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Abstract 
 

To examine whether the volume of previous exercise training in older athletes influences 

inflammatory, redox and hormonal profiles at rest and in response to acute exercise, forty trained 

marathon runners were divided into higher-volume (HVG, ~480 min/week) and lower-volume groups 

(LVG, ~240 min/week). Plasma inflammatory proteins, redox biomarkers and salivary testosterone 

and cortisol, were assessed at rest and following two maximal acute exercise bouts. At rest, the LVG 

exhibited higher C-Reactive Protein (CRP), higher protein carbonyls and lower super-oxide dismutase 

(SOD) activity compared to the HVG (p’s<0.05). In response to exercise, Tumour Necrosis Factor 

(TNF)- declined similarly in both groups whereas CRP increased differentially (+60% LVG; +24% 

HVG; p’s<0.05). Protein carbonyls decreased and thiols increased similarly in both groups, but SOD 

declined differentially between groups (−14% LVG; −20% HVG; p’s<0.05). Salivary testosterone 

decreased similarly in both groups, whereas cortisol did not change. To summarise, a higher volume 

of past exercise training is associated with favorable inflammatory and redox profiles at rest, perhaps 

mediated by smaller inflammatory responses to acute exercise. 

 

Keywords: aging; exercise training; cytokines; cortisol; testosterone; redox. 
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Introduction 

             An aim of sports training is to improve performance, but sometimes this goal is not reached if 

training intensity, duration, and length of recovery is not appropriate, leading to maladaptive changes 

in physiology (Gleeson, 2002; Kellmann, 2010; Meeusen et al., 2013). This process includes changes 

in immunological, inflammatory and hormonal parameters that can be measured at rest, over the 

course of a day, or in response to acute exercise (Gleeson, 2002; Kellmann, 2010; Meeusen et al., 

2013). Although the effects of high volume of training have been well described in young adults, there 

is limited data for elderly athletes, and it is conceivable that these processes might occur differentially 

across the life course, perhaps even modulating aging processes. 

Aging is associated with a progressive change in most aspects of physiology, including 

impairments to the cardiovascular, musculoskeletal, immune and endocrine systems (Lopez-Otin, 

Blasco, Partridge, Serrano, & Kroemer, 2013). Although many processes implicated in aging and 

disease are improved, or at least limited, by moderate to high volumes of exercise, evidence is 

beginning to show that some aging processes might be accelerated by very high volumes of exercise 

(Simpson et al., 2016; Turner, 2016; Turner, Bennett, Bosch, Griffiths, & Aldred, 2014). For example, 

it is possible that the prolonged inflammatory profile seen during periods of very high volume training 

or following extreme exercise (Turner et al., 2014), which in middle-aged or elderly individuals, would 

be superimposed on the age-associated increase in inflammation, could exacerbate the decline in 

immune function known as “immunosenescence” (Simpson et al., 2016; Turner, 2016). Even with 

acute bouts of exercise, there appears to be a threshold by which some damage can occur. For example, 

it has been shown that exercise-induced lymphocyte apoptosis only occurs at an intensity of around 

60% of VO2max (Navalta, Sedlock, & Park, 2007). Thus, optimizing training loads, and establishing 

methods to assess the effects of inappropriate volumes and intensities of exercise, might be even more 

important for middle-aged or elderly athletes compared to their younger counterparts. Perturbations in 

inflammatory and endocrine parameters, measured during periods of heavy training, and in particular, 

in response to acute bouts of exercise, have been linked to inappropriate training loads in athletes. 

These measurements include the magnitude of the exercise-induced change in cortisol and testosterone 
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levels, as well as plasma inflammatory markers (e.g. IL-6) (Meeusen et al., 2013; Urhausen, Gabriel, 

& Kindermann, 1998). It is thus hypothesized that high-volume training would exacerbate both 

inflammatory and endocrine responses to acute bouts of exercise during aging. 

One factor implicated in aging, which is also influenced by high volumes of exercise, is altered 

redox balance: an increase in the levels of reactive oxygen species (ROS) that can sometimes 

overwhelm our antioxidant defenses leading to oxidative stress (Gutteridge & Halliwell, 2000, 2010; 

Halliwell, 1996). The antioxidant system is divided into non-enzymatic defenses (e.g., ascorbic acid) 

and enzymatic defenses, including superoxide dismutase (SOD) and glutathione peroxidase (GPx) that 

are present within cells but also in extracellular fluids, such as plasma (Gutteridge & Halliwell, 2000; 

Halliwell, 1996). SOD has an important role of catalyzing the dismutation of superoxide into oxygen 

and hydrogen peroxide, which is further converted to water by the enzyme catalase (Gutteridge & 

Halliwell, 2000; Halliwell, 1996). GPx reduces peroxides and hydroxyl radicals into non-toxic forms 

by concomitant oxidation of reduced glutathione (GSH) into an oxidized form, glutathione disulfide 

(GSSG) (Gutteridge & Halliwell, 2000; Halliwell, 1996). Measuring the functional capacity of these 

antioxidant molecules might indicate the ability to cope with large productions of ROS, which in turn 

can be estimated by assessing the characteristics of plasma proteins. These measurements include 

plasma protein carbonyls, formed by the oxidation of protein carboxyl groups or by oxidative cleavage 

of proteins (Berlett & Stadtman, 1997), or the levels of protein thiol groups, which have antioxidant 

properties (Griffiths et al., 2002). Aging has been associated with the cumulative effects of ROS in 

most tissues, potentially caused by, or leading to, an impaired antioxidant defense system, resulting in 

an accumulation of oxidized proteins, lipids and DNA (Finkel & Holbrook, 2000; Jacob, Noren 

Hooten, Trzeciak, & Evans, 2013). Like aging, prolonged and intense exercise can result in oxidative 

stress, possibly from the overproduction of ROS by contraction of skeletal muscles, excessive 

inflammatory activity, and periods of ischemia and reperfusion (Alessio, Goldfarb, & Cutler, 1988; 

Powers & Jackson, 2008; Radak, Zhao, Koltai, Ohno, & Atalay, 2013; Reid, Shoji, Moody, & Entman, 

1992; Sjodin, Hellsten Westing, & Apple, 1990; Vina et al., 2000). It is thought that because endurance 

exercise can increase ROS production by skeletal muscles, habitual exercise training may upregulate  
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antioxidant defense system, especially in muscle (Powers, Radak, & Ji, 2016). For example, it has 

been shown that six months of resistance training attenuated exercise-induced lipid peroxidation in 

the elderly, likely due to an increase in antioxidant capacity (Vincent, Vincent, Braith, Lennon, & 

Lowenthal, 2002).  Furthermore, a sixteen week progressive endurance training program in inactive 

older men lowered lipid peroxidation (MDA) and 3-nintrotyrosine (3-NT), and increased GPx and 

total antioxidant capacity (Fatouros et al., 2004). 

The present study investigated whether the volume of habitual exercise training, in athletes 

over 60 years of age, influences inflammatory, redox and hormonal profiles at rest and in response to 

the accumulated effect of two maximal exercise bouts separated by four hours of rest. We hypothesize 

that high-volume trained athletes (480 min/week) would report larger inflammatory, redox, and 

neuroendocrine responses to acute exercise as compared to low-volume trained athletes (240 

min/week). 

Methods 

Subjects 

The sample size required for the present study was calculated utilizing G*Power software 

(version 3.1.9), based on previous studies that analyzed the effects of training volume in older subjects 

(Cannon & Marino, 2010). Results indicated that 11 subjects in each group would provide a statistical 

power greater than 0.85 for all variables. Forty-two physically active male and female marathon 

runners were recruited for this study (Table 1). Recruitment criteria consisted of being at least 60 years 

of age, and if female, being in the post-menopausal period. All participants self-reported to eat a 

normal diet. Exclusion criteria were the presence of osteoarthritis, joint diseases, heart disease, 

gastrointestinal disease, liver disease, autoimmune diseases, infections during the last two weeks, 

presence or history of neoplasias, neurodegenerative diseases, mood disorders, severe orthopedic or 

lung disorders, medication use (beta blockers, glucocorticoids, antidepressants, etc.), and 

supplementation with proteins, vitamins, minerals or antioxidants. 
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Participants were divided into two groups. A higher-volume training group (n=21) consisted 

of individuals who had both taken part in marathons in previous years (2011, 2012, 2013 or 2014) and 

who undertook more than 24 h of training per month. A lower-volume training group (n = 21) consisted 

of individuals who self-reported to undertake less than 24 h per month of training using a questionnaire 

(Prompt Questions for Physical Activity; developed at Anhembi Morumbi University, School of 

Medicine).  

From the forty-two individuals enrolled in the study, two had signs of myocardial ischemia in 

response to the first bout of exercise, and were excluded from the study and all analyses. Thus the 

higher-volume group consisted of nineteen individuals and the lower-volume group consisted of 

twenty-one individuals. All participants were fully informed about the procedures and possible risks 

involved before providing written and informed consent. The study was approved by an Institutional 

Review Board (reference: 293-035). All experimental procedures were in accordance with the 

declaration of Helsinki regarding human experimentation. 

 

Pre-experimental procedures 

Prior to arriving at the laboratory, participants were instructed to refrain from consuming 

alcohol and caffeine for 48 hours, refrain from undertaking exercise for 24 hours, and to eat their 

habitual diet. All participants were regular caffeine drinkers and consumption was not restricted prior 

to this study. Participants arrived at the laboratory at midday, in a fed state, having eating their habitual 

breakfast at least two hours before. Participants rested for 10 min before anthropometric data were 

collected, including weight, height and body composition using skinfold calipers. Percentage body fat 

was calculated with the Petroski (1996) formula for men (Benedetti, Borges, Petroski, & Goncalves, 

2008; Pereira, da Silva, Santos, Petroski, & Geraldes, 2013; Vasconcelos Fde, Cordeiro, Rech, & 

Petroski, 2010) and the Tran & Weltman (1989) formula for women (Tran & Weltman, 1989). The 

short version of POMS (Profile of Mood States, the Brunel Mood Scale) was used to assess 

psychological state (Table 1) (Kellmann, 2010; Purvis, Gonsalves, & Deuster, 2010; Shacham, 1983).  
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Experimental protocol 

Participants were observed in a controlled laboratory setting over approximately 4.5 hours 

whereby inflammatory, redox and hormonal profiles were characterized at rest, and after undertaking 

two maximal bouts of exercise, separated by four hours. The rationale for this design was to cause a 

disturbance to allostasis by the accumulated effect of two maximal physiological stressors, 

interspersed with a short and controlled recovery period, that may be insufficient for individuals 

already exhibiting disruptions to allostasis (e.g., perhaps due to regular very high-volume exercise 

training).  

After undertaking anthropometric measurements, a resting blood sample was collected and 

participants provided a saliva sample (see: blood and saliva collection). Participants then undertook 

the first of two standardized maximal exercise tests on a treadmill. Each exercise test consisted of 

walking at 3.4 km h-1 0% incline as a warm-up for five minutes, followed by an intensive ramp 

protocol, whereby the treadmill speed increased by 0.1 km h-1 every 4 sec (i.e., a 1.5 km h-1 increase 

each minute) until exhaustion. Throughout exercise, heart rate was monitored by electrocardiography 

and ratings of perceived exertion were recorded using the Borg scale.  

After the first exercise test, participants rested for 4 h in the laboratory whereby only light 

stretching or seated rest was allowed. Participants did not consume any food during this period, but 

were asked to drink 500 mL of water. Following this recovery period, a second exercise test, identical 

to the first, was undertaken. Upon exhaustion, participants returned to a seated position, and after a 5 

min period of rest, a venous blood sample was collected and participants provided an un-stimulated 

saliva sample (see blood and saliva collection). Test-rest reliability was not determined. 

 

Blood and saliva collection 

Blood samples were collected by venepuncture of an antecubital vein and five milliliters of 

blood was drawn into an EDTA tube. Immediately after collection, blood samples were centrifuged at 

400g for 5 minutes to aliquot plasma. Un-stimulated saliva samples were collected using sublingual 
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cotton (3 minute collection), and transferred into a tube without preservatives. Saliva was centrifuged 

at 400g for 5 minutes for separation from the cotton, and the supernatant was aliquoted. All samples 

were stored at −80°C until analysis.  

 

Total plasma protein determination 

 Plasma protein concentration was determined with the Bradford assay (Bio-Rad, Hercules, 

CA) and used to normalize enzymatic and oxidative damage measurements. Data were expressed as 

g/L. 

 

Plasma inflammatory proteins 

Plasma levels of C-reactive protein (CRP, Cat.# KHA0031), Interleukin (IL)-6 (Cat.# 

KHC0061) and Tumour Necrosis Factor (TNF)-α (Cat.# KHC3011) were measured by enzyme-linked 

immunosorbent assay (ELISA) according to manufacturer instructions (Invitrogen, CA, USA). All 

samples were assayed in duplicate. Detection limits were 10 pg/mL (CRP), 2 pg/mL (IL-6) and 1.7 

pg/mL (TNF-α). The intra- and inter-assay coefficients of variation were less than 10%.  

 

Activity of antioxidant enzymes 

 Superoxide dismutase (SOD) and Glutathione Peroxidase (GPx) enzyme activity was 

measured in plasma. The activity of SOD was assessed by quantifying the inhibition of superoxide-

dependent adrenaline auto-oxidation with the absorbance at 480 nm measured using a 

spectrophotometer. All samples were assayed in duplicate and values were expressed as units of SOD 

activity per milligram of protein. The activity of GPx was assessed using t-butyl hydroperoxide and 

GSH as substrates with the absorbance measured at 340 nm uisng a spectrophotometer. All samples 

were assayed in duplicate and values were expressed as units of GPx activity per milligram of protein 

(Wendel, 1981). The intra- and inter-assay coefficients of variation were less than 10%. 
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Oxidative stress biomarkers 

 Plasma protein carbonylation was measured based on the reaction with dinitrophenylhydrazine 

(DNPH) (Levine et al., 1990). Briefly, proteins were precipitated by the addition of 20 % 

trichloroacetic acid (Wajswelner, Metcalf, & Bennell) and solubilized in DNPH. All samples were 

assayed in duplicate, with absorbance measured at 370 nm using a spectrophotometer and the values 

expressed as nmol of carbonyls per milligram of protein. Total plasma reduced thiol (-SH) 

concentration was measured by diluting plasma 1:1 in PBS followed by incubation for 60 minutes at 

25 °C with 10 mM 5,5’-dithiobis-2-nitrobenzoic acid (DTNB or Ellman’s reagent) in ethanol. All 

samples were assayed in duplicate, absorbance was measured at 412 nm using a spectrophotometer, 

and values expressed as mmols of SH per milligram of protein (Ellman, 1959). The intra- and inter-

assay coefficients of variation were less than 10%.  

 

Salivary cortisol and testosterone 

 Samples were analyzed in duplicate by radioimmunoassays (Coat-A-Count® Cortisol Kit - 

Siemens Medical Solutions Diagnostics, Los Angeles, CA, USA) according to manufacturer 

instructions. The sensitivity of these assays was 0.1 nM. All samples were assayed in duplicate and 

values were expressed as nmol/L. The intra- and inter-assay coefficients of variation were less than 

10%. 

 

Statistical analysis 

All variables tested for normal distribution using the Kolmogorov-Smirnov test. For 

continuous variables, the differences between groups were analyzed by two-way ANOVA for 

determining both Group (higher-volume vs. lower-volume) and Time (baseline vs. post-exercise) 

effects. At baseline, differences between groups were assessed by independent t tests.  Effect sizes are 

reported as eta-squared (η2). Conventionally, η2 values of 0.01, 0.06 and 0.14 are considered small, 

medium and large effect sizes, respectively. Non-normally distributed variables were log transformed. 
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Correlations were determined using Spearman’s rank correlation coefficient (rs). Statistical 

significance was accepted as p<0.05. Data were analyzed using the Statistical Package for Social 

Sciences 20 (IBM SPSS Inc., Chicago, IL, USA). 

 

Results 

Participant characteristics at baseline 

The characteristics of the participants at baseline are presented in Table 1. The higher-volume 

group self-reported significantly more exercise training per month (p<0.0001), longer distance of 

running per week (<0.0001), and higher speed (p<0.001) than the lower-volume training group. There 

were no significant differences in terms of age, number of males/females, body mass index, and % 

body fat. Both groups exhibited favorable psychological profiles, as shown by high values of the vigor 

construct and the low values of the confusion and tension constructs. 

At baseline, plasma IL-6 and TNF-α were similar between groups, however, the lower-volume 

training group exhibited higher CRP levels (+17.85%, p<0.0001) compared to the higher-volume 

group (Table 1 and Figure 1). At baseline, both groups exhibited similar plasma total thiol levels and 

glutathione peroxidase activity, but plasma protein carbonyl concentration was greater (+23%, 

p=0.07), and SOD activity was less (−4%, p=0.06) in the lower-volume group compared to the higher-

volume training group. Both groups exhibited similar salivary levels of stress-related hormones 

(cortisol and testosterone) at baseline (Table 1). Total plasma protein concentration did not differ 

between groups at baseline: lower-volume (8.31±1.23 g/L) vs. high–volume (8.13±1.33 g/L; 

F=0.17, p=0.68).  

Exercise test characteristics 

The higher-volume training group maintained a higher top speed compared to the lower-

volume group during the first and second exercise tests (Group effect; p<0.0001) (Table 2). There 

were no Time or Group × Time interaction effects for running speed. No differences in exercise 
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duration, heart rate or ratings of perceived exertion were found in the response to each test in either 

group (Table 2). 

 

Inflammatory response to exercise 

Plasma TNF- levels decreased over time from baseline to the sample collected after the 

second exercise test in both groups (Time effect: F=6.15, p=0.01, η2 = 0.08; Figure 1A). Plasma IL-6 

did not change over time in either of the groups (Figure 1B). There were neither Group effects nor 

Group × Time effects for these cytokines. CRP levels increased significantly over time in both groups 

(Time effect: F=83.82, p<0.0001, η2 = 0.53). The magnitude of this change in CRP was greater in the 

lower-volume group (+60% increase) compared to higher-volume group (+24% increase) (Group × 

Time interaction: F=20.62, p<0.0001, η2 = 0.22; Figure 1C).  

 

Oxidative stress biomarkers and antioxidant enzyme activity 

 In both groups, plasma protein carbonyl concentration decreased over time from baseline to 

the sample collected after the second exercise test (Time effect; F=8.10, p=0.006, η2 = 0.11; Figure 

2A), whereas plasma total thiol levels increased (Time effect; F=6.34, p=0.01, η2 = 0.09; Figure 2B). 

There were no group effects for protein carbonyl or total thiol levels. A Group × Time interaction was 

identified for carbonyl levels, although this only approached statistical significance (F=3.37, p=0.06, 

η2 = 0.05). Plasma SOD activity decreased over time in both groups (Time effect; F=91.24, p<0.0001, 

η2 = 0.66; Figure 2C) and there was a Group × Time interaction (F=4.34, p<0.05, η2 = 0.09), indicating 

a larger magnitude change for SOD activity in the higher-volume training group (−20%) as compared 

lower-volume training group (−14%). No Group effects were observed for SOD levels. No differences 

were observed in GPx activity (Figure 2D). Total plasma protein concentration increased significantly 

following exercise (Time effect: F=117.19, p<0.0001, η2 = 0.62), however with similar magnitude in 

both groups (Group × Time interaction: F=0.002, p=0.97): low-volume (13.32±2.70 g/mL) vs. high-

volume (13.11±2.54 g/mL). However, analysis of protein carbonyls, thiols, SOD and GPx are 
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expressed relative to protein concentration, thus the changes in total protein concentration are not 

driving the changes reported above. 

Salivary hormonal responses to exercise  

Salivary testosterone decreased (−55%) from baseline to the sample collected after the second 

exercise test in both groups (Time effect: F=25.95, p<0.0001), and consequently, as cortisol levels did 

not change, there was an increased cortisol/testosterone ratio (+90%) after the second exercise test for 

both groups (Time effect: F=8.16, p=0.005; Table 3). There were no Group or Group × Time effects 

for salivary measurements. 

Relationships between variables 

 We next sought to investigate whether there were correlations between previous training 

volume inflammatory, redox and endocrine variables. As expected, training volume was positively 

correlated with total distance ran per week (rs = 0.61, p<0.0001), top speed (rs = 0.42, p<0.006), and 

negatively correlated with average time spent per km (rs = −0.42, p<0.006) (data not shown). Although 

training volume was negatively correlated with CRP levels (rs = −0.42, p<0.006), no other associations 

were observed for the remaining inflammatory, endocrine and redox variables (data not shown).  

Discussion 

 
The present study shows that the volume of exercise training undertaken by older athletes 

appears to influence the inflammatory and redox response to the accumulated effect of two maximal 

bouts of acute exercise. Adults engaged in lower-volume training (approximately four hours per week) 

exhibited a larger exercise-induced inflammatory response, whereby CRP increased by 60% following 

exercise, compared to a 24% increase exhibited by adults engaged in higher-volume training 

(approximately eight hours per week). In addition, the activity of the antioxidant enzyme SOD 

declined post-exercise in both training groups, but to a different magnitude based on training history: 

a −14% decline in the lower-volume group, but a −20% decline in the higher-volume group. All other 
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responses to exercise (e.g., plasma TNF-, IL-6, protein carbonyl and protein thiol levels, GPx 

activity, and salivary testosterone and cortisol) were similar between groups.  

This investigation also confirmed that older athletes engaged in regular higher-volume 

exercise, exhibited lower levels of systemic inflammation (e.g., as shown by plasma CRP) at baseline 

compared to the lower-volume training group. This finding is consistent with previous studies that 

reported an inverse relationship between cardiorespiratory fitness and CRP in adults (Church et al., 

2002; Stewart et al., 2007). In addition, CRP has been associated with endothelial injury and increased 

risk for developing coronary heart disease (Joshi et al., 2012; Pai et al., 2004). Resting plasma CRP 

values of <1.0 mg/L, 1.0-3.0 mg/L and >3.0 mg/L are typically considered to represent low, average 

and increased risk for cardiovascular disease respectively (Ridker, 2003). The CRP levels of 

approximately 0.24 – 0.64 mg/L in the present study indicate that the individuals examined are very 

healthy, which might be expected considering the study population undertook 2-4 times the 

recommended volume of exercise per week (World-Health-Organisation, 2010). Thus, it might be 

concluded by measuring CRP in plasma at rest, that even very high volumes of exercise (i.e., 

approximately eight hours per week in the higher-volume group) does not exacerbate the age-

associated increase in inflammatory activity, but instead might prevent “inflammaging” which has 

been associated with frailty, cardiovascular disease, and overall mortality in older adults (Franceschi 

et al., 2000; Koenig et al., 1999). The plasma TNF- and IL-6 baseline levels in this study are in within 

a similar range to those previously reported in healthy older adults at rest (Bruunsgaard, Bjerregaard, 

Schroll, & Pedersen, 2004; Forsey et al., 2003; Lima et al., 2015; Toft et al., 2002): TNF (1.5 – 50 

pg/mL) and IL-6 (2 – 50 pg/mL). Considering that biomarkers of inflammation have been negatively 

associated with cardiorespiratory fitness, muscle mass, and muscle function (Beyer, Mets, & 

Bautmans, 2012; Della Gatta, Garnham, Peake, & Cameron-Smith, 2014), then high-volume exercise 

interventions would reduce morbidity and mortality from diseases with an inflammatory etiology 

(Beyer et al., 2012; Koenig & Wanner, 1999). 

Other investigations have shown that a single session of acute vigorous exercise increases the 

systemic levels of TNF-α, IL-6 and acute phase reactants such as CRP in untrained adults (Brown, 



 

 

14 

Davison, McClean, & Murphy, 2015). For instance, it has been shown that plasma IL-6 levels increase 

up to more than 100-fold following concentric or eccentric exercise in young adults (Pedersen & 

Bruunsgaard, 2003). Muscle contractions induce production and release of IL-6, but not TNF-, into 

the circulation, in both young and older adults.  In the present study, exercise did not change the levels 

of IL-6 and there was a small decrease in TNF-α in the higher-volume training group. This could also 

be interpreted as reflecting an impaired inflammatory response to a stressor. In support, it has 

previously been shown that the IL-6 response to eccentric exercise is less pronounced in older adults 

compared with young subjects (Toft et al., 2002). In addition, plasma IL-6 was not correlated with 

muscle damage in the elderly, supporting the hypothesis that aging is associated with impaired repair 

mechanisms including cell migration (Toft et al., 2002). In addition, a previous study has also 

suggested that the exercise-induced increase in plasma IL-6 in response to habitual exercise is 

attenuated by previous exercise training (Croft et al., 2009). 

In the present study, the lower-volume training group exhibited at baseline higher levels of 

protein carbonyls (+23%) and lower SOD activity (−4%) compared to the higher-volume group. This 

finding might indicate that the individuals undertaking approximately four hours of exercise per week 

(i.e., the lower-volume group) were less adapted to their training, or at least exhibited more exercise-

induced muscle damage than the individuals undertaking approximately eight hours of exercise per 

week. Exercise-induced muscle damage is associated with prolonged deterioration of muscle strength, 

edema, oxidative stress, recruitment of inflammatory cells with increased secretion of pro-

inflammatory cytokines, and leakage of muscle proteins into circulation (Fatouros & Jamurtas, 2016). 

In addition, such exercise-induced damage to muscles is accompanied by increased circulatory levels 

of pro-inflammatory cytokines (e.g. TNF- and IL-1), indicating that muscle damage may cause 

cytokine secretion by cells other than muscle (Suzuki et al., 2002; Toft et al., 2002). In the present 

study, the older athletes engaged in lower-volume training exhibited a higher CRP at rest and a larger 

increase in plasma CRP following acute bouts of exercise than those engaged in higher-volume 

training. Data presented here highlight two key points: (i) regular high-volume exercise appears to 

decrease systemic inflammation measured at rest, and (ii) lower volumes of exercise in older adults 
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may result in higher stressor-induced increases in certain inflammatory markers, as shown by 

measuring acute phase reactants such as CRP.  

In response to acute exercise, however, SOD activity post-exercise declined to a significantly 

different level based on training history: a −14% decline in the lower-volume group, but a −20% 

decline in the higher-volume group. Individuals that follow a regular program of exercise have positive 

changes in antioxidant systems (Radak, Taylor, Ohno, & Goto, 2001), as shown here by the increased 

SOD and lower carbonyl levels in the higher-volume training group at baseline. In a similar study, a 

high fitness level group of older adults (66 years) had increased SOD and GPx both at rest and 

following an acute bout of acute exercise as compared to a low fitness level group (Bouzid, 

Hammouda, Matran, Robin, & Fabre, 2015). In addition, SOD activity in response to acute eccentric 

exercise was found to be significantly higher in young (20 years) compared to older adults (58 years) 

(Nordin, Done, & Traustadottir, 2014), suggesting that signal transduction in response to acute 

exercise may be impaired with aging. In the present study, due to the characteristics of the exercise 

bouts, it is more likely that the activity of SOD declined because ROS production was low (Di Meo 

& Venditti, 2001). It has been hypothesized that repeated periods of oxidative stress, as seen with 

some forms of exercise, may be needed to increase resistance to oxidative stress in older individuals 

(Nordin et al., 2014). Furthermore, it has been shown that older adults who exercise regularly had a 

lower oxidative profile and better ability to resist to an oxidative challenge (Traustadottir et al., 2012). 

The implications of these findings are unclear. Despite a decline in SOD activity post-exercise, other 

evidence from this study suggests that there was, by other mechanisms, an adaptive exercise-induced 

“antioxidant response” (Turner et al., 2013; Wadley et al., 2015). For example, in response to exercise, 

plasma total thiol concentration increased in both groups to a similar magnitude. The assay employed 

in this study is a non-specific measure of all thiol groups in plasma, to which both free and bound 

thiols, likely originating from cysteine, homocysteine, reduced glutathione, cysteinylglycine or 

albumin, will be detected (Biswas, Chida, & Rahman, 2006; Giustarini, Dalle-Donne, Lorenzini, 

Milzani, & Rossi, 2006; Rossi, Giustarini, Milzani, & Dalle-Donne, 2009). However, considering only 

reduced thiols are detected by this assay (Ellman, 1959; Griffiths et al., 2002), and that molecules such 
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as cysteine have a strong reducing capacity, this increase in plasma thiol concentration could be 

interpreted as an increased capacity to buffer ROS post-exercise, as has been shown previously in 

rodents and humans (Alessio et al., 1988; Powers & Jackson, 2008; Radak et al., 2013; Reid et al., 

1992; Sjodin et al., 1990; Vina et al., 2000). A thiol-specific “antioxidant response” might negate the 

requirement to increase the concentration or activity of other antioxidant molecules (e.g., GPx, as 

shown in the present study) and consequently, this milieu might prevent oxidative damage to proteins 

(and other molecules, such as lipids and DNA). In line with this interpretation, the present results show 

that protein carbonyl concentration declined from baseline to the sample collected after the second 

maximal exercise test, further supporting the idea that these bouts of exercise did not elicit a substantial 

increase in ROS. Decreases in plasma protein carbonyl concentration are common in the literature (but 

often not discussed) and are likely a result of an imbalance between production and clearance of 

oxidized proteins, mediated in part by the plasma proteasome system, or possibly plasma protein 

redistribution, tissue uptake or excretion (Wadley, Chen, Lip, Fisher, & Aldred, 2016).  

Previous studies have explored associations between cardiovascular training, redox and 

inflammatory status. It has been shown that a sixteen week progressive endurance training program in 

inactive older men lowered lipid peroxidation (MDA) and 3-nintrotyrosine (3-NT), while increasing 

antioxidant defenses (GPx and total antioxidant capacity) (Fatouros et al., 2004). In addition, a single 

bout of aerobic exercise also attenuated oxidative markers in skeletal muscle of both inactive and 

active older adults (Bori et al., 2012; Radak et al., 2009). The marker of DNA damage, 8-Oxo-7,8 

dihydroguanine (8-oxoG), accumulates in the genome over time and it may lead to the development 

of aging-related diseases. In response to a single bout of aerobic exercise, the 8-oxoG level was 

lastingly elevated in sedentary young and old subjects, but returned rapidly to pre-exercise levels in 

the DNA of physically active individuals independent of age (Radak et al., 2011). In support of this 

human data, exercise training in rats decreased DNA damage, increased DNA repair mechanisms, and 

increased resistance to oxidative stress in skeletal muscle (Radak et al., 2002). 

Exercise training programs may also influence aspects of endocrine function either acutely or 

chronically. For example, it has been shown that salivary cortisol is increased transiently during a half 
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marathon in master endurance athletes (Piacentini et al., 2015). However, it has also been shown that 

regular exercise is associated with reduced hypothalamic-pituitary-adrenal activity (Heaney, Carroll, 

& Phillips, 2014; Vaczi et al., 2014). In the present study there was no change (or at least a small but 

statistically non-significant increase) in salivary cortisol and there was a significant decrease in 

salivary testosterone in response to the accumulated effect of two bouts of maximal exercise. This 

response was similar in both the lower- and higher-volume training groups. While it is appealing to 

speculate that a small output from the hypothalamic-pituitary-adrenal axis (particularly in the case of 

cortisol) is related to adaptation in response to regular exercise (Struder et al., 1998) (even in the low-

training group who undertook approximately four hours of exercise per week), the lack of a cortisol 

response is likely to be governed by other factors. For example, the magnitude of cortisol release from 

the adrenal gland during exercise is known to correlate positively with the duration and intensity of 

exercise (Gabriel, Schwarz, Steffens, & Kindermann, 1992; Hansen, Wilsgard, & Osterud, 1991; Hill 

et al., 2008). Although the intensity of exercise in the present study was maximal, the duration spent 

at this intensity was very short. In addition, cortisol is known to exhibit a very pronounced diurnal 

rhythm, whereby the highest concentration is seen approximately 30 minutes after waking, and the 

lowest concentration before sleep at night (Heaney, Phillips, & Carroll, 2010; Stalder et al., 2016). 

Thus, although participants provided saliva samples between approximately 12:30-16:30, the levels 

of cortisol would be declining over this period, which might limit any small stressor-induced output 

from the adrenal gland, given the short duration of exercise employed.  

When interpreting the results of this study, it should be considered that we did not assess and 

control for exercise-induced changes in plasma volume. Although it is possible that a decrease in 

plasma volume following exercise might have amplified some of our results (e.g., on average the 

+40% increase in plasma CRP post-exercise) other parameters that also increased post-exercise (e.g., 

plasma total thiol groups) were expressed relative to total plasma protein concentration and would 

therefore be unaffected. Moreover, such changes in plasma volume would only have very modest 

effects on our results, as such exercise-induced fluid shifts are typically small (e.g., −10% change) 

(Zouhal et al., 2001).  
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There are some limitations to this study. First, no inactive control group was recruited because 

of potential cardiac damage upon challenge. Indeed, two elderly athletes were excluded because of 

signs of myocardial ischemia in response acute exercise – as identified by a senior cardiologist. 

Second, we were unable to measure oxygen uptake and associated variables during exercise due to a 

fault with our gas analysis system that was not detected until all data had been collected. However, 

based on our heart rate and ratings of perceived exertion data, exercise was confirmed as being of 

maximal intensity. Finally, habitual diet was not assessed or controlled, and it is known that some 

dietary parameters can affect immunological and redox measurements. Thus, providing standardized 

diets to our participants may have reduced the variation in our data.  

 

CONCLUSION 

Comparing elderly adults engaged in lower-volume training (approximately four hours per week) to 

those engaged in higher-volume training (approximately eight hours per week) reveals different 

inflammatory and redox and profiles at rest and in response to exercise. Differences at rest included 

the lower-volume group exhibiting higher CRP (+60%), higher protein carbonyls (+23%) and lower 

SOD activity (−4%), compared to the higher-volume group. Differences in response to exercise 

included the lower-volume group exhibiting a larger increase in CRP (+60% higher-volume; +24% 

lower-volume group) and a smaller decrease in the activity of the antioxidant enzyme SOD (−20% 

higher-volume; −14% lower-volume group).  
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FIGURE LEGENDS 

 

 

Figure 1. Inflammatory proteins at baseline and following two bouts of maximal exercise 

separated by four hours of rest. Statistically significant differences are indicated: * (TNF-α: Time 

effect, F=6.15, p=0.01) or *** (CRP: Time effect, F=83.82, p<0.0001). ### (CRP: Group × Time 

interaction, F=20.62, p<0.0001). Data were analyzed by two-way ANOVAs and are presented as mean 

± SE. 

 

Figure 2. Redox profile at baseline and following two bouts of maximal exercise separated 

by four hours of rest. Statistically significant differences are indicated: * (Thiol: Time effect, F=6.34, 

p=0.01), ** p<0.01 (Carbonyl: Time effect, F=8.10, p=0.006), *** (SOD: Time effect, F=91.24, 

p<0.0001). Group × Time interactions are also reported as indicated: # (Carbonyl, F=3.37, p=0.06) 

and ## (SOD, F=4.34, p<0.05). Data were analyzed by two-way ANOVAs and are presented as mean 

± SE. 
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Figure 1 
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Figure 2 
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Table 1. Anthropometric, psychological, inflammatory, redox and hormonal profiles of participants 

at rest (baseline) for each group. 

 
 Lower  

volume 

Training 

Higher 

volume 

Training 

P-value Effect size 

(η2) 

Age (yrs) 65 ± 5 66 ± 4 0.47 0.013 

Gender (F/M) 11 / 10 10 / 11 0.76 0.14 

Weight (Kg) 73.9 ± 15.5 70.5 ± 14.3 0.47 0.013 

Height (cm) 165.9 ± 10.9 163.4 ± 7.1 0.38 0.019 

BMI 26.7 ± 3.5 26.4 ± 4.6 0.81 0.001 

% Fat (Kg) 33.4 ± 7.9 29.2 ± 8.6 0.11 0.06 

Training Volume (h/month) 16.9 ± 4.8 32.4 ± 8.6 0.0001 0.34 

Distance/week (km) 43.67 ± 9.44 81.71 ± 9.88 <0.0001 0.80 

Time/km (min) 5.71 ± 0.93 4.88 ± 0.50 0.001 0.24 

     

Tension 1.4 ± 2.6 2.0 ± 2.2 0.45 0.014 

Depression 0.4 ± 1.2 0.1 ± 0.4 0.31 0.025 

Anger 0.6 ± 1.5 0.7 ± 2.1 0.86 0.001 

Vigor 11.8 ± 2.1 10.5 ± 3.9 0.18 0.044 

Fatigue 1.2 ± 1.9 1.2 ± 1.8 1.00 0.001 

Confusion 1.1 ± 1.7 0.7 ± 1.7 0.38 0.019 

     

CRP (mg/mL) 0.33 ± 0.05 0.28 ± 0.03 <0.0001 0.48 

IL-6 (pg/mL) 9.99 ± 1.70 10.44 ± 2.65 0.53 0.001 

TNF-α (pg/mL) 65.02 ± 6.36 69.17 ± 10.33 0.13 0.02 

     

Thiols (mMol/mg protein) 0.057 ± 0.0036 0.058 ± 0.0079 0.78 0.004 

Carbonyl (nMol/mg protein) 2.58 ± 0.79 2.09 ± 0.79 0.07 0.001 

SOD (U/mg) 3.64 ± 0.28 3.80 ± 0.13 0.06 0.004 

GPx (U/mg) 3.95 ± 2.83 4.33 ± 2.85  0.69 0.005 

     

Cortisol (nmol/L) 9.48 ± 2.89 8.70 ± 2.30 0.34 0.03 

Testosterone (nmol/L) 0.27 ± 0.17 0.25 ± 0.16 0.74 0.001 

Ratio 52.49 ± 40.20 52.36 ± 39.48  0.99 0.01 

 

Legend: BMI, body mass index. CRP, C-reactive protein. GPx, Glutathione Peroxidase. IL-6, 

interleukin-6. SOD, superoxide dismutase. Psychological profiles were assessed by the Profile of 

Mood States Questionnaire. Data are shown as mean ± SD. Data were analyzed by independent 

samples T tests. 
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Table 2. Exercise test characteristics. 

 

 
 

 GROUP 
 

 

 

TIME 

 

 

 

 
During 

 Test one 

During 

Test two 
F p 

Effect Size 

(η2) F p 

Effect Size 

(η2) 

Top speed (km/h) LVG 9.61 ± 2.20 9.10 ± 1.78 13.20 <0.0001 0.140 0.21 0.86 0.001 

 
HVG 11.69 ± 3.00 11.42 ± 3.33   

          

Time (min)  LVG 5.34 ± 2.09 6.06 ± 3.20 0.11 0.74 0.001 0.55 0.46 0.007 

 
HVG 6.29 ± 1.30 6.19 ± 1.34   

          

HR1 (bpm) LVG 152 ± 20 150 ± 24 2.42 0.12 0.03 0.77 0.38 0.010 

 
HVG 162 ± 23 155 ± 21   

          

HR2 (%max) LVG 98 ± 12 97 ± 14 5.32 0.27 0.020 0.92 0.34 0.024 

 HVG 106 ± 15 101 ± 12   

          

RPE  LVG 16.6 ± 2.83 17.10 ± 1.99 8.99 0.004 0.163 0.06 0.81 0.054 

 
HVG 18.58 ± 0.94 17.87 ± 0.91   

 

Legend: Data are presented in mean ± SD (two-way ANOVA, df=1,78). HR: Heart Rate. RPE: 

Ratings of perceived exertion. LVG, Low-Volume Group. HVG, High-Volume Group. Group × Time 

interaction effects are discussed in the text. 
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Table 3. Salivary hormone responses to exercise 

   GROUP  TIME  

  Before Test one After Test two F p 
Effect Size 

(η2) 
F p 

Effect Size 

(η2) 

Cortisol (nmol/L) Low-volume 9.48 ± 2.89  11.44 ± 6.23  
2.79 0.09 

 
2.36 0.13 

 

 High-volume 8.70 ± 2.30  9.36 ± 2.51 0.035 0.029 

          

Testosterone (nmol/L) Low-volume 0.27 ± 0.16 0.12 ± 0.05 
0.11 0.73 

 
25.95 <0.0001 

 

 High-volume 0.25 ± 0.12 0.12 ± 0.06  0.001 0.250 

          

Ratio Low-volume 52.49 ± 40.20 152.27 ± 215.02 
1.11 0.30 

 
8.16 0.005 

 

 High-volume 52.36 ± 39.48 98.58 ± 54.81  0.002 0.180 

 

Legend: Data are presented as mean ± SD (two-way ANOVA, df=1,78). Data were collected at baseline and following two-bouts of maximum exercise.  

 


