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Abstract—Monitoring natural human gait in real-life 

environment is essential in many applications including 

quantification of disease progression, and monitoring the effects 

of treatment and alteration of performance biomarkers in 

professional sports. Nevertheless, reliable and practical 

techniques and technologies necessary for continuous real-life 

monitoring of gait is still not available. This paper explores in 

detail the correlations between the acceleration of different body 

segments and walking ground reaction forces 𝑮𝑹𝑭(𝒕) in three 

dimensions and proposes three sensory systems, with one, two 

and three inertial measurement units (IMUs), to estimate 𝑮𝑹𝑭(𝒕) 

in the vertical (V), medial-lateral (ML) and anterior-posterior 

(AP) directions. The NARMAX non-linear system identification 

method was utilized to identify the optimal location for IMUs on 

the body for each system. A simple linear model was then 

proposed to estimate 𝑮𝑹𝑭(𝒕) based on the correlation of 

segmental accelerations with each other. It was found that, for 

the three-IMU system, the proposed model estimated 𝑮𝑹𝑭(𝒕) 

with average peak-to-peak normalized root mean square error 

(NRMSE) of 7%, 16% and 18% in V, AP and ML directions, 

respectively. With a simple subject-specific training at the 

beginning, these errors were reduced to 7%, 13% and 13% in V, 
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AP and ML directions, respectively. These results were found 

favorably comparable with the results of the benchmark 

NARMAX model, with subject-specific training, with 0% (V), 

4% (AP) and 1% (ML) NRMSE difference. 

 
Index Terms— ambulation, biomechanics, black-box 

approach, gait monitoring, outdoor measurement.   

I. INTRODUCTION 

ALKING ground reaction forces 𝐺𝑅𝐹(𝑡) and moments 

are critical inputs for musculoskeletal modelling and 

gait analysis. Quantification of the spatiotemporal gait 

fluctuations over time or due to environmental, behavioral or 

contextual factors in real-life environment are essential in 

many applications such as understanding the motor control of 

gait, quantifying pathologic and age-related alterations in the 

locomotor control system, and augmenting objective 

measurement of mobility and functional status [1]. 

Several techniques and technologies have been developed in 

the past three decades to measure or estimate tri-axial 𝐺𝑅𝐹(𝑡) 

signals using wearable sensors. Inertial Measurement Units 

(IMUs) have been particularly an attractive sensory option for 

continuous measurement in real-life environment due to their 

small form factor, low power consumption, low cost and 

capability to measure orientation. Recently, McDonald and 

Zivanovic [2], and Bocian, et al., [3] suggested that the 

vertical acceleration measured using an IMU at 7th cervical 

vertebra (�̈�𝑣,𝐶7(𝑡)) can be used to estimate the total jumping 

and walking ground reaction forces (𝐺𝑅𝐹𝑣(𝑡)) in the vertical 

direction, respectively. Both studies assume that �̈�𝑣,𝐶7(𝑡) 

represents the movement of the total body mass 𝑚𝑡𝑜𝑡𝑎𝑙 lumped 

at the center of mass (CoM) of the body and, therefore, 

𝐺𝑅𝐹𝑣(𝑡) can directly be estimated using (1): 

𝐺𝑅𝐹𝑣(𝑡) = 𝑚𝑡𝑜𝑡𝑎𝑙(�̈�𝑣,𝐶7(𝑡) + 𝑔),                   (1) 

where,  𝑔 is the gravitational acceleration.  

Later in 2017, Gurchiek, et al., [4] showed that a single IMU 

at Sacrum can be used to estimate the tri-axial 𝐺𝑅𝐹(𝑡) signals 

during accelerative running. These pioneering works highlight 

the possibility of estimating 𝐺𝑅𝐹(𝑡) signals from limited 

number of IMU measurements.  

This paper proposes a linear model to estimate 𝐺𝑅𝐹(𝑡) signals 

from an optimal network of IMU sensors. An experimental 

dataset from six subjects (Section II) is used to analyze the 

correlations between the acceleration of different body 
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segments and 𝐺𝑅𝐹(𝑡) (Section III) and contribution of each 

segment to 𝐺𝑅𝐹(𝑡) signals in three dimensions (Section III). 

Section IV of the paper uses the NARMAX non-linear system 

identification method to find the optimal location on the body 

for IMUs for systems, with one, two and three sensors. For the 

locations identified for the three-IMU system, Section V 

proposes two linear models to estimate tri-axial 𝐺𝑅𝐹(𝑡) based 

on the correlation of segmental accelerations with each other. 

Section VI explores the improvements in the accuracy of the 

estimated 𝐺𝑅𝐹(𝑡) signals if non-linear models were used 

instead of linear models presented in Section V. Performance 

of the proposed model is analyzed in real-life (outside 

laboratory) environment in Section VII and the conclusions 

are presented in Section VIII and few suggestions are made 

for future research.   

II. EXPERIMENTAL CAMPAIGN 

Six healthy male subjects S1-S6 (age: 21±1years, weight: 

77±16kg and height: 1.82±0.08m) participated in a set of 

walking gait measurement in the biomechanics laboratory at 

the University of Sheffield. The subjects provided an informed 

consent in accordance with the ethical guidelines for research 

involving human participants at the University of Sheffield. 

The normal walking speed of each subject was initially found, 

by trial and error, equal to 𝑣𝑤,𝑆1 = 1.25𝑚/𝑠, 𝑣𝑤,𝑆2 =

1.28𝑚/𝑠, 𝑣𝑤,𝑆3 = 1.28𝑚/𝑠, 𝑣𝑤,𝑆4 = 1.11𝑚/𝑠, 𝑣𝑤,𝑆5 =

1.19𝑚/𝑠 and 𝑣𝑤,𝑆6 = 1.06𝑚/𝑠. Then subjects S1-S4 each 

participated in a set of six walking tests with 180s duration, 

where the treadmill speed was set to 60%, 70%, 80%, 90%, 

100% and 110% of their normal walking speed, respectively. 

Subjects S5 and S6 each did a single walking test only with 

their comfortable walking speed. 

In each test, the full-body 3D motion data were recorded using 

CODA motion capture system [5] at 100Hz sampling rate. The 

marker placement protocol was based on full-body Plug-in 

Gait [6] (Fig. 1). The tri-axial walking 𝐺𝑅𝐹(𝑡) signals 

pertinent to each foot were recorded at 1kHz sampling rate 

using a bespoke grounded instrumented treadmill with two 

separate belts and six axis forceplates for each foot.  

 
 

a)  b)  
Fig. 1. (a) Subject instrumentation layout and (b) location of the 

CODA markers (blue circles) and the Opal IMUs (orange squares) 

A set of 12 Opal IMUs [7] were used to measure the tri-axial 

acceleration and orientation signals at 7th cervical vertebrae 

(C7), 5th lumbar vertebrae (L5), upper arms, fore arms, thighs, 

shanks and fourth metatarsals with 128Hz sampling rate (Fig. 

1). Each IMU sensor was placed closest to the approximate 

location of CoM of the corresponding segment based on the 

anatomical locations suggested by Winter [1].  

Three independent right-handed coordinate systems were 

considered: 1) the laboratory-fixed Cartesian coordinate 

system (LCS) which 𝑥𝐿𝐶𝑆, 𝑦𝐿𝐶𝑆, and 𝑧𝐿𝐶𝑆 axes point towards 

magnetic East, North, and up (vertical) direction, respectively; 

2) the body-fixed Cartesian coordinate system (BCS) where 

𝑧𝐵𝐶𝑆 axis points upwards in the vertical direction, 𝑦𝐵𝐶𝑆 points 

towards walking direction (anterior), and 𝑥𝐵𝐶𝑆 is perpendicular 

to 𝑦𝐵𝐶𝑆 and 𝑧𝐵𝐶𝑆, towards right of the body to form the right-

handed coordinate system. Both 𝑥𝐵𝐶𝑆 and 𝑦𝐵𝐶𝑆 axes are in the 

horizontal (transverse) plane; and 3) the IMU sensors local 

coordinate system (SCS) defined by 𝑥𝑆𝐶𝑆, 𝑦𝑆𝐶𝑆, and 𝑧𝑆𝐶𝑆 axes.  

The range of trunk motion, tilt, obliquity, and rotation around 

body-fixed coordinate axis 𝑥𝐵𝐶𝑆, 𝑦𝐵𝐶𝑆, and 𝑧𝐵𝐶𝑆 during 

straight normal walking are approximately ±2º, ±1.5º, and 

±3.5º, respectively [8]. However, in real-life walking, 

particularly during turning, the rotation around 𝑧𝐵𝐶𝑆 can reach 

up to 40º [9]. Therefore, a method was proposed to take into 

account this rotation for real-life applications. The IMU at C7 

was placed on the body in a way that its coordinate system 

(𝑥𝑆𝐶𝑆, 𝑦𝑆𝐶𝑆, and 𝑧𝑆𝐶𝑆) best matches the body-fixed coordinate 

system (right-front-up). At each time step, the local coordinate 

system of the IMU at C7 was reoriented using the 

corresponding IMU-measured quaternions in a way that 𝑧𝑆𝐶𝑆 

matches 𝑧𝐿𝐶𝑆 (and therefore 𝑥𝑆𝐶𝑆 and 𝑦𝑆𝐶𝑆 are in the transverse 

plane). These reoriented axes are denoted as 𝑥𝑆𝐶𝑆
∗ , 𝑦𝑆𝐶𝑆

∗  and 

𝑧𝑆𝐶𝑆
∗ . The 𝑧𝑆𝐶𝑆

∗  axis is vertical and is considered to represent 

𝑧𝐵𝐶𝑆. As trunk rotates around 𝑧𝐵𝐶𝑆 while walking, the average 

orientation of the 𝑦𝑆𝐶𝑆
∗  in transverse plane during each gait 

cycle was assumed to represent the walking direction, and 

therefore 𝑦𝐵𝐶𝑆, for that gait cycle. 𝑥𝐵𝐶𝑆 is then found 

perpendicular to these 𝑦𝐵𝐶𝑆 and 𝑧𝐵𝐶𝑆, towards the right of the 

body to form the right-handed coordinate system. 

The acceleration signals measured by each IMU were initially 

reoriented from SCS to LCS using the orientation 

(quaternions) measured by the corresponding IMU. At each 

time-step, the horizontal angle β between 𝑦𝐿𝐶𝑆 and 𝑦𝐵𝐶𝑆 at C7 

was calculated to represent the ‘heading’ of the body with 

respect to LCS while walking. β was then used to reorient 

(rotate around 𝑧𝐿𝐶𝑆) the IMUs accelerations from the LCS to 

BCS.  

 
Fig. 2. Comparison of ML IMU accelerations with the corresponding 

marker data at L5 
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These accelerations in BCS were used in this study to estimate 

the ground reaction forces in the vertical (V – along 𝑧𝐵𝐶𝑆), 

anterior-posterior (AP – along 𝑦𝐵𝐶𝑆) and medial-lateral (ML – 

along 𝑥𝐵𝐶𝑆) direction. Fig. 2 illustrates a typical example of 

IMU medial-lateral accelerations reoriented to BCS in 

comparison with the corresponding accelerations measured by 

the motion capture system at L5. The accuracy of the IMU 

orientations were deemed acceptable after comparing the re-

oriented IMU accelerations and the motion capture data in 

BCS (Fig. 2). This is mainly attributed to the successful 

performance of the internal Kalman filter of the Opal IMUs to 

reject magnetic disturbances when using magnetic field to 

calculate IMU orientation. 

The human body was represented as an articulated multi-

segment 3D system with 13 rigid segments: head, torso, 

pelvis, upper arms, forearms, thighs, shanks and feet. The 

anthropometric data for each body segment including 

anatomical coordinate systems, joint centre definitions, the 

segmental masses and their CoM location are based on the 

system suggested by Ren, et al., [10] and Winter [1].  

The motion capture system was calibrated to measure motion 

in BCS and treadmill was aligned with the 𝑦𝐵𝐶𝑆 axis. All the 

measured data were re-sampled at 100Hz and synched using 

MATLAB software [11]. The raw kinematic data (tri-axial 

displacements) were filtered using a low pass zero lag fourth-

order Butterworth digital filter with a cut off frequency of 

12Hz to remove high-frequency noise while preserving the 

frequency contents corresponding to the first four harmonics 

and sub-harmonics of the walking 𝐺𝑅𝐹(𝑡) signals. The 

displacement signals were then double differentiated to find 

the corresponding acceleration signals. Before each 

differentiation, signals were low pass filtered using the 

mentioned Butterworth filter, to reduce the high frequency 

noise associated with the differentiation process [12].  

These tri-axial acceleration signals, calculated for all CODA 

markers on the body, were subsequently used to calculate the 

acceleration �̈�𝑗,𝑖(𝑡) of the CoM of each segment ‘i’ in 

direction ‘j’ based on the CoM locations proposed by Ren, et 

al., [10] and Winter [1]. 

III. RELATION OF TOTAL GRF SIGNALS AND BODY 

KINEMATICS 

Based on the second Newton law and assuming that body is 

comprised of n solid segments, walking 𝐺𝑅𝐹𝑗(𝑡) signals 

(excluding the static body weight in the vertical direction) in 

each direction ‘j’ can be estimated using (2): 

𝐺𝑅𝐹𝑗(𝑡) = ∑ (𝑚𝑖 × �̈�𝑗,𝑖(𝑡))𝑛
𝑖=1 ,         𝑗 ∈ [𝑉, 𝐴𝑃, 𝑀𝐿],                 (2) 

where, 𝑚𝑖 is the segment ‘i’ mass. If errors associated with 

assuming solid body segments, frictionless pin joints, soft 

tissue artifacts, and anthropometric measurements [1] are 

assumed negligible, (2) theoretically give an accurate 

estimation of the total 𝐺𝑅𝐹(𝑡) signals in each direction. 

However, even if this assumption is deemed acceptable, it is 

impractical to measure acceleration of all body segments on 

long-term basis and number of sensors has to be minimized. 

A. Correlation analysis 

To find the optimal locations on the body for IMU sensors, the 

Pearson linear correlation coefficient 𝑟 between �̈�𝑗,𝑖(𝑡) and 

corresponding treadmill-measured total 𝐺𝑅𝐹𝑗(𝑡) signals were 

calculated for each test and their average values across all 25 

tests are compared in Fig. 3.  The cross-correlation 

coefficients in this figure for body segments ‘i’ and ‘p’ were 

calculated using (3) and (4) [13] and [14]: 

𝑟(𝐺𝑅𝐹𝑗(𝑡), �̈�𝑗,𝑖(𝑡)) =
1

𝑁−1
∑ (

𝐺𝑅𝐹𝑗(𝑡𝑛)−𝐺𝑅𝐹̅̅ ̅̅ ̅̅ 𝑗(𝑡)

𝜎𝐺𝑅𝐹𝑗(𝑡)
) (

�̈�𝑗,𝑖(𝑡𝑛)−�̈�𝑗,𝑖
̅̅ ̅̅ ̅(𝑡)

𝜎�̈�𝑗,𝑖(𝑡)
)𝑁

𝑛=1 ,     (3) 

𝑟(�̈�𝑗,𝑖(𝑡), �̈�𝑗,𝑝(𝑡)) =
1

𝑁−1
∑ (

�̈�𝑗,𝑖(𝑡𝑛)−�̈�𝑗,𝑖̅̅ ̅̅ ̅(𝑡)

𝜎�̈�𝑗,𝑖(𝑡)
) (

�̈�𝑗,𝑝(𝑡𝑛)−�̈�𝑗,𝑝̅̅ ̅̅ ̅̅ (𝑡)

𝜎�̈�𝑗,𝑝(𝑡)
)𝑁

𝑛=1 .        (4) 

In these equations, 𝜎𝐺𝑅𝐹𝑗(𝑡), 𝜎�̈�𝑗,𝑝(𝑡) and 𝜎�̈�𝑗,𝑖(𝑡) are the standard 

deviation of 𝐺𝑅𝐹𝑗(𝑡), �̈�𝑗,𝑝(𝑡) and �̈�𝑗,𝑖(𝑡) signals, respectively, 

and 𝐺𝑅𝐹̅̅ ̅̅ ̅̅
𝑗(𝑡), �̈�𝑗,𝑝

̅̅ ̅̅ (𝑡) and �̈�𝑗,𝑖
̅̅ ̅̅ (𝑡) are the mean value of signals 

over N samples.  

As can be seen in Fig. 3, in the vertical direction, the cross-

correlation of 𝐺𝑅𝐹𝑣(𝑡) and �̈�𝑣,𝑖(𝑡) signals increases from feet 

to head. This correlation is highest at the head with the   

 

 
a)  

 
b)   



IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. XX, NO. X, AUGUST 2017 

 

 

4 

 
c)  

Fig. 3. Pearson coefficients of correlation between the 𝐺𝑅𝐹𝑗(𝑡) and �̈�𝑗,𝑖(𝑡) 

signals in the (a) vertical, (b) anterior-posterior and (c) medial-lateral 

directions.  

average value of 0.95. However, head and arms were deemed 

unreliable locations for acceleration measurement as their 

frequent intentional movements are often uncorrelated with 

the movement of the body CoM and this create significant 

errors in estimated walking 𝐺𝑅𝐹(𝑡) signals. The second 

highest correlation with 𝐺𝑅𝐹𝑣(𝑡), but without uncorrelated 

movement errors, corresponds to the torso CoM. In the AP 

direction, the �̈�𝑎𝑝,𝑖(𝑡) pertinent to pelvis, torso and thighs 

showed the highest correlation with 𝐺𝑅𝐹𝑎𝑝(𝑡), whereas, the 

�̈�𝑚𝑙,𝑖(𝑡) of the upper arms and head and then torso and pelvis 

found to have the highest correlation with 𝐺𝑅𝐹𝑚𝑙(𝑡). 

B. Contribution analysis 

Based on (2), contribution of each segment ‘i’ to 𝐺𝑅𝐹𝑗(𝑡𝑛) in 

direction ‘j’ and at time step 𝑡𝑛 is defined as: 

 𝐶𝑜𝑛𝑗,𝑖(𝑡𝑛) = [
𝑚𝑖×�̈�𝑗,𝑖(𝑡𝑛)

𝐺𝑅𝐹𝑗(𝑡𝑛)
] × 100.                                           (5) 

Fig. 4 illustrates the 𝐶𝑜𝑛𝑗,𝑖(𝑡𝑛) ratios in the V (a), AP (b) and 

ML (c) directions during a stance phase. The contribution 

ratios presented in this figure are the average values of all 

stance cycles extracted from all 25 tests. As it can be seen in 

this figure, torso and then thighs had the highest contribution 

to 𝐺𝑅𝐹𝑣(𝑡). Similarly, thighs and torso showed the highest 

contribution to 𝐺𝑅𝐹𝑎𝑝(𝑡) and 𝐺𝑅𝐹𝑚𝑙(𝑡), respectively. These  

 
a)  

 
b)  

 
c)  

Fig. 4. Segmental contribution to the total 𝐺𝑅𝐹𝑗(𝑡) signals in the (a) vertical, 

(b) anterior-posterior and (c) medial-lateral directions 

segments happen to be the heaviest body segments which 

indicates the critical effects of their mass in (2) and (5). 

Another interesting observation from Fig. 4 is that the 

magnitude of the contribution of segments are much more 

uniform throughout the stance cycle in the vertical direction 

compared with the AP and ML directions. In AP direction, the 

swing thigh dominates the contribution during mid-stance and 

most of the terminal stance until the stance thigh dominates 

the contribution during pre-swing. 

C. Spectral analysis 

The contribution 𝐶𝑜𝑛𝑗,𝑖(𝑡𝑛) of each segment to measured 

𝐺𝑅𝐹𝑗(𝑡) was also analyzed in the frequency domain. Due to 

the variation of pacing frequency 𝑓𝑝 in each test and its effects 

on the spectrum of 𝐺𝑅𝐹𝑗(𝑡) signals, it was not possible to 

average the spectrums pertinent to different tests. Fig. 5a, c 

and e show the absolute Fourier spectrum (disregarding phase 

data) of 𝑚𝑖 × �̈�𝑗,𝑖(𝑡𝑛), and Fig. 5b, d and f show the absolute 

Fourier spectrum of the corresponding measured 𝐺𝑅𝐹𝑗(𝑡) 

signals in the V, AP and ML directions, respectively,  for S1 

test with normal walking speed (1.25𝑚/𝑠). As it can be seen 

in Fig. 5a and b, in the vertical direction, the even walking 

harmonics (h=2, 4, 6, 8 & 10) were dominant in the 𝐺𝑅𝐹𝑣(𝑡) 

signal and torso was the main contributor to the spectral 

amplitude at these harmonics. Thighs were found to have the 

maximum absolute contribution to the 𝐺𝑅𝐹𝑣(𝑡) signal at odd 
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harmonics (h=1, 3, 5, 7 & 9). However, the close to 180 

degrees phase difference (antiphase) between the vertical 

acceleration of right and left thigh at odd harmonics cancelled 

out each other’s contribution and the resultant odd harmonics 

amplitude of the 𝐺𝑅𝐹𝑣(𝑡) signal (Fig. 5b) were close to zero.  

In the AP direction, as is shown in Fig. 5c and d, the even 

harmonics were again dominant in the 𝐺𝑅𝐹𝑎𝑝(𝑡) signal, but 

thighs had the maximum absolute contribution in all 

harmonics. However, similar to the vertical direction, the 

antiphase acceleration of the right and left thighs in the AP 

direction cancelled out each other’s force to high extent and 

the resultant spectral amplitude of the 𝐺𝑅𝐹𝑎𝑝(𝑡) signal at all 

harmonics (Fig. 5d) were dominated by torso, pelvis and head. 

In the ML direction (Fig. 5e and f), contrary to the vertical and 

AP directions, the odd harmonics were dominant and torso 

was the main contributor. The anti-phase movements of thighs 

in the ML direction was responsible for the near zero spectrum 

of the 𝐺𝑅𝐹𝑚𝑙(𝑡) signal at even harmonics (Fig. 5f). 

  
a) Segmental contribution b) 𝐺𝑅𝐹𝑣(𝑡) 

  
c) Segmental contribution d) 𝐺𝑅𝐹𝑎𝑝(𝑡) 

  
e) Segmental contribution f) 𝐺𝑅𝐹𝑚𝑙(𝑡) 

Fig. 5. Spectrum of the segmental contribution to the total 𝐺𝑅𝐹𝑗(𝑡) signals in the (a and b) vertical, (c and d) anterior-posterior and (e and f) medial-lateral 

directions 

D. Discussion 

Based on the results of the correlation and contribution 

analysis, torso, pelvis and thighs are the key body segments 

for estimating 𝐺𝑅𝐹𝑗(𝑡) signals using models based on (2). In 

theory, measuring directly the �̈�𝑗,𝑖(𝑡) signals on these 

segments, rather than estimating them, can potentially 

minimize the total error in the estimated 𝐺𝑅𝐹𝑗(𝑡) signals. 

IV. SENSORY SYSTEM DESIGN 

To ensure the practicality of the sensory system for 

continuous real-life measurement, only the systems with 

maximum three IMUs were considered in this study. Taking 

into account the insights from Section III, the nonlinear 

autoregressive moving average model with exogenous inputs 

(NARMAX) method was used for optimizing the sensors 
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location and for identification of benchmark mathematical 

models to estimate 𝐺𝑅𝐹𝑗(𝑡) signals from IMU measurements. 

The NARMAX model identifies the structure of the model in 

mathematical form by finding the most important 

mathematical terms (i.e. inputs) of the model in descending 

order of contribution until a desired accuracy is achieved [15]. 

This makes it possible to rank the measurement locations on 

the body based on their significance for estimating 𝐺𝑅𝐹𝑗(𝑡) 

signals. A typical NARMAX model is defined in the form of: 

𝑦(𝑘) = 𝐹[𝑦(𝑘 − 1), 𝑦(𝑘 − 2), … , 𝑦(𝑘 − 𝑛𝑦), 𝑢(𝑘 − 𝑑), 𝑢(𝑘 − 𝑑 −

1) , … , 𝑢(𝑘 − 𝑑 − 𝑛𝑢), 𝑒(𝑘 − 1), 𝑒(𝑘 − 2), … , 𝑒(𝑘 − 𝑛𝑒)] + 𝑒(𝑘),                    
(6) 

where, 𝑦(∙), 𝑢(∙) and 𝑒(∙) are the system’s output, input and 

noise sequences, respectively, and 𝑛𝑦, 𝑛𝑢 and 𝑛𝑒 are their 

corresponding maximum lags. The noise terms are included to 

accommodate the effects of measurement and modelling 

errors, and unmeasured disturbances. 𝐹[∙] is some non-linear 

function and 𝑑 is a time delay that typically is set to 𝑑 = 1. 

To identify the most important sensor locations to estimate 

each 𝐺𝑅𝐹𝑗(𝑡) signal, for each test, the directly measured 

acceleration signals from all CODA markers and IMU sensors 

in direction ‘j’ (Fig. 1) were defined as potential input signals 

𝑢1(𝑘) … 𝑢𝑚(𝑘) and the corresponding treadmill-measured 

𝐺𝑅𝐹𝑗(𝑡) signal was defined as the output 𝑦(𝑘). Then the 

inputs with the highest contribution for estimation of 𝐺𝑅𝐹𝑗(𝑡) 

signal were identified. Fig. 6 illustrates the location of the 

most important sensors, identified by the NARMAX method, 

for one, two and three sensors systems in the vertical (Fig. 6a), 

anterior-posterior (Fig. 6b) and medial-lateral (Fig. 6c) 

directions for all 25 tests. The color map in Fig. 6 represents 

the peak-to-peak normalized root mean square error (NRMSE) 

corresponding to each model and test, calculated as: 

𝑁𝑅𝑀𝑆𝐸 (%) =

√(∑ [(𝐺𝑅𝐹𝑗,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − 𝐺𝑅𝐹𝑗,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑡))
2

]
𝑡𝑒𝑛𝑑
𝑡=0 ) 𝑁⁄

max (𝐺𝑅𝐹𝑗,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)) − min (𝐺𝑅𝐹𝑗,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡))
× 100, 

(7) 

where, t is the time vector with N samples, starting at zero and 

ending at 𝑡𝑒𝑛𝑑. 

 

a)  

 

b)  

 

c)  

 

d)  

Fig. 6. Optimal location of IMUs to estimate 𝐺𝑅𝐹𝑗(𝑡) in the V(a), AP(b), 

and ML(c) directions and to estimate (d) tri-axial 𝐺𝑅𝐹𝑗(𝑡) signals. 

As it can be seen in Fig. 6a, in the vertical direction, C7 for the 

single sensor system, C7 and one of the shanks for the two 

sensors system and C7 and both shanks for the three sensors 

system appear more frequently than other combinations and, 

therefore, are identified as the best locations for IMUs to 

measure �̈�𝑣,𝑖(𝑡) for estimation of 𝐺𝑅𝐹𝑣(𝑡). Similarly, to 

estimate 𝐺𝑅𝐹𝑎𝑝(𝑡) (Fig. 6b), L5 for the single sensor system, 

L5 and one of the thighs for the two sensors system and, L5 

and both thighs for the three sensors system are the optimal 

IMU locations. The IMU locations identified in ML direction 

(Fig. 6c) were not as coherent across all 25 tests as were in the 

V and AP directions. Overall, �̈�𝑚𝑙,𝑖(𝑡) measured at one of the 

shoulders seems the best candidate to estimate 𝐺𝑅𝐹𝑚𝑙(𝑡). 
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In the next step, the optimal location for IMUs to estimate all 

three components of the 𝐺𝑅𝐹𝑗(𝑡) signals were identified and 

are shown for all 25 tests in Fig. 6d. As it can be seen in this 

figure, C7 for the single sensor system, C7 and L5 for the two 

sensors system and C7, L5 and one of the thighs for the three 

sensors system were identified as the best locations for IMUs. 

In all four cases, the higher the number of sensors was, the 

lower was the NRMSE of the estimated 𝐺𝑅𝐹𝑗(𝑡) signals. The 

average decrease in these NRMSEs, by increasing the number 

of sensors from one to three, were 2%, 3%, 3% and 4% for V, 

AP, ML and tri-axial directions, respectively. 

V. LINEAR MODELS TO ESTIMATE TOTAL GRFS 

This study only focuses on developing models for the three 

sensors system with IMUs at C7, L5 and one of the thighs. 

This is because while being practical, such system provides 

the highest accuracy in results compared with the one and two 

sensor(s) systems. Twenty randomly selected tests from S1-S4 

were used for model development. The remaining three tests 

from S1-S4 were used for intra-subject validation and the two 

tests pertinent to S5 and S6 were used for inter-subject 

validation. Motion capture data were used for developing the 

models presented in Sections V.A, V.B, V.C, and VI, while 

IMU measurements were used in Sections V.D and VII.  

The system identification procedure was started with a simple 

linear model with the structure based on (2). The general form 

of the linear model was taken as: 

𝐺𝑅𝐹𝑗(𝑡) = (𝛼𝑗,𝑐7 × �̈�𝑗,𝐶7(𝑡)) +  (𝛼𝑗,𝐿5 × �̈�𝑗,𝐿5(𝑡)) +  (𝛼𝑗,𝑇ℎ𝑖 × �̈�𝑗,𝑇ℎ𝑖(𝑡)),                        

(8) 
where, 𝑗 ∈ {𝑉, 𝐴𝑃, 𝑀𝐿} and 𝛼 represents part of the total body 

mass represented by each IMU and calculated as discussed in 

the next Sections: 

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑗,𝑐7 + 𝛼𝑗,𝐿5 + 𝛼𝑗,𝑇ℎ𝑖                  (9) 

Two linear models are proposed in this section to estimate 𝛼, 

based on (8). The accuracy of the tri-axial 𝐺𝑅𝐹𝑗(𝑡) signals 

estimated using these two models are later compared with 

those of the NARMAX model of the same structure. 

A. Model 1 

For each direction ‘j’, the Pearson cross-correlation 

coefficients 𝑟𝑗,𝑖,𝑝 between acceleration signal �̈�𝑗,𝑖(𝑡) of CoM of 

each segment ‘i’ and the corresponding IMU signals �̈�𝑗,𝑝(𝑡) 

measured at C7, L5 and one of the thighs (denoted as 𝑝) were 

calculated using (4). Model 1 proposes to use (10)-(12), in 

each direction ‘j’, to calculate the 𝛼 coefficients in (8): 

𝛼𝑗,𝐶7 = ∑ (
𝑟𝑗,𝑖,𝐶7

𝑟𝑗,𝑖,𝐶7+𝑟𝑗,𝑖,𝐿5+𝑟𝑗,𝑖,𝑇ℎ𝑖
× 𝑚𝑖)13

𝑖=1                   (10) 

𝛼𝑗,𝐿5 = ∑ (
𝑟𝑗,𝑖,𝐿5

𝑟𝑗,𝑖,𝐶7+𝑟𝑗,𝑖,𝐿5+𝑟𝑗,𝑖,𝑇ℎ𝑖
× 𝑚𝑖)13

𝑖=1                   (11) 

𝛼𝑗,𝑇ℎ𝑖 = ∑ (
𝑟𝑗,𝑖,𝑇ℎ𝑖

𝑟𝑗,𝑖,𝐶7+𝑟𝑗,𝑖,𝐿5+𝑟𝑗,𝑖,𝑇ℎ𝑖
× 𝑚𝑖)13

𝑖=1                   (12) 

B. Model 2 

Model 2 utilizes the same 𝑟𝑗,𝑖,𝑝 correlation coefficients, and 

proposes (13) - (15) to calculate the 𝛼 coefficients in (8) for 

each direction ‘j’: 

𝛼𝑗,𝐶7 = ∑ {
𝑚𝑖 𝑖𝑓 𝑟𝑗,𝑖,𝐶7 𝑖𝑠 max (𝑟𝑗,𝑖,𝐶7, 𝑟𝑗,𝑖,𝐿5, 𝑟𝑗,𝑖,𝑇ℎ𝑖) 

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
13
𝑖=1      (13) 

𝛼𝑗,𝐿5 = ∑ {
𝑚𝑖 𝑖𝑓 𝑟𝑗,𝑖,𝐿5 𝑖𝑠 max(𝑟𝑗,𝑖,𝐶7, 𝑟𝑗,𝑖,𝐿5, 𝑟𝑗,𝑖,𝑇ℎ𝑖)

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
13
𝑖=1        (14) 

𝛼𝑗,𝑇ℎ𝑖 = ∑ {
𝑚𝑖 𝑖𝑓 𝑟𝑗,𝑖,𝑇ℎ𝑖  𝑖𝑠 max (𝑟𝑗,𝑖,𝐶7, 𝑟𝑗,𝑖,𝐿5, 𝑟𝑗,𝑖,𝑇ℎ𝑖) 

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
13
𝑖=1     (15) 

Model 2 maintains that the acceleration signal of the IMU 

with the highest correlation coefficient 𝑟𝑗,𝑖,𝑝 represents the 

acceleration of the body segment ‘i’ in the direction ‘j’. 

C. NARMAX model 

To put the accuracy of the results of the Models 1 and 2 in 

context, a NARMAX model with the same structure with (8) 

was identified: 

𝑦𝑗(𝑘) = (𝛼𝑗,𝑐7 × 𝑢𝑗,𝐶7(𝑘)) +  (𝛼𝑗,𝐿5 × 𝑢𝑗,𝐿5(𝑘)) + (𝛼𝑗,𝑇ℎ𝑖 × 𝑢𝑗,𝑇ℎ𝑖(𝑘)), 

(16) 

where, 𝑢𝑗,𝑝(𝑘) is the IMU ‘p’ acceleration signal in the 

direction ‘j’ and 𝑦𝑗(𝑘) is the corresponding measured 

𝐺𝑅𝐹𝑗(𝑘). Results of the NARMAX model were assumed to 

serve as benchmark values, representing the highest accuracy 

achievable for the model with the (8) structure. 

Equations (10) - (12) for Model 1, (13) - (15) for Model 2 and 

NARMAX algorithm for the NAMRAX model were first used 

to calculate the 𝛼 coefficients for each of 20 tests in three 

directions. Then the average values of the 𝛼 coefficients 

across all 20 tests were used in (8) to estimate the 𝐺𝑅𝐹𝑗(𝑡) 

signals. The same average 𝛼 coefficients were also used in (8) 

to estimate the 𝐺𝑅𝐹𝑗(𝑡) signals for the five control tests. Fig. 7 

shows the NRMSE values corresponding to all the 25 tests. 

The average (standard deviation) of the NRMSE values for 

training and validation datasets are presented in TABLE I for 

each model. As it can be seen in TABLE I, the Model 1 

NRMSEs pertinent to the AP and ML direction were 

particularly high. Compared with Model 1, Model 2 estimated 

the 𝐺𝑅𝐹𝑗(𝑡) signals with 2% and 4% lower NRMSE in the V 

and AP directions, respectively, and with 11% higher error in 

the ML direction (inter-subject validation results). Comparing 

these NRMSE values with those of the NARMAX model, it 

can be seen that, overall, Model 2 yields closer results to 

NARMAX results in estimation of 𝐺𝑅𝐹𝑗(𝑡) with (8) structure. 

TABLE I: COMPARISON OF MODELS NRMSE(SD) 

 V (%) AP (%) ML (%) 

Model 1 (all trials) 8(1.7) 21(2.2) 16(3.2) 

    validation intra-subject 9(1.5) 19(2.5) 14(4.5) 

    validation inter-subject 9(0.7) 20(1.4) 21(2.1) 

Model 2 (all trials) 7(1.7) 16(2.0) 18(6.7) 

    validation intra-subject 7(1.5) 15(1.2) 14(4.4) 

    validation inter-subject 7(0.0) 16(0.7) 32(2.8) 

NARMAX (all trials) 7(1.2) 12(1.5) 14(4.8) 

    validation intra-subject 7(1.2) 11(0.6) 11(3.6) 

    validation inter-subject 6(0.0) 12(0.7) 23(0.7) 

Model 2 with training 7(1.3) 13(2.0) 13(2.8) 

NARMAX with training 7(1.2) 9(0.8) 12(3.2) 

NL order 1 - 1 lag 5(1.1) 7(0.8) 9(2.3) 

NL order 2 - 1 lag 5(1.0) 7(0.8) 9(2.2) 
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a)  

 

b)  

 

c)  

Fig. 7. NRMSE corresponding to the estimated 𝐺𝑅𝐹𝑗(𝑡) signals for  

(a) Model 1, (c) Model 2 and (d) NARMAX model 

D. Subject-specific training 

A very useful feature of Model 2 is that its 𝛼 coefficients can 

be determined only using the acceleration of different body 

segments (13) - (15). Therefore, it is possible to train the 

model for each particular subject, walking regime or gait 

pattern only using IMUs, assuming that for each body 

segment, a location for IMU can be found to measure the 

acceleration of CoM of that segment, with reasonable 

accuracy. Such subject/gait-specific training can significantly 

enhance the accuracy of the estimated 𝐺𝑅𝐹𝑗(𝑡) signals while 

maintaining its practicality. 

To analyze the effects of the subject/gait-specific training on 

the performance of the model, IMU measurements were used 

to calculate the 𝛼 coefficients of Model 2 for each of the 25 

tests in three directions using (13) - (15). The IMU 

measurements at pelvis, upper arms, forearms, thighs, shanks 

and feet were used to represent the acceleration of these 

segment and the acceleration of head and torso were assumed 

to be represented by C7. The 𝛼 coefficients pertinent to each 

test were then used to estimate the 𝐺𝑅𝐹𝑗(𝑡) signals of that 

particular test and the corresponding NRMSE values were 

calculated. Fig. 8 compares typical measured and estimated 

𝐺𝑅𝐹𝑗(𝑡) signals for Subject 1 walking with comfortable speed 

(Test 5). As it can be seen in this figure, the model estimated 

𝐺𝑅𝐹𝑗(𝑡) reasonably well. The noticeable error in every other 

local minima of the estimated 𝐺𝑅𝐹𝑎𝑝(𝑡) (Fig. 8b) is mainly 

due to the fact that 𝐺𝑅𝐹𝑎𝑝(𝑡) relies on the measured 

acceleration of both thighs as mentioned in Sections III and 

IV. However, in the 3-IMU system used in this section, only 

the acceleration measured from one of the thighs is available 

to the model. If an IMU is added to the other thigh as well, the 

NRMSE error would decrease from 13% (TABLE I) to 10% 

for the estimated 𝐺𝑅𝐹𝑎𝑝(𝑡). 

 

a) 𝐺𝑅𝐹𝑣(𝑡) 

 

b) 𝐺𝑅𝐹𝑎𝑝(𝑡) 

 

c) 𝐺𝑅𝐹𝑚𝑙(𝑡) 

Fig. 8. A typical comparison of measured and estimated 𝐺𝑅𝐹𝑗(𝑡) in the V 

(a), AP (b) and ML (c) directions for Subject 1 walking with comfortable 

speed (Test 5) 
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The NRMSE value corresponding to each test are compared in 

Fig. 9a. Compared with the Model 2 results without test-

specific training (Section B), these NRMSE values represent 

significant reduction of 3% and 5% (all  trials) in AP and ML 

directions, respectively. These NRMSE values further 

compare favorably with the NRMSE values for the NARMAX 

model with test-specific training (Fig. 9 - TABLE I).  

 
a) Model 2 

 
b) NARMAX 

Fig. 9. (a) Model 2 and (b) NARMAX NRMSE with test-specific training 

VI. NON-LINEAR MODELS 

The possibility of improving the accuracy of the estimated 

𝐺𝑅𝐹𝑗(𝑡) signals are explored in this section using NARMAX 

by introducing two forms of mathematical non-linearity in the 

model by allowing the polynomial NARMAX model: (1) to 

assume second order, and (2) to use the lagged terms of the 

input signals up to five lags i.e. 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 5). The 

linear models discussed in Section V with (8) structure are a 

sub-class of this general non-linear structure where the 

polynomial order is one and no lag is permitted. For each of 

the 25 tests in each direction ‘j’, the IMU measurements 

�̈�𝑗,𝐶7(𝑡), �̈�𝑗,𝐿5(𝑡) and �̈�𝑗,𝑇ℎ𝑖(𝑡) were used as input to 

NARMAX and a non-linear model was identified to estimate 

the corresponding 𝐺𝑅𝐹𝑗(𝑡) signal. The NRMSE pertinent to 

each test in each direction ‘j’ was calculated and their average 

value across all 25 tests are shown in Fig. 10. This procedure 

was repeated for the polynomials of first and second order and 

for the maximum allowable lagged term of 1-5. 

 
Fig. 10. Comparison of the accuracy of the linear and non-linear models 

As it can be seen in Fig. 10 and TABLE I, NARMAX models 

with one lagged term estimated the 𝐺𝑅𝐹𝑗(𝑡) signals with 2%, 

2% and 3% less NRMSE in the vertical, AP and ML 

directions, respectively, compared with the corresponding 

linear NARMAX model with test-specific training. The 

accuracy of the estimated 𝐺𝑅𝐹𝑗(𝑡) signals for both first and 

second order models, however, found to be very similar. This 

can be interpreted as the relationships between �̈�𝑗,𝑝(𝑡) and 

corresponding 𝐺𝑅𝐹𝑗(𝑡) signals are to high extent linear. On 

the other hand, increasing the number of allowed lagged terms 

in the model beyond one, increased the accuracy of the 

estimated 𝐺𝑅𝐹𝑗(𝑡) signals by maximum 1% NRMSE. 

However, involving lagged terms complicates the structure of 

the model and the model structure will no longer be physically 

interpretable based on (2). 

VII. REAL-LIFE VALIDATION 

Walking gait in real-life environment is characterized with 

high variability in magnitude and timing compared with the 

treadmill-measured 𝐺𝑅𝐹𝑗(𝑡) signals. To analyze the 

performance of the Model 2 in real-life environment, a set of 

tests was carried out where 10 subjects walked around the 

University of Sheffield campus buildings (in paved urban 

environment), while wearing a pair of Tekscan F-Scan in-shoe 

pressure insoles [16]. The walking pathway was characterized 

with flat parts as well as uphills and downhills. Subjects were 

asked to walk normally, and no further instructions were given 

to keep the experiments as realistic as possible. 

Body acceleration was measured using three IMUs at C7, L5 

and one of the thighs. The normal plantar pressures measured 

under both feet were used to calculate the left foot, right foot 

and the total 𝐺𝑅𝐹𝑣(𝑡), signals. Before and after each trial, 

subjects walked with their normal speed on the instrumented 

treadmill while wearing pressure insoles and the 𝐺𝑅𝐹𝑣(𝑡) 

signals measured by the treadmill were used to calibrate the 

pressure insole measurements for each outdoor walking test. 

Model 2 with subject-specific training was used to estimate 

the total 𝐺𝑅𝐹𝑣(𝑡) signals for each subject. Before each outdoor 

test, a set of 13 walking measurements, each with 30s 

duration, were carried out to determine subject-specific 𝛼 

coefficients for each test subject. In these measurements, three 

IMUs were placed at C7, L5 and the right thigh, while in each 

test the fourth IMU was placed closest to the approximate 

location of the CoM of one of the body segments ‘j’ and the 
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corresponding 𝛼𝑗,𝐶7, 𝛼𝑗,𝐶7, and 𝛼𝑗,𝐶7 coefficients were 

calculated using Equations (13) - (15).  

A set of 115 data segments of 5s duration were randomly 

extracted from the measured outdoor data for analysis. Both 

Model 2 and the Equation 1 were used to estimate the total 

𝐺𝑅𝐹𝑣(𝑡) signal for each of 5s time histories and the 

corresponding NRMSE values were calculated. Fig. 11a 

compares the distribution of the NRMSE values for Model 2 

and Equation 1. Model 2 shows mean NRMSE of 8.7% 

compared with 10.3% for Equation 1 results, and compares 

favorably with the treadmill tests results (mean 7% NRMSE). 

Fig. 11b and c show the measured 𝐺𝑅𝐹𝑣(𝑡) time histories with 

the worse and best 𝐺𝑅𝐹𝑣(𝑡) estimates, respectively. As it can 

be seen in Fig. 11b, the high frequency peaks of 𝐺𝑅𝐹𝑣(𝑡) are 

not estimated accurately by Model 2 in the worst estimate.  

 
a)  NRMSE distribution  

 
b) Worse estimate NRMSE: 0.119 

 
c) Best estimate NRMSE: 0.062 

Fig. 11. Performance of the Model 2 in outdoor environment 

VIII. CONCLUSIONS 

The present paper studied in detail the correlation between the 

acceleration of the body segments and the 𝐺𝑅𝐹𝑗(𝑡) signals in 

three directions using a set of 25 walking gait measurements 

on six subjects. Using the NARMAX system identification 

model, it was found that for estimation of the tri-axial 𝐺𝑅𝐹𝑗(𝑡) 

signals, C7 for the single IMU system, C7 and L5 for the two 

IMUs system and C7, L5 and one of the thighs for the three 

IMUs system are the optimal locations on the body to measure 

tri-axial acceleration.  

A linear model based on the correlation of the segmental 

accelerations and the IMU measurements was proposed that 

can be trained easily for each subject and gait pattern using 

only IMUs. This model estimated 𝐺𝑅𝐹𝑗(𝑡) with average 7%, 

13% and 13% NRMSE in the vertical, AP and ML directions, 

respectively. It was further shown that for the dataset used in 

this study, the first-order non-linear model with one lagged 

term showed 2-3% reduction in NRMSE compared with the 

corresponding linear model. 

The main limitations of this study are: (1) models were 

developed and validated only for healthy subjects and 

pathological gaits were not considered, and (2) the validation 

dataset was small. A larger dataset, statistically representative 

of a wide spectrum of gait patterns, subject parameters (age, 

height, weight, etc.) and gait conditions is needed to validate, 

personalize and enhance the proposed models. 
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