₄H₂ (12%) and most importantly 1,2,3-C₆F₃H₃ (35%) and 1,2-C₆F₂H₄ (41%), with very small amounts of 1,2,4-C₆F₃H₂ (2%) and 1,4-C₆F₂H₄ (1%) (Scheme 3.8). This result was in accordance with a stepwise pathway,²⁷ which could occur via dissociation of an NHC, but most likely involved temporary unhooking of one end of the chelating phosphine²⁹-³¹ to create a catalytically active five-coordinate ruthenium centre. Alternatively, HDF could proceed along a concerted pathway at six-coordinate species albeit with ortho-selectivity.
Scheme 3.8: Catalytic HDF products generated with cct-[Ru(NHC)$_2$(P-P)HF] (21-24).
The major reaction pathway is shown in black.

3.10. Summary

A series of cct-[Ru(NHC)$_2$(L$_2$)H$_2$] complexes (NHC = IMe$_4$, IEt$_2$Me$_2$; L$_2$ = (PPh$_3$)$_2$, dppm, dppe, dppp) have proven capable of performing up to 5 hydrodefluorination (HDF) steps on C$_6$F$_6$ substrate to afford C$_6$FH$_5$. In the case of the bis-PPh$_3$ complexes cct-8 and ttt-9, facile PPh$_3$ dissociation lowered the regioselectivity of HDF as the reaction could take place through both five- and six-coordinate pathways. Moreover, mechanistic considerations suggested that C-F bond activation could be further complicated by competitive C-H activation to generate catalytically inactive Ru-fluoraryl species (11, 12 and 15), as well as the involvement of seven-coordinate Ru-silyl complexes, such as 16, 17, 19 and 20. Enhanced activity and regioselectivity was observed upon incorporation of bidentate phosphines, in particular dppe and dppp. This was attributed to the very effective formation of coordinatively unsaturated ruthenium species, which were formed via dechelation of one of the P-P arms and operated along the stepwise pathway. Overall, these results show that the nature of metal coordination environment plays a crucial role in dictating the regioselectivity of the HDF process and highlight how subtle changes to ancillary ligands affect catalytic activity.
3.11. References for Chapter 3

CHAPTER FOUR
C-O Bond Activation of DPEphos *via* Attack of Nucleophilic Ru-H in Ru\textsubscript{4}L\textsubscript{4}H\textsubscript{2}

4.1. Introduction

Following on from the high activity of the cct-[Ru(NHC)\textsubscript{2}(P-P)HX] complexes for the catalytic HDF of fluoroarenes described in Chapter 3, the scope of PPh\textsubscript{3}/P-P substitution reactions was extended by inclusion of xanthene-based phosphines such as xantphos and DPEphos (Figure 4.1). Due to the serendipitous discovery of unprecedented C-O bond activation of the latter, the studies focused almost exclusively on its reactivity with ruthenium dihydride complexes. Experimental investigations were supplemented by DFT calculations to define the mechanism of reaction and probe the factors promoting unusual ligand activation.

![Figure 4.1: Structures of xantphos (left), DPEphos (middle) and DCEphos (right).](image-url)
4.2. Reactivity of \([\text{Ru(IMe}_4]_2(\text{PPh}_3)_2\text{H}_2]\) (ttt-9)

4.2.1. Reaction of \([\text{Ru(IMe}_4]_2(\text{PPh}_3)_2\text{H}_2]\) (ttt-9) with DPEphos

\[
\text{Scheme 4.1: Synthesis of } [\text{Ru(IMe}_4]_2(\text{PPh}_3)(\text{Ph}_2\text{PC}_6\text{H}_4\text{O})\text{H}] \ (29) \text{ from } [\text{Ru(IMe}_4]_2(\text{PPh}_3)_2\text{H}_2]\) (ttt-9).
\]

Upon heating a \(\text{C}_6\text{D}_6\) solution of ttt-9 and DPEphos (1.2 equiv) at 90°C overnight, \(^1\text{H}\) NMR spectroscopy revealed complete disappearance of the hydride signal of the starting complex at \(\delta \ -6.53\) and the formation of a single new Ru-H containing product with a distinctive signal at \(\delta \ -18.40\) (“t”, \(^2J_{\text{HP}} = 22.0 \text{ Hz}\)). This integrated in a 1:6:6:6:6 ratio with four IMe\(_4\) resonances at \(\delta \ 1.23, 1.34, 3.03\) and 3.79. The hydride resonance is perhaps best described as a pseudotriplet or an overlapping doublet of doublets and its appearance is most likely due to the magnetic similarity of two phosphorus environments. In line with this was a single, possibly coincidental, \(^31\text{P}\{^1\text{H}\}\) NMR signal at \(\delta \ 51.3\) and a single high frequency triplet \(^{13}\text{C}\) carbene resonance at \(\delta \ 192.1\) \(^2J_{\text{CP}} = 15 \text{ Hz}\). A characteristic doublet of doublets at \(\delta \ 178.4\) \(^2J_{\text{CP}} = 14 \text{ Hz}, \ ^3J_{\text{CP}} = 12 \text{ Hz}\) was assigned as the carbon adjacent to the oxygen atom.\(^1\) Yellow crystals of the product were obtained from toluene/pentane. A subsequent X-ray diffraction study revealed the product to be \([\text{Ru(IMe}_4]_2(\text{PPh}_3)(\text{Ph}_2\text{PC}_6\text{H}_4\text{O})\text{H}] \ (29); \text{ Figure 4.2}\) resulting from C-O bond activation of the DPEphos ligand. The molecular structure was consistent with the NMR data. The low frequency Ru-H chemical shift most likely
reflected its position opposite the phenolic oxygen atom of the bidentate diphenylphosphinophenolate. The Ru-O was involved in C-H··O interactions with N-methyl protons (C-H··O 2.0414(16) Å, 2.1471(16) Å; C··O 2.976(3) Å, 2.977(3) Å; C-H-O 141.43(14)°, 158.72(15)°). The strong trans-influence of the hydride ligand led to the significant elongation of the Ru-O bond with respect to other Ru(II) complexes bearing a Ph2PC6H4O- ligand (Table 4.1). The phosphine terminus of the 5-membered metallacycle (P1) was bound trans to PPh3 (P1-Ru1-P2 176.94(2) Å), whereas the two IMe4 ligands retained their same trans-arrangement (C1-Ru1-C8 172.97(8) Å) as in ttt-9. The Ru-P(Ph2C6H4O) distance was slightly longer than the corresponding values found in the related species (Table 4.1).

In an attempt to observe any intermediate species on the pathway for C-O bond cleavage, the C6D6 solution of ttt-9 and DPEphos (1.2 equiv) was left at room temperature for a period of 20 days. Subsequent 1H NMR analysis revealed that the major component of the reaction mixture was the unreacted starting material ttt-9 (ca. 73%), while the amount of the C-O activated product 29 was negligible (ca. 5%). Interestingly, the Ru-H resonance of ttt-9 was flanked by two small, new triplet signals

1 Recent studies show that the large variations in the 1H NMR chemical shift of transition-metal hydrides with trans-ligands are dominated by the spin-orbit and paramagnetic effects.2–4 For the ruthenium d6 systems, [Ru(NHC)4(L)H]0+/+ and [Ru(R2PCH2CH2PR2)2(L)H]+, the observed trends were rationalised by means of changes in the energies of the occupied Ru dπ orbitals and the unoccupied σ*Ru-H orbital, and their contribution to the paramagnetic term, which determines the shielding of the 1H nucleus. Thus, the hydride chemical shift in 29 can only be fully accounted for with an aid of relativistic DFT calculations.
at δ -6.40 ($^2J_{HP} = 20.6$ Hz) and -6.60 ($^2J_{HP} = 20.0$ Hz). The former arose from the monodeuteride isotopologue of ttt-9 formed by H/D exchange with C$_6$D$_6$,5 while the latter was likely to be the anticipated PPh$_3$/DPEphos substitution species, trans-[Ru(IMe$_4$)$_2$(DPEphos)H$_2$], generated prior to C-O exchange. A new doublet of doublet hydride resonance ($^2J_{HP} = 25.4$ Hz, $^2J_{HP} = 15.3$ Hz) was also observed at a slightly higher frequency (δ -17.66) than that of 29 and was tentatively assigned as the cis carbene isomer of 29 (vide infra).

Figure 4.2: Molecular structure of [Ru(IMe$_4$)$_2$(PPh$_3$)(Ph$_2$PC$_6$H$_4$O)H] (29). Thermal ellipsoids are represented at 30 % probability. All hydrogen atoms, with the exception of the hydride ligand and those on the N-methyl groups involved in the H···O interaction, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-O1 2.2720(16), Ru-P1 2.3181(5), Ru1-P2 2.2891(5), Ru1-C1 2.121(2), Ru1-C8 2.088(2), O1-Ru1-P1 78.64(4), P1-Ru1-P2 176.94(2), C1-Ru1-C8 172.97(8), P1-Ru1-C1 88.48(5), P2-Ru1-C8 91.42(5).
Table 4.1: Ru-P and Ru-O distances of Ru(II) complexes containing a diphenylphosphinophenolate (Ph$_2$PC$_6$H$_4$O$^-$) ligand.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Ru-P [Å]</th>
<th>Ru-O [Å]</th>
<th>O-Ru-P [°]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.3181(5)</td>
<td>2.2720(16)</td>
<td>78.64(4)</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td>2.307(1)</td>
<td>2.133(2)</td>
<td>80.49(7)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2663(9), 2.2734(10)</td>
<td>2.116(2), 2.2132(2)</td>
<td>86.86(10), 82.85(7)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2769(8), 2.2734(10)</td>
<td>2.119(2), 2.2132(2)</td>
<td>86.00(8), 82.99(7)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2389(6), 2.2487(6)</td>
<td>2.1175(2), 2.1350(2)</td>
<td>82.64(6), 83.10(5)</td>
<td>8</td>
</tr>
</tbody>
</table>

It is noteworthy that none of the complexes shown in Table 4.1 were made via C-O activation of DPEphos. The synthesis of [Cp*Ru(Ph$_2$PC$_6$H$_4$O)(PPh$_2$C$_6$H$_4$OH)] (Scheme 4.2, top row) was achieved through reduction of [{Cp*RuCl$_2$}]$_2$ with zinc in MeOH, followed by addition of PPh$_2$(C$_6$H$_4$OH) to the reaction mixture. 6 [Ru(Ph$_2$PC$_6$H$_4$O)$_2$(NCR)$_2$] (R = Me, Et) (Scheme 4.2, middle row) were synthesised
upon thermolysis of $[\text{Ru(Ph}_2\text{PC}_6\text{H}_4\text{OMe})_2\text{Cl}_2]$ in the appropriate solvent, which resulted in the dealkylation of the phosphine-ether ligand via CH_3Cl elimination.7 A similar process was postulated to account for the formation of the amino analogue $[\text{Ru(Ph}_2\text{PC}_6\text{H}_4\text{O})_2(\text{NH}_3)_2]$, obtained upon heating an acetone solution of $[\text{Ru(COD)}(\text{NH}_3)_2(\text{NH}_2\text{NMe}_2)\text{Cl}][\text{BPh}_4]$ in the presence of $\text{PPh}_2(\text{C}_6\text{H}_4\text{OMe})$ (Scheme 4.2, bottom row).8

Scheme 4.2: Synthesis of complexes containing a $\text{PPh}_2(\text{C}_6\text{H}_4\text{O})$ ligand.
4.2.2. Reaction of [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H$_2$] (ttt-9) with diphenyl(2-methoxyphenylphosphine)

Scheme 4.3: Synthesis of [Ru(IMe$_4$)$_2$(PPh$_3$)(Ph$_2$PC$_6$H$_4$O)H] (29) from Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H$_2$ (ttt-9) and diphenyl(2-methoxyphenylphosphine).

Diphenyl(2-methoxyphenylphosphine) (PPh$_2$(2-C$_6$H$_4$OCH$_3$); Scheme 4.3) can be considered as a monodentate analogue of DPEphos containing both aryl (Ph-O) and alkyl (O-CH$_3$) C-O bonds. It was therefore employed to a) probe if ligand chelation is necessary to facilitate nucleophilic Ru-H attack, and b) determine the selectivity of the reaction, i.e. the preference for either C-O activation of the C$_{sp^2}$-O or C$_{sp^3}$-O bond. It was found that heating a toluene solution of ttt-9 and PPh$_2$(2-C$_6$H$_4$OCH$_3$) (1.2 equiv) overnight at 100°C, i.e. conditions comparable to the reaction between ttt-9 and DPEphos (Section 4.2.1), led to the selective formation of just 29 as indicated by both 1H and 31P NMR spectroscopy. This shows that bidentate coordination is not required for the nucleophilic attack of Ru-H on a C-O to take place and also shows that activation of the weaker sp^3 C-O bond$^\text{ii}$ takes place, presumably with loss of CH$_4$. The

$^\text{ii}$ Bond dissociation energies (BDE) of Ph-OCH$_3$ and PhO-CH$_3$ bonds in anisole are 91 and 80 kcal mol$^{-1}$ respectively.9
origin of this selectivity was most likely thermodynamic as the formation of the 5-membered metallacycle in 29, as well as the release of methane provides stronger driving force than the alterative strained 4-membered ring in the \(sp^2\) C-O activated product 29’ and elimination of MeOH. Further discussion of selectivity in C-O activation steps is provided in Section 4.6.

4.2.3. Reaction of \([\text{Ru(IMe}_4\text{)}_2(\text{PPh}_3)_2\text{H}_2]\) (ttt-9) with DCEphos

![Scheme 4.4: Reaction between [Ru(IMe4)2(PPh3)2H2] (ttt-9) and DCEphos (left), and a section of the \(^{31}\text{P\{^1\text{H}\}}\) NMR spectrum (C\(_6\)H\(_5\)CH\(_3\), 162 MHz, 25°C) showing product resonances (right).](image)

The reaction between ttt-10 and (Cy\(_2\)PC\(_6\)H\(_4\))\(_2\)O (DCEphos; Scheme 4.4) was carried out to examine the effect of the PR\(_2\) substituents on the reaction outcome. It was assumed that the replacement of phenyl groups in DPEphos by more electron donating cyclohexyl substituents would render the \(sp^2\) C-O bonds of the P-O-P ligand less activated and make nucleophilic attack by Ru-H less likely. This premise proved to be correct as the C-O cleavage only took place under far more forcing conditions. Thus, after 2 days at 120°C in toluene almost complete conversion of ttt-9 to a new species was observed by \(^1\text{H}\) and \(^{31}\text{P\{^1\text{H}\}}\) NMR spectroscopy. This was assigned tentatively as [Ru(IMe\(_4\))\(_2\)(P(Cy)\(_2\)Ph)(Cy\(_2\)PC\(_6\)H\(_4\)O)H] due to the appearance of a single new Ru-H resonance at a very similar chemical shift (\(\delta -19.69, \ ^2J_{HP} = 27.3\ Hz, \ ^2J_{HP} = 14.5\ Hz\) to
that of 29, as well as the presence of two doublet phosphorus signals at δ 49.5 and 43.4 with a large trans-$^2J_{PP}$ coupling constant of ca. 272 Hz.iii The presence of two phosphorus resonances suggested that P(Cy)$_2$Ph and Cy$_2$PC$_6$H$_4$O represent two distinct and hence magnetically inequivalent ligand environments, which is in striking contrast to 29. The DCEphos derivative could not be isolated and fully characterised as prolonged heating of the reaction mixture did not lead to full conversion but instead product decomposition was observed as suggested by loss of the product resonances.

4.2.4. Reaction of [Ru(IMe)$_4$]$_2$(PPh$_3$)$_2$H$_2$] (ttt-9) with xantphos

Scheme 4.5: Reaction of [Ru(IMe)$_4$]$_2$(PPh$_3$)$_2$H$_2$] (ttt-9) and xantphos (left), and a section of the 1H NMR spectrum (C$_6$D$_6$, 500 MHz, 25°C) showing the hydride resonance of the product (right).

In comparison to DPEphos, the presence of the dimethyl bridge in the 10-position of xantphos widens its bite angle and enhances the overall ligand backbone

iii Approximate chemical shifts and J_{PP} values are given as the coupling pattern resembled a second order AB system (Scheme 4.4).
rigidity,iv which is considered to be the main reason for the remarkable stability of the formed chelates. Although C-O activation of DPEphos proved to be relatively facile, it was anticipated that due to the additional constraint within xantphos, a similar reaction would not proceed but rather that a conventional PPh\textsubscript{3}/xantphos substitution reaction would take place. Indeed, NMR analysis of a C\textsubscript{6}D\textsubscript{6} solution of \textbf{ttt-9} and xantphos (5 equiv) heated at 70°C for 3 days revealed formation of a new second order hydride resonance at \(\delta -8.55\), which was assigned to ccc-isomer of [Ru(IMe\textsubscript{4})\textsubscript{2}(xantphos)H\textsubscript{2}] (Scheme 4.5). The 31P\{1H\} NMR spectrum comprised a singlet resonance at \(\delta 26.9\). No efforts to isolate and fully characterise the complex were made on the basis that there was no evidence of C-O activation taking place.

iv The natural bite angle, defined as the preferred chelation angle determined only by ligand backbone constraints and not by metal valence angles, displayed by xantphos is 111.7°, while its flexibility range, defined as the accessible range of bite angles within less than 3 kcal mol-1 excess strain energy from the calculated natural bite angle, ranged from 97 to 135°. DPEphos was calculated to exhibit a natural bite angle of 102.2° and a flexibility range of 86-120°.10,11
4.3. Reaction of [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)$_2$H$_2$] (cct-8) with DPEphos

![Diagram of reaction](image)

Scheme 4.6: Synthesis of [Ru(IEt$_2$Me$_2$)(IEtMe$_2$(C$_6$H$_4$)PPh$_2$)(Ph$_2$PC$_6$H$_4$O)H] (31) from [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)$_2$H$_2$] (cct-8) and DPEphos via [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)Ph$_2$PC$_6$H$_4$O)H] (30).

As noted in Chapter 3, [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)$_2$H$_2$] (cct-8) exhibited higher stoichiometric reactivity towards sp2 C-F bonds than its IMe$_4$ counterpart (ttt-9) and facilitated HDF of fluoroarenes at room temperature. It was therefore reasonable to assume that cct-8 would also cleave the C-O bond of DPEphos but perhaps under milder conditions. The reaction shown in Scheme 4.6 was first monitored by 1H and 31P NMR spectroscopy in C$_6$D$_6$, which revealed slow conversion of cct-8 to ttt-8 (δ -6.49 (t, 2J$_{HP} = 21.9$ Hz) and δ 58.2 respectively), along with other species (assigned to ctc-8 and tcc-8 on the basis of the similarity of the Ru-H chemical shifts to those for the IMe$_4$ analogues) over a period of 3 weeks. In addition, there was a new doublet of doublets Ru-H signal at δ -17.21 (2J$_{HP} = 26.2$ Hz and 2J$_{HP} = 12.3$ Hz), which was tentatively assigned to the product of C-O activation, [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)Ph$_2$PC$_6$H$_4$O)H] (30). The sample was subsequently reduced to dryness and recrystallised from toluene/pentane at -40°C to afford a very small amount of crystals which confirmed assignment of 30. The molecular structure of 30 is shown in Figure 4.3. The complex retained a cis- (90.6(2)$^\circ$) arrangement of carbene ligands from cct-8, with one IEt$_2$Me$_2$ positioned trans to PPh$_3$
(165.44(17)°) and the other trans to the P terminus of the chelating diphenylphosphinophenolate (169.26(19)°). As expected, the hydride was located opposite the oxygen atom. Similarly to 29, there was evidence of hydrogen bonding between Ru-O and one of the methylene (NCH$_2$) groups (C-H····O 2.137(4) Å; C····O 3.067(7) Å; C-H-O 155.7(4) Å). Despite a different disposition of the NHC ligands with respect to 29, the Ru-P, Ru-C and Ru-O bond lengths, as well as the O-Ru-P bond angle, were comparable. Unfortunately, in spite of repeated efforts, attempts not only to crystallise 30 again but also to generate it again in higher yield proved impossible, precluding additional characterisation or reactivity studies from being undertaken.

Figure 4.3: Molecular structure of [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)Ph$_2$PC$_6$H$_4$O]H (30). Thermal ellipsoids are represented at 30 % probability. Hydrogen atoms, with the exception of the hydride ligand and H13C/D, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-O1 2.276(3), Ru1-P1 2.3153(15), Ru1-P2 2.3477(12), Ru1-C1 2.2099(5), Ru1-C10 2.095(6), O1-Ru1-P2 77.95(10), P1-Ru1-P2 94.93(5), C1-Ru1-C10 90.6(2), C1-Ru1-P1 89.38(18), P2-Ru1-C10 87.68(14).
In an attempt to accelerate the reaction of cct-8 with DPEphos to afford 30, a reaction mixture was heated at 90°C in toluene. Surprisingly, employment of higher temperatures led to the isolation of [Ru(I\text{Et}_2\text{Me}_2)(I\text{EtMe}_2(C_6\text{H}_4)\text{PPh}_2)(\text{Ph}_2\text{PC}_{6}\text{H}_4\text{O})\text{H}](31, \text{Figure 4.4}) featuring an unexpected chelating NHC-phosphine ligand, generated via a combination of C-O activation, cleavage of an N-Et carbene linkage and formation of a new N-C bond. Related C-N bond activation of I'\text{Pr}_2\text{Me}_2 and I'\text{Pr}_2\text{Ph}_2 at Ru has been shown to generate N-bound tautomers and propene.12–14 Cleavage of the C-N bond in I\text{Et}_2\text{Me}_2 ligand has been observed upon treatment of [Fe(I\text{Et}_2\text{Me}_2)_2\text{Cl}_2] with PhLi or abBuLi to generate a mixture of dinuclear complexes containing a ligated I\text{EtMe}_2 fragment.15

v The reaction was cleaner and better yields were obtained when refluxing Et\textsubscript{2}O was used as a solvent.
Figure 4.4: Molecular structure of [Ru(IEt$_2$Me$_2$)(IEtMe$_2$(C$_6$H$_4$)PPh$_2$)(Ph$_2$PC$_6$H$_4$O)H] (31). Thermal ellipsoids are represented at 30% probability. All hydrogen atoms, with the exception of the hydride ligand and H8B, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-O1 2.265(2), Ru-P1 2.3198(9), Ru1-P2 2.3089(8), Ru1-C1 2.104(3), Ru1-C10 2.071(3), O1-Ru1-P1 79.45(6), P1-Ru1-P2 102.88(3), C1-Ru1-C10 88.36(12), C1-Ru1-P1 91.42(9), P2-Ru1-C10 77.19(8).

Scheme 4.7: Two examples of C-N bond activation of NHC ligands.
Chauvin and co-workers reported the synthesis of a dinuclear copper complex bearing analogous, N-methyl substituted phosphinocarbene ligands (Scheme 4.8).\(^{16}\) This involved complexation of an imidazolio-diphosphine salt (formed upon phosphinylation of 1-(1-phenyl)-1\(H\)-imidazole to imidazole-diphosphine followed by N-methylation) to give a dicationic dinuclear copper complex, which subsequently underwent dephosphinylation upon treatment with \(\text{Et}_4\text{N}^+\text{Cl}^-\) to afford the final product. The phosphinylation/dephosphinylation pathway is in contrast to the N-C coupling/ethane elimination, which is likely to take place upon going from 30 to 31.

Scheme 4.8: Synthesis of a dinuclear copper complex featuring NHC-phosphine ligands.\(^{16}\)

Selected X-ray diffraction data for compounds 30 and 31 are summarised in Table 4.2. Apart from the anticipated decrease in the highlighted C-Ru-P angle upon the formation of the new 6-membered metallacycle, perhaps most germane was slight widening of the O-Ru-P\(_{PO}\) bite angle and shortening of the involved Ru-O and Ru-P\(_{PO}\) bonds. The C-H···O interaction observed in 30 was also present in the N-C activated product 31 (C-H···O 2.126(2) Å; C···O 2.998(4) Å; C-H-O 145.9(2)\(^\circ\)).
Table 4.2: Selected bond lengths (Å) and bond angles (°) for compounds 30 and 31.

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru-O</td>
<td>2.276(3)</td>
<td>2.252(2)</td>
</tr>
<tr>
<td>Ru-P_a</td>
<td>2.3477(12)</td>
<td>2.3198(9)</td>
</tr>
<tr>
<td>Ru-P_b</td>
<td>2.3153(15)</td>
<td>2.3089(8)</td>
</tr>
<tr>
<td>Ru-C_a</td>
<td>2.099(5)</td>
<td>2.071(3)</td>
</tr>
<tr>
<td>O-Ru-P_a</td>
<td>77.95(10)</td>
<td>79.45(6)</td>
</tr>
<tr>
<td>C_a-Ru-C_b</td>
<td>90.6(2)</td>
<td>88.36(12)</td>
</tr>
<tr>
<td>C_a-Ru-P_b</td>
<td>89.38(18)</td>
<td>77.19(8)</td>
</tr>
<tr>
<td>C_a-Ru-P_a</td>
<td>169.26(19)</td>
<td>175.11(9)</td>
</tr>
</tbody>
</table>

The hydride signal of 31 appeared as a doublet of doublets at δ -17.71 with $^{2}J_{HP}$ coupling constants of 20.0 and 15.0 Hz. The presence of only three NCH$_3$CH$_3$ resonances at δ 0.48, 0.85 and 1.12, along with six multiplets at higher frequency arising from the diastereotopic methylene protons was consistent with cleavage of one of the four original N-Et groups. The four backbone CH$_3$ groups gave rise to four singlets at δ 1.42, 1.46, 1.53 and 1.59, whereas the downfield region of the spectrum contained overlapping aryl-H resonances, which integrated to the expected 28 protons with respect to Ru-H. The inequivalence of two P atoms was apparent from the 31P(1H) NMR spectrum, which displayed two doublet signals at δ 59.3 and 54.6 with $^{2}J_{PP} = 28.4$ Hz. Two different carbenic carbon resonances were observed and appeared as doublet of doublets at δ 194.6 ($^{2}J_{CP} = 80$ Hz, $^{2}J_{CP} = 21$ Hz) and 191.5 ($^{2}J_{CP} = 88$ Hz, $^{2}J_{CP} = 15$ Hz).
Hz). A doublet signal at δ 179.2 ($^{2}J_{CP} = 23$ Hz) was attributed to the C1 carbon (ArO) of the P-O ligand.

4.4. Reaction of [Ru(PPh$_3$)$_4$H$_2$] (32) with DPEphos

![Diagram of Reaction of [Ru(PPh$_3$)$_4$H$_2$] with DPEphos]

Scheme 4.9: Synthesis of [Ru(DPEphos)$_2$H$_2$] (33) from [Ru(PPh$_3$)$_4$H$_2$] (32) and DPEphos, conversion of 33 to [Ru(DPEphos)(Ph$_2$PC$_6$H$_4$O)H] (34) and its subsequent chlorination to [Ru(DPEphos)(Ph$_2$PC$_6$H$_4$O)Cl] (35).

In light of the DPEphos C-O activation at cct-8 and ttt-9, the studies were extended to investigate if the reaction was limited only to dihydride complexes containing electron donating NHC ligands. Thus, [Ru(PPh$_3$)$_4$H$_2$] (32), was reacted directly with DPEphos (2 equiv) to afford the new bis-DPEphos complex, [Ru(DPEphos)$_2$H$_2$] (33; Scheme 4.9) in high yield (88%) after 8 h at room temperature. The 1H NMR spectrum of 33 showed a pseudo doublet of triplets at δ -9.80 ($J = 48.3$ Hz, 34.3 Hz) corresponding to the XX’ part of an AA’MM’XX’ spin system (where
AA’MM’ were the four phosphorus atoms) confirming the formation of the cis-dihydride isomer. Similar spectra have been observed for the analogous cis-[Ru(P-P)2H2] complexes (P-P = dppe,17 dpf,18 sixantphos, homoxantphos).19,20 The 31P{1H} NMR spectrum consisted of two apparent triplets at δ 41.1 and 35.3 (Jpp = 18 Hz). The X-ray crystal structure (Figure 4.5) showed a highly distorted octahedral geometry with the widest P1-Ru1-P4 angle of 138.806(18)°. The bite angles adopted by the two DPEphos ligands were equal to 99.355(17)° and 101.863(18)°, while the Ru-P distances ranged from 2.3156(5) to 2.4108(5) Å. The deviation from linearity in trans-P-Ru-P angle has been previously observed in [Ru(PPh3)3(CO)H2], which exhibited an intramolecular hydrogen bond between one of the hydride ligands and an adjacent, symmetry generated ortho-C-H proton of a phenyl group of one of the PPh3 ligands.21 A survey of crystallographic structures of other ruthenium hydride species with coordinated triphenylphoshine ligand revealed that such H···H interactions are in fact a common feature of such systems.
Figure 4.5: Molecular structure of cis-[Ru(DPEphos)₂H₂] (33). Thermal ellipsoids are represented at 30% probability. All hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-P1 (2.4108(5)), Ru1-P2 (2.3179(5)), Ru1-P3 (2.3827(5)), Ru1-P4 (2.3156(5)), P1-Ru1-P2 (101.863(18)), P3-Ru1-P4 (99.355(17)), P1-Ru1-P3 (104.960(17)), P2-Ru1-P4 (138.806(18)).

Heating an isolated sample of 33 in benzene, THF or toluene overnight at 80°C resulted in C-O bond activation of one of the coordinated DPEphos ligands to give the new diphenylphosphinophenolate hydride complex, [Ru(DPEphos)(Ph₂PC₆H₄O)H] (34). The \(^1\)H NMR spectrum of 34 revealed a low frequency quartet Ru-H signal at \(\delta = 13.95 \quad (**J_{HP} = 21.7 \text{ Hz})\), consistent with a cis-H-Ru-P/trans-H-Ru-O arrangement and the presence of three phosphorus atoms bound to the metal centre. The corresponding \(^{31}\)P\(^{1}\)H NMR spectrum comprised of a triplet resonance at \(\delta = 76.8 \quad (**J_{PP} = 30.1 \text{ Hz})\) along with a very broad signal at \(\delta = 49.6\), which integrated in a ca. 1:2 ratio (Figure 4.6). These were attributed to Ph₂PC₆H₄O\(^-\) and DPEphos ligands respectively, the broadness of the latter most likely arising from a rapid dissociation/coordination of the P-O-P
linker. Upon cooling a toluene-d_8 solution of 34 to -15°C, the broad resonance resolved into two doublets at \(\delta 49.6 \) and 48.8 with a \(^2J_{PP} \) coupling constant of 30.1 Hz, indicating that the two diphenylphosphine ends of DPEphos became inequivalent. The signals began to merge at -45°C before full coalescence at -75°C, accompanied by the broadening of the \(\text{Ph}_2\text{PC}_6\text{H}_4\text{O}^- \) resonance.

Figure 4.6: Sections of \(^{31}\text{P}\{^1\text{H}\} \) NMR \((\text{C}_6\text{D}_5\text{CD}_3, 400 \text{ MHz})\) spectra of [Ru(DPEphos)(\text{Ph}_2\text{PC}_6\text{H}_4\text{O})\text{H}] (34) recorded at 25°C (top), -15°C (middle) and -45°C (bottom).

Attempted crystallisation of 34 from CH\(_2\)Cl\(_2\)/pentane resulted in the chlorination of the Ru-H bond to afford the chloride derivative, [Ru(DPEphos)(\text{Ph}_2\text{PC}_6\text{H}_4\text{O})\text{Cl}] (35), which was structurally characterised as shown in Figure 4.7. The Ru-P (2.2066(7) Å) and Ru-O (2.099(2) Å) bond distances and the P-Ru-O bond angle (85.36(7)°) of the 5-membered diphenylphosphinophenolate
metallacycle were similar to those measured in the complexes shown in Table 4.1, rather than those found in complexes 29-31, which were in turn closer in value to the related bond lengths and angles of the intact tricoordinated DPEphos ligand (Ru-O: 2.247(2) Å; Ru-P: 2.3136(7) and 2.3326(7)Å; P-Ru-O: 77.58(5) and 81.39(5)°). The 31P{1H} NMR spectrum consisted of a well-resolved triplet at δ 64.5 (2J$_{PP}$ = 29.5 Hz) and two broad resonances at δ 35.0 and 30.7. No attempts were made to resolve the signals at low temperature. On the basis of comparison to 34, the former higher frequency signal was assigned as the Ph$_2$PC$_5$H$_4$O$^-$ ligand, while the hemilabile DPEphos gave rise to the latter two.

Figure 4.7: Molecular structure of [Ru(DPEphos)(Ph$_2$PC$_5$H$_4$O)Cl] (35). Thermal ellipsoids are represented at 30 % probability. All hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-Cl1 2.4368(9), Ru1-O1 2.247(2), Ru1-O2 2.099(2), Ru1-P1 2.3326(7), Ru1-P2 2.3136(7), Ru1-P3 2.2066(7), P1-Ru1-O1 77.58(5), P2-Ru1-O1 81.39(5), P3-Ru1-O2 85.36(7).
4.5. DFT studies of C-O activation by [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H$_2$] (ttt-9)

Preliminary computational studies of the activation of DPEphos by ttt-9 have undertaken by Macgregor and Beattie at Heriot-Watt University to establish the mechanism of the C-O bond cleavage in the reaction between ttt-9 and DPEphos and determine the factors controlling the process. Replacement of the two PPh$_3$ ligands by DPEphos led to the formation of [Ru(IMe$_4$)$_2$(DPEphos)H$_2$] (INT(9-29)), which was predicted to be most stable as the cct-isomer (cct-INT(9-29); $\Delta G = +2.6$ kcal mol$^{-1}$ relative to [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H$_2$] (ttt-9) and free DPEphos). The mutual trans-arrangement of strong trans-influence hydride ligands led to elongated Ru-H bonds (1.68 and 1.69 Å) and accumulation of negative charge (H$_1$: -0.098, Mulliken). The tcc- (tcc-INT(9-29)) and ccc- (ccc-INT(9-29)) isomers were calculated to be at higher energies with values of +3.7 and +6.8 kcal mol$^{-1}$ respectively. In all cases, these species were lower in energy when the 8-membered Ru-P-C-O-C-C-P ring adopted a boat-boat conformation. Moreover, two possible conformers were identified for the ccc-isomer; one where the C-O-C linker is positioned anti to the hydride in the central H-Ru-IMe$_4$, and the other where the two moieties are in a syn arrangement (ccc-INT$'$(9-29)). Although the former was computed to be thermodynamically favourable ($\Delta G = +6.8$ kcal mol$^{-1}$), it is the latter form ($\Delta G = +10.4$ kcal mol$^{-1}$) that was located on the C-O bond cleavage pathway.

Several mechanisms for the C-O bond activation step were considered. Oxidative addition or σ-bond metathesis were discounted as both processes would necessitate highly unfavourable dissociation of an IMe$_4$ ligand (to free up a vacant coordination site on Ru) with an energy barrier exceeding 37 kcal mol$^{-1}$. Thus, a direct
nucleophilic attack of a hydride ligand at the sp^2 carbon of the C-O bond seemed to be the most viable mechanistic scenario.

Figure 4.8: Computed free energy profiles (kcal mol$^{-1}$; BP86 (C$_6$H$_6$, D3BJ)) for the nucleophilic hydride attack in **cct-INT(9-29)** and **ccc-INT(9-29)** with selected distances in Å.

Computed reaction profiles for hydride attack in **cct-INT(9-29)** and **ccc-INT(9-29)** are shown in Figure 4.8. The nucleophilic attack of the hydride ligand in **cct-INT(9-29)** proceeded in a single step via **cct-TS(9-29)** ($\Delta G = 22.0$ kcal mol$^{-1}$; Figure 4.9) in which the Ha···C2 distance has shortened from over 3 Å in **cct-INT(9-29)** to 1.56 Å and the C2···O bond lengthened to 1.48 Å (c.f. 1.39 Å in **cct-INT(9-29)**). The elongation of the Ru···Ha distance to 1.84 Å was accompanied by a slight contraction of the Ru-Hb
bond to 1.63 Å. The \(\{C_6H_4\} \) moiety resembled a Meisenheimer-type intermediate formed in an aromatic substitution (\(\text{S}_N\text{Ar} \)) reaction. Consistent with this picture was the lengthening of C1-C2 (1.46 Å) and C2-C3 (1.43 Å) distances. The Ru···O distance was long (3.34 Å) but full characterisation via IRC calculations confirmed that O moves onto the metal centre to give cct-29 (\(\Delta G = -32.5 \text{ kcal mol}^{-1} \)) containing a \(P,O \)-ruthenacycle. The isomer isolated experimentally, ttt-29 was predicted to be 1.7 kcal mol\(^{-1} \) lower in energy than the cct-form, showing a good agreement between the experimental and computational data.

Figure 4.9: Computed structure of cct-TS(9-29) with key distances (Å). Hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity.

The alternative C-O bond cleavage in ccc-INT'(9-29) (preceded by conformational rearrangement from ccc-INT(9-29)) involved a nucleophilic attack via a different transition state, ccc-TS(9-29), at +34.8 kcal mol\(^{-1} \) to ultimately give ccc-29 at -13.3 kcal mol\(^{-1} \). ccc-TS(9-29) displayed a similar geometry to cct-TS(9-29) albeit with shorter Ru···H\(^a \) (1.81 Å) and C1···C2 (1.48 Å) distances. Consequently, there was a
clear kinetic preference for the C-O bond activation in \textbf{cct-INT(9-29)}. This was due to the positioning of Ha in \textbf{ccc-INT'(9-29)} opposite IMe\textsubscript{4}, resulting in decreased nucleophilicity when compared to \textbf{cct-INT(9-29)}. In line with this was a shorter Ru-Ha bond (1.63 Å) and lower computed negative charge (-0.02, Mulliken; c.f. \textbf{cct-INT(9-29)}). The resulting ccc-isomer of 29 (ccc-29) was strongly disfavoured over both \textbf{cct-29} and \textbf{ttt-29}.

4.6. Discussion

The bidentate phosphine ligands based on xanthene-like backbones have been shown to have a pronounced effect on the rate and selectivity of multiple metal catalysed reactions, such as rhodium10,11,22,23 and platinum catalysed hydroformylation,24,25 nickel catalysed hydrocyanation26–28 and palladium catalysed cross coupling.29,30 Their prevalence in many industrial processes arises from a wide range of bite angles that can be adopted through subtle alterations to the bridge in the 10-position of the xanthene unit. Moreover, the presence of both phosphorus and oxygen donor sites within the rigid diphenylether backbone allows the ligands to coordinate to the metal centre in both tridentate (“O” linker in) and bidentate (“O” linker out) modes and to form either \textit{cis}- or \textit{trans}-isomers. Temporary dissociation of either the linker or one of the phosphine arms can result in hemilabile behaviour,31 which can in turn provide additional stabilisation of the metal coordination sphere during catalytic transformations.32–34 Other appealing and important properties of this class of ligands include high thermal stability and apparent resistance to bond degradation reactions. Although decomposition pathways of P-donor ligands have received a great deal of attention,35–41 the cleavage of an unreactive \textit{sp}2-\textit{sp}3 hybridised carbon-oxygen bond of the DPEphos ligand has no literature precedence. The most
common deactivation routes of homogeneous catalysts containing monodentate tertiary phosphine ligands are shown in Figure 4.10.41 Cyclometalation and P-C bond cleavage have been identified as degradation pathways in the hydroformylation of 1-hexene using [Rh(PPh\textsubscript{3})\textsubscript{3}(CO)H].42 Interestingly, despite highly reductive conditions, phosphine oxidation has also been observed in a related rhodium catalysed hydroformylation system where a mixture of supercritical CO\textsubscript{2} and ionic liquid were used as the reaction medium.43

\begin{center}
\begin{tabular}{c}
\includegraphics[width=\textwidth]{figure410.png}
\end{tabular}
\end{center}

Figure 4.10: Common phosphine decomposition pathways: cyclometalation (C-H bond cleavage; top), intra/intermolecular nucleophilic attack (P-C bond cleavage; middle), phosphine oxidation (M-P bond cleavage; bottom).

In terms of xanthene-based diphosphines, Johnson and Weller described P-C activation of a xantphos ligand bound to Rh(I) centre during amine-borane dehydrocoupling reactions to afford the phosphide-bridged Rh\textsubscript{2} dimer i shown in Figure 4.11.44 Ligand activation was also observed in a more controlled experiment in which two low-coordinate Rh fragments \{Rh(κ3-P,O,P-xantphos)\}+ and \{Rh(κ3-P,O,P-xantphos)(H)\}+ combined \textit{in situ} in the presence of trimethyl amine borane to form the hydride bridged complex, [Rh\textsubscript{2}(xantphos)\textsubscript{2}(μ-H)\textsubscript{2}(H\textsubscript{3}B-NMe\textsubscript{3})\textsubscript{n}][BAR\textsubscript{4}]\textsubscript{2}, which
underwent P-aryl bond rupture to give \([\text{Rh}_2(\kappa^3-P,O,P-xantphos')_2(\eta^1-H_3B\cdot\text{NMe}_3)_2][\text{BAR}_4^F]_2\) (ii, Figure 4.11) accompanied by benzene or biphenyl/H\(_2\) elimination. P-C bond activation of xantphos was also observed in the reaction of the stanna-closo-dodecaborate \([\text{Bu}_3\text{NH}][\text{SnB}_{11}H_{11}]\) and \([\text{Pd}(xantphos)\text{Cl}_2]\) (Scheme 4.10).\(^{45}\)

The initially formed substitution product, \([\text{Pd}(\text{SnB}_{11}H_{11})(xantphos)]\) (iii), readily converted to a dinuclear Pd(I)-Pd(I) complex (iv), which featured a P-B bond formed \textit{via} B-H and P-C bond cleavage. In both cases, the C\(_{aryl}\)-O-C\(_{aryl}\) oxo linker of the xantphos ligand remained intact.

Figure 4.11: P-C activated dimeric complexes based upon the \{Rh\(_2\)(xantphos')\(_2\)\}\(^{2+}\) motif: \([\text{Rh}_2(\kappa^2-P,P-xantphos')_2(\eta^2-H_3\text{BNMe}_2\text{BH}_3)][\text{BAR}_4^F]_2\) (i; left) and \([\text{Rh}_2(\kappa^3-P,O,P-xantphos')_2(L)_2][\text{BAR}_4^F]_2\) (ii; right).\(^{44}\)
Scheme 4.10: P-C and B-H bond activation in [Pd(SnB_{11}H_{11})(xantphos)] (iii) leading to the formation of a dinuclear palladium complex iv.\(^{45}\)

Although functionalisation of C-O bonds of ethers into C-H, C-C or C-B bonds has been achieved previously with organometallic complexes through hydrogenolysis,\(^{46-49}\) cross-coupling\(^{50-55}\) and borylation\(^{56,57}\) reactions respectively, a clear understanding of the mechanisms that underpin cleavage of C-O bonds remains underdeveloped. Almost two decades ago, Milstein and co-workers reported metal insertion into the C-O bond of an aryl alkyl ether tethered to two pendant phosphines under mild conditions (Scheme 4.11).\(^{26,27}\) The selectivity of C-O bond activation was shown to be dependent on both transition metal (Rh, Ni, Pd) and the exact alkyl group involved. Thus, metals in low oxidation states (e.g. Rh(I)) favoured activation of the strong aryl-O bond, whereas more electrophilic centres (Pd(II) or Ni(II)) facilitated cleavage of the weaker alkyl-O moiety, affording stable PCP and POP pincer complexes respectively. Importantly, the initially formed Ar-Rh-OCH\(_3\) unit could not even be detected spectroscopically and was proposed to only be an intermediate prior to rapid β-H elimination to afford the final isolated Ar-Rh-H species (v) and formaldehyde. The observation of competitive aryl and alkyl-O bond activation [Pd(CF\(_3\)CO\(_2\))\(_2\)] and an aryl ethoxy ether unit (Ar-O-Et) implied that the processes were kinetically controlled. Since C-O bond cleavage reactions were observed with both acidic and basic d\(^8\) metal centres,
the reactivity of the studied complexes was most likely not of purely electronic origin but should be predominately associated with their low coordination number, which allows facile chelation of the bidentate phosphine predisposing the C-O bond towards activation.

Scheme 4.11: Aryl- and alkyl-oxygen bond activation of phosphinoethers by Rh(I), Pd(II) and Ni(II) complexes.9,58

More recently, Agapie et al. observed hydrogenolysis of an unreacive aryl-O bond in (diphosphine)aryl methyl ethers with Ni(COD)$_2$.59 The studies were later extended to investigate the mechanism of stoichiometric C-O bond breaking in a series of aryl alkyl and diaryl ethers by group 9 and 10 transition metals in different oxidation states (Scheme 4.12).60 Pd(0) and Pt(0) were found to activate C-O bonds of diaryl
ethers but exhibited selectivity for the weaker, yet more distant, alkyl C-O bond in the reactions with aryl alkyl substrates. In contrast, Ni(0) and Rh(0) reacted preferentially with the aryl C-O bond, which was explained in terms of stronger metal-arene interaction preceding C-O cleavage. Ir(I) was unselective, cleaving aryl and alkyl C-O bonds simultaneously. All reactions proceeded via a redox pathway and involved oxidative addition of the C-O bond to the low valent metal centre (M(0)/M(II) or M(I)/M(III)). This is in striking contrast to the DPEphos C-O activation reactions with our Ru(II) dihydride complexes, which proceed with a net retention of the oxidation state. In the case of aryl-methyl ether activation with Ni(0) and Rh(I), the C-O cleavage step was followed by β-H elimination to liberate formaldehyde, reductive elimination of an aryl C-H bond and finally decarbonylation of CH₂O to afford the Ni(0) and Rh(I) carbonyl complexes respectively. The cleavage of alkyl C-O bonds was also promoted by more oxidised M(II) dihalide complexes (Ni, Pd and Pt) to afford new M-phenoxide-chloride-diphosphine species (vi) and MeCl via Lewis acid-base mechanism.
Scheme 4.12: Reactivity of terphenyl diphosphines bearing aryl-methyl ether or aryl-aryl ether moieties with group 9 and 10 metal centres in different oxidation states.

In 2004, Kakiuchi et al. described a chelation-assisted ruthenium catalysed coupling reaction of aromatic ethers with boronic acid esters via aryl C-O bond cleavage (Scheme 4.13). Subsequent mechanistic studies revealed that [Ru(PPh$_3$)$_3$(CO)H$_2$], used as a catalyst, underwent reductive elimination of H$_2$ to generate the putative Ru(0) fragment, “Ru(PPh$_3$)$_3$(CO)”, which in the first instance reacted with an aromatic C-H bond of the substrate to give the new Ru(II) hydride complex vii. This interconverted to the aryloxy species viii upon heating at 80°C for 3 h, indicating that the Ru-H and R-OAr complexes were the kinetic and thermodynamic products respectively. The catalytic cycle was completed following transmetallation with the organoboronate and concurrent reductive elimination of the cross coupled product. Employment of the bulky 2,2-dimethyl-1-(2-p-tolylphenyl)propan-1-one ix as a substrate afforded the isolable ruthenium aryloxide complex x, representing the first
example of the direct observation of an oxidative addition of an aryl C-O bond to a transition metal complex.62 A few years later, Zhao and Snieckus showed that the reactivity of [Ru(PPh$_3$)$_3$(CO)H$_2$] was not limited to ketones and that C-OMe activation could be achieved by means of amide63 and ester chelation.64

\[\text{DG} = \text{directing group: } R' - R, R^2 \]

Scheme 4.13: Summary of aryl C-O cleavage reactions with [Ru(PPh$_3$)$_3$(CO)H$_2$].61–64

[Ru(PPh$_3$)$_3$(CO)H$_2$] has been also utilised in the depolymerisation of lignin related polymers through tandem dehydrogenation/ reductive ether cleavage.65–67
Chapter 4

Noteworthy were the quantitative yield and conversion for the C-O bond breaking step attained by the \textit{in situ} generated [Ru(xantphos)(PPh$_3$)(CO)H$_2$] system, which has been also shown to catalyse alkylation of alcohols with ketonitriles through a hydrogen transfer process.68 Interestingly, the DPEphos derivative [Ru(DPEphos)(PPh$_3$)(CO)H$_2$] proved completely inactive in either of the reactions. In light of the C-O activation chemistry at [Ru(PPh$_3$)$_3$(CO)H$_2$] and joint experimental and computational results described in this chapter, the lack of activity with [Ru(DPEphos)(PPh$_3$)(CO)H$_2$] may have been a consequence of nucleophilic hydride attack at the coordinated DPEphos ligand to generate the catalytically inactive complex, [Ru(PPh$_3$)$_2$(PPh$_2$C$_6$H$_4$O)(CO)H]. The findings presented in this chapter should raise questions about the generally assumed inertness and suitability of DPEphos in catalytic processes.

4.7. Summary

C-O bond activation of DPEphos has been shown to take place upon thermolysis of the phosphine with [Ru(IMe$_4$)$_2$(PPh$_3$)$_2$H$_2$] (\textit{ttt-9}) to give [Ru(IMe$_4$)$_2$(PPh$_3$)(Ph$_2$PC$_6$H$_4$O)H] (29) featuring a 5-membered \textit{P,O}-ruthenacycle. DFT calculations revealed that initial PPh$_3$/DPEphos substitution was followed by a nucleophilic attack of the ruthenium bound hydride on the aromatic \textit{sp}2 hybridised carbon atom of the chelated P-P ligand. In the reaction of [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)$_2$H$_2$] (\textit{cct-8}) and DPEphos, C-O cleavage was accompanied by C-N activation of one of the NHC ligands to afford [Ru(IEt$_2$Me$_2$)(IEtMe$_2$(C$_6$H$_4$)PPh$_2$)(Ph$_2$PC$_6$H$_4$O)H] (31), containing a N-phosphino functionalised carbene. DPEphos activation was not restricted to ruthenium NHC complexes as demonstrated by the formation of [Ru(DPEphos)(Ph$_2$PC$_6$H$_4$O)H] (34) upon mild heating of [Ru(DPEphos)$_2$H$_2$] (33). The results presented in this chapter illustrate the first example of degradative C-O bond
activation of DPEphos and indicate that similar ligand deactivation pathways might account for the decreased activity sometimes observed in transition metal catalysed reactions mediated by DPEphos.

4.8. References for Chapter 4

(64) Zhao, Y.; Snieckus, V. Chem. Commun. 2016, 52, 1681.

CHAPTER FIVE
Reactivity of ruthenium dihydride complexes with P(C₆F₅)₃

5.1. Introduction

As described in Chapter 3, [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) was shown to undergo facile substitution reactions of both PPh₃ ligands by bidentate phosphines to yield a series of [Ru(IMe₄)₂(PP)H₂] (P-P = dppm (cct-25), dppe (cct-26), dppp (cct-27)) complexes. The propensity of ttt-9 to undergo phosphine dissociation was also manifested in the reactions with P(o-tolyl)₃ and P(C₆D₅)₃ previously shown by Davies,¹ the latter also leading to the generation of monodeuteride (ttt-9-HD) and dideuteride (ttt-9-D₂) complexes, consistent with Ru-H/C-D exchange taking place.

The results presented in this chapter arose completely serendipitously in the reactions of ruthenium dihydride complexes, ttt-9 and [Ru(PPh₃)₄H₂] (32) with tris(pentafluorophenyl)phosphine (P(C₆F₅)₃ abbreviated to PCF), an electron deficient analogue of PPh₃.

5.2. Reaction of [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) with PCF

![Scheme 5.1: Formation of [Ru(IMe₄)₂(PF₂(C₆F₅))(C₆F₅)H] (36) from [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9) and PCF.](image_url)
Heating a C₆H₆ solution of ttt-9 and PCF (2 equiv) at 50°C for 2 days led to the formation of one major new ruthenium hydride complex, which was assigned as the remarkable, five-coordinate complex [Ru(IMe₄)₂(PF₂(C₆F₅))(C₆F₅)H] (36, Scheme 5.1) on the basis of multinuclear NMR spectroscopy. The ¹H NMR spectrum exhibited four distinct IMe₄ singlet resonances at δ 3.39, 3.28, 1.32 and 1.25, and a Ru-H doublet of triplets signal at δ -29.62 (²J_HPF = 46.1 Hz, ³J_HF = 6.1 Hz; Figure 5.1) in a 6:6:6:6:1 ratio. The very low frequency chemical shift of the hydride was consistent with its positioning opposite a vacant site (c.f. δ -30.33 in [Ru(IMe₄)₂(PPh₃)(C₆F₅)H] (15)). The ³¹P NMR signal of the ligated pentafluorophenyldifluorophosphine, PF₂(C₆F₅) appeared at a very high frequency (δ 161.4; Figure 5.1) as a triplet of multiplets with a large J_PF coupling constant of 1125 Hz.²⁻⁴ The PF₂ group appeared as a doublet of triplets in the ¹⁹F NMR spectrum at δ -31.1 (J_FF = 1125 Hz, ⁴J_FF = 16 Hz), with the triplet splitting arising from interaction with two ortho-fluorine atoms of the pentafluorophenyl ring attached to phosphorus. The ortho-, para- and meta-F signals of P(C₆F₅) were observed at δ -137.3, -154.4 and -162.7 respectively, while the corresponding signals for the Ru bound pentafluorophenyl group appeared at δ -114.5, -163.2 and -163.4. All ¹⁹F signals were assigned unambiguously with the aid of ¹⁹F COSY spectroscopy (Figure 5.2). The doublet splitting of the C_NHC resonance (δ 188.3, ²J_CP = 16 Hz) was further proof for the presence of just a single phosphine ligand in the complex.
Figure 5.1: Sections of 1H (500 MHz; left) and 31P{1H} (202 MHz; right) NMR spectra (C_6D_6, 25°C) of [Ru(IMe$_4$)$_2$(PF$_2$(C$_6$F$_5$))(C$_6$F$_5$)H] (36).

Figure 5.2: 19F COSY spectrum of [Ru(IMe$_4$)$_2$(PF$_2$(C$_6$F$_5$))(C$_6$F$_5$)H] (36) in C$_6$D$_6$.

Spectroscopic monitoring of the room temperature reaction of ttt-9 with just 1.2 equiv PCF over the course of 2 days revealed the presence of [Ru(IMe$_4$)$_2$(PPh$_3$)(C$_6$F$_5$)H] (15, Section 3.3), 36, an additional unknown Ru-H containing species (1H NMR: δ -29.95, dm, 2J$_{HP}$ = 48.5 Hz; 31P{1H} NMR: δ 125.8, "t", 2J$_{PF}$ = 1265 Hz) and unreacted starting material (Figure 5.3). The absence of any
remaining free PCF indicated that more than 1 equiv of the substrate was required to bring about full consumption of the ruthenium starting material. The corresponding ^{19}F NMR spectrum consisted of a sharp doublet resonance at δ -6.74 ($^{2}J_{FP} = 1265$ Hz) and a set of three signals arising from C$_{6}$F$_{3}$H. The former might correspond to ruthenium coordinated PF$_{2}$(C$_{6}$H$_{5}$) and could be related to the unknown species observed by ^{1}H and ^{31}P[^{1}H] NMR spectroscopy. Addition of further 1.2 equiv of PCF and vigorous shaking of the reaction mixture overnight led to the complete disappearance of ttt-9. Identification of fluorophosphorus by-products was not achievable by NMR spectroscopy as no other distinct ^{31}P or ^{19}F resonances could be detected.

Figure 5.3: Section of the ^{1}H NMR spectrum (C$_{6}$D$_{6}$, 500 MHz, 25°C) of the reaction between [Ru(IMe$_{4}$)$_{2}$(PPh$_{3}$)$_{2}$H$_{2}$] (ttt-9) and PCF (1.2 equiv) after 2 days at room temperature.

Despite very exhaustive efforts, the high solubility of 36 in common organic solvents, as well as poorly solvating hexamethyldisiloxane, precluded its isolation and structural verification at the time. Efforts to crystallise chloro, carbonyl and isocyanide derivatives of 36 prepared by (i) dissolution of the complex in CH$_{2}$Cl$_{2}$, (ii) treatment with 1 atm CO and (iii) addition of 1-pentyl or cyclohexyl isocyanides failed. Attempts
to detect 36 by mass spectrometry were also unsuccessful as the spectrum did not contain the anticipated isotope pattern for the C_{26}H_{27}F_{12}N_4PRu molecular ion of m/z = 756.08 or any other signals that could be attributed to plausible fragments formed upon ionisation of 36.

Given the possibility of multiple P-C/F exchange reactions and phosphine decomposition, no mechanism for the reaction between ttt-9 and PCF can be proposed sensibly without additional experimental and/or computational studies. In an effort to circumvent extensive bond breaking and forming processes seen with ttt-9 and to shed some light in terms of mechanistic information on the cleavage reactions of PCF, the ruthenium precursor was changed to [Ru(PPh_3)_4H_2] (32).

5.3. Reaction of [Ru(PPh_3)_4H_2] (32) with PCF and characterisation of [Ru(PPh_3)_3HF] (37)

![Scheme 5.2: Synthesis of [Ru(PPh_3)_3HF] (37) from [Ru(PPh_3)_4H_2] (32) and PCF.](image)

Stirring [Ru(PPh_3)_4H_2] (32) with PCF (0.35 equiv) in C_6H_6 at room temperature overnight afforded a dark red solution, which upon layering with pentane yielded crystals of the hydride fluoride complex [Ru(PPh_3)_3HF] (37, Scheme 5.2). This species is the last of the hydride halide complexes, [Ru(PPh_3)_3H(halide)], to be prepared. An X-ray crystal structure of 37 (Figure 5.4) revealed a distorted trigonal bipyramidal geometry at the ruthenium centre with the two axial phosphines highly distorted away from a trans-P-Ru-P arrangement with an angle of 153.023(15)°. The Ru-F distance (2.0652(12) Å) lies in the range reported for the related Ru-F complexes,
[Ru(PPh$_3$)$_3$(CO)HF] (2.0986(15) Å) or [Ru(PPh$_3$)$_2$(CO)$_2$F$_2$] (2.011(4) Å). The room temperature 1H NMR spectrum in CD$_2$Cl$_2$ revealed a sharp quartet resonance at δ -22.33 ($^{2}J_{HF} = 28.0$ Hz) indicating magnetic equivalence of the phosphine ligands (splitting by Ru-F was too hard to resolve; Figure 5.5). As known for [Ru(PPh$_3$)HCl], no apparent signal was observed in the room temperature 31P{1H} NMR spectrum, consistent with the complex being fluxional. The Ru-F resonance appeared as a broad singlet at δ -214 ($\omega_h = 79$ Hz) in the 25°C 19F NMR spectrum, but upon lowering the temperature to -25°C, this resolved into a doublet ($^{2}J_{FP} = 79$ Hz), resulting from interaction with just one of the phosphine ligands. The origin of the coupling was confirmed in the corresponding -25°C 31P{1H} NMR spectrum, which showed a doublet signal at δ 88.9 with an identical $^{2}J_{PF}$ coupling constant, as well as a singlet resonance at δ 39.6. The two peaks were in an approximate 1:2 ratio. Although the Ru-H signal became broader at -25°C, the 1H{31P} decoupled NMR spectrum exhibited a $^{2}J_{HF}$ coupling of 10.8 Hz, which was presumably lost in the line width of the 19F signal. These observations suggested rearrangement of the ligands at the metal centre and locking of the conformation akin to that determined by X-ray crystallography.
Figure 5.4: Molecular structure of [Ru(PPh$_3$)$_3$HF] (37). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of the hydride ligand, have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-F1 2.0652(12), Ru1-P1 2.3423(4), Ru1-P2 2.1996(5), Ru1-P3 2.3201(5); P1-Ru1-F1 88.19(4), P2-Ru1-F1 133.51(5), P3-Ru1-F1 89.10(4), P1-Ru1-P2 102.333(17), P2-Ru1-P3 98.963(17), P1-Ru1-P3 153.023(17).
Figure 5.5: Sections of the 1H (400 MHz, 25°C; A), 1H{31P} (400 MHz, -25°C; B), 19F (376 MHz, -25°C; C) and 31P{1H} (162 MHz, -25°C; D) NMR spectra of [Ru(PPh$_3$)$_3$HF] (37) in CD$_2$Cl$_2$.

Cooling a toluene-d_8 solution of 37 brought about better resolved 1H and 31P{1H} NMR signals. Thus, upon 31P decoupling, the doublet of multiplets 1H NMR
signal at -45°C resolved into a doublet at δ -22.01 with a $^2J_{HF}$ splitting of 16.1 Hz (Figure 5.6), while the high frequency phosphorus resonance at δ 91.4 appeared as a doublet of triplets with $^2J_{PF}$ and $^2J_{PP}$ coupling constants of 83.1 and 24.3 Hz respectively (Figure 5.7). The signal at δ 40.5 resembled an AB spin system and hence no J values could be obtained. No additional spectroscopic information was gained when THF-d_8 was used as the solvent.

Figure 5.6: Ru-H region of the 1H (top) and 1H{31P} NMR spectra (C$_6$D$_5$CD$_3$, 400 MHz, -45°C) of [Ru(PPh$_3$)$_3$HF] (37).
The fate of PCF could not be determined unequivocally. In an effort to identify the fluoroarylphosphine by-products, the reaction was repeated with varying amounts of PCF. It was found that full conversion of 32 to 37 and almost complete disappearance of PCF could be achieved with just 0.20 equiv of the phosphine over a period of three days. Further alteration of the reaction stoichiometry to 0.17 or 0.11 equiv of PCF (Figure 5.8A and Figure 5.8B respectively) allowed for the spectroscopic observation of three intermediates, which gave rise to three sets of doublet of doublet and triplet of triplet resonances (Table 5.1), and most likely resulted from replacement of PPh₃ ligand(s) at 32 by in-situ generated tris(3,4,5-trifluorophenyl)phosphine, P(3,4,5-C₆F₃H₂)₃,⁸ which was also detected by ³¹P{¹H} NMR spectroscopy (δ ≈ -1.8). This premise was further supported by the fact that the same species were generated when 32 was reacted directly with P(3,4,5-C₆F₃H₂)₃ (Figure 5.8C).¹ The absence of 37 suggested

¹ A pure sample of P(3,4,5-C₆F₃H₂)₃ for comparison was kindly provided by Dr Matt Clarke (University of St. Andrews).
that its formation in the reaction between 32 and PCF involved sequential HDF of the six ortho-fluorines of the three C_6F_5 groups, while the different ratio of intermediate complexes in the reactions with 0.17 and 0.11 equiv PCF indicated that $PPh_3/P(3,4,5-C_6F_3H_2)_3$ substitution at 32 was reversible. Activation of C-F bonds in the ortho-position is unusual as normally it is the para-fluorines that undergo nucleophilic aromatic substitution.9

Figure 5.8: Sections of the 19F NMR spectra (C$_6$D$_6$, 25°C, 470 MHz) of the room temperature reaction between [Ru(PPh$_3$)$_4$H$_2$] (32) and A) 0.17 equiv PCF, B) 0.11 equiv PCF and C) 1.3 equiv $P(3,4,5-C_6F_3H_2)_3$. ■ and * denote PCF and $P(3,4,5-C_6F_3H_2)_3$ respectively, while ● are used to highlight different substitution products arising from the reaction between 32 with $P(3,4,5-C_6F_3H_2)_3$.
Table 5.1: Comparison of 19F NMR data for the intermediates observed in the reactions between [Ru(PPh$_3$)$_4$H$_2$] (32) and PCF or P(3,4,5-C$_6$F$_3$H$_2$)$_3$. Data for the latter are included for comparison. Colours correspond to NMR resonances of different substitution products highlighted in Figure 5.8.

<table>
<thead>
<tr>
<th></th>
<th>m-F (2F)</th>
<th>p-F (1F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19F δ</td>
<td>3J$_{FF}$</td>
</tr>
<tr>
<td></td>
<td>[ppm]</td>
<td>[Hz]</td>
</tr>
<tr>
<td>●</td>
<td>-131.7</td>
<td>21.1</td>
</tr>
<tr>
<td>●</td>
<td>-132.5</td>
<td>21.6</td>
</tr>
<tr>
<td>●</td>
<td>-132.7</td>
<td>20.8</td>
</tr>
<tr>
<td>P(3,4,5-C$_6$F$_3$H$_2$)</td>
<td>-131.2</td>
<td>20.6</td>
</tr>
</tbody>
</table>

5.4. Reactivity of [Ru(PPh$_3$)$_3$HF] (37)

Scheme 5.3: Reaction of [Ru(PPh$_3$)$_3$HF] (37) with CD$_2$Cl$_2$ and NaBAr$_4^F$ resulting in the formation of [Ru(PPh$_3$)$_3$HCl] and [Ru(PPh$_3$)$_2$(η6-C$_6$H$_5$PPh$_2$)H][BAr$_4^F$] respectively.

The reactivity of the Ru-F bond in 37 towards fluorophilic reagents was examined. The fluoride ligand was readily abstracted upon reaction with NaBAr$_4^F$ in CD$_2$Cl$_2$ to afford the known cation [Ru(PPh$_3$)$_2$(η6-C$_6$H$_5$PPh$_2$)] (Scheme 5.3). This was identified on the basis of a triplet of doublets Ru-H signal at δ –8.61 (2J$_{HP}$ = 38.6 Hz, 3J$_{HP}$ = 8.9 Hz) in the 1H NMR spectrum and two phosphorus resonances at δ 49.0 and -5.2 in a relative ratio of 2:1. The data matched those of the BF$_4^-$ salt of the cation,
previously reported by Wilkinson upon thermolysis of [Ru(PPh$_3$)$_3$(CO$_2$Me)H] in methanol with a large excess of HBF$_4$.ii,10

Slow conversion of 37 to its chloride analogue, [Ru(PPh$_3$)$_3$HCl],5 took place in CD$_2$Cl$_2$ at ambient temperature over the course of a few days. Heating benzene, toluene or THF solutions of 37 above 60°C led to sample decomposition, as indicated by the loss of signal intensity in Ru-H resonance. Further studies were carried out with an aim of replacing the Ru-F bond by a Ru-E bond (E = B, C, Si).

5.4.1. Reactivity of [Ru(PPh$_3$)$_3$HF] (37) with silanes

5.4.1.1. Reaction of [Ru(PPh$_3$)$_3$HF] (37) with R$_3$SiH (R = Et, Ph) and characterisation of [Ru(PPh$_3$)$_3$(SiR$_3$)$_3$H] (38, R = Et; 39, R = Ph).

![Scheme 5.4](image)

Scheme 5.4: Synthesis of [Ru(PPh$_3$)$_3$(SiR$_3$)$_3$H] (38, R = Et; 39, R = Ph) from [Ru(PPh$_3$)$_3$HF] (37) and R$_3$SiH.

Addition of 2 equiv of R$_3$SiH (R = Et, Ph) to C$_6$D$_6$ solutions of 37 afforded the ruthenium silyl trihydride complexes, [Ru(PPh$_3$)$_3$(SiR$_3$)H]$_3$ (R = Et (38), Ph (39)) in the time of mixing. Although both complexes were reported 40 years ago as products from the reactions of 32 with appropriate silanes,11,12 they were not isolated for structural verification and their characterisation was limited to 1H NMR and IR spectroscopy and elemental analysis. The molecular structures of 37 and 38 are shown in Figure 5.9 and

ii The cation was also formed upon chloride abstraction from [Ru(PPh$_3$)$_3$HCl] using NaBAr$_4$F.
confirm a seven-coordinate geometry at Ru with a silyl group capping the face defined by the three readily located hydride ligands in a pseudo octahedral fac-(PPh$_3$)$_3$RuH$_3$ unit. Alternatively, each hydride ligand could be viewed as capping one of the three SiP$_2$ faces of a distorted tetrahedron subtended by three phosphines, with the silyl ligand occupying its vertices (average Si-Ru-P 113.8° (38) and 113.6° (39); average P-Ru-P 104.7° (38) and 105.5° (39)). The three C atoms bound to Si and the three P atoms were eclipsed, whilst the hydride ligands were staggered with respect to the Si-C and Ru-P bonds. Consequently, the coordination sphere of ruthenium exhibited almost perfect C_3 molecular symmetry about the Ru-Si axis. This ligand disposition is typical for compounds of the type [L$_3$M(ER$_3$)H$_3$].$^{13-19}$ Of note were the nonbonding contacts within the Ru(Si)H$_3$ fragment. Although the Ru-H distances (ca. 1.6 Å) were characteristic of terminal ruthenium hydrides,20,21 the formally nonbonded contacts between the latter and silicon (ca. 2.1 Å) suggested significant Si···H interactions.22 The H···H separations in 38 lay within the range 2.24- 2.35 Å (ca. 2.33 Å for 39), considerably longer than those found in dihydrogen complexes23 and hence consistent with the formulation of the complexes as ruthenium silyl trihydrides, [Ru(PPh$_3$)$_3$(SiR$_3$)H$_3$] rather than nonclassical ruthenium dihydrogen silyl hydrides, [Ru(PPh$_3$)$_3$(η2-H$_2$)(SiR$_3$)H]. The Ru-Si distance (2.4110(5) Å) in 38 was slightly longer than the values of 2.3682(6) Å in 39 and 2.376(1) Å determined in [Ru(PMe$_3$)$_3$(SiMe$_3$)H$_3$].24 The high $trans$-influence hydride ligands help to rationalise the long Ru-P distances (ca. 2.41 and 2.43Å for 38 and 39 respectively).
Figure 5.9: Molecular structures of [Ru(PPh$_3$)$_3$(SiEt$_3$)H$_3$] (38, left) and [Ru(PPh$_3$)$_3$(SiPh$_3$)H$_3$] (39, right). Thermal ellipsoids are represented at 30% probability. Hydrogen atoms, with the exception of hydride ligands, have been omitted for clarity.

The most characteristic feature of the 1H NMR spectra of both 38 and 39 are the complex Ru-H multiplets at δ -10.58 and -9.37 respectively (Figure 5.10). As in the case of the aforementioned [Ru(PMe$_3$)$_3$(SiMe$_3$)H$_3$] complex, 38 and 39 were not fluxional on the NMR scale (only a slight broadening of the hydride resonance was observed at -55°C) and the line shape of the low frequency signal arose from the AA'A''XX'X'' spin system. The corresponding 31P{1H} NMR spectra consisted of sharp singlets at δ 41.8 and 37.5 respectively.
Attempts to form Ru(PPh$_3$)$_3$(SiR$_3$)H complexes upon Si-Si cleavage of Si$_2$Me$_6$ or Si$_2$Ph$_6$ with 37 resulted in no reaction being observed.

5.4.1.2. Reactivity of [Ru(PPh$_3$)$_3$HF] (37) with CF$_3$SiMe$_3$

Trifluoromethyltrimethylsilane (CF$_3$SiMe$_3$ or Ruppert-Prakash reagent) is a convenient CF$_3$ transfer reagent, which in one notable case has been successfully employed by Caulton and co-workers for the preparation of the difluorocarbene complexes, [Ru(PR$_3$)$_2$(CO)(CF$_3$)HF] (PR$_3$ = PiPr$_3$, PtBu$_2$Me) following α-F migration from transient [Ru(PR$_3$)$_2$(CO)(CF$_3$)H] species. Prompted by these results, 37 was reacted with CF$_3$SiMe$_3$ (1 equiv) in C$_6$D$_6$. The reaction proved to be slow and ultimately resulted in sample decomposition as indicated by the appearance of free PPh$_3$ and a number of unidentified broad signals of low intensity in the 31P NMR spectrum overnight. A small, but characteristic, 19F doublet resonance arising from CF$_3$H was
observed at $\delta -77.6 \ (^{2}J_{FH} = 78.4 \text{ Hz})$, suggesting that the F/CF$_3$ exchange did indeed occur to form [Ru(PPh$_3$)$_3$(CF$_3$)H], which we assume is unstable to reductive elimination of fluoroform and “Ru(PPh$_3$)$_3$”. There was no evidence in the 31P{$_{^1}$H} NMR spectrum for the presence of a cyclometallated species$^{27-29}$ such as [Ru(PPh$_3$)$_2$(Ph$_2$PC$_6$H$_4$)H], which might be expected to form from the transient Ru(0) species. This suggested that “Ru(PPh$_3$)$_3$” simply decomposed.

The use of excess CF$_3$SiMe$_3$ (> 2 equiv) accelerated the reaction as all the starting material was consumed after ca. $\frac{1}{2}$ h at room temperature. Changing the solvent from C$_6$D$_6$ to either toluene-d_8 or THF-d_8 had no noticeable effect on the outcome of the reaction. Monitoring spectroscopically a THF-d_8 reaction of 37 and CF$_3$SiMe$_3$ inserted into the NMR spectrometer at -30°C failed to reveal the formation of any intermediate species.

5.4.2. Reactivity of [Ru(PPh$_3$)$_3$HF] (37) with boranes

5.4.2.1. Reactivity of [Ru(PPh$_3$)$_3$HF] (37) with B$_2$Pin$_2$

![Scheme 5.5: Reaction of [Ru(PPh$_3$)$_3$HF] (37) with B$_2$Pin$_2$.]

A 1H NMR spectrum of 37 and equivalent amount of B$_2$Pin$_2$ in C$_6$D$_6$ (Scheme 5.5) measured after 1 h at room temperature showed the formation of three new Ru-H containing species (Figure 5.11A) with signals at $\delta -5.49 \ (dt, ^{2}J_{HP} = 59.7 \text{ Hz}, ^{2}J_{HP} = 31.9 \text{ Hz})$, $\delta -9.28 \ (t, ^{2}J_{HP} = 36.9 \text{ Hz})$ and $\delta -10.14 \ (m)$ that integrated in a 0.5:1.2:0.7 ratio with respect to 37 (integral of 1). These were assigned tentatively as
[Ru(PPh$_3$)$_3$(BPin)H], [Ru(PPh$_3$)$_2$(η6-C$_6$H$_6$)H]$^+$ and [Ru(PPh$_3$)$_2$H$_2$] (32) respectively.30,iii

In the 31P{1H} NMR spectrum, [Ru(PPh$_3$)$_3$(BPin)H] gave rise to doublet (δ 55.3, 2J$_{PP}$ = 15.3 Hz) and triplet (δ 43.6, 2J$_{PP}$ = 15.3 Hz) signals, while [Ru(PPh$_3$)$_2$(η6-C$_6$H$_6$)H]$^+$ appeared as a sharp singlet at δ 51.8 (Figure 5.11B). After further 2 h at room temperature, the hydride signal for [Ru(PPh$_3$)$_3$(BPin)H] disappeared, while the triplet signal for the cation shifted downfield to δ -9.21 (2J$_{HP}$ = 36.9 Hz). A small change in the chemical shift of the corresponding 31P{1H} NMR resonance (to δ 51.9) was also observed. This could be due to the substitution of a benzene substituent by a deuterated solvent molecule and formation of [Ru(PPh$_3$)$_2$(η6-C$_6$D$_6$)H]$^+$. The anion was identified by 11B NMR spectroscopy as [F$_2$BPin] which exhibited a broad triplet at δ 6.7 (2J$_{BF}$ ≈ 25 Hz), as well as a 19F signal at δ -141.3.31

iii [Ru(PPh$_3$)$_3$HF] crystallises with one guest molecule of C$_6$H$_6$ in the lattice.
Figure 5.11: Sections of the 1H (500 MHz) and 31P{1H} (202 MHz) NMR spectra (recorded at 25°C) of the reaction between [Ru(PPh$_3$)$_3$HF] (37) and B$_2$Pin$_2$ (1 equiv) in C$_6$D$_6$ after 1h (A and C) and 3 h (B and D) at room temperature. ●, ○ and ■ denote [Ru(PPh$_3$)$_3$(BPin)H], [Ru(PPh$_3$)$_2$(η6-C$_6$H$_6$)H][F$_2$BPin] and [Ru(PPh$_3$)$_2$(η6-C$_6$D$_6$)H][F$_2$BPin] respectively.
5.4.2.2. Reactivity of [Ru(PPh₃)₃HF] (37) with HBPin

Scheme 5.6: Reaction of [Ru(PPh₃)₃HF] (37) with HBPin (1 equiv).

¹H and ³¹P{¹H} NMR spectroscopy showed that treatment of a toluene-ᵈ₈ solution of 37 with HBPin (1 equiv) led to the formation of [Ru(PPh₃)₃(η²-H₂)H₂] (¹H NMR: δ -7.12; ³¹P{¹H} NMR: δ 57.8), [Ru(PPh₃)₂(η⁶-C₆D₅CD₃)H]⁺ (¹H NMR: δ -9.47, ²Jₚ₈ = 37.1 Hz; ³¹P{¹H} NMR: 52.4) and [Ru(PPh₃)₄H₂] (32) (vide infra) in a 1:0.2:0.7 ratio after 45 min at room temperature (Scheme 5.6). The ¹¹B NMR spectrum consisted of two broad and overlapping signals at δ 21.7 and δ 20.8, and a sharp singlet at δ 0.6. The latter two resonances were assigned to FBPin and [BF₄]⁻ respectively, which were also observed by ¹⁹F NMR spectroscopy at δ -149.8 and -149.9 ([¹¹BF₄] and [¹⁰BF₄]), and -150.7 (br s, FBPin). After ca. 40 h at room temperature, the signals corresponding to [Ru(PPh₃)₂(η⁶-C₆D₅CD₃)H][BF₄] diminished, while the relative ratio of [Ru(PPh₃)₃(η²-H₂)H₂] and 32 was approximately 1:0.7 (Figure 5.12).
Figure 5.12: Sections of 1H (500 MHz) and 31P(1H) (202 MHz) NMR spectra (recorded at 25°C) of the reaction between [Ru(PPh$_3$)$_3$HF] (37) and HBPin (1 equiv) in toluene-d_8 after 45 min (A and C) and 40 h (B and D) at room temperature. ● and ■ denote [Ru(PPh$_3$)$_3$(η$_2$-H$_2$)H$_2$] and [Ru(PPh$_3$)$_2$(η$_6$-C$_6$D$_5$CD$_3$)H]$^+$ respectively.

Interestingly, the formation of different species was observed when the reaction was repeated in the presence of excess HBpin (5 equiv) in toluene-d_8. Thus, the room temperature 1H NMR spectrum recorded after 30 min at 25°C revealed four broad Ru-H resonances at δ -6.02, - 8.05, -9.64 and -10.52 in an approximate ratio of 1:1:1:1 (Figure 5.13). The three lowest frequency signals sharpened upon cooling the solution to -15°C; the signal now at δ -8.04 appeared as a triplet of doublets ($J = 27.2$ Hz, $J =$
16.3 Hz), that at δ -9.49 was a doublet of multiplets (doublet splitting ≈ 37 Hz) and that at δ -10.46 resolved into a doublet of triplets ($J = 59.7$ Hz, $J = 17.5$ Hz) respectively. Exchange spectroscopy (Figure 5.14) at -15°C showed that these were in exchange, while the T_1 values measured at this temperature suggested the presence of three hydride ligands (163 ms (δ -5.93), 291 ms (δ - 8.04), 191 ms (δ -10.46)). All three resonances collapsed into singlets upon 31P broad band decoupling. The room temperature 31P{1H} NMR spectrum consisted of two broad signals at δ 52.2 and δ 50.4, and a sharp singlet at δ 46.5. At -15°C, the broad resonances resolved into a doublet and a triplet respectively, with an identical coupling constant of 25 Hz. 1H-31P HMQC spectroscopy at this temperature showed that these coupled to the hydride resonances at δ -5.93, -8.04 and -10.46, suggesting that one of the species formed was the HBPin adduct, [Ru(PPh$_3$)$_3$(HBPin)H$_2$] (40), while the lone peak at δ 46.5 correlated to the Ru-H signal at δ -9.49 (T_1 at -15°C = 195 ms). This was tentatively assigned as the Ru(IV) boryl trihydride complex [Ru(PPh$_3$)$_3$(BPin)H$_3$], on the basis of the similarity of its NMR spectra to that of analogous Ru (IV) silyl complexes 38 and 39. However, further studies are necessary to establish its identity categorically.

Upon removal of all the volatiles and redissolution of the residue in toluene-d_8, the signal corresponding to [Ru(PPh$_3$)(η$_2$-H$_2$)H$_2$] (vide supra) appeared. Over a period of 3 weeks, there was complete conversion to just this species.
Figure 5.13: Low frequency region of the 1H NMR spectra (400 MHz, C$_6$D$_5$CD$_3$) of the reaction between [Ru(PPh$_3$)$_3$HF] (37) and HBPin (5 equiv) after 30 min at 25°C (top) and -15°C (bottom).

Figure 5.14: EXSY spectrum showing intramolecular H/H exchange in [Ru(PPh$_3$)$_3$(HBPin)H$_2$] (40).
Single crystals of 40 suitable for X-ray diffraction were obtained upon layering a \(\text{C}_6\text{H}_6 \) solution of 37 with pentane in the presence of excess (10 equiv) HBpin. The solid state structure (\textit{vide infra}) confirmed the formulation of 40 as a \(\sigma \)-borane dihydride \([\text{Ru}(\text{PPh})_3(\text{HBPin})\text{H}_2]\), rather than hydride dihydroborate ([\(\text{Ru}(\text{PPh})_3(\mu-\text{H})_2\text{BPin}]\text{H}) or trihydride boryl ([\(\text{Ru}(\text{PPh})_3(\text{BPin})\text{H}_3]\)) complexes. 40 represents a trisphosphine analogue of the bisphosphine dihydrogen complex, [\(\text{Ru}(\text{PCy}_3)_2(\eta^2-\text{H}_2)(\eta^2-\text{HBPin})\text{H}_2]\], reported by Sabo-Etienne following treatment of [\(\text{Ru}(\text{PCy}_3)_2(\eta^2-\text{H}_2)_2\text{H}_2]\) with HBPin (1 equiv) in THF.\(^{33}\)

![Molecular structure of \(\text{[Ru(PPh}_3)_3(\text{HBPin})\text{H}_2]\) (40).](image)

\textbf{Figure 5.15:} Molecular structure of \([\text{Ru}(\text{PPh}_3)_3(\text{HBPin})\text{H}_2]\) (40). Thermal ellipsoids are represented at 30 \% probability. Hydrogen atoms, with the exception of hydride ligands and that of the coordinated borane have been omitted for clarity. Selected bond lengths (Å) and angles (°): Ru1-B1 2.1747(16), Ru1-P1 2.3337(4), Ru1-P2 2.3885(4), Ru1-P3 2.3398(4); P1-Ru-B1 88.62(5), P2-Ru1-B1 131.21(4), P3-Ru-B1 96.63(5), P1-Ru1-P2 99.278(13), P1-Ru1-P3 152.859(13), P2-Ru1-P3 97.146(13).

The molecular structure of 40 (Figure 5.15) featured a distorted octahedral geometry at the ruthenium centre with two phosphines in axial positions. The four
coordination sites in the equatorial plane were occupied by two hydride ligands (H1 and H3), one σ B1-H2 bond and a ligated PPh₃. The B1-H2 bond distance (1.36(2) Å)⁴ represented a normal elongation for a σ-borane complex by comparison to the calculated B-H bond distance of 1.17 Å in a free dialkoxyborane.³⁴ A weak Lewis acid/base interaction between the hydride H1 and the boron atom was reflected by the long distance of 1.57(2) Å and supported σ-borane coordination. Further evidence came from the relative orientation of the BPin group with respect to the metal centre. The angle of 170.05(16)°, measured between the middle of [O, O], B and Ru, showed that the BPin group is not pointing toward the ruthenium atom, as it would be anticipated for a dihydridoborate or dihydride boryl species.³³ The Ru1-B1 bond length of 2.1747(16) Å was very similar to that found in [Ru(PCy₃)₂(η²-H₂)(η²-HBPin)H₂] (2.173(2) Å). Relevant metrics for both complexes are listed in Table 5.2.

³³ The Ru-H ligands in 40 were all located and refined without restraints which, keeping in mind the uncertainties in hydride positions, allowed for approximate analysis of bond distances and angles involving H atoms present in the coordination sphere of the ruthenium centre.
Table 5.2: Selected bond lengths (Å) and angles (°) for [Ru(PPh₃)₃(HBPin)H₂] (40) and [Ru(PCy₃)₂(η²-H₂)(η²-HBPin)H₂].³³

<table>
<thead>
<tr>
<th></th>
<th>[Ru(PPh₃)₃(HBPin)H₂] (40)</th>
<th>[Ru(PCy₃)₂(η²-H₂)(η²-HBPin)H₂]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru-B</td>
<td>2.1747(16)</td>
<td>2.173(2)</td>
</tr>
<tr>
<td>Ru-H¹</td>
<td>1.61(2)</td>
<td>1.57(2)</td>
</tr>
<tr>
<td>Ru-H²</td>
<td>1.73(2)</td>
<td>1.67(2)</td>
</tr>
<tr>
<td>B-H²</td>
<td>1.36(2)</td>
<td>1.30(2)</td>
</tr>
<tr>
<td>B···H¹</td>
<td>1.57(2)</td>
<td>1.89(2)</td>
</tr>
<tr>
<td>B-O</td>
<td>1.401(2), 1.407(2)</td>
<td>1.406(2)</td>
</tr>
<tr>
<td>P-Ru-P (axial)</td>
<td>152.859(13)</td>
<td>157.66(1)</td>
</tr>
<tr>
<td>Cent[O, O]-B-Ru</td>
<td>170.05(16)</td>
<td>170.0</td>
</tr>
<tr>
<td>H¹-Ru-H²</td>
<td>84.5(10)</td>
<td>94.7(10)</td>
</tr>
<tr>
<td>Ru-H²-B</td>
<td>88.7(11)</td>
<td>93.28(6)</td>
</tr>
<tr>
<td>Ru-B-H²</td>
<td>52.7(9)</td>
<td>50.1(8)</td>
</tr>
<tr>
<td>Ru-H¹-B</td>
<td>86.4(10)</td>
<td>77.2(6)</td>
</tr>
<tr>
<td>O-B-O</td>
<td>109.05(12)</td>
<td>109.2(1)</td>
</tr>
</tbody>
</table>

5.5. Discussion

Both PF₂(C₆F₅) and C₆F₅ ligands in 36 could have only been formed as a result of multiple bond cleavage and formation steps and most likely involved inter- or intramolecular nucleophilic Ru-H attack on P followed by sequence of bond breaking and bond forming processes. Transformations involving P-C/F exchange are known and perhaps the best characterised example of such is the F/Ph rearrangement of the fluoro analogue of Wilkinson’s catalyst, [Rh(PPh₃)₃F], reported by Grushin and Marshall.³⁵ The fluorophosphine complex cis-[Rh(PPh₃)₂(PFPh₂)Ph] was found to be an
intermediate in the C-Cl bond activation reaction of chlorobenzene yielding \textit{trans-}[Rh(PPh\textsubscript{3})\textsubscript{2}(PFPh\textsubscript{2})Cl] (Scheme 5.7A). Kinetic studies showed that the Rh-phenyl complex is formed \textit{via} the facile and reversible intramolecular P-Ph/F exchange process, which was not influenced by added phosphine.36 Initial DFT calculations on a \textit{cis-}[Rh(PH\textsubscript{3})\textsubscript{2}(PH\textsubscript{2}Ph)F] model system pointed to two possible mechanisms (Scheme 5.7B): Ph transfer from P to Rh followed by P-F formation (formally an oxidative addition to give a Rh(III)-phosphide species, followed by reductive elimination (Pathway 1); and intramolecular nucleophilic attack of Rh-F to produce a metallophosphorane intermediate from which Ph migration to Rh occurs (Pathway 2). Further theoretical studies on the full [Rh(PPh\textsubscript{3})\textsubscript{3}F] system revealed a clear preference for the latter.37

\textbf{Scheme 5.7:} Ph-Cl activation at [Rh(PPh\textsubscript{3})\textsubscript{3}F] (A) and computed mechanism of F/Ph exchange in \textit{cis-}[Rh(PPh\textsubscript{3})\textsubscript{2}(PFPh\textsubscript{2})Ph] (B).

Another example of P-C/F exchange was described by Milstein and co-workers,38 who showed that heating [Ir(PEt\textsubscript{3})\textsubscript{3}Me] in hexafluorobenzene led to the formation of \textit{trans-}[Ir(PEt\textsubscript{3})\textsubscript{2}(PEt\textsubscript{2}F)(C\textsubscript{6}F\textsubscript{5})], C\textsubscript{2}H\textsubscript{4} and CH\textsubscript{4} \textit{via} C-F and P-C bond
cleavage and P-F bond formation (Scheme 5.8A). The reaction was later investigated through DFT calculations using the small PH$_3$ model complex, \textit{trans-}\[\text{Ir(PH$_3$)$_2$(PH$_2$Et)(Me)}\], to reveal a novel, low-energy phosphine-assisted C-F activation mechanism (Scheme 5.8B).39 This involved nucleophilic attack of the electron-rich Ir metal centre at C$_6$F$_6$ and trapping of the displaced fluoride by a phosphine ligand to generate a metallophosphorane intermediate, \[\text{[Ir(PH$_3$)$_2$(PH$_2$EtF)(C$_6$F$_5$)(Me)}\]. Facile transfer of the ethyl group from P to Ir and subsequent β-H elimination of C$_2$H$_4$ and reductive elimination of methane accounted for the final products. It was found that the reaction proceeded in a concerted fashion \textit{via} a 4-centered transition state and that the presence of ortho-F substituents promoted C-F cleavage. Analogous P-C/F chemistry was also observed during C-F bond activation reactions of fluoropyridines40,41 and hexafluorobenzene36 by zerovalent [Pt(PR$_3$)$_2$] (R = iPr, Cy) complexes.

![Scheme 5.8: P-C/F exchange observed in the reaction between [Ir(PEt$_3$)$_3$(Me)] and C$_6$F$_6$ (A), and phosphine-assisted C-F activation generating metallophosphorane intermediate (B).](image)

Complexes containing a difluoropentafluorophenyl ligand, P(C$_6$F$_3$)$_2$F are not known. Although fluorophosphines containing aryl or alkyl groups, such as P(C$_6$H$_5$)$_2$F42 or P(CH$_3$)$_2$F43 disproportionate at room temperature in accord with the overall equation
shown in Scheme 5.9,42-48 their perfluorinated counterparts P(C\(_6\)F\(_5\))\(_2\)F49 and P(CF\(_3\))\(_2\)F are stable.v Similarly, P(C\(_6\)H\(_3\))F\(_2\)48 and P(CH\(_3\))F\(_2\)46 undergo redox disproportionation, while their analogues containing electron-withdrawing C\(_6\)F\(_5\)- or CF\(_3\)- groups are readily distillable. Interestingly, despite reduced stability of difluorophenylphosphine, crystallographically characterised transition metal complexes bearing P(C\(_6\)H\(_3\))F\(_2\) ligands exist.50-52 The absence of species containing ligated P(C\(_6\)F\(_5\))F\(_2\) suggests that such i) cannot be made easily or ii) if formed, they are not particularly stable and thus isolable.

\[
\begin{align*}
3 \text{R}_2\text{PF} & \rightarrow \text{R}_2\text{P} - \text{PR}_2 + \text{R}_2\text{PF}_3 \\
2n \text{RPF}_2 & \rightarrow (\text{RP})_n + n \text{RPF}_4
\end{align*}
\]

Scheme 5.9: Disproportionation reactions of organofluorophosphines.

5.6. Summary

The reactivity of ruthenium dihydride complexes [Ru(IMe\(_4\))\(_2\)(PPh\(_3\))\(_2\)H\(_2\)] (ttt-9) and [Ru(PPh\(_3\))\(_4\)H\(_2\)] (32) towards tris(pentafluorophenyl)phosphine (PCF) has been described. The reaction of ttt-9 with PCF afforded [Ru(IMe\(_4\))\(_2\)(PF\(_2\)(C\(_6\)F\(_5\)))(C\(_6\)F\(_5\))H] (36), which was fully characterised by NMR spectroscopy. To the best of our knowledge, this is the first example of a transition metal complex containing a PF\(_2\)(C\(_6\)F\(_5\)) ligand. In contrast, employment of a less reactive tetrakisphosphine precursor 32 gave the isolable hydride fluoride complex [Ru(PPh\(_3\))\(_3\)HF] (37). This formed upon sequential HDF of the ortho-C-F bonds in PCF. 37 was shown to react cleanly with tertiary silanes to give the trihydride silyl complexes [Ru(PPh\(_3\))\(_3\)(SiR\(_3\))H\(_3\)] (R = Et (38), Ph (39)), whereas reaction with excess HBPin led to the isolation of the σ-borane dihydride complex [Ru(PPh\(_3\))\(_3\)(HBPin)H\(_2\)] (40).

v Both P(C\(_6\)F\(_5\))\(_2\)F and P(CF\(_3\))\(_2\)F disproportionate upon heating.
5.7. References for Chapter 5

CHAPTER SIX
Experimental procedures and characterising data

6.1. General procedures

All manipulations were carried out under argon using standard Schlenk, high vacuum and glovebox techniques using dried and degassed solvents, unless otherwise stated. Glassware (ampoules and NMR tubes fitted with a J. Young’s resealable PTFE valve, and Schlenk flasks) were oven dried at 140°C overnight and subsequently flame dried under vacuum prior to use. Hexane, toluene, diethyl ether, pentane and dichloromethane were purified using an MBraun solvent purification system. Benzene was distilled from Na dispersion, while THF was kept in contact with KOH or over molecular sieves prior to distillation from Na/benzophenone. Fluorobenzene was distilled from calcium hydride. 1-Hexanol was used as purchased (Fisher). Methanol was refluxed over Mg/I₂ and collected by distillation. Solvents were stored over activated 4 Å molecular sieves (diethyl ether, THF, 2-MeTHF, dichloromethane, methanol, pentane) or over a potassium mirror (benzene, toluene, hexane). Deuterated solvents (Sigma-Aldrich and Euriso-top) were vacuum transferred from potassium (benzene-d₆, toluene-d₈, THF-d₈) or calcium hydride (dichloromethane-d₂, chloroform-d₁). Acetonitrile-d₃ was dried over activated 4 Å molecular sieves. All liquid fluoroaromatic (Fluorochem; C₆F₆, C₆F₅H, C₆F₄H₂, C₆F₃H₃, C₆F₂H₄, C₆FH₅) and silane (Sigma-Aldrich; Et₃SiH, iPr₃SiH, Ph₂MeSiH, PhMe₂SiH, Ph₂SiH₂, Et₂SiH₂) reagents were dried over activated 4 Å molecular sieves. RuCl₃ · xH₂O (Johnson Matthey and Precious Metals) was used as received, while PPh₃ (Sigma-Aldrich) was recrystallized twice from hot ethanol. Other phosphines (dppm, dppe, dppp, xantphos, DPEphos, DCEphos, PPh₂(2-C₆H₄OCH₃), P(C₆F₅)₃) were used as received.
6.2. Physical and analytical techniques:

NMR spectra were recorded on Bruker Avance 400/500 and Avance III 500 MHz NMR spectrometers at 25°C, unless otherwise stated, and referenced to the residual protio and 13C solvent signals: C$_6$D$_6$ (1H, δ 7.16; 13C, δ 128.0), THF-d_8 (1H, δ 3.58; 13C, δ 25.4), C$_6$D$_4$CD$_3$ (1H, δ 2.09; 13C, δ 20.4), CDCl$_3$ (1H, δ 7.26; 13C, δ 77.1), CD$_2$Cl$_2$ (1H, δ 5.32; 13C, δ 53.8), CD$_3$CN (1H, δ 1.94; 13C, δ 118.2). 31P (1H) and 19F NMR spectra were referenced externally to 85 % H$_3$PO$_4$ (δ 0.0) and CFCl$_3$ (δ 0.0).

X-ray crystal structures were recorded on a Nonius KappaCCD or Agilent SuperNova and Agilent Excalibur diffractometers, with structural solutions and refinements performed using SHELXS-97 and SHELXL-97 respectively.1 Hydride ligands, where present, were located and refined at a distance of 1.6 Å from the relevant metal centre. Mass spectra were measured on a Bruker UHR-ESI-QTOF MaXis HD by Dr Anneke Lubben at the University of Bath. IR spectra were recorded as KBr discs on a Nicolet Nexus FTIR spectrometer.

Elemental analyses were performed by the Elemental Microanalysis Limited, Okehampton, Devon.

6.3. Preparation of starting materials

6.3.1. Preparation of NHC precursors

6.3.1.1. 1,3,4,5-tetramethylimidazole-2-thione (IMe$_4$=S)

The synthesis of IMe$_4$=S was carried out according to a modified literature procedure.2 A stirred 1-hexanol (250 mL) solution of 1,3-dimethyl-2-thiourea (10.4 g,
0.1 mol) and 3-hydroxy-2-butane (8.8 g, 0.1 mol) was refluxed overnight. The solution was allowed to return to room temperature prior to rapid cooling to -78°C, which resulted in an instantaneous precipitation of a pale yellow solid. This was rapidly filtered and the solid was washed several times with cold H2O and Et2O, followed by recrystallization from CH2Cl2/Et2O at 5°C. The colourless block-shaped crystals were separated by filtration, washed twice with cold ether and dried under vacuum. The ether washings and the filtrate were combined and kept at -40°C K for several days to yield a second crop of crystals. Combined yield: 8.4 g (54%). 1H NMR (CD2Cl2, 500 MHz, 25°C): δ 3.47 (s, 6H, NC3H3), 2.06 (s, NCC3H3, 6H).

6.3.1.2. 1,3-diethyl-4,5-dimethylimidazole-2-thione (IEt2Me2=S)

![Imidazole-2-thione](imidazole-2-thione.png)

The synthesis of IEt2Me2=S was carried out according to a modified literature procedure as above for IMe4=S using 1,3-diethyl-2-thiourea (13.2 g, 0.1 mol). Combined yield: 8.8 g (48%). 1H NMR (CDCl3, 500 MHz, 25°C): δ 4.07 (q, 2JHH = 7.0 Hz, 4H, NCH2CH3), 2.07 (s, 6H, NCH3), 1.25 (t, 2JHH = 7.0 Hz, 6H, NCH2CH3).

6.3.1.3. 1,3-di(methyl)imidazolium iodide ([IMe2H][I])

![Imidazolium iodide](imidazolium-iodide.png)

[IMe2H][I] was prepared according to a literature procedure. Methylimidazole (20.8 g, 0.253 mol) and iodomethane (35.9 g, 0.253 mol) were refluxed in 100 mL toluene overnight. Upon cooling the reaction mixture to room temperature, a white solid precipitated, which was collected by filtration, washed with hexane and dried under
vacuum to afford [IMe₂H][I] as a white hygroscopic powder, which was stored in a
glovebox. Yield: 47.0 g (83%). ¹H NMR (D₂O, 500 MHz, 25°C): δ 8.62 (s, 1H,
NCHN), 7.38 (s, 2H, NCH), 3.85 (s, 6H, NCH₃).

6.3.2. Preparation of NHC ligands

6.3.2.1. 1,3,4,5-tetramethylimidazol-2-ylidene (IMe₄)

![Diagram of IMe₄]

The synthesis of IMe₄ was carried out according to a modified literature
procedure.⁴ 1,3,4,5-tetramethylimidazole-2-thione (2.1 g, 13.4 mmol) and chopped
pieces of potassium (1.15 g, 29.5 mmol) were suspended in 2-MeTHF (45 ml) and
heated at 100°C overnight. After cooling, the suspension was filtered through a celite
plug (pre-wetted with THF) and the filtercake washed with THF (3 × 10 mL). The
combined 2-MeTHF and THF solutions were reduced to dryness to afford a pale yellow
solid. Yield: 1.44 g (86 %). ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 3.56 (s, 6H, NCH₃),
1.56 (s, 6H, NCH₃).

6.3.2.2. 1,3-diethyl-4,5-dimethylimidazol-2-ylidene (IEt₂Me₂)

![Diagram of IEt₂Me₂]

1,3-diethyl-4,5-dimethylimidazole-2H-thione (IEt₂Me₂=S, 1.9 g, 10.4 mmol)
and chopped pieces of potassium (0.9 g, 23.0 mmol) were suspended in 2-MeTHF (45
mL) and heated at 100°C overnight. After cooling, the suspension was filtered through a
celite plug (pre-wetted with THF) and the filtercake washed with THF (3 × 10 mL). The
combined 2-MeTHF and THF solutions were reduced to dryness to afford a pale yellow
oil, which solidified in a glovebox freezer. Yield: 1.35 g (85 %). ¹H NMR (C₆D₆, 500
MHz, 25°C): δ 3.81 (q, $^2J_{HH} = 7.3$ Hz, 4H, NCH$_2$CH$_3$), 1.65 (s, NCCH$_3$, 6H), 1.22 (t, $^2J_{HH} = 7.3$ Hz 6H, NCH$_2$CH$_3$).

6.3.3. Preparation of ruthenium precursor complexes

[Ru(PPh$_3$)$_3$Cl$_2$] was prepared according to the published method.5

6.3.3.1. [Ru(PPh$_3$)$_4$H$_2$] (32)

![Chemical Structure]

A slightly modified literature procedure was used.6 A 250 mL three-neck round-bottom flask equipped with a rubber septum was charged with PPh$_3$ (12.0 g, 45.76 mmol), [Ru(PPh$_3$)$_3$Cl$_2$] (2.0 g, 2.08 mmol), C$_6$H$_6$ (60 mL), and MeOH (100 mL). After agitation under argon for 10 min, a MeOH suspension (5 mL) of NaBH$_4$ (3.0 g, 79.30 mmol) was added in portions over a period of 30 min. During the addition, the originally brown reaction mixture turned yellow. After stirring for an additional hour, the mixture was diluted with degassed MeOH (100 mL) and the yellow solid now present was collected on a frit under argon, washed with degassed MeOH (3 × 40 mL), then degassed Et$_2$O (3 × 40 mL) and dried under vacuum overnight. Yield: 2.32 g (96%). 31P{1H} NMR (C$_6$H$_6$, 121.5 MHz, 25°C): δ 49.1 (t, $^2J_{PP} = 13.8$ Hz), 40.9 (t, $^2J_{PP} = 13.8$ Hz).
6.3.3.2. [Ru(IME₄)₄Cl₂]

A mixture of [Ru(PPh₃)₃Cl₂] (0.60 g, 0.62 mmol) and IMe₄ (0.372 g, 3.00 mmol) was stirred in toluene (3 mL) at 25°C overnight. The pale orange precipitate that was formed was isolated by cannula filtration, washed with Et₂O (2 × 5 mL) and dried in vacuo. Yield: 0.34 g (81%). ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 3.70 (s, 6H, NCH₃), 1.80 (s, 6H, NCH₃).

6.3.3.3. [Ru(IMe₂)₄Cl₂]

In-situ generation of 1,3-dimethylimidazol-2-ylidene (IME₂) was carried out according to an optimised literature procedure.³ THF (10 mL) was added to a mixture of 1,3-di(methyl)imidazolium iodide (2.8 g, 12.5 mmol) and KH* (1.0 g, 25.0 mmol) charged into a J.Young’s resealable ampoule. Instantaneous evolution of H₂ was observed. The suspension was stirred for 1.5 h, after which time gas evolution had ceased and Et₂O (10 mL) was added to ensure precipitation of the generated potassium iodide. The THF/Et₂O solution of the generated 1,3-dimethylimidazol-2-ylidene was filtered by cannula and added dropwise to a THF (5 mL) suspension of [Ru(PPh₃)₃Cl₂]. The product precipitated immediately as a pale orange solid, which was isolated by
cannula filtration, washed with Et₂O (2 × 10 mL) and dried in vacuo. Yield: 1.12 g (97%). The insolubility of [Ru(IMe₂)₄Cl₂] in common organic solvents precluded NMR analysis.⁸

*Potassium hydride was obtained as a 30 wt % suspension in mineral oil. The mineral oil was washed away with dry hexane and the KH dried under vacuum.

6.3.3.4. [Ru(IEt₂Me₂)₄Cl₂]

A mixture of [Ru(PPh₃)₃Cl₂] (300 mg, 0.31 mmol) and IEt₂Me₂ (219 mg, 1.14 mmol) was stirred in toluene (3 mL) for 1 h. The resultant deep orange solution was filtered by cannula and the filtrate reduced to dryness. The sticky dark orange residue was suspended in hexane (5 mL) and stirred vigorously for 1 h to afford a pale orange precipitate, which was isolated by cannula filtration, washed with hexane (2 × 3 mL) and dried in vacuo. Yield: 132 mg (55%). NMR data matched those in the literature.⁹ ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 4.77 (m, ²J_HH = 13.6 Hz, ³J_HH = 7.1 Hz, 8H, NCH₂CH₃), 3.58 (m, ²J_HH = 13.6 Hz, ³J_HH = 7.1 Hz, 8H, NCH₂CH₃), 1.96 (s, 24 H, NCC₃), 1.35 (t, ³J_HH = 7.1 Hz, 24 H, NCH₂CH₃).

6.3.4. KC₈

Graphite (2g, 90-150 micron grade, Fluka) was charged into a flame-dried Schlenk tube and heated under vacuum with a heat gun for 1 h to desorb any oxygen
and water. Inside the glove box, a stoichiometric amount of potassium metal (0.82 g) was added in small chunks. The Schlenk tube was subsequently removed from the glove box and placed in an oil bath preheated to 90°C, and the temperature elevated to 200°C over a period of 45 min whilst maintaining vigorous stirring. KC₈ was obtained as a pyrophoric, fine bronze/golden powder in quantitative yield. Yield: 2.8 g.

6.4. Experimental procedures and characterising data for Chapter 2

6.4.1. [Ru(IMe₄)₄H₂](1)

[Ru(IMe₄)₄Cl₂] (255 mg, 0.38 mmol) and KC₈ (154 mg, 1.14 mmol) were charged into a J.Young’s resealable ampoule. THF (5 mL, stored over K) was vacuum transferred onto the solids and the resulting suspension was subjected to 1 atm H₂. The dark-green reaction mixture was stirred overnight at 25°C before removing the volatiles in vacuo. In the glovebox, Et₂O (10 mL, stored over K) was syringed into the ampoule and the contents were stirred vigorously for 5 minutes. The suspension was allowed to settle for 1 h before passing the resultant pale yellow solution through a glass microfibre filter (pre-wetted with 5 mL of dry Et₂O). Extraction was repeated two more times (2 x 5 mL) and the combined Et₂O extracts transferred into a J.Young’s ampoule. The volatiles were removed in vacuo on a Schlenk line to afford a pale yellow solid. Yield: 182 mg (80%). Spectroscopic data matched those in the original report. Due to the facile H/D exchange observed in C₆D₆, ¹H NMR analysis of 1 was carried out in THF-
1H NMR (THF-d_8, 500 MHz, 25°C): δ 3.37 (s, 24H, NCH$_3$), 1.97 (s, 24H, CCH$_3$), -8.14 (s, 2H, RuH).

6.4.2. [Ru(IMe$_2$)$_4$H$_2$] (2)

![Image of the compound]

[Ru(IMe$_2$)$_4$Cl$_2$] (300 mg, 0.54 mmol) and KC$_8$ (218 mg, 1.62 mmol) were charged into a J. Young’s resealable ampoule. THF (3 mL, stored over K) was vacuum transferred onto the solids and the resulting suspension was subjected to 1 atm H$_2$. The reaction mixture was stirred at 60°C for 2 h before removing the volatiles in vacuo. The product was extracted into Et$_2$O (10 mL), filtered by cannula and reduced to dryness to yield a pale orange solid. Yield: 204 mg (78%). Crystals suitable for X-ray diffraction were obtained upon layering a saturated benzene solution of 2 with pentane. 1H NMR (C$_6$D$_6$, 500 MHz, 25°C): δ 6.43 (s, 8H, NCCCH), 3.49 (s, 24H, NCH$_3$), -7.45 (s, 2H, RuH). 13C{1H} NMR (C$_6$D$_6$, 126 MHz, 25°C): δ 212.6 (s, RuC$_{NHC}$), 117.9 (s, NCCH), 39.0 (s, NCH$_3$). Elemental analysis calcd. (%) for C$_{20}$H$_{34}$N$_8$Ru (487.62): C 49.26, H 7.03, N 22.98; found C 49.27, H 7.04, N 23.03.
6.4.3. [Ru(IMe$_4$)$_4$HF] (3)

Pentafluorobenzene (8.15 µL, 73.4 µmol) was syringed into an NMR tube fitted with a J. Young’s resealable PTFE valve containing a C$_6$H$_6$ solution (0.4 mL) of [Ru(IMe$_4$)$_4$H$_2$] (1, 22 mg, 36.7 µmol). Immediate 1H and 19F NMR analysis confirmed the formation of 3. Layering the sample with hexane afforded a small amount of yellow crystals suitable for X-ray diffraction. Yield: 5 mg (22%). 1H NMR (C$_6$H$_6$, 500 MHz, 25°C): δ 4.04 (s, 12H, NC$_3$H$_3$), 3.42 (s, 12H, NC$_3$H$_3$), 1.80 (s, 12H, CCH$_3$), 1.80 (s, 12H, CCH$_3$), -23.19 (d, 2J$_{HF}$ = 54.6 Hz, 1H, RuH). 19F NMR (C$_6$H$_6$, 470 MHz, 25°C): δ -281.6 (br d, RuF). 13C{$_^1$H} NMR (C$_6$H$_6$, 126 MHz, 25°C): δ 206.1 (s, RuCNHC), 121.5 (s, NCCH$_3$), 120.1 (s, NCCH$_3$), 34.1 (s, NCH$_3$), 33.0 (d, 1J$_{CF}$ = 22.6 Hz, NCH$_3$), 9.4 (NCCH$_3$), 8.9 (NCCH$_3$). Elemental analysis calcd. (%) for C$_{28}$H$_{49}$F$_8$Ru (617.78): C 54.44, H 7.99, N 18.13; found C 54.47, H 8.11, N 18.29.

6.4.4. [Ru(IMe$_2$)$_4$HF] (4)

An excess of C$_6$F$_5$H (0.1 mL, 0.9 mmol) was allowed to slowly diffuse into a toluene solution (1 mL) of [Ru(IMe$_2$)$_4$H$_2$] (2, 37.8 mg, 77.6 µmol). The orange microcrystalline material formed over several days was washed with hexane (1 mL),
Et₂O (2 x 1 mL) and dried in vacuo. Yield: 29 mg (74%). Elemental analysis calcd. (%) for C₂₀H₃₃FN₈Ru (505.57): C 47.51, H 6.58, N 22.16; found C 47.89, H 6.72, N 21.93.

A small amount of crystals suitable for X-ray diffraction were obtained via a different method in which a C₆FH₅ solution (0.4 mL) of TREAT-HF (3.47 µL, 21.3 µmol) was allowed to slowly diffuse into a C₆FH₅ solution (1 mL) of 2 (31.2 mg, 64 µmol), separated with a buffer of neat C₆FH₅ (0.5 mL). The insolubility of 4 in common organic solvents (THF, C₆FH₅, DMSO, pyridine, CH₂Cl₂) precluded full NMR analysis, however ¹H NMR data for 4 was obtained from a catalytic HDF reaction of C₆F₆ with 2 in the presence of Et₃SiH was carried out in C₆D₆. ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 6.37 (s, 4H, NCC₃H), 6.34 (s, 4H, NCC₃H), 3.92 (s, 12H, NC₃H₃), 3.14 (s, 12H, NC₃H₃), -22.94 (s, 1H, RuH). ¹⁹F NMR (C₆D₆, 470 MHz, 25°C): δ -302.2 (br s, RuF).

6.4.5. [Ru(IME₂)$_4$H(MeCN)][F/HF₂]

[Ru(IME₂)$_4$HF] (4, 40 mg, 79 µmol) was dissolved in CH₃CN (1 mL) and stirred for 5 min before removing the volatiles. The obtained pale brown residue was washed with Et₂O (3 x 3 mL) and dried in vacuo to afford a pale yellow solid. Yield: 24 mg. ¹H NMR (CD₃CN, 500 MHz, 25°C): δ 6.86 (s, 8 H, NCC₃H), 3.23 (s, 12H, NCH₃), 2.96 (s, 12H, NCH₃), -15.20 (s, 1H, RuH). ¹⁹F NMR (CD₃CN, 470 MHz, 25°C): δ -73.8 (br s, F), -149.0 (t, 2J$_{FD}$ = 18.1 Hz, DF₂). ¹³C{¹H} NMR (CD₃CN, 126 MHz, 25°C): δ 201.8 (s, RuC₉H₃), 121.7 (s, NCC₃H), 121.2 (s, NCC₃H), 38.2 (s, NCH₃), 37.2 (s, NCH₃).
Selected NMR data in CH$_3$CN: 1H NMR (500 MHz, 25°C): δ 16.32 (t, 2J_{HD} = 121.4 Hz, HF$_2$). 19F NMR (470 MHz, 25°C): δ 70.2 (br s, F), -147.2 (d, 2J_{FH} = 121.4 Hz, HF$_2$).

6.4.6. [Ru(IME)$_4$H][Ph$_3$SiF$_2$] (5)

C$_6$F$_6$ (10 μL, 87.6 µmol) was added to a C$_6$H$_6$ solution (0.4 mL) of [Ru(IME)$_4$H$_2$] (1, 35 mg, 58.4 µmol) and Ph$_3$SiH (76 mg, 292 µmol). An immediate colour change from yellow to deep purple was observed. Addition of pentane (2 mL) resulted in the precipitation of a deep purple solid, which was isolated, washed with pentane (3 x 0.5 mL) and dried in vacuo. Yield: 47 mg (90%). Crystals suitable for X-ray diffraction were obtained by layering a concentrated THF sample of 5 with pentane. 1H NMR (THF-d_8, 500 MHz, 25°C): δ 8.03 (m, 6H, C$_6$H$_5$), 6.98-6.88 (m, 9H, C$_6$H$_5$), 3.10 (s, 12H, NCH$_3$), 3.03 (s, 12H, NCH$_3$), 2.01 (s, 12H, NCCH$_3$), 2.00 (s, 12H, NCCH$_3$), -40.16 (s, 1H, RuH). 19F NMR (THF-d_8, 470 MHz, 25°C): δ -103.0 (s, 1J_{FSi} = 259 Hz, Ph$_3$SiF$_2$). Elemental analysis calcd. (%) for C$_{46}$H$_{64}$N$_8$F$_2$SiRu·0.5C$_4$H$_8$O: C 61.84, H 7.35, N 12.02; found C 61.93, H 7.36, N 12.32.
IMe₄ (105 mg, 0.85 mmol) was added to a C₆H₆ solution (3 mL) of 1,2,4-C₆F₃H₃ (89 µL, 0.85 mmol) and Et₃SiH (0.8 mL, 5.1 mmol) in an ampoule fitted with a J. Young’s resealable tap and the mixture was stirred for 24 h at 70°C. After removal of the volatiles, the oily brown residue was extracted into hexane (3 mL), cannula filtered and the solvent removed in vacuo to yield 6 as a pale yellow oil. Yield: 153 mg (76%).

1H NMR (C₆D₆, 500 MHz, 25°C): δ 7.87 (ddd, 3J_HF = 9.2 Hz, 4J_HF = 5.4 Hz, 4J_HH = 3.2 Hz, 1H, o-C₆F₂H₃), 6.57 (m, 3J_HH = 9.0 Hz, 1H, m-C₆F₂H₃), 6.54 (m, 3J_HH = 9.0 Hz, 4J_HH = 3.2 Hz, 1H, p-C₆F₂H₃), 4.46 (dd, 4J_HF = 2.4 Hz, 5J_HF = 0.8 Hz, 1H, NCHN), 2.16 (d, 6J_HF = 0.7 Hz, 6H, NCH₃), 1.50 (s, 6H, NCC₃H₃). 19F NMR (C₆D₆, 470 MHz, 25°C): δ -118.1 (m, 5J_FF = 18.1 Hz, 1F, m-C₆F₂H₃), -128.4 (m, 5J_FF = 18.1 Hz, 1F, o-C₆F₂H₃).

13C{¹H} NMR (C₆D₆, 126 Hz MHz, 25°C): δ 160.0 (dd, J_CF = 104.7 Hz, 4J_CF = 2.3 Hz, m-C₆F₂H₃), 158.0 (dd, J_CF = 104.8 Hz, 4J_CF = 2.2 Hz, o-C₆F₂H₃), 131.0 (dd, 2J_CF = 17.2 Hz, 3J_CF = 6.4 Hz, i-C₆F₂H₃), 121.5 (NCCH₃), 117.2 (dd, 2J_CF = 24.8 Hz, 3J_CF = 5 Hz, o-C₆F₂H₃), 116.5 (dd, 2J_CF = 24.5 Hz, 3J_CF = 9 Hz, m-C₆F₂H₃), 116.2 (dd, 2J_CF = 25.2 Hz, 3J_CF = 8.2 Hz, p-C₆F₂H₃), 86.5 (NCN), 37.2 (NCH₃), 10.0 (NCCH₃). ESI-MS (THF): calcd. for (IMe₄C₆H₃F₂)⁺, 237.120; obsd., 237.119.
6.4.8. \([\text{IME}_4 \text{C}_6 \text{F}_2 \text{H}_3][\text{BF}_4]\) (7)

[\(\text{IME}_4 \text{C}_6 \text{F}_2 \text{H}_3][\text{BF}_4]\)

\(\text{IME}_4\) (125 mg, 1.0 mmol) was added to a \(\text{C}_6\text{H}_6\) solution (3 mL) of 1,2,4-\(\text{C}_6\text{F}_3\text{H}_3\) (158 µL, 1.5 mmol) in an ampoule fitted with a J. Young’s resealable tap. The reaction mixture was stirred overnight at 80°C to give a deep red oily suspension. The oily residue was isolated by cannula filtration, washed with \(\text{Et}_2\text{O}\) (2 x 3 mL) and dried in vacuo to afford a dark orange/red solid corresponding to \([\text{IME}_4 \text{C}_6\text{H}_3\text{F}_2][\text{HF}_2]\). Yield: 160 mg. Selected NMR data: \(^1H\) NMR (500 MHz, \(\text{CD}_2\text{Cl}_2\), 25°C): \(\delta\) 16.08 (t, \(^1J_{\text{HF}} = 121.6\) Hz, \(\text{HF}_2\)). \(^{19}F\) NMR (470 MHz, \(\text{CD}_2\text{Cl}_2\), 25°C): \(\delta\) -156.5 (d, \(^1J_{\text{FH}} = 121.6\) Hz, \(\text{HF}_2\)).

A portion of the isolated solid (93.5 mg) was subsequently stirred in the presence of \(\text{NaBF}_4\) (53 mg, 0.48 mmol) in \(\text{CH}_2\text{Cl}_2\) (3 mL) for 2 h at 25°C. A colour change from dark red to pale orange was observed. The solution was filtered by cannula and \(\text{Et}_2\text{O}\) added to induce precipitation of an off-white/beige solid. This was reprecipitated from \(\text{CH}_2\text{Cl}_2/\text{Et}_2\text{O}\) and washed with \(\text{Et}_2\text{O}\) (2 x 3 mL). Yield: 90 mg (48%). Colourless crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a concentrated \(\text{CH}_2\text{Cl}_2\) solution of 7. The compound could also be efficiently recrystallised using \(\text{Et}_2\text{O}\) instead of pentane. \(^1H\) NMR (500 MHz, \(\text{CD}_2\text{Cl}_2\), 25°C): \(\delta\) 7.49 (m, \(^4J_{\text{HH}} = 3\) Hz, 1H, \(o-\text{C}_6\text{F}_2\text{H}_3\)), 7.45 (m, \(^3J_{\text{HH}} = 9.2\) Hz, \(^4J_{\text{HH}} = 3\) Hz, 1H, \(p-\text{C}_6\text{F}_2\text{H}_3\)), 7.36 (m, \(^3J_{\text{HH}} = 9.2\) Hz, 1H, \(m-\text{C}_6\text{F}_2\text{H}_3\)), 3.56 (d, \(^6J_{\text{HF}} = 0.6\) Hz, 6H, NCH\(_3\)), 2.33 (s, 6H, NCC\(_3\)). \(^{19}F\) NMR (470 MHz, \(\text{CD}_2\text{Cl}_2\), 25°C): \(\delta\) -114.9 (ddt, \(^5J_{\text{FF}} = 17.2\) Hz, \(^3J_{\text{FH}} = 7.8\) Hz, \(^4J_{\text{FH}} = 4.3\) Hz, 1F, \(m-\text{C}_6\text{F}_2\text{H}_3\)), -117.5 (m, \(^5J_{\text{FF}} = 17.2\) Hz, 1F, \(o-\text{C}_6\text{F}_2\text{H}_3\)), -153.9 (\(^{11}\text{BF}_4\)), -154.0 (\(^{10}\text{BF}_4\)). \(^{13}C\)\({}^1\text{H}\) NMR (126 MHz, \(\text{CD}_2\text{Cl}_2\), 25°C): \(\delta\) 159.0 (dd, \(J_{\text{CF}} = 302.8\) Hz, \(^4J_{\text{CF}} = 2.6\) Hz, \(m-\text{C}_6\text{F}_2\text{H}_3\)), 157.0 (dd, \(J_{\text{CF}} = 303.8\) Hz, \(^4J_{\text{CF}} = 2.3\) Hz, \(o-\text{C}_6\text{F}_2\text{H}_3\)).
136.9 (NCN), 126.8 (NCCH₃), 122.7 (dd, \(^2J_{CF} = 24.8\) Hz, \(^3J_{CF} = 8.9\) Hz, p-C₆F₂H₃), 119.6 (d, \(^2J_{CF} = 26.4\) Hz, o-C₆F₂H₃), 118.9 (dd, \(^2J_{CF} = 23.5\) Hz, \(^3J_{CF} = 8.9\) Hz, m-C₆F₂H₃), 111.3 (\(^2J_{CF} = 17.2\) Hz, \(^3J_{CF} = 9.2\) Hz, i-C₆F₂H₃), 33.3 (NCCH₃), 9.0 (NCCH₃).

Elemental analysis calcd. (%) for C₁₃H₁₂BF₆N₂ (321.23): C 48.15, H 4.66, N 8.64; found C 48.22, H 4.65, N 8.46.

6.5. Experimental procedures and characterising data for Chapter 3

6.5.1. [Ru(IEt₂Me₂)₂(PPh₃)₂H₂] (cct-8)

![Image of cct-8]

The synthesis of cct-8 was carried out according to a modified literature procedure.¹¹ A benzene solution (2 mL) of IEt₂Me₂ (130 mg, 0.86 mmol) was cannula filtered into a benzene suspension (4 mL) of [Ru(PPh₃)₄]₂H₂ (32, 0.45 g, 0.39 mmol) and stirred for 5 min. The solution was subsequently filtered by cannula and reduced to dryness. The resultant sticky residue was washed with pentane (3 x 5 mL) to afford cct-8 as a pale yellow solid. Yield: 280 mg (77%). NMR data matched those in the literature.¹² \(^1H\) NMR (CD₆D₆, 500 MHz, 25°C): \(\delta\) 7.97–7.91 (br, 10H, PC₆H₅), 7.06–7.02 (br, 3H, PC₆H₅), 6.96–6.90 (br, 17H, PC₆H₅), 6.49 (dq, \(^2J_{HH} = 13.2\) Hz, \(^3J_{HH} = 6.5\) Hz, 4H, NCH₂CH₃), 3.00 (dq, \(^2J_{HH} = 13.2\) Hz, \(^3J_{HH} = 6.5\) Hz, 4H, NCH₂CH₃), 1.40 (s, 12H, NCC₆H₅), 0.79 (br t, \(^3J_{HH} = 6.5\) Hz, 12H, NCH₂CH₃), –6.74 (t, \(^2J_{HP} = 20.4\) Hz, 2H, RuH). \(^{31P}{^1H}\) NMR (CD₆D₆, 202 MHz, 25°C): \(\delta\) 69.7 (s).
6.5.2. [Ru(IMe₄)₂(PPh₃)₂H₂] (ttt-9)

Synthesis of ttt-9 was carried out according to a modified literature procedure.¹² A benzene solution (2 mL) of IMe₄ (142 mg, 1.14 mmol) was cannula filtered into a benzene suspension (4 mL) of [Ru(PPh₃)₄H₂] (0.6 g, 0.52 mmol) and stirred for 2 days at 50°C. The solution was subsequently filtered by cannula and reduced to dryness. The resultant sticky residue was washed with pentane (3 x 5 mL) to afford ttt-9 as a pale yellow solid. Yield: 374 mg (82%). NMR data matched those reported in the literature.¹² ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 7.80 (br m, 12H, PC₆H₅), 6.99-6.92 (m, 18H, PC₆H₅), 3.74 (s, 12H, NCC₃H₃), 1.34 (s, 12H, NCH₃), −6.74 (t, ²JHP = 20.4 Hz, 2H, RuH). ³¹P{¹H} NMR (C₆D₆, 202 MHz, 25°C): δ 71.6 (s).

6.5.3. [Ru(IEt₂Me₂)₂(PPh₃)₂HF] (cct-10)

C₆F₆ (50 μL, 0.45 mmol) was added to a benzene (5 mL) solution of [Ru(IEt₂Me₂)₂(PPh₃)₂H₂] (cct-8, 140 mg, 0.15 mmol) in a J.Young’s resealable ampoule. The reaction mixture was stirred vigorously for 24 h at room temperature, filtered by cannula and evaporated to dryness to afford an oily red residue. Addition of hexane (1 mL) under the action of vigorous stirring resulted in a formation of a deep
orange suspension (of 11), which was isolated by cannula filtration. Leaving the hexane filtrate at room temperature for a few days afforded yellow crystals of cct-10, which were manually separated from red needles of residual 11. Yield: 43 mg (30%).

Elemental analysis calcd. (%) for C_{57}H_{63}N_{4}FP_{2}Ru·0.5C_{6}H_{14} (993.18): C 68.93, H 7.10, N 5.64; found C 68.99, H 7.15, N 5.62.

A more efficient route to cct-10 involved treatment of cct-8 with Et_3N·3HF (TREAT-HF). Thus, a benzene solution (2 mL) of IEt_2Me_2 (116 mg, 0.76 mmol) was cannula filtered into a benzene suspension (4 mL) of Ru(PPh_3)_4H_2 (32) (0.4 g, 0.34 mmol) and stirred for 5 min before adding a THF solution (2 mL) of TREAT-HF (28 µL, 0.17 mmol) and stirring the resultant solution for further 2 h. CsF (105 mg, 0.69 mmol) was then added and the reaction mixture stirred overnight at room temperature, after which time the solution was filtered by cannula and reduced to dryness. The resulting sticky solid was washed with pentane (3 x 5 mL) and dried in vacuo to afford a pale yellow solid. Yield: 170 mg (53%).

^1H NMR (C_6D_5CD_3, 400 MHz, 25°C): δ 6.80* (br s, 1H, NCH_2CH_3), 6.45 (br s, 1H, NCH_2CH_3), 5.83 (br m, 1H, NCH_2CH_3), 5.60 (br m, 1H, NCH_2CH_3), 3.36 (br m, 1H, NCH_2CH_3), 3.13 (br m, 1H, NCH_2CH_3), 2.61 (br m, 1H, NCH_2CH_3), 2.32 (br m, 1H, NCH_2CH_3), 1.56 (s, 3H, NC_3H_3), 1.49 (s, 3H, NC_3H_3), 1.39 (t, 3H, ^3J_{HH} = 6.8 Hz, NCH_2CH_3), 1.21 (s, 3H, NCCCH_3), 1.16 (s, 3H, NCCCH_3), 1.10 (t, 3H, ^3J_{HH} = 6.8 Hz, NCH_2CH_3), 0.34 (t, 3H, ^3J_{HH} = 6.8 Hz, NCH_2CH_3), 0.26 (t, 3H, ^3J_{HH} = 6.8 Hz, NCH_2CH_3), -21.58 (ddd, 1H, ^2J_{HF} = 51.6 Hz, ^2J_{HP} = 25.0 Hz, ^2J_{HP} = 14.1 Hz, RuH). *chemical shift established by ^1H COSY. ^31P{^1H} NMR (C_6D_5CD_3, 122 MHz, 25°C): δ 43.1 (br s). ^19F NMR (THF-d_8, 470 MHz, 25°C): δ -354.4 (br d, ^2J_{FH} = 51.6 Hz). ^13C{^1H} NMR (C_6D_5CD_3, 100 MHz, 25°C): δ 191.4 (m, RuC_NHC), 124.4 (s, NCCCH_3), 123.5 (s, NCCCH_3), 122.9 (s, NCCCH_3), 122.3 (s, NCCCH_3), 43.2 (s, NCH_2CH_3), 42.0 (d, J_{CP} or J_{CF} = 16.4 Hz, NCH_2CH_3), 40.5 (d, J_{CP} or J_{CF} = 32.2
Hz, NCH₂CH₃), 16.2 (s, NCH₂CH₃), 15.0 (s, NCH₂CH₃), 14.2 (s, NCH₂CH₃), 13.6 (s, NCH₂CH₃), 9.4 (s, NCCH₃), 9.1 (s, NCCH₃), 8.8 (s, NCCH₃), 8.7 (s, NCCH₃).

6.5.4. [Ru(IEt₂Me₂)₂(PPh₃)(C₆F₅)H] (11)

C₆F₅H (120 μL, 1.1 mmol) was syringed into a J. Young’s resealable ampoule containing a hexane suspension (5 mL) of [Ru(IEt₂Me₂)₂(PPh₃)H₂] (cct-8, 100 mg, 0.11 mmol). The reaction mixture was stirred vigorously at room temperature for 24 h to give a dark orange solid, which was isolated by cannula filtration, washed with hexane (2 × 5 mL) and dried in vacuo. Yield: 53 mg (58%). Crystals suitable for X-ray diffraction were obtained upon layering a concentrated toluene solution of 11 with hexane. ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 7.43–7.49 (m, 6H, PC₆H₅), 6.90–7.05 (br m, 9H, PC₆H₅), 4.77 (m, 2H, NC₃H₂CH₃), 3.60 (m, 4H, NC₃H₂CH₃), 3.05 (m, 2H, NC₃H₂CH₃), 1.48 (s, 6H, NCC₂H₃), 1.45 (s, 6H, NCC₂H₃), 1.02 (t, 6H, 3J_HH = 7.3 Hz, NCH₂CH₃), 0.98 (t, 6H, 3J_HH = 7.3 Hz, NCH₂CH₃), 0.98 (t, 6H, 3J_HH = 7.3 Hz, NCH₂CH₃), -32.95 (dt, 1H, 2J_HP = 30.6 Hz, 4J_HF = 7.2 Hz, RuHF). ³¹P{¹H} NMR (C₆D₆, 122 MHz, 25°C): δ 59.5 (tt, 4J_PF = 20.7 Hz, 5J_PF = 9.7 Hz). ¹⁹F NMR (C₆D₆, 470 MHz, 25°C): δ -111.5 (br, 2F, o-C₆F₅), -165.6 (m, 2F, m-C₆F₅), -166.4 (1F, t, J_FF = 20.3 Hz, p-C₆F₅). ¹³C{¹H} NMR (C₆D₆, 126 MHz, 25°C): δ 195.9 (d, 2J_CP = 12.1 Hz, RuC_NHC), 142.8 (d, J_CP = 26.7 Hz, PC₆H₅), 133.6 (d, J_CP = 127.4 (s, PC₆H₅), 127.1 (d, J_CP = 7.3 Hz, PC₆H₅), 123.6 (s, NCCH₃), 123.2 (s, NCCH₃), 43.2 (s, NCH₂CH₃), 42.4 (s, NCH₂CH₃), 15.4 (s, NCCH₃), 15.3 (s, NCCH₃).
NCCH₃), 9.2 (s, NCH₂CH₃), 9.0 (s, NCH₂CH₃). Elemental analysis calcd. (%) for C₄₂H₄₈N₄F₅PRu (835.88): C 60.34, H 5.79, N 6.70; found: C 60.36, H 5.74, N 6.72.

6.5.5. [Ru(IEt₂Me₂)(PPh₃)₂(C₆F₅)H] (12)

A J. Young’s resealable NMR tube containing [Ru(IEt₂Me₂)₂(PPh₃)₂H₂] (cct-8, 45 mg, 48 μmol) and C₆F₅H (16 μL, 145 μmol) was heated in C₆H₆ (0.5 mL) at 70°C overnight to afford a deep red solution. This was filtered by cannula and the filtrate evaporated to dryness. After washing with hexane (3 × 0.5 mL), the residue was redissolved in a minimal amount of THF and layered with hexane to afford deep red crystals of 12. Yield: 13 mg (28%). ¹H NMR (THF-d₈, 500 MHz, 25°C): δ 7.02–7.24 (br m, 30H, PC₆H₅), 3.38 (q, ³J_HH = 7.3 Hz, 2H, NCH₂CH₃), 2.90 (q, ³J_HH = 7.3 Hz, 2H, NCH₂CH₃), 1.96 (s, 3H, NCH₂CH₃), 1.92 (s, 3H, NCH₂CH₃), 0.48 (td, ³J_HH = 7.3 Hz, ⁴J_HF = 1.5 Hz, 3H, NCH₂CH₃), 0.34 (t, ²J_HH = 7.3 Hz, 3H, NCH₂CH₃), −24.66 (td, ²J_HF = 23.5 Hz, ²J_HF = 6.9 Hz, 1H, RuH). ³¹P{¹H} NMR (THF-d₈, 202 MHz, 25°C): δ 52.3 (s). ¹⁹F NMR (THF-d₈, 470 MHz, 25°C): δ −105.5 (m, 1F, o-C₆F₅), −111.8 (m, 1F, o-C₆F₅), −168.9 (m, 1F, m-C₆F₅), −170.1 (m, 1F, p-C₆F₅), −171.5 (t, 1F, ²J_FF = 20.2 Hz, p-C₆F₅). ¹³C{¹H} NMR (THF-d₈, 126 MHz, 25°C): δ 194.0 (m, RuCNHC), 139.0 (‘virtual triplet’ (‘vt’), J = 17 Hz, PC₆H₅), 134.6 (‘vt’, J = 6 Hz, PC₆H₅), 129.0 (s, PC₆H₅), 127.9 (‘vt’, J = 4 Hz, PC₆H₅), 126.2 (s, NCCH₃), 124.7 (s, NCCH₃), 44.0 (s, NCH₂CH₃), 42.5 (s, NCH₂CH₃), 14.5 (s, NCH₂CH₃), 9.8 (s, NCCH₃), 9.4 (s, NCCH₃), 6.4 (d, ²J_CF = 7.5 Hz,
NCH$_2$CH$_3$). Elemental analysis calcd. (%) for C$_{51}$H$_{47}$N$_2$F$_3$P$_2$Ru (945.92): C 64.75, H 5.01, N 2.96; found C 64.89, H 4.98, N 3.01.

6.5.6. [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)$_2$H][H$_2$F$_3$] (13)

![Chemical structure](image)

TREAT-HF (17.5 μL, 0.11 mmol) was added to a C$_6$H$_6$ (5 mL) solution of [Ru(IEt$_2$Me$_2$)$_2$(PPh$_3$)$_2$H$_2$] (cct-8, 100 mg, 0.11 mmol) in a J. Young’s resealable ampoule. The reaction mixture was stirred at room temperature for 30 min at room temperature, before the sample was reduced to dryness. The sticky orange/red residue was washed with hexane (2 × 2 mL) and Et$_2$O (2 × 2 mL) and then redissolved in THF (5 mL). Addition of Et$_2$O resulted in the precipitation of an orange solid, which was washed further with Et$_2$O (2 × 5 mL) and then dried in vacuo. Yield: 76 mg (69%). Crystals suitable for X-ray diffraction were obtained upon layering a concentrated THF-d_8 solution with hexane. 1H NMR (THF-d_8, 500 MHz, 25°C): δ 13.68 (br s, 2H, [H$_2$F$_3$]$^-$), 7.34–7.16 (m, 30H, PC$_6$H$_5$), 3.36 (q, 3J$_{HH}$ = 7.3 Hz, 4H, NCH$_2$CH$_3$), 2.75 (q, 3J$_{HH}$ = 7.3 Hz, 4H, NCH$_2$CH$_3$), 2.01 (s, 6H, NCC$_2$H$_5$), 1.81 (s, 6H, NCC$_2$H$_5$), 0.88 (t, 3J$_{HH}$ = 7.3 Hz, 6H, NCH$_2$CH$_3$), 0.44 (t, 3J$_{HH}$ = 7.3 Hz, 6H, NCH$_2$CH$_3$), −29.65 (t, 2J$_{HF}$ = 24.0 Hz, 1H, RuH). 31P(1H) NMR (THF-d_8, 202 MHz, 25°C): δ 46.1 (s). 19F NMR (THF-d_8, 470 MHz, 25°C): δ −115.2 (br s). Elemental analysis calcd. (%) for C$_{54}$H$_{65}$N$_4$F$_3$P$_2$Ru·2C$_4$D$_8$O (1149.75): C 64.71, H 5.70, N 4.87; found C 64.38, H 5.69, N 4.84.
6.5.7. [Ru(IMe)_4][PPh_3]_2HF] (ttt-14)

A benzene solution (2 mL) of IMe_4 (142 mg, 1.14 mmol) was cannula filtered into a benzene suspension (4 mL) of [Ru(PPh_3)_4H_2] (0.6 g, 0.52 mmol) and stirred for 2 days at 50°C before adding a THF solution (2 mL) of TREAT-HF (42 µL, 0.26 mmol) and stirring the resultant solution for further 2 h. CsF (158 mg, 1.04 mmol) was then added and the reaction mixture stirred overnight at room temperature, after which time the solution was filtered by cannula and reduced to dryness. The product was washed with Et_2O (3 x 5 mL) and dried in vacuo to afford ttt-14 as a pale yellow solid. Yield: 376 mg (81%). Crystals suitable for X-ray diffraction were obtained upon layering a saturated THF solution with pentane. ^1H NMR (500 MHz, C_6D_6, 25°C): δ 7.85 (br, 12H, PC_6H_5), 6.97 (br, 18H, PC_6H_5), 3.94 (s, 3H, NCH_3), 3.92 (s, 3H, NCH_3), 3.26 (s, 6H, NCH_3), 1.37 (s, 6H, NCCCH_3), 1.33 (s, 6H, NCCCH_3), -21.94 (dt, 1H, ^2J_HF = 48.0 Hz, ^2J_HP = 21.0 Hz, RuH). ^31P{^1H} NMR (C_6D_6, 162 MHz, 25°C): δ 50.1 (br s). ^19F NMR (C_6D_6, 376 MHz, 25°C): δ -331.5 (br, 1F, RuF). ^13C{^1H} NMR (126 MHz, C_6D_6, 25°C): δ 192.9* (t, ^2J_CP = 14 Hz, RuC_NHC), 141.3 (‘vt’, J_CP = 11.1 Hz, PC_6H_5), 135.2 (‘vt’, J_CP = 10.4 Hz, PC_6H_5), 126.5 (‘vt’, J_CP = 7.5 Hz, PC_6H_5), 124.0 (s, NCCH_3), 122.5 (s, NCCH_3), 35.5 (s, NCH_3), 35.4 (s, NCH_3), 33.4 (s, NCH_3), 33.0 (s, NCH_3), 9.9 (s, NCCH_3), 8.9 (s, NCCH_3). ^*RuC_NHC resonance recorded at 100 MHz on a more concentrated sample. Elemental analysis calcd. (%) for C_{50}H_{55}FN_4P_2Ru (893.46): C 67.15, H 6.20, N 6.27; found C 66.84, H 6.20, N 6.16.
6.5.8. \([\text{Ru(IMe}_4)_2\text{(PPh}_3\text{)(SiPh}_3\text{)H}_3]\) (17)

\[
\begin{align*}
\text{Ph}_3\text{P} & \quad \text{Ru} \quad \text{SiPh}_3 \\
\text{H} & \quad \text{N} \quad \text{N}
\end{align*}
\]

[\text{Ru(IMe}_4)_2\text{(PPh}_3\text{)(SiPh}_3\text{)H}_3\text{]} \text{ (ttt-9, 30 mg, 34.3 µmol)} \text{ and Ph}_3\text{SiH (44 mg, 0.17 mmol)} \text{ were dissolved in C}_6\text{H}_6 \text{ (0.5 mL) in a J. Young’s resealable NMR tube and heated overnight at 90°C. Colourless crystals of 17 were obtained after leaving the sample at room temperature for one week. These were recrystallised from toluene/pentane. Yield: 27 mg (91%). Selected }^{1}\text{H NMR (C}_6\text{D}_5\text{CD}_3, 500 MHz, 25°C): } \delta \\
\text{3.49 (s, 6H, NCH}_3\text{), 3.16 (s, 6H, NCH}_3\text{), 1.59 (s, 6H, NCCCH}_3\text{), 1.15 (s, 6H, NCCCH}_3\text{), -} \\
\text{4.84 (d, } J_{HP} = 11.0 \text{ Hz, 1H, RuH), -} \text{-6.13 (d, } J_{HP} = 9.9 \text{ Hz, 2H, RuH); }^{31}\text{P}\{^{1}\text{H}\} \text{ NMR (C}_6\text{D}_5\text{CD}_3, 121.5 MHz, 25°C): } \delta \text{ 59.6 (s). Selected }^{13}\text{C}\{^{1}\text{H}\} \text{ NMR (C}_6\text{D}_5\text{CD}_3, 126 MHz, 25°C): } \delta \text{ 192.2 (d, } J_{CP} = 11 \text{ Hz, RuC}_\text{CH}_3\text{), 150.9 (d, } J = 2 \text{ Hz, } i\text{-C}_6\text{H}_5\text{), 141.2 (d, } J = 30 \text{ Hz, } i\text{-C}_6\text{H}_5\text{), 123.3 (s, NCCH}_3\text{), 122.6 (s, NCCH}_3\text{), 37.7 (s, NCH}_3\text{), 36.0 (s, NCH}_3\text{), 9.9 (s, NCCH}_3\text{), 9.2 (s, NCCH}_3\text{). Elemental analysis calcd. (％) for C}_{50}\text{H}_{57}\text{N}_4\text{SiPRu-0.5C}_6\text{H}_5\text{CH}_3 \text{ (920.23): C 69.83, H 6.68, N 6.09; found 69.86, H 6.76, N 6.01.}
6.5.9. [Ru(IMe₄)₂(dppm)HF] (cct-21)

A toluene (0.4 mL) solution of [Ru(IMe₄)₂(PPh₃)₂HF] (ttt-14, 80 mg, 0.089 mmol) and dppm (41 mg, 0.107 mmol) was shaken vigorously in a J. Young’s resealable NMR tube for 1 h at room temperature. The solution was filtered, concentrated and layered with pentane to afford cct-21 as pale yellow crystals. Yield: 21 mg (31%).

1H NMR (C₆D₅CD₃, 400 MHz, -45°C): δ 8.66 (br, 4H, PC₆H₅), 7.41 (br, 4H, PC₆H₅), 7.13-6.96 (m, 6H, PC₆H₅), 4.57 (m, 1H, PCH₂P), 4.45 (m, 1H, PCH₂P), 4.18 (s, 3H, NC₃H₃), 4.17 (s, 3H, NC₃H₃), 3.14 (s, 6H, NC₃H₃), 1.48 (s, 6H, NC₃H₃), -19.68 (dt, $^2J_{HF} = 52.8$ Hz, $^2J_{HP} = 20.3$ Hz, 1H, RuH).

31P{1H} NMR (C₆D₆, 202 MHz, 25°C): δ -3.7 (s).

19F NMR (C₆D₆, 470 MHz, 25°C): δ -343.6 (t, $^2J_{HF} = 52.8$ Hz).

13C{1H} NMR (C₆D₅CD₃, 100 MHz, -45°C): δ 192.4 (dd, $^2J_{CP} = 115$ Hz, $^2J_{CP} = 33$ Hz, RuCₙH₅₅), 144.6 (t, $J_{CP} = 17$ Hz, i-PCH₃₅), 142.3 (t, $J_{CP} = 7$ Hz, o-PCH₃₅), 135.4 (t, m-PCH₃₅), 131.8 (t, p-PCH₃₅), 123.7 (s, NC₃H₃), 122.1 (s, NC₃H₃), 56.8 (t, $^1J_{CP} = 19$ Hz, PCH₂P), 53.9 (s, NC₃H₃), 33.9 (s, NC₃H₃), 33.6 (s, NC₃H₃), 9.4 (s, NC₃H₃), 8.8 (s, NC₃H₃). Elemental analysis calcd. (%) for C₃₉H₄₇N₄FP₂Ru (753.40): C 62.14, H 6.28, N 7.43; found C 62.25, H 6.31, N 7.45.
6.5.10. [Ru(IMe₄)₂(dppe)HF] (cct-22)

A toluene (0.4 mL) solution of [Ru(IMe₄)₂(PPh₃)₂HF] (ttt-14, 80 mg, 0.089 mmol) and dppe (42 mg, 0.107 mmol) was shaken vigorously for 1 h at room temperature in a J. Young’s resealable NMR tube. The solution was then filtered, concentrated and layered with pentane to afford cct-22 as pale yellow crystals. Yield: 34 mg (49%). ¹H NMR (C₆D₆, 400 MHz, 25°C): δ 8.70 (br, 4H, PC₆H₅), 7.36 (br m, 4H, PC₆H₅), 7.23 (m, 4H, PC₆H₅), 7.09 (m, 2H, PC₆H₅), 6.93 (br, 6H, PC₆H₅), 4.39 (s, 3H, NC₃H₃), 4.37 (s, 3H, NC₃H₃), 2.91 (s, 6H, NC₃H₃), 2.37 (m, 4H, P(ÇH₂)₂P), 1.47 (s, 6H, NCC₃H₃), 1.42 (s, 6H, NCC₃H₃), -22.9 (dt, ²JₕF = 51.9 Hz, ²JₜₕP = 22.1 Hz, RuH). ³¹P{¹H} NMR (C₆D₆, 162 MHz, 25°C): δ 64.8 (br s). ¹⁹F NMR (C₆D₆, 376 MHz, 25°C): δ -330.4 (br s). ¹³C{¹H} NMR (C₆D₆, 125 MHz, 25°C): δ 191.5 (dd, ²JₜₙₕP = 95 Hz, ²Jₜₙₙ₉ₚ = 18 Hz, RuCNHC), 146.7 (m, i-PC₆H₅), 143.8 (m, i-PC₆H₅), 135.7 (br, PC₆H₅), 131.6 (br, PC₆H₅), 124.2 (s, NC₃H₃), 122.7 (s, NC₃H₃), 35.0 (br t, J = 10 Hz, NCH₃), 33.8 (br m, NCH₃), 33.3 (t, ²Jₙₙₚ = 24 Hz, P(CH₂)₂P), 9.7 (s, NC₃H₃), 8.8 (s, NC₃H₃). Elemental analysis calcd. (%) for C₄₀H₄₉N₄PF₂Ru (767.85): C 62.57, H 6.43, N 7.29; found C 62.76, H 6.66, N 6.98.
6.5.11. [Ru(IMe)$_4$)$_2$(dppp)HF] (cct-23)

[Ru(IMe)$_4$)$_2$(PPh)$_3$HF] (ttt-14, 80 mg, 0.089 mmol) and dppp (44 mg, 0.11 mmol) were dissolved in toluene (0.4 mL) in a J. Young’s resealable NMR tube and the mixture shaken vigorously at room temperature for 1 h. After filtration, the filtrate was concentrated and layered with pentane to afford **cct-23** as pale yellow crystals. Yield: 45 mg (64%). 1H NMR (C$_6$D$_6$, 500 MHz, 25$^\circ$C): δ 8.05 (br m, 4H, PC$_6$H$_5$), 7.88 (br m, 4H, PC$_6$H$_5$), 7.09 - 6.84 (br m, 12H, PC$_6$H$_5$), 4.04 (s, 3H, NCH$_3$), 4.02 (s, 3H, NCH$_3$), 3.54 (br m, 2H, P(CH$_2$)$_3$P), 3.46 (s, 3H, NCH$_3$), 2.40 (br m, 2H, P(CH$_2$)$_3$P), 1.97 (m, 1H, P(CH$_2$)$_3$P), 1.70 (m, 1H, P(CH$_2$)$_3$P), 1.40 (s, 6H, NCCCH$_3$), 1.39 (s, 6H, NCCCH$_3$), -21.90 (dt, $^2J_{HF}$ = 52.7 Hz, $^2J_{HP}$ = 20.0 Hz, 1H, RuH). 31P{1H} NMR (C$_6$D$_6$, 202 MHz, 25$^\circ$C): δ 32.9 (s). 19F NMR (C$_6$D$_6$, 470 MHz, 25$^\circ$C): δ -332.9 (br s, RuF). 13C{1H} NMR (C$_6$D$_6$, 126 MHz, 25$^\circ$C): δ 193.0 (dd, $^2J_{CP}$ = 102 Hz, $^2J_{CP}$ = 30 Hz, RuC$_{NHC}$), 144.7 (‘t’, J_{CP} = 12 Hz, i-PC$_6$H$_5$), 142.5 (‘t’, J_{CP} = 14 Hz, i-PC$_6$H$_5$), 133.2 (br m, PC$_6$H$_5$), 126.9 (br m, PC$_6$H$_5$), 123.6 (s, NCCCH$_3$), 122.0 (s, NCCCH$_3$), 35.6 (m, NCH$_3$), 33.5 (m, NCH$_3$), 28.8 (br, P(CH$_2$)$_3$P), 19.9 (br s, P(CH$_2$)$_3$P), 9.6 (s, NCCCH$_3$), 8.9 (s, NCCCH$_3$). Elemental analysis calcd. (%) for C$_{41}$H$_{51}$N$_4$FP$_2$Ru (781.43): C 62.96, H 6.58, N 7.17; found C 63.14, H 6.50, N 7.43.
6.5.12. [Ru(IEt₂Me₂)₂(dppe)HF] (cct-24)

A toluene (0.4 mL) solution of [Ru(IEt₂Me₂)₂(PPh₃)₂HF] (cct-8, 50 mg, 53 μmol) and dppe (25 mg, 63 μmol) was shaken vigorously for 1 h at room temperature in a J. Young’s resealable NMR tube. The solution was filtered, concentrated and layered with pentane to afford cct-24 as pale yellow crystals. Yield: 19 mg (44%).

¹H NMR (C₆D₆, 500 MHz, 25°C): δ 8.35 (br m, 4H, PC₆H₅), 7.46 (br m, 4H, PC₆H₅), 7.19–7.13 (br m, 4H, PC₆H₅), 7.09–6.97 (br m, 8H, PC₆H₅), 6.13 (br m, 2H, NC₃H₂CH₃), 4.69 (m, 2H, NC₃H₂CH₃), 3.84 (m, 2H, NC₃H₂CH₃), 3.13 (m, 2H, NC₃H₂CH₃), 2.38 (m, 4H, P(CH₂)P), 1.67 (s, 6H, NCH₂C₃H₃), 1.61 (s, 6H, NCH₂C₃H₃), 1.10 (t, 3J_HH = 6.9 Hz, 6H, NCH₂C₃H₃), 0.62 (t, 3J_HH = 6.9 Hz, 6H, NCH₂C₃H₃), 0.62 (t, 3J_HH = 6.9 Hz, 6H, NCH₂C₃H₃), -22.32 (dt, 2J_HF = 54.5 Hz, 2J_HP = 21.6 Hz, 1H, RuH).

¹³C{¹H} NMR (C₆D₆, 126 MHz, 25°C): δ 191.1 (ddd, 2J_CP = 98 Hz, 2J_CP = 18 Hz, 2J_CF = 4 Hz, RuCNC₃), 145.8 (m, i-P(C₆H₅)), 143.3 (m, i-PC₆H₅), 135.0 (br m, PC₆H₅), 132.2 (‘t’, J_CP = 4 Hz, PC₆H₅), 127.4 (‘t’, J_CP = 4 Hz, PC₆H₅), 127.3 (‘t’, J_CP = 4 Hz, PC₆H₅), 127.2 (s, PC₆H₅), 124.6 (s, NCCH₃), 123.1 (s, NCCH₃), 42.7 (s, NCH₂CH₃), 41.7 (s, NCH₂CH₃), 41.4 (s, NCH₂CH₃), 32.8 (‘t’, J_CP = 23 Hz, P(CH₂)₂P), 17.0 (s, NCH₂CH₃), 14.8 (s, NCH₂CH₃), 9.7 (s, NCCH₃), 9.1 (s, NCCH₃).

Elemental analysis calcd. (%) for C₄₄H₇₇N₄FP₂Ru (823.96): C 64.14, H 6.97, N 6.80; found C 63.98, H 6.89, N 6.61.
6.5.13. [Ru(IMe₄)₂(dppm)H₂] (cct-25)

Et₃SiH (8.4 µL, 52.9 µmol) was added to a C₆D₆ solution (0.4 mL) of [Ru(IMe₄)₂(dppm)HF] (cct-21, 20 mg, 26.4 µmol) and the sample left for 2 days at room temperature to afford the cis,cis,trans-isomer of 25 as indicated by NMR spectroscopy. A small number of X-ray quality crystals were isolated upon layering a toluene solution with pentane. ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 8.38 (br, 8H, PC₆H₅), 7.12 (m, 6H, PC₆H₅), 7.05 (m, 6H, PC₆H₅), 4.79 (t, ²Jₜ= 9.1 Hz, 2H, P(CH₂)P), 3.70 (s, 12H, NC₃), 1.52 (s, 12H, NC₃), -5.37 (t, ²Jₜ= 16.9 Hz, 2H, RuH). ³¹P{¹H} NMR (C₆D₆, 202 MHz, 25°C): δ 10.9 (s). ¹³C{¹H} NMR (C₆D₆, 126 MHz, 25°C): δ 199.3 (dd, ²Jₜ= 111 Hz, ²Jₜ= 38 Hz, RuCNHC), 146.3 (’t’, Jₜ= 11 Hz, i-PC₆H₅), 133.3 (’t’, Jₜ= 6 Hz, o-PC₆H₅), 127.7 (s, p-PC₆H₅), 127.5 (’t’, Jₜ= 4 Hz, m-PC₆H₅), 122.2 (s, NC₃), 61.3 (t, ¹Jₜ= 17 Hz, PCH₂P), 36.8 (s, NC₃), 9.8 (s, NC₃).
6.5.14. \([\text{Ru(IMe}_4)_2(\text{dppe})\text{H}_2]\) (cct-26)

Et$_3$SiH (6 µL, 38 µmol) was syringed into a J. Young’s resealable NMR tube containing a C$_6$D$_6$ solution (0.4 mL) of \([\text{Ru(IMe}_4)_2(\text{dppe})\text{HF}]\) (cct-22, 16 mg, 19 µmol) and the sample left overnight at room temperature to afford the \textit{cis,cis,trans}-isomer of 26 as indicated by NMR spectroscopy. 1H NMR (C$_6$D$_6$, 500 MHz, 25°C): δ 7.90 (t, $^3J_{HP}$ = 7.5 Hz, 8H, PC$_6$H$_5$), 7.12 (m, 8H, PC$_6$H$_5$), 7.05 (m, 4H, PC$_6$H$_5$), 3.82 (s, 12H, NCH$_3$), 2.31 (d, $^2J_{HP}$ = 17.0 Hz, 4H, P(CH$_2$)$_2$P), 1.50 (s, 12H, NCCCH$_3$), -7.20 (t, $^2J_{HP}$ = 19.1 Hz, 2H, RuH). 31P{1H} NMR (C$_6$D$_6$, 202 MHz, 25°C): δ 86.0 (s). 13C{1H} NMR (C$_6$D$_6$, 126 MHz, 25°C): δ 197.7 (dd, $^2J_{CP}$ = 90 Hz, $^3J_{CP}$ = 20 Hz, RuCNHC), 146.1 (m, i-PC$_6$H$_5$), 133.1 (br m, PC$_6$H$_5$), 127.3 (br s, PC$_6$H$_5$), 127.2 (br m, PC$_6$H$_5$), 122.5 (s, NCCH$_3$), 9.9 (s, NCCCH$_3$). Leaving the sample to stand at room temperature for further few days afforded a small amount of pale yellow crystals of the all \textit{cis}-isomer of 26, which proved to be insoluble in all common NMR solvents. Yield: 7 mg (49%). Elemental analysis calcd. (%) for C$_{40}$H$_{50}$N$_4$P$_2$Ru (749.85): C 64.05, H 6.72, N 7.47; found C 64.39, H 6.76, N 7.35.
6.5.15. [Ru(IMe$_4$)$_2$(dppp)H$_2$] (cct-27)

Et$_3$SiH (8.1 µL, 51.0 µmol) was added to a C$_6$D$_6$ solution (0.4 mL) of [Ru(IMe$_4$)$_2$(dppp)HF] (cct-23, 20 mg, 25.5 µmol) and the sample left for 2 days at room temperature to afford cis,cis,trans-isomer of 27 as indicated by NMR spectroscopy. No attempt was made to isolate the complex. 1H NMR (C$_6$D$_6$, 500 MHz, 25°C): δ 7.99 (br, 8H, PC$_6$H$_5$), 7.03 (m, 8H, PC$_6$H$_5$), 6.95 (m, 4H, PC$_6$H$_5$), 3.87 (s, 12H, NCH$_3$), 2.82 (br, 4H, PCH$_2$CH$_2$CH$_2$P), 1.70 (m, 2H, PCH$_2$CH$_2$CH$_2$P), 1.40 (s, 12H, NCC$_3$), -6.64 (t, 2J$_{HF}$ = 19.2 Hz, 2H, RuH). 31P(1H) NMR (C$_6$D$_6$, 202 MHz, 25°C): δ 47.0 (s). 13C(1H) NMR (C$_6$D$_6$, 126 MHz, 25°C): δ 197.7 (dd, 2J$_{CP}$ = 99 Hz, 2J$_{CP}$ = 32 Hz, RuCNHC), 145.0 (‘t’, J$_{CP}$ = 12 Hz, i-PC$_6$H$_5$), 133.1 (‘t’, J$_{CP}$ = 5 Hz, o-PC$_6$H$_5$), 126.6 (m, overlapping m/p-PC$_6$H$_5$), 122.0 (s, NCCH$_3$), 37.1 (s, NCH$_3$), 35.4 (‘t’, J$_{CP}$ = 14 Hz, PCH$_2$CH$_2$CH$_2$P), 20.3 (‘t’, J$_{CP}$ = 5 Hz, PCH$_2$CH$_2$CH$_2$P), 9.8 (s, NCCH$_3$).
6.6. Experimental procedures and characterising data for Chapter 4

6.6.1. \([\text{Ru}({\text{IME}}_4)_2({\text{PPh}}_3)({\text{Ph}_2}{\text{PC}_{6}}{\text{H}_4}{\text{O}}){\text{H}}]\) (29)

\[\text{Ru}({\text{IME}}_4)_2({\text{PPh}}_3)_2{\text{H}_2}\] (ttt-9, 29.5 mg, 34 \(\mu\)mol) and DPEphos (21.7 mg, 40 \(\mu\)mol) were dissolved in 0.4 mL \(\text{C}_6\text{H}_6\) in a J. Young’s resealable NMR tube and heated at 90°C overnight. Subsequent addition of pentane resulted in precipitation of a pale yellow solid which was further washed with pentane (3 x 0.5 mL) and dried in vacuo. The resultant solid was redissolved in 0.2 mL toluene and layered with pentane to afford 29 as yellow crystals. Yield: 13 mg (43%). \(^1\)H NMR (\(\text{C}_6\text{D}_6\), 500 MHz, 25°C): \(\delta\) 7.77 (s, 6H, s, ArH), 7.52 (m, 1H, ArH), 7.39 (m, 1H, ArH), 7.32 (s, 4H, ArH), 6.96 (s, 10H, ArH), 6.86 (m, 2H, ArH), 6.80 (m, 4H, ArH), 6.50 (m, 1H, ArH), 3.79 (s, 6H, NCH\(_3\)), 3.03 (s, 6H, NCH\(_3\)), 1.34 (s, 6H, NCCCH\(_3\)), 1.23 (s, 6H, NCCCH\(_3\)), -18.40 (t, \(^2\)J\(_{\text{HP}}\) = 22.0 Hz, 1H, RuH). \(^{31}\)P\(^{\text{[1]}\text{H}}\) NMR (\(\text{C}_6\text{D}_6\), 202 MHz, 25°C): \(\delta\) 51.3 (s). \(^{13}\)C\(^{\text{[1]}\text{H}}\) NMR (\(\text{C}_6\text{D}_6\), 126 MHz, 25°C): \(\delta\) 192.1 (t, \(^2\)J\(_{\text{CP}}\) = 15 Hz, NCN), 178.4 (dd, \(^2\)J\(_{\text{CP}}\) = 14 Hz, \(^3\)J\(_{\text{CP}}\) = 12 Hz, OAr), 143.1 (dd, J\(_{\text{CP}}\) = 17 Hz, J\(_{\text{CP}}\) = 14 Hz, Ar), 141.5 (dd, J\(_{\text{CP}}\) = 18 Hz, J\(_{\text{CP}}\) = 15 Hz, Ar), 135.3 (s, Ar), 134.5 (t, J\(_{\text{CP}}\) = 6 Hz, Ar), 132.6 (t, J\(_{\text{CP}}\) = 6 Hz, Ar), 131.1 (s, Ar), 127.4 (s, Ar), 126.7 (m, Ar), 123.3 (s, NCCCH\(_3\)), 123.2 (s, NCCCH\(_3\)), 121.4 (t, J\(_{\text{CP}}\) = 3 Hz, Ar), 111.5 (t, J\(_{\text{CP}}\) = 2 Hz, Ar), 35.1 (s, NCH\(_3\)), 22.0 (s, NCH\(_3\)), 10.1 (s, CH\(_3\)), 8.8 (s, CH\(_3\)). Elemental analysis calcd. (%) for C\(_{50}\)H\(_{54}\)N\(_4\)OP\(_2\)Ru (889.45): C 67.48, H 6.11, N 6.29; found: C 68.02, H 6.08, N 6.30.
6.6.2. \([\text{Ru}(\text{IEt}_2\text{Me}_2)(\text{IEt}_2\text{Me}_2\text{C}_6\text{H}_4\text{PPh}_3)(\text{Ph}_2\text{PC}_6\text{H}_4\text{O})\text{H}](31)\)

\[\text{Ru}(\text{IEt}_2\text{Me}_2)_2(\text{PPh}_3)_2\text{H}_2\] (cct-8, 31 mg, 0.033 mmol) and DPEphos (21.5 mg, 40 µmol) were dissolved in Et₂O (0.3 mL) in a J. Young’s resealable NMR tube and refluxed at 60°C overnight to afford pale orange crystals of 31, which were isolated by cannula filtration, washed with Et₂O (3 x 0.5 mL) and dried in vacuo. Yield: 12 mg (39%).

\(^1\)H NMR (C₆D₆, 500 MHz, 25°C): δ 8.97 (br s, 1H, ArH), 8.43 (br s, 2H, ArH), 7.63 (dt, \(J_{HH} = 7.7\) Hz, \(J_{HH} = 1.6\) Hz, 1H, ArH), 7.35-7.20 (m, 4H, ArH), 7.08-6.95 (m, 4H, ArH), 6.91 (br s, 3H, ArH), 6.88-6.74 (m, 5H, ArH), 6.70-6.48 (m, 7H, ArH), 5.72 (m, 1H, NCCH₃), 5.13 (m, 1H, NCH₂CH₃), 5.11 (m, 1H, NCH₂CH₃), 3.82 (m, 1H, NCCH₃), 3.38 (m, 1H, NCH₂CH₃), 2.18 (m, 1H, NCH₂CH₃), 1.59 (s, 3H, NCH₂CH₃), 1.46 (s, 3H, NCH₂CH₃), 1.42 (s, 3H, NCH₂CH₃), 1.12 (t, \(J_{HH} = 7.1\) Hz, 3H, NCH₂CH₃), 0.85 (t, \(J_{HH} = 7.0\) Hz, 3H, NCH₂CH₃), -17.71 (dd, \(J_{HP} = 20.0\) Hz, \(J_{CP} = 15\) Hz, 1H, RuH).
(s, p-C$_6$H$_5$), 130.2 (s, p-C$_6$H$_5$), 124.7 (d, $J = 3$ Hz, NCCH$_3$), 124.0 (br t, $J = 2$ Hz, NCCH$_3$), 123.8 (d, $J = 3$ Hz, NCCH$_3$ of IEtMe$_2$(C$_6$H$_4$)PPh$_2$), 123.7 (d, $J = 2$ Hz, NCCH$_3$ of IEtMe$_2$(C$_6$H$_4$)PPh$_2$), 43.8 (s, NCH$_2$CH$_3$), 43.5 (s, NCH$_2$CH$_3$), 41.4 (s, NCH$_2$CH$_3$ of IEtMe$_2$(C$_6$H$_4$)PPh$_2$), 123.7 (d, $J = 2$ Hz, NCCH$_3$ of IEtMe$_2$(C$_6$H$_4$)PPh$_2$), 11.1 (s, NCCH$_3$), 10.0 (s, CH$_3$), 9.3 (s, NCCH$_3$), 8.9 (s, NCCH$_3$). Elemental analysis calcd. (%) for C$_{52}$H$_{56}$N$_4$OP$_2$Ru (915.46): C 68.18, H 6.16, N 6.12; found: C 68.57, H 6.16, N 6.02.

6.6.3. [Ru(DPEphos)$_2$H$_2$] (33)

[Ru(PPh$_3$)$_2$H$_2$] (32, 300 mg, 0.26 mmol) and DPEphos (336 mg, 0.62 mmol) were dissolved in C$_6$H$_6$ (2 mL) and stirred at 25°C for 8 h. The solution was subsequently filtered by cannula and layered with pentane to afford 33 as yellow crystals. Yield: 270 mg (88%). 1H NMR (C$_6$D$_6$, 500 MHz, 25°C): δ 7.78-7.31 (m, 12 H, ArH), 7.02-6.19 (m, 44 H, ArH), -9.80 (m, 2 H, RuH). 31P{1H} NMR (C$_6$D$_6$, 202 MHz, 25°C): δ 41.4 (t, $^2J_{pp} = 18$ Hz), 35.3 (t, $^2J_{pp} = 18$ Hz). Elemental analysis calcd. (%) for C$_{69}$H$_{55}$O$_2$P$_4$Ru (1140.39): C 73.26, H 4.96; found: C 73.14, H 5.12.
6.6.4. [Ru(DPEphos)(Ph₂PC₆H₄O)H] (34)

[Ru(PPh₃)₂H₂] (32, 0.3 g, 0.26 mmol) and DPEphos (0.31 g, 0.57 mmol) were dissolved in THF (3 mL) in an ampoule fitted with a J. Young’s resealable tap and heated at 80°C overnight. The solution was subsequently filtered by cannula, reduced to dryness to give a yellow solid which was washed with pentane (3 x 10 mL) and dried in vacuo. Yield: 125 mg (51%). ¹H NMR (C₆D₆, 500 MHz, 25°C): δ 8.33-7.20 (m, 18H, ArH), 7.09-6.33 (m, 24H, ArH), -13.95 (q, ²J_HP = 21.7 Hz, RuH); ³¹P{¹H} NMR (C₆D₆, 202 MHz, 25°C): δ 76.8 (t, ²J_PP = 30.1 Hz, Ph₂PC₆H₄O), 49.9 (br s, DPEphos). ³¹P{¹H} NMR (C₆D₅CD₃, 202 MHz, -15°C): δ 76.2 (t, ²J_PP = 30.1 Hz, Ph₂PC₆H₄O), 49.6 (d, ²J_PP = 30.1 Hz, DPEphos), 48.8 (d, ²J_PP = 30.1 Hz, DPEphos).

6.6.5. [Ru(DPEphos)(Ph₂PC₆H₄O)Cl] (35)

[Ru(DPEphos)(Ph₂PC₆H₄O)H] (34, 60mg, 65.4 µL) was dissolved in CH₂Cl₂ in a J. Young’s resealable NMR tube and refluxed overnight. 35 was obtained as an orange microcrystalline solid upon layering a concentrated solution with Et₂O. The solid was washed with Et₂O (3 x 0.5 mL) and dried in vacuo. Yield: 26 mg (42%).
\({ }^{31} \text{P} \left(^{1} \text{H} \right) \) NMR (CH\(_2\)Cl\(_2\), 202 MHz, 25°C): \(\delta \) 64.5 (t, \(^2J_{PP} = 29.5 \) Hz, Ph\(_2\)P(C\(_6\)H\(_4\))O), 35.0 (br s, DPEphos), 30.7 (br s, DPEphos).

6.7. Experimental procedures and characterising data for Chapter 5

6.7.1. [Ru(PPh\(_3\))\(_3\)HF] (37)

\[\text{Ru(PPh}_3\text{)}\text{HF} \]

[Ru(PPh\(_3\))\(_3\)HF] (32, 0.3 g, 0.26 mmol) and P(C\(_6\)F\(_5\))\(_3\) (48 mg, 91.1 µmol) were dissolved in C\(_6\)H\(_6\) (2 mL) and stirred at 25°C overnight. The solution was subsequently filtered by cannula and layered with pentane to afford 37 as dark red crystals. Yield: 203 mg (79%). \(^1\text{H} \) NMR (THF-\(d_8\), 500 MHz, 25°C): \(\delta \) 7.27 (t, \(^3J_{HP} = 7.8 \) Hz, 18H, o-PC\(_6\)H\(_5\)), 7.12 (t, \(^5J_{HP} = 7.4 \) Hz, 9H, p-PC\(_6\)H\(_5\)), 6.94 (t, \(^4J_{HP} = 7.6 \) Hz, 18H, m-PC\(_6\)H\(_5\)), -22.33 (q, \(^2J_{HP} = 28.0 \) Hz, 1H, RuH). \({ }^{31} \text{P} \left(^{1} \text{H} \right) \) NMR (CD\(_2\)Cl\(_2\), 162 MHz, -25°C): \(\delta \) 88.9 (d, \(^2J_{PF} = 79.3 \) Hz), 39.6 (s). \(^19\text{F} \) NMR (CD\(_2\)Cl\(_2\), 376 MHz, -25°C): \(\delta \) -216.5 (d, \(^2J_{FP} = 79.3 \) Hz). Elemental analysis calcd. (%) for C\(_{54}\)F\(_{46}\)H\(_4\)P\(_3\)Ru (907.35): C 71.42, H 5.11; found: C 71.80, H 5.24.

6.7.2. [Ru(PPh\(_3\))\(_3\)(SiEt\(_3\))H\(_3\)] (38)

\[\text{Ru(PPh}_3\text{)}\text{3(SiEt}_3\text{)}\text{H}_3 \]

[Ru(PPh\(_3\))\(_3\)HF] (37, 33.5 mg, 36.9 µmol) and Et\(_3\)SiH (11.7 µL, 73.8 µmol) were shaken vigorously in THF-\(d_8\) in a J. Young’s resealable NMR tube for 2 h to give a pale orange solution. Pale yellow crystals of 38 were obtained upon slow evaporation of solvent in the glovebox. These were washed with pentane (3 x 0.5 mL) and dried in
vacuo. Yield: 12.5 mg (42%). 1H NMR (THF-d_8, 400 MHz, 25°C): δ 7.16 (t, 5J$_{HP}$ = 7.3 Hz, 9H, p-PC$_6$H$_5$), 7.11 (t, 3J$_{HP}$ = 8.0 Hz, 18H, o-PC$_6$H$_5$), 6.93 (t, 4J$_{HP}$ = 7.3 Hz, 18H, m-PC$_6$H$_5$), 0.61 (t, 3J$_{HH}$ = 7.6 Hz, 9H, Si(CH$_2$C$_2$H$_5$)$_3$), 0.43 (q, 3J$_{HH}$ = 7.6 Hz, 6H, Si(CH$_2$C$_2$H$_5$)$_3$), -10.58 (m, 3H, RuH$_3$). 31P{1H} NMR (THF-d_8, 162 MHz, 25°C): δ 41.8 (s). Elemental analysis calcd. (%) for C$_{60}$H$_{63}$P$_3$RuSi (1005.46): C 71.61, H 6.31; found: C 71.32, H 6.66.

6.7.3. [Ru(PPh$_3$)$_3$(SiPh$_3$)H$_3$] (39)

Ph$_3$SiH (34 mg, 0.13 mmol) was dissolved in C$_6$H$_6$ (2 mL) and slowly added to the C$_6$H$_6$ (5 mL) solution of [Ru(PPh$_3$)$_4$H$_2$] (32, 100 mg, 86.8 µmol). The reaction mixture was left undisturbed overnight, after which time the colour changed from pale yellow to colourless. The solution was subsequently layered with hexane and left at room temperature for a further few days to afford 39, which was isolated as colourless crystals. Yield: 40 mg (80%). Selected 1H NMR (C$_6$D$_6$, 500 MHz, 25°C): δ -9.37 (m, RuH$_3$). 31P{1H} NMR (C$_6$D$_6$, 202 MHz, 25°C): δ 37.5 (s). Elemental analysis calcd. (%) for C$_{72}$H$_{63}$P$_3$RuSi (1150.37): C 75.17, H 5.52; found: C 75.16, H 5.82.

6.7.4. [Ru(PPh$_3$)$_3$(HBPin)H$_2$] (40)

A C$_6$H$_6$ solution (0.5 ml) of [Ru(PPh$_3$)$_3$HF] (37, 15 mg, 16.5 µmol) and HBPin (24.0 µL, 0.16 mmol) was layered with pentane to afford a small amount of crystals of
40 over a period of ca. 2 weeks. 1H NMR (C$_6$D$_5$CD$_3$, 400 MHz, -15°C): δ -8.04 (td, 2J$_{HP}$ = 27.2 Hz, 2J$_{HP}$ = 16.3 Hz, RuH), -9.49 (dm, $J \approx$ 37 Hz, RuH), -10.46 (dt, 2J$_{HP}$ = 59.7, 2J$_{HP}$ = 17.5 Hz, RuH). 31P1H NMR (C$_6$D$_5$CD$_3$, 162 MHz, -15°C): $\delta.$ 52.2 (d, 2J$_{PP}$ = 25.0 Hz), 50.4 (t, 2J$_{PP}$ = 25.0 Hz).

6.8. References for Chapter 6