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Price-based Schemes for Distributed Coordination
of Flexible Demand in the Electricity Market

Antonio De PaolaMember, IEEE David Angeli, Fellow, IEEE,and Goran Strbadylember, IEEE

Abstract—This paper proposes novel distributed control I. INTRODUCTION
schemes for large-scale deployment of flexible demand. The
problem of efficiently coordinating price-responsive applances One of the defining elements of power systems transition
operating in the electricity market is tackled within a game  towards the smart grid paradigm is the increasing flexjbilit
theoretical framework. Adopting the concept of Nash equilbrium ¢ qemand. A growing fraction of electric loads installed

and Lyapunov-based techniques, a new iterative control aly . . . L
rithm is designed in order to always converge to a satisfacty in private households will accommodate the possibility to

solution for the individual customers, which aim at minimizing 'éschedule (at least partially) their power consumptioringu
their energy costs. From the system perspective, it is shown the day. Such developments can lead to significant benefits
that global quantities such as total generation costs are ticed [1], [2], [3], in the form of reduced operational costs andreo

at each algorithm iteration. These results are achieved for officient integration of renewables in the system. To fulikt

any penetration level of flexible demand and for all types of otential. it is necessary to devise robust and efficient con
interruptible electrical appliances. The proposed contrd scheme P 1al, 1t y Vi u ICl

can be applied in practice through a one-shot implementatio  trol strategies for large-scale deployment of flexible dedya
that, at the price of a negligible degradation of the equilisium  pursuing its efficient integration in the electricity matrk@
performance, ensures faster convergence to a stable soli. consistent amount of research has investigated this prble
Simulation results are also presented, testing the novel semes 44y cing a wide array of different solutions [4]. Sincetrah
in realistic future scenarios of the Great Britain power sysgem .
with high penetration of flexible demand. |zgd schemes [5] may not always be scalgblg to large sys_tems
with many independent agents, several distributed teciesiq
have been proposed. These include adaptive strategies [6],
Lagrange relaxation [7], stochastic pricing [8], [9] anck th
introduction of aggregators as mediating entities in tretesn
NOMENCLATURE [10]. Distributed optimization using the Alternating Datéon
Method of Multipliers (ADMM) has also received increasing
attention [11], [12]. With this approach, both the devices
and the system operator follow an iterative procedure that,
under certain convexity assumptions, converges to a fisaltre
which is optimal for some combination of global and local
objective functions.

Index Terms—Electric power networks, flexible demand, game
theory, distributed price-based control, electricity markets.

j € N Index and set of flexible appliances

t € T Index and set of time instants

At Time discretization step (h)

Ejr Energy required byj-th appliance (KWh)
PJ-r Rated power ofj-th appliance (KW)

o/,  Time-availability interval ofj-th appliance : . o .
uj(-) Power consumption profile ofth appliance (KW) _ In.th|s paper, the problem of lapphances coord|n§1t|on with
UT(') Power profile ofj-th appliance at Nash Eq. (KW) dlstnbuteq §chemes is tackled V\{|th|n a game-theoretieahé-
uz(-) Power profile ofj-th appliance at-Nash Eq. (KW) y\{ork. Individual customers/de\_/lces_ are modelled as compet
ﬁZJ/_-L Set of feasible power profiles fgrth appliance itive playe_rs that receive a price signal and schedule power
%  Set of feasible ON/OFF power profiles fgsth appli- consumption so as to minimize the_ energy cost required
ance to complete their task. The main objective is to induce a
D(-) Broadcast demand signal (GW) Nash equili.brium: no devi(;e can .a(.:hieve a reduced energy
Di(-) Inflexible demand profile (GW) cost hy um_laterally changing its initially sc_heduled powe
D¢(-) Flexible demand profile (GW) By accountlng for the global effect of flexm_)le demar_wd on
Da(-) Aggregate demand profile (GW) energy prices, new demand peak_s are avoided, achlevmg a
D(-) Aggregate demand profile at Nash Equilibrium (GW) flatteneq a_\ggr_egate demand profile and red.uced generation
Dz(-) Aggregate demand profile atNash Equilibrium (GW) costs. Distinctive elements of such approach include:
M(D) Electricity price function £/MWh) « Full control of the individual agents over their behaviour.
p(t) Broadcast price signaE(MWh) Unlike centralized schemes, in our approach the central
pj(t) Price broadcast t¢g-th appliance in Alg. 2£/MWh) coordinator only broadcasts electricity prices and does
G Expected energy cost of theth appliance £) not prescribe a certain power consumption.
C; Final energy cost of thg-th appliance £) « The loads do not need any external incentive and react to
£ Parameter of equilibrium approximatiofi)( the received signals by pursuing their self-interest, & th

_ _ form of their own cost minimization. This is not always
A. De Paola, D. Angeli and G. Strbac are with the Department of h in distributed L h h
Electrical and Electronic Engineering, Imperial Colledegndon. (e-mail: the 9"?‘59 In distributed optimization schemes, where a
ad5709@imperial.ac.uk; d.angeli@imperial.ac.uk; bast@imperial.ac.uk). specific power update needs to be followed by each



device, even if it does not always lead to a direct reductioril. COORDINATION OF PRICE-RESPONSIVEAPPLIANCES

of its energy cost. _ This section presents the main modelling choices for the
« Given the distributed nature of the considered frameworﬁexime appliances and the electricity market. The problem

reduced computational times and communication infrags coordinating the price-responsive demand in a disteibut
tructure can be achieved. manner is then formulated within a game-theoretical frame-

Note that the chosen game-theoretical framework naturaYIVf k.

focuses, through the concept of Nash equilibrium, on the

objectives of the individual devices. The optimization tftzal  A- Flexible Appliances

quantities (such as total generation costs) is usuallyezeldi ~ We consider a populations” = {1,...,N} of price-
through particular design choices and does not constihee tesponsive appliances that are required to complete agrashi
core element of the coordination strategy, as in centrdlizeask over a discrete time intervéfl = {1,...,T}. The objec-
schemes. In this respect, distributed optimization apgresa tive of each device is to exploit its flexibility so as to consai
usually opt for an intermediate objective, optimizing sompower at the cheapest hours of the day, reducing the total
combination of global and local cost functions. energy cost required for task completion. The task of jttie

Game theory has been extensively applied to the protpj)e_vice can be describ_ed by three quantities_: the t(_)tal_a_lmoun
lem of demand response. For instance, [13] determines ffeéquired energ¥;, its rated poweiP| and its availability
energy consumption of the appliances as the best respofdadow «7j C .7. These parameters unequivocally characterize
to external signals. This concept is extended in [14], usitge Set#j of feasible power consumption profiles: .7 — R,

a larger time horizon to guarantee fairess for the devicBit guarantee task completion for theth device. If one
and better global results, and in [15], which approximates tdenotes byix the indicator function, it holds:

appliances population as infinite and models the problem as T
a mean field game. It has been shown, mostly in the case of %;:= {uj( ) ZUj(t)At =Ej,

electric vehicles, that distributed control schemes cawveme t= (1)
to a Nash equilibrium when additional quadratic terms are 0<uj(t) <P Iy(t)Vte 9}

introduced in the cost function of the devices [16], [17] or

under some conditions on the number of appliances and they feasible power profilel; € % must fulfil two properties.
considered energy price [18], [19]. The first condition in (1) states that the total consumedggner

(equal to the sum ofi; multiplied by the time discretization

_ The main novelty of our approach is that, with the proposegle Aty must correspond t&], required for task completion.
iterative strategy, convergence to an equilibrium is e@8Ur=,5 1 the second condition, at any time instant < the
for any penetration level of flexible demand and for aN¥ower consumed by thgth device cannot be greater thﬁf‘n

type of interruptible loads. The case of ON/OFF devices ang 4 must be equal to zero wheg 7, as the device is not
appliances with partial time availability is also accommatetl , ~iable to consume power.

and no specific knowledge of the electricity price functien i Assumption 1The parameter$E!, P! 7}) of each device

required. This result is achieved with Lyapunov techniques are sich that the set; of feasible Jp’ower profiles is non-
showing that some global functional (e.g. total generati

Ahpty. Equivalently, all appliances can complete thekgdsy

costs) is reduced at each iteration of the proposed algorithy e ating at rated power during their time availability dinv:
For faster practical implementations, a one-shot scheme Is

also designed: at the price of a negligible reduction in the Z PJ-’-At > EJ-r vieN.
equilibrium performance, the devices can be successfolly ¢ ted]

ordinated through a single broadcast of a price signaleidfit g4ch device is required to pay for the energy consumed while
in general for each device). In addition, it has been prov%%mpleting its task. For a certain price signst) and power

that the proposed techniques are fair (devices with eqyahgije uj, the total cosC;j sustained by thg-th device is:
parameters incur equal energy costs) and incentivize flayib

(devices that are available at more time instants pay less c_ il - u (DAL 5
to complete their task). The presented strategies are yfinall J_t; p(t) - uj (DAL, )
evaluated in simulation, considering likely future scéosiof

the UK grid, with high penetration of flexible demand. Each term of the sum in (2) corresponds to the energy cost

i _ _of the devicej at timet and it is equal to the product of the
The rest of the paper is structured as follows: Section é'lectricity pricep(t) by the consumed energy(t) - At, where

presents the main modelling choices and characterizes Mj€jenotes the chosen time discretization step.
demand response coordination problem as a static cormpetiti

game. The description of the iterative control strategyhvai o ]

discussion of its theoretical properties and possible timaic B- Power Demand and Electricity Prices

implementation, is included in Section Il while Section IV To quantify the energy costs sustained by the appliances, th
presents the same results for the alternative one-shotngcheelectricity market has been abstracted by a price fundfiari
Simulations of the proposed control strategies are predant the aggregate power demand. At a certain time ingtan?’,
Section V while Section VI contains some conclusive remarkthe electricity price p(t) corresponds top(t) = M(Da(t)),



whereD,(t) denotes the total power demand at timélhis their power consumption at the same time instants, they will
quantity is the sum of two distinct terms: the total powencrease total demand (and therefore electricity price)ase
consumptionD¢ of the flexible appliances and the powetimes, causing suboptimality of their operation stratefy.
demandD; of the other (inflexible) loads. Denoted ly(-) tackle this problem, a game-theoretical framework is agldpt
the power consumption profile of teth device, the following modelling the flexible devices as competing rational player
expressions can be provided: The elements of the considered static game are the following

N « Players: The set.#” of flexible electrical appliances.
De(t) = uj(t) (3a) « StrategiesFor each playej € .4, the set%; of feasible
=1 power profiles guaranteeing task completion.
N « Objective function:Minimization of the actual energy
Da(t) = Di(t) + D (t) = Di(t) + 3 uj(t). (3b) costC; sustained by the individual devideto complete
=1 its task. The considered energy price depends on the final
Assumption 2The single devicg has no market power and profile of aggregate demaria, through the functiorl:
cannot unilaterally modify the electricity price. Such qtity T
only depends on the total power consumed by the whole Cj= zil'l(Da(t))-uj(t)At. 4)
population of appliances: t=

N In this context, a fair and desirable system configurationt=a

M(Da(t)) =1 (Di (t)+ Z uk(t)> ~ (Di (t)+ uk(t)> described as a Nash equilibrium, in the sense specified below
k=1 ke 7\ j Definition 1: Consider the individual power consumption

This is not only a simplifying hypothesis for the gameprofilesuj(-) € %; for all j € .#". These quantities correspond

theoretical analysis presented next but it is also a cruct@la Nash equilibrium in the electricity market if the follow

technical remedy required to preserve equilibrium existen ~condition is fulfilled for all j € .4":

the case of high penetration of flexible demand. The proposed T T

approximation is reasonable if one considers domesticsload ) M (D5(t))-uj(t)At = min ZI'I (DA(t)) - uj(t)At )

whose individual power consumption is orders or magnitude = =

smaller than the total power demand in the system. s.tuj(-) €%

Assumption 3The price function(Da) is strictly mono- where the aggregate demand profilg is defined as:

tone increasing with respect ;. N

It is assumed, in a first approximation, that electricitylwil p*t) — p;(t) + Dj(t) = Dj(t) + Z ui(t) Yte 7. (6)

be more expensive when more power needs to be generated =1

to meet higher de_mand Ie_vc_els. The current formulation hﬁe proposed definition is conceptually similar to the aluil
been chosen for its simplicity but the presented modelhn%

framework can also accommodate more realistic and detailreifH notions that have been recently presented for gamés wit

: . . . ~_IAfinite players, also referred to as mean field games [2Q], [2

cases. For example, in scenarios with high penetration 0 o S :
2 o " these works, it is assumed that the (infinitesimal) single

renewables, one can assume that the electricity price imon

: : : . .. agent does not have a significant impact on the global quan-
tone increasing with respect to the generation from trawléi .- )
sources. IfM(Da(t)) is replaced withM1(Da(t) — Gy (t)) — tities of the system and therefore only the global behaviour

M(Di(t) + Ds (1) — Gr (1)), whereG (t) represents the amountOf the players’ population (the mean field) must be taken into

. ) account. In our case, it has been established in Assumption
of renewable generation, all the results presented in the s . . -
that the single appliance has negligible market power and

of the paper can still be obtained with minor modiﬁcations.nI the aggregate power consumptidp of the flexible load
More generally, the presented analysis is valid as long @s { y ggregate p P

e i i impacts the electricity price. Therefore, at equilibriuthe
e e merg. SEhEIe] pove prol ofcach piye s costminmizng
increasing. It is worth mentioning that network constraint]cor a certain aggregate demay = D + Dy (through (5))

could potentially impact the electricity prices. Howevitris and, at the same time, the whole set of power schedules
P y imp y P ' " induces that very same demand profile (as a result of (6)).

a common assumption to neglect network models in StUdI§|Smilar definitions of Nash equilibrium, in the context of

on large-scale coordination of erxib_Ie dem_and [13]-[18]. flexible demand, have been presented in [17] and [22].
Remark 1:The control schemes in Section Ill and IV do From a global point of view, it is worth mentioning that

nmogrzggoun'.re. precise knowledge of the price functidnonly s g1e problematic rebound effects associated to large peivetr
icity with respect to power demand must be verifie : S
of flexible demand are cancelled at the Nash equilibrium
_ ) solution. In fact, if new demand peaks were to be created
C. Game-theoretical Formulation by the operation strategies of the price-responsive loagls,
The main objective of the present work is to induce (in demand valleys (characterized by cheaper electricity)lavou
distributed manner) a system configuration which is satisfaalso appear. It follows that the single appliances couldiced
tory for all the involved agents. In doing so, it is crucial tdheir costs by shifting part of their power consumption tesh
take into account rebound effects and loss of diversity. Foew valleys. By definition, this cannot occur when a Nash
high penetration of flexible demand, if all devices schedugguilibrium has been reached.



I1l. 1 TERATIVE CONTROL STRATEGY preserve their previous strateg;ﬁ = uf!*l) forallk+# ). The
An iterative scheme is initially considered for distribaite COr"esponding values of the resulting aggregate deniifd

coordination of flexible appliances with continuous powei® modified accordingly. If, at some iteration of M&HILE
consumption, incorporating in Section IV the case of ON/OFYCIE, there is no devicg that can reduce its energy cost,
loads. The iterative control strategy is formally defineic- the variableconv (set to 1 in step 2.a) preserves its value
tion I1I-A, proving its convergence and equilibrium propes throughout theFOR cycle in step 2.b). This means that a
and discussing the results achieved at a global level. iBaact N@sh equilibrium has been obtained and the second phase of
implementations are discussed in Section I1-B. the algorithm is concluded. The resulting power profilgs

and aggregate demai, (fulfilling (5) and (6) in Definition

1) will correspond to the values QIEI) and D) at the last
iteration, as established in th@énal results step.

The proposed iterative strategy is described by Algorithm 1 Two important properties justify the use of Algorithm 1
which consists of three main phases. for flexible demand coordination. It can be shown that such
algorithm always converges to a final configuration thats$s al
Algorithm 1 Iterative scheme - Flexible demand coordinatiog Nash equilibrium. This is true for any penetration level of

1) Initialization phase. Starting values for power schedul-flexible demand and for any feasible set of devices parameter

ing of the appliances and flag variables are set: (EJ,P/,<) fulfiling Assumption 1. To formally prove these
results, a technical lemma is preliminarily presented:

A. Theoretical Control Scheme

Oy _,0 : i _ _
u()=ui) ez vies 1=0  cowv=0 Lemma 1:Consider two demand profil&s™ : .7 — R, and
N D" :.7 — R,. Assume there exists,t, € .7 such that:
DO() =Di()+ 3 u() ' i
=1 D™ (t2) <D*(t1) <D'(tz) <D (t) (7a)
2) Power scheduling updateThe scheduled power profiles _ Lyt i
of the individual appliances are iteratively updated : D™ (t2) + D7 (tz) = D" (t1) + D™ (t2) (7b)
WHILE (conv==0) D (k)=D*(k)  Vke Z\{tstz}. (7¢)
a) conv=1. . T .
b) FOR j—1:1:N For any functionaV (D) = 3,_; f(D(t)) wheref : R, - R,
) I—141 is a strictly convex function, it holds:
i) DOC)=D0-D() u()=ul"Y() vier, V(D) < V(D). 8)

iii) FIND t3,t, € .« such that: . .
) b ! The convergence and equilibrium properties of the proposed

D! (ty) < D Y(ty) Ugl Y(ty) < P Ugl Y(t2) >0 control strategy can now be formally enunciated.
iv) IF ty,t, exist: Th;orfelm %f:ogsiqler a p_or?ulati(_)m/ ={1,...,N} of inter-
) _ _ (-1 (4 _pl-1) ruptible flexible devices with continuous power consumptio
A= mm({Pjr —UEI 1>(t1)7U§| 1)('[2)7%}) Under Assumptions 1, 2 and 3, Algorithm 1 asymptotically
converges to the final result.
Proof: See Appendix A. [ |
Theorem 2:Under Assumptions 1, 2 and 3, the power

u schedulingu* returned by Algorithm 1 corresponds to a Nash
conv=0. equilibrium in the electricity market, in the sense spedity
3) Final results. The Nash equilibrium solution is returned Definition 1.
| 0 _ Proof: See Appendix B. |
Di()=DY()  uw()=u’() Vier. We can conclude that the application of Algorithm 1 guar-

antees convergence to a Nash equilibrium under very general
) ) o o assumptions and for any penetration level of flexible demand
As a(g)rst step, in thenitialization phase, preliminary |, the final stable configuration, no individual appliance ca

valuesu;” are set for the power scheduling of the flexiblghange its scheduled power so as to reduce its energy cost.
devices, calculating the resulting aggregate demaffdl In The proposed control scheme also shows interesting global
phase two, namegower scheduling update the algorithm properties. We wish to emphasize that, in general, the be-
verifies if the energy cost of each device can be reduced wihviour of competing agents under a market paradigm does
respect to the current configuration. At each iteration & tmot lead to a maximization of the global welfare. In fact, the
WHILE cycle, all devicesj € .4 are analysed sequentially.greedy market participants will seek to maximize their own
During the I-th execution of theFOR cycle, it is verified private pay-off even if this implies suboptimal global sins.
whether the single appliangecan switch a feasible amoufit However, in the case of flexible demand deployment with the
of its power consumption from tim to another time instant proposed technique, the stable configuration charactesaigex

t;, characterized by a lower demand value (and therefaxash equilibrium corresponds to flattened demand profilds an
lower energy price). If this is the case, the scheduled powduced generation costs, exhibiting strong affinities wlite

ug') of the j-th device is updated while all other deviceglobal optimum. As demonstrated by Lemma 1 and the proof



of Theorem 1, each iteration of tHeOR cycle in Algorithm straightforward to derive based on the power ratF?jg

1 (where the scheduled power of single devices is updated) and previous power scheduling Y of the device, the
reduces some convex functionalof aggregate demand. Such  third term requires some extra information from the
functional can be chosen as the total generation costs of the central entity. This can be the demand prom@fl), as
system or quantify the achieved flattening of the aggregate supposed in PhaseA in Fig. 1, or directly correspond to
demand profile. It follows that the final configuration notynl| the maximum allowed power shifiyax = (D<'*1> (t2) —
corresponds to a Nash equilibrium but it also represents a D(lfl)(tl))/z_

“local minimum” of these quantities. At the induced stable , The j-th device broadcasts the valuestgft, and A to
solution, any functionaV of the kind described in Lemma the central entity (Phas@.B in Fig. 1), which in turn
1, quantifying for example total generation costs, canr®t b modifies accordingly the new demand profnﬁl) and
further reduced by modifying the strategy of a single device  the flag variableconv.

A future study will determine if multiple minima of such kind 3) Final results. After some iterations, as proved in Theo-

exist, modifying the control scheme so as to ensure converge, 1 and 2, th&VHILE cycle described above is concluded

to a global optimizer. and the devices cannot further reduce their energy cosest Th
final power profilesuj, corresponding to a Nash equilibrium,
B. Practical Distributed Implementation will be equal tou%') at the last-th iteration. In a similar way,

The control strategy of Algorithm 1 is straightforward tahe resulting aggregate demaby will correspond toD(!).
implement in a practical context, adopting a bi-directiona Note that, ifD© in Algorithm 1 is known, the proposed
communication scheme between some central entity (eigplementation preserves the privacy of the appliancess&h
the system operator) and the individual flexible appliancesre only required to communicate to the system operator thei
The operations required to implement the different phasespgower variationA (and the time instant; andt, at which
Algorithm 1 are analysed and discussed separately. occurs) and do not need to reveal their paramQEj’rSDjr,pfj).

1) Initialization phase: As a first step, some initial price
signal p©)(t) is broadcast to the devices. This quantity can be

chosen, for example, as the price of inflexible demand nggtti System Operator
p©(t) = M(Dj(t)). In turn, each devicg € .4 schedules its i =e
initial power profileuj0 S0 as to minimize its expected energy PHASE N.B

cost: T Device #1
u§0>(~) carg min; pO(t) - uj(t)At.

uj( et

PHASE N.A

The scheduled power profiles are then communicated to the
central entity that calculatd3©) using the expression provided
in Algorithm 1.

2) Power schgdullng update: Each It_eratl_on of thWH”‘E_ Fig. 1. Practical implementation of theower scheduling updatein the
cycle, summarized by the scheme in Fig. 1, can be impl@srative scheme of Algorithm 1.
mented through the following steps:

» The system operator keeps track of the logical variable Remark 2:For a compact and clear representation of its
conv and the iteration countdr. At each execution of core mechanisms, Algorithm 1 has not been optimized for
the FOR cycle, the considered demand profilé!) is a practical implementation. To obtain faster convergence,
initialized as the one obtained at the previous iteratiomultiple minor changes can be considered. For example, in
with D) = D~V These operations correspond to stepsrder to require fewer iterations of its update steps 2.b.i)
2.a), 2.b.i-ii) in Algorithm 1. 2.b.iv), the same devicg could perform multiple updates

« The price signalp!~Y = (DY) is broadcast to the before passing on to thgj + 1)-th appliance. The order in
j-th device (Phasg.A in Fig. 1). On the basis of this which devices are contacted could also be modified.
information and its previous power schedulimj{;ﬁl), the
j-th device can determine the time instahtsandt, at IV. ONE-SHOT CONTROL STRATEGY
which perform a power swap that reduces its energy costone of the main drawbacks in practical applications of
Specifically,t; andt, must fulfil the following conditions: Algorithm 1 is the necessity to sequentially communicate (i

-1 -1 (1I-1) roo (-1 principle more than one time) with each flexible appliance.
ol )(tl) <p )(tz) Y () <P Ui (t2) > 0. When large populations of agents are considered, this could
Note that, as a result of Assumption 3 and definitiorequire significant time and communication resources. Ifisr t
of p~, these are equivalent to the inequalities in stegason, we propose an alternative coordination schemedahat
2.b.iii) of Algorithm 1. be implemented through the broadcast of a single price kigna

« The quantityA (presented in step 2.b.iv) is internally(different in general for each appliance). Such scheme migt o
calculated by thej-th device. While the first two terms can be applied to devices with continuous power consumption
in the min function of the provided expression aréut it can also accommodate the case of ON/OFF loads. A



(negligible) equilibrium approximation is introduced attte  Given D} defined in (10) and using supp to denote function
resulting final solution corresponds to afrNash equilibrium, support, the quantitjDJ-+ is equal to:
defined next.

Definition 2: Consider the individual power consumption D} = eanax, Da(t).- (12)
: . pRU})
profiles uJ*(-) € % for all j € 4. They correspond to ag- _

Nash equilibrium in the electricity market if, for songe> 0, Proof: See Appendix C. _ [
the following condition is fulfilled for allj € .4 Remark 3:1t can be shown that Algorithm 2 not only
T T converges asymptotically but it is actually completed imidi
le‘l (Da(t)) -uj(H)At < min Zl(n (Dx(t)) -uj(t)At)+&  number of iterations. Proof is omitted for length reasons.

= ui() &
Ltoui(c) € %
s-tul)e? (9) B. Equilibrium Approximation
where the aggregate demand profilg is defined as: At the e-Nash equilibrium achieved by Algorithm 2, the

N single device can at most reduce byits energy cost. It is
Di(t) = Di(t) + D} (t) = Di(t) + Z uj(t) Vte 7. (10) important to point out that, in the considered context with
=1 large numbers of small flexible appliances, such approxima-
When condition (9) holds, each device, by unilaterally cirantion in the equilibrium condition is theoretically requiréo
ing its power scheduling;, can at most reduce by a smalits  establish convergence but it has a negligible effect intpaic
energy cost. An expression will be provided for this quantitimplementations. This can be verified by considering theeal
showing that in the considered scenariois negligibly small. of € which is provided in (11) and quantifies the entity of the
equilibrium approximation. In this respect, we remind that
A. Theoretical Control Scheme analysis accounts for the demand and price variations-intro
The modified control strategy for coordination of flexiblegduced by the whole population of price-responsive deviges.
demand is defined by Algorithm 2. The only difference witfthe same time, the effect of the single device is assumed to be
: : _negligible as its maximum power consumptieh is orders
Algorithm 2 One-shot scheme - Flexible demand coordinatiqst magnitude smaller than the total aggregate demB@gd

« Steps 1) - 2.b.iii)are equal to Algorithm 1. (which determines the energy price). Therefore, the fdlhgw
o Step 2.b.iv) IF t1,t> exist: approximations can be considered for any deyjiee./":
— mi (-1 (-1
Ha= m'”(l({;’f —y; <| (E%“J (tZ)})- Df ~Df —2P| — M(D)~M(Dj —2P)) — £=~0.
DU (ty) — DUt
2) Ap = (t2) > (1)- For example, in the scenario analysed in the simulation sec-
3) IF A<Ap tion, expression (11) returns= 1.7-107°£.
More importantly, if one considers the final configuration
UEI)(tl) — ug'*l) (t1) +A u%”(tz) — ug'*” (tp) — A achieved through Algorithm 2, the maximum price differahti

that could potentially be exploited by the individual devic
DO(ty) =D V(ty) +A DY(ty) =D () —A to reduce its energy cost is comparably small. Using aldebra
operations similar to the ones in the proof of Theorem 3,
one can verify that such price differential corresponds to
N(D;") — N(Dj —2P). For instance, in the proposed case

Di()=DV() uw()=ul() vier. study, its maximum value amounts t68- 10-°£/MWh. This
means that in practical implementations, if the final priée o
) L ) aggregate demand is broadcast with reasonable approgmati

respect to the previous version is in the calculation, ab St?ror example up to the third decimal digit), the devices wit

2.b.iv.1), of the swapped powgrbetween the time instants  getect any advantageous price differential at the finaltioiu
andt;. In this caseA corresponds to the maximum feasiblg;q o power swap will occur.

amount of power that can be reallocated between the two time

instants. This quantity is compared witp, i.e. the maximum ) i

amount of power that can be swapped while preserving the Power Consumption as ON/OFF Profile

following demand inequality: By using Algorithm 2, it is possible to obtain a stable
I (-1 -1 A system configuration where the power consumpti of

D' )(tl) =D )(tl)+5 <D! )(tz)_é_ D' )(tz) V0 < lo. each devicg, at the single time instartt is either mngganum

If the conditionA < Ap is not verified, no power swap occursor zero. This result is obtained also for loads that can mod-

The main properties of Algorithm 2 are now formalized:  ulate their power consumption and it considerably fad#ia
Theorem 3:Under Assumptions 1, 2 and 3, Algorithm 2practical implementations, as discussed in the next stibsec

asymptotically converges to the power profiles correspond- Reminding that%;, defined in (1), denotes the set of feasible

ing to ane-Nash equilibrium as specified by Definition 2, Withpower schedules ensuring task completion for devjicéts

¢ defined as: subset of ON/OFF profile®; can be defined as follows:

£ :=max|N(D}) — N(D} —2P)) | E]. (11) = {ui() e % ut) e {O.P}vte 7}, (13)

conv=_0.
« Step 3) The Nash equilibrium solution is returned




Assumption 4The subsev?/_j C %; is nonempty for allj €
4. Equivalently, there exists some constgne N such that
the following holds for the parameters of theh device:

El =y P At

Under Assumption 4, each device can always complete its task
by only operating at rated poweE?jr at certain time instants.
For this to be case, the required enelz‘ggymust be equal to
an integer multiple oPJ-r -/At. Note that such condition always
holds when ON/OFF appliances are considered. In the other
cases, it can be fulfilled by choosing a sufficiently sradlbr
admitting some approximation in the required enelﬁjy .
Remark 4:The theoretical results and the distributed imple-
mentation presented in the rest of this section still holeémvh
Assumption 4 is not considered. In this case a more compli-
cated framework is required, definirg as the set of feasible
u; that are always equal to 0 anR}i, with the exception of a

single timet whereu;(t) = (EJr - {E}/(P{At)J PlAt) At

required by Algorithm 2. In doing so, it setéo) € U

so that Lemma 2 holds. This is always possible under
Assumption 4, also in the case of devices that can
modulate their power consumption. For instance, one can
setugo) (t) =P} in the firsty; = Ej/(P] - At) time instants

of the availability intervale/; and zero elsewhere. The
obtained final results are the desired power profiles
for the individual appliances and the resulting demand
D3, defined in (10). As established in Theorem 3, these
guantities correspond to agrNash equilibrium in the
system.

Phase 3 The power schedules] are induced, in a
distributed manner, to the population of flexible appli-
ances. A different pricepj is broadcast to each appli-
ancej which, on the basis of this signal, independently
schedules its own cost-minimizing power consumption,
corresponding taJj.

We now characterize in detail the price signpjsbroadcast in

The following progverty of Algorithm 2 can now be ‘introducedPhase 3. In order to induce arNash equilibrium, these must
()

Lemma 2:If ugo

final power profilesuj it holds: uj(-) € %;.

€ %; in step 1) of Algorithm 2, for the be designed so thatj, calculated in Phase 2, is the unique
” minimizer of the energy cost minimization problem for the

Proof: Given step 3) in Algorithm 2, it is sufficient to J-th device:

prove the same inclusion for any temporary proﬁi'é:

uWiyez . (14)

T
uj(-) = argmin lej*(t)-uj(t)At

up()  t
s.t. uj(-) e

(15)

This can be verified by induction. Sines” () €%}, we only e remind that, from Lemma 2, allf are ON/OFF power
need to show that (14) holds Wh@lﬁ‘lfl)(') € %;. From the profiles belonging to the se#;, defined in (13). Note that
update equations at step 2.b.iv.3), it is sufficient to olaserthis property is crucial for the calculation of a price sib

that in the present cageis always equal t@jr. |

satisfying (15), since in this cage needs only to fulfil the

following property:

D. Practical Distributed Implementation
The e-Nash equilibrium returned by Algorithm 2 can be

induced in realistic contexts by broadcasting a singleeprig; s

pj(t1) < pj(tz) V(t1,t2) 1 ta € SUpdu;j(-)),t2 & supguj(-))

(16)
generally not possible to simply chooge = I(D3) in

signal (different in general for each appliance). This ISty qer to induce the-Nash equilibrium. In fact, ifD takes

can be achieved, both for loads that can modulate their powgfstant values over a certain time interval, there mayt exis
consumption and for ON/OFF devices, by applying the scherﬂee SUpRU;(+)) andt; € ,sz{j\supr{uj*(-)) such that:

presented in Fig. 2. The individual implementation steps ar

Pj(t2) = pj(t2)

Device #1 {’f—?ﬁElw thus violating condition (16). In other words, the devige
parameters and availability windows could potentially choose multiple power schedules yiejdin
N ~;| System Operator the same energy cost. For this reason, the price sigptals
e are chosen so as to incentivize consumption at specific time
' PHASE 3 — instants over a flat demand valley. For example, giveand
' , D3 returned by the resolution of Algorithm 2, they can be
e e ot designed as follows:
internally, until convergence
e ND5(1) if  tesuppus()

Pi(®) 1—{ ANOi0) i tésuppu()) 0

whereA > 1 is some positive design constant. It is straight-

Fig. 2. Implementation of the one-shot scheme of Algorithm 2

forward to verify thatpj as defined in (17) fulfils (16) and

therefore (15), thus inducing the soughiNash equilibrium.

performed as follows:

Examples of broadcast price signals for different deviaed a

« Phase 1 All appliances communicate their parametergower schedules are presented in Fig. 4, in the simulation

(ET,Pr

i J,,Q%j) to the system operator.

section.

« Phase 2 The central entity, using the received informa- Remark 5:The actual electricity price, once the final con-
tion, is able to internally perform all the calculationdiguration is reached, will be equal for the whole population



and will correspond td1(D}). As discussed in Section IV-B, This implies that (9) should not hold fgr= j1, contradicting
at the e-Nash equilibrium the price differentials that couldhe initial hypothesis o€-Nash equilibrium and thus conclud-
potentially be exploited by the individual device to reducig the proof. |
its energy cost become negligible. Therefore, no agent will Proposition 2:Consider two device§, j, € .4 and assume
change its power scheduling whqerjﬁ is replaced byl1(D%). the following relationships between their parameters:
Moreover, by choosingj as in (17), the energy cost sustained

r_gf

by each load will remain the same when eittpgror M(D3) EJrl E:Z

are considered. P, =Pj,
Remark 6:There is a clear trade-off between computational oy, C .

time/communication resources and agents’ privacy in the tw  — i _
presented coordination schemes. In fact, differently ftbe L|€tCj; andCj, in (18) denote their energy costs at Mash
iterative control strategy presented in Section IIl, inmpé- €quilibrium induced by Algorithm 2. IE =0, then it holds:

tation of Algorithm 2 does not require repeated exchange 6]* 261.*.
of information between the system operator and the agents. ) ' : )
Since all the iterative calculations are internally pemied Proof: Since %j, C %, under the current assumptions,

by the central entity, lower communication requirementd arf'e have:
computational times are achieved. On the other hand, irrorde | T . T .
to obtain this result, the privacy of the devices is reduced am('_r)‘t;n (Da(t)) - uj(t)At = m('r)‘t;n (Dat))-uj (DAL 51y
they are required to _diVl_JIge their parametElj‘s Pj’_and_,c%j. s t.uj-(-) €U, s, t.Jj(-) cu,
The one-shot coordination scheme presented in this section ) ] -
can potentially be applied in a receding horizon contex®S W€ are assuming =0, at the consideree-Nash equilib-
allowing to implicitly account for uncertainties and agpices’ "lum the condition (9) becomes an equality. This implied tha
requirements that dynamically change over time. In paaicu the left and right-hand side of (21) correspond respegtite!

. e . . * * H
on the basis of the parameters initially received by theepricCj; @ndCi,, thus concluding the proof. u
responsive loads, the central entity could run Algorithmvaro TWO important considerations can be made from the results
a 24-hour interval and broadcast the resulting prices to tREESented above. It follows from Proposition 1 that the gyer
loads. After a short amount of time (for example 30 minutesjosSts of two identical devices, at equilibrium, differ at sho
the devices could communicate their updated parameteneto®y @ negligible quantitye. This is true even if the price
system operator which, in turn, could repeat its calcutatio SI9nals they receive (and their resulting power profiles) ar
and broadcast updated price signals. This whole procedfférent, showing that the proposed technique guarantees
can then be iteratively repeated over time. Future work wil fair cost distribution among the devices. Moreover, from

investigate the equilibrium and convergence propertiehisf Proposition 2, we can conclude that the considered pricing
approach. scheme incentivizes the devices to be flexible: the larger is

their availability time window, the lower will be their ergyr

_ o _ costs. This is true wheg can be approximated as zero, as
E. Fairness and flexibility incentives discussed in Section IV-B

The pricing scheme and the resulting power allocation
u* induced by Algorithm 2 have some important fairness V. SIMULATION RESULTS
propertieg,_ sum.marizgd by the pr_opc_)sit_ions presented next The performance of the proposed control strategies is now
PE*)posmog*l.Co_nader two devicegy, j € /- and_(_jenote evaluated in a simulation context, considering a time irger
by Cj, andCj, th_elr en.ergy cost at the-Nash equilibrium of 24 h and a time discretization stéy = 0.25 h. The UK
induced by Algorithm 2: power system is chosen for our case study, assuming that the
- < . . profile of inflexible demand; is equal to historical data of
Cj, = Zn(Da(t)) -uj, (DAL (182) total power consumption in the system [23]. A significant pe-
= netration of flexible demand has been considered. Spedjfical

- o N N we analyse a population &f = 2-10° electric vehicles (EVS)
Ci, = t;I'I(Da(t)) -uj, (DAL (18b) aiming at fully charging their batteries during night-timeis
, o Coo ) assumed that the rated power is equal for the whole populatio
If the devices are identicak(, =Ej , P, =P, and</j; = /},)  \jth Pl = ... = P, = 12 KW. The energyE! required for task

then it holds: completion is different in general for each vehicle and dejse

|CJ'*1_CJ'*2| <€ (19 on the state of charge of its battery when it is connected

Proof: If the proposition statement is not true we caf® the grid. In the chosen scenarigj follows a gaussian
assume, without loss of generality, th’_g;rl > 6]* +¢. Given distribution with meanug = 30 KWh and standard deviation
thatu?, € %, (devices are identical an#j, = %ij)’ it holds: O = 1.5 KWh, resulting in a total energy requirement by

2 the EVs of about 60 GWh. Each vehicle also specifies its
T . . g . . . . . .
. . _ =~ =~ time availability window, i.e. the time instants during whi
ml(r.]) t;l'l(Da(t))~ujl(t)At+£§Cj2+e <Ci (20) it is connected to the grid and available for charging. We
s.t.u,() e, assume that a vehiclpe ./ is available in the continuous



time intervalltj,t; +d;], wheret; andd; also follow gaussian
distributions, with the following mean and standard dewiat

k=20:00h og=1h Ug=10h gg=1h

55

It is straightforward to determine the availability intatw?]
for the j-th vehicle in the chosen discrete time variable:

oj={te 7t <t-M<tj+dj]}.

Note that the setss] characterize the driving patterns of the
considered EVs, specifying at which time instants thth
vehicle is not being driven and it is therefore available for
charging. Different driving scenarios also lead to diffdare
values ofEJ-r: the longer a car is driven, the higher will be

Power demand (GW)

. : ) : . 2 1 v v : v

its reqw_red energy when plugged mto _the grid. We wish to 200 oo Tir;jj(h) o0 o0

emphasize that the proposed coordination schemes guarante 5 D D0 1—75.10°
T .. --- L — D, = dl=T75-

convergence to a Nash equilibrium for all driving patternd a =D, = D0, =0 — D, = DO =106

corresponding parameter valueg and EJ-’, as long as As- —D,=DW,1=25.105 —D,=D®, 1=1.25.10°

sumption 1 is verified and each vehicle is connected at least f — D, =D"W,1=5-10° ---D,=DW, =410

the minimum time required to complete its charge. However, _ _ o _
the parameters(j have an impact on the convergence speed be- 3. Aggregate demand profile at different iterationsf Algorithm 2.
the algorithm. If their values are sufficiently diversifideyer

updates of the EVs charging profiles will be required. On the js implemented, the singléth iteration corresponds to
other hand, if all vehicles tend to be available at similatei jniernal calculations of the coordinating entity and does n
instants, a larger number of iteration steps are necessarydqyire actual communication between the flexible loads and
avoid demand peaks and efficiently spread power consumptigg system operator.

over time. . . As a final step, the price signafts that need to be broadcast
The coordination of the electric vehicles has been perfdrmg, ine devices in order to induce the Nash equilibrium are

with Algorithm 2, ‘?hOOSi”QP(O) as the profile of aggregate cq|cylated according to (17). Some representative exangsle
demand obtained if the pricd(D;) were to be broadcast t0 eijr values are shown in Fig. 4. In all three cases, it can be
the appliances. To speed up calculations, it is assumed that

the power update of steps 2.b.iv.1)-2.b.iv.3) can be peréar

multiple times on the devicg before moving on to the Device # 287442

agentj + 1. This modification does not alter the equilibriun 15 ‘ ‘ T 80
results presented in Theorem 3. The simulation has be 10,:":\7 I | —u o
performed in MATLAB on a computer with a 4-core 2.4(C y ST~ ) 760
GHz Intel(R) Xeon(R) E5620 processor and 12 GB of RAV I i i10) ] el

The calculations have been completed in about 2 hours but,
real applications, reduced computational times can bdyeas

0 L L L L L 40
15:00 17:.00 19:00 21:00 23:00 01:00 03:00 05:00 07:00

Time (h)

obtained by further optimization of the algorithm, utilicn 2 .5 Device # 1029687 T 80 5
of more powerful machines and possibly aggregation of tt = ‘ ‘ ‘ 3 s
flexible loads. It follows that the computational complg»aif g g
the proposed algorithm does not constitute a practicalt lin 2 * s
to its implementation. The profile®!), corresponding to the = S
aggregate power demaridh obtained at the-th iteration of Ej foo0 2100 2300 010D 0300 0500 O07:00 0900 1100 O
the coordination algorithm, are shown in Fig. 3 for differer © Time (h) .
values ofl. It is immediate to verify thaD, = D(© does not 5 Device # 899724 ‘ ‘ 80
correspond to a Nash equilibrium. In this case, most of tl 14 fffffff = f*ij}m A
appliances are operating betwetea 2 : 0ch andt = 5: 0Ch, . N --Pr 60
increasing demand (and therefore prices) in such intefedy 5¢ ol ff{'{((f));(m ,
could reduce their costs by shifting power consumption & tt o ‘ i ‘ ol — 7 ———7 0
two valleys that appear i@, By a gradual update of the 17:00  19:00 21:00  23:00 Tlo1:o:)h) 03:00  05:00 07:00  09:00
ime

power scheduling, the algorithm converges to a flat profile vl
aggregate demand. Whén= 1.25- 10° and approximatively Fig. 4. Examples of scheduled power consumption profitegor different
half of the devices have updated their strategy, significagvices (subscripf is neglected), together with corresponding availability
peak-shaving/valley-filling has already been introducEoe :;‘éi:‘;?}'dﬂ » broadcast demand prige" and final pricefl(D;) of aggregate
final demand profil®} = D) with | = 4-10° (magenta trace), '

obtained when the algorithm has converged to equilibriwm, $seen that* corresponds to the unique minimizer of the energy
completely flat. It should be emphasized that, when Algarithcost when the price signg* is considered. Note that each
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— — - Inflexible demand - DI

Aggregate demand — DQ‘E 1

Aggregate demand — D;G

Aggregate demand — D:G |

Total Generation Costs VC(D(”) (£)
S~
o

Power demand (GW)

. . . . .
15 2 25 3 35 4
# Algorithm Iteration | 6

Fig. 5. Total generation cost4 (D)) of the system, at theth iteration of 25 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Algorlthm 2 15:00 18:00 21:00 0:00 3:0[2h) 6:00 9:00 12:00 15:00
. Time

device operates at maximum power during the time instarftd. 6. Inflexible demand profi, and aggregate power demand for e

C- . . .- . . olicy (magenta trace 0lIC ue trace) an [o]][¢} ren trace).
(within the grey area of its availability interval) with thewest policy (mag NG policy ( ) policy (g )
price values. Furthermore, optimality of is preserved when

. . . . . . . TABLE |
th_e final prlceI'I(Dg)_ IS cpn5|dered, as t_her_e_'s no time INstant o1 GENERATION COSTVC, AVERAGE ENERGY COSTCay AND AVERAGE
with cheaper electricity in the grey availability interyathere FINAL TIME OF OPERATIONt," FOR INDIVIDUAL DEVICES.
power consumption can be shifted. To evaluate the global :
performance of the final stable solution, we consider thal tot Ve Cav tg\’,‘

generation costs of the system at different iterations ef th Z )
coordination algorithm. Assuming a marginal generatiost co NE | 1763210 | 1.76£ 5:10 h

Cwm(G) = a-G+h, the total generation costs for the aggregate PG | 1.8082-10’£ | 2.31f 4:54 h
demandD, can be rewritten as:
TG | 1.9176.10'£ | 2.71£ | 23:20 h

:
Ve(Da()) = Z§D§<t>+b- Dat):
t=

Note thatv =\ fulfils the functional properties of Lemma 1,V As expected, the proposed distributed control schhiffie
implying from the proof of Theorem 3 that the total genenatio?/l0Ws to achieve lower generation costs for the system and
costs are reduced at each algorithm iteration, until cayereze  CONSiderably reduces the price paid by the individual devic
to the Nash equilibrium. The decreasing values\Vef in (24% reduction with respect to th policy). This is obtained
the current case study are shown in Fig. 5. The asymptoffiih an average time of task co_mpletﬁﬂﬂ which is slightly
behaviour of the curve is a result of the specific way in whichigher in theNE scenario. In this case, since the appliances
the power scheduling of the individual device is updated §@nnot all operate at the same time, it is necessary toluligéri
each iteration. The feasible power swap is performed betwdd@€ir Power consumption over a larger time interval.

the time instants with higher price differential, corresgimg

to higher reductions iVc. As the demand profile is gradually VI. CONCLUSIONS
flattened, the price differentials are reduced, implyingnidi This paper presents novel distributed control schemes for
ished reductions of the generation costs. efficient deployment of large populations of price-respams

The proposed control scheme (hereby denotedNash- loads in the power system. Within a game-theoretical frame-
equilibrium” - NE) has been compared to other strategiesork, an iterative distributed algorithm is initially proped,
assuming that devices aim at completing their tasks as sporteeoretically proving its capability to induce a Nash equi-
possible {time-greedy” - TG) or minimize their energy cost librium in the electricity market for any penetration level
on the basis of the price of inflexible demarigrice-greedy” of flexible demand. This is used as a starting point for
- PG). The corresponding profiles of aggregate demand afee formulation of a one-shot algorithm that guarantees a
compared in Fig. 6. It is evident that ti& andPG strategies faster and easier practical implementation, at the prica of
do not introduce any valley-filling and, on the contrarydéa minimum degradation in the equilibrium results (theoratic
new peaks in the demand profile. It can also be verified thaiantified). Case studies of future scenarios of the UK-powe
an equilibrium is not reached: in both cases, the individugystem, with large penetration of flexible devices, are used
devices could reduce their energy cost by shifting part assess the performance of the proposed control scheme.
their power consumption to the new valleys of the aggregateOur ongoing work is focused on the inclusion of network
demand (with lower prices). The performance of the thramnstraints and on the assessment of ancillary services pro
considered schemes is also evaluated according to some quwésion by the flexible loads. Moreover, the modeling frame-
tities of interest, presented in Table I. We compare thel totaork is being adjusted for the expected future energy market
generation costSc, the average energy coS4y, sustained by paradigm, designing the broadcast prices at a househat lev
the individual device and its average time of task compietidextensions of the proposed technique to a receding horizon
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framework will also be evaluated, determining the resgltinone can also assume that eaghis a feasible power swap
convergence and stability properties. Finally, the glatyati- between two time instants, implying:

mality of the sought Nash equilibrium will be investigatéd, )

order to obtain an improved control scheme which also insluce 0 <Ap < min (PJr —uj (tf), uj (t;)) : (24)

maximum total welfare. The cost function in the right-side of (5) can be evaluated as

T T
APPENDIXA * * %
M(D3(t)) -uj(t)At =y M(DZ(t)) - ui (t)At
PROOF OFTHEOREM 1 t; (Da(t))-ui(®) t; (Da(®) -4t 25)
P
Asymptotic convergence of Algorithm 1 is proved with + Z [I‘I(D;(tf))—I'I(D;(tzp))] -Apht.
Lyapunov techniques. A function®l(D), lower bounded and p=1

such that Lemma 1 can be applied, is chosen (¢(@) = ) )

5T, D?(t)). We show that, when th¢F condition in step !f U] does not fulfil (5), there is at least offi, t3) such that:
2.b.iv) is verified, we hav® (D)) < V(D!~1). This implies /P /P

thatV (D) asymptotically converges to some minimum value. NDa(ty)) <M(Da(t2)). (26)
At such minimum, theF condition is never fulfilled and step As 11 is strictly monotone increasing, this is equivalent to:
2.b.iv) is not performed anymore. It follows that the vat&ab

cony, initialized at step 2.a), will remain equal to 1 throughout D;(t) < Da(tD). (27)
the FOR cycle of step 2.b), ensuring that step 3) is reached. , .

To prove the reduction o¥/(D) and therefore the theoremMOre€0Ver, sincel, must be positive, from (24) we have:

statement, we apply Lemma 1 with—(-) = D!-Y(.) and Ui (EP) < P (28a)
D*(-) =D"(.), when thelF condition in step 2.b.iv) is veri- I !
fied. In this caseD~ andD* only differ att; andt,, implying u]f(tzp) > 0. (28h)

that (7c) is fulfilled. Moreover, sincB™(t;) =D~ (t1) +A and

D*(ty) = D™ (t2) — A, also (7b) holds. To check that also (7a) Note that (27) and (28) are equivalent to the conditions

is verified, note that its first and last inequalities followrh of step 2.b.iii) in Algorithm 1 fort; = tf andt, = té’, when

A > 0. In fact, from the properties df andt; in step 2.b.iii), D(-Y =D andu! Y = ur. Since step 3) of Algorithm 1

A is the minimum of three positive quantities. It follows:  has been reached, they are never fulfilled, for amy.#" and
D*(t2) = DV (t2) = DI~V (t)) +A=D~(t2) + 4> D (ta) tlp,tzp € 7. This implies that (26) never holds, (5) is fulfilled

d the th i ified.
D (tp) = DU D(tp) = DU (tp) + A — D* (tp) + A > D* (t). and the theorem is verifie

The second inequality of (7a) holds since, from the expoessi APPENDIXC
of A in step 2.b.iv) of Algorithm 1, we have: PROOF OFTHEOREM 3
20 < DUV (tp) — D" Y(ty) = DT (tp) — D' (1) + 24. Convergence of Algorithm 2 can be verified as in the

proof of Theorem 1, showing that each iteration of steps
2.b.i)-2.b.iv) reduces the value of some functiokalof ag-
gregate demand. ¥/ is chosen to be lower bounded (e.g.
V(D) = th:l D2(t)), it will asymptotically converge to some
minimum value, at which further iterations of steps 2.b.i)-
APPENDIXB 2.b.iv) are not performed and the algorithm is completed It
PROOF OFTHEOREM 2 now proved that the resulting power profilefs correspond to

To verify the theorem statement, it is sufficient to show th& £-Nash equilibrium, withe fulfilling (11). From the proof
u* returned at step 3) of Algorithm 1 fulfils condition (5). To°' Theorem 2, any feasiblej(-) € %j can be expressed as

. _ " P . .
this end, we point out that any; € % can be expressed as!i(") = Uj(") + 3 p-10p(), With J as in (23). To reduce the
the sum ofu; andP distinct power swaps: cost of thej-th device with respect to the casg=uj, it is

necessary to find,t} € =7 such that:

Given that (7) is fulfilled by the current choice Bf- andD™,
we haveV (D) < V(DU~Y)) at each iteration of step 2.b.iv),
concluding the proof.

uj() =uj()+ Y () (22) DA(t) < Da(t3) (29a)
p=1 us(t) < Pl (29b)
Each termdp, for sometf,tzp € o/j and Ap > 0, has the uj*(tf) >0 (29c)
following structure:
) When the finalu* is reached, further reductions & (D)
Ap f t:t]z cannot be achieved through steps 2.b.i)-2.b.iv). As a tesul
Opt)=q —Bp i t=ty (23) if there existt? andt} as specified above, tHE condition in
0 otherwise step 2.b.iv.3) is not fulfilled foD(! -1 (.) = D%(-):
This is true since all feasible power profiles#j (including D;(tzp) _ D;(tlp)

uj andu?) have equal total sum. Without loss of generality, P[> P{ —uj(t}) >4 > =0p.  (30)

2
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As D]-+ in (12) is the maximum value dD; over the support [8]
of uj, if condition (29a) is ever fulfilled than it must also hold

for D5(t}) = Dj+. Applying this substitution in (30) yields: g

D;(t]) > D] —2P]. (31)

[10]
Denote now byC* and C the total costs of the individual
device whenuj and an arbitrary feasiblej = uj + ZL Op
are applied, respectively. Suppose also that, for the chase [11)
we haveC < C*. Similarly to (25), the following expression
can be provided: [12]

P
C=C"+ 5 [M(D5(t))) — M(D;(ty))] ApAt = C*+AC (32)
p=t [13]
where each pai(t,t}) fulfils (29). The following chain of
inequalities is now considered:

. [14]
AC='Y [M(D4(tP)) — M(D4(D))] Apt
2 (15]
a P
szl[ (Dalty)) —1( 1)} pAt (33) [16]
=)
§ {I‘I(Dfr —2P) - n(Dfr)} ApAt [17]

1

p
Cc
> [H(Dj*—zpjf) —rl(Dj*)} E! = AChmin -
Since the price functiofil is monotone increasing, inequality
ais fulfilled becausdj(t)) < D]fr by definition oij+ in (12). [19]
Inequality b can be proved in a similar manner, considering
that in this case (31) holds. To verify thatholds, note that
N(D; —2P))—MN(D} ) < 0. Moreover, since the shifted powero
cannot be greater than the total power consumption, we haEée:

P T
ApAt < Ui(t)At = Ef.
pzl PR : 2]

From (32) and (33)C* = C—AC < C— ACpjn. From (11) we
have € > —ACnin and thereforeC* < C+ €. Such inequality 23]
holds for anyC and it is equivalent to (9) whe@ is minimum,
concluding the proof.
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