
        

Citation for published version:
De Paola, A, Angeli, D & Strbac, G 2017, 'Price-Based Schemes for Distributed Coordination of Flexible
Demand in the Electricity Market', IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3104 - 3116.
https://doi.org/10.1109/TSG.2017.2707121

DOI:
10.1109/TSG.2017.2707121

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Aug. 2025

https://doi.org/10.1109/TSG.2017.2707121
https://doi.org/10.1109/TSG.2017.2707121
https://researchportal.bath.ac.uk/en/publications/3a5abc6c-8611-462f-be45-e851ac18ff84


1

Price-based Schemes for Distributed Coordination
of Flexible Demand in the Electricity Market
Antonio De Paola,Member, IEEE,David Angeli, Fellow, IEEE,and Goran Strbac,Member, IEEE

Abstract—This paper proposes novel distributed control
schemes for large-scale deployment of flexible demand. The
problem of efficiently coordinating price-responsive appliances
operating in the electricity market is tackled within a game-
theoretical framework. Adopting the concept of Nash equilibrium
and Lyapunov-based techniques, a new iterative control algo-
rithm is designed in order to always converge to a satisfactory
solution for the individual customers, which aim at minimizing
their energy costs. From the system perspective, it is shown
that global quantities such as total generation costs are reduced
at each algorithm iteration. These results are achieved for
any penetration level of flexible demand and for all types of
interruptible electrical appliances. The proposed control scheme
can be applied in practice through a one-shot implementation
that, at the price of a negligible degradation of the equilibrium
performance, ensures faster convergence to a stable solution.
Simulation results are also presented, testing the novel schemes
in realistic future scenarios of the Great Britain power system
with high penetration of flexible demand.

Index Terms—Electric power networks, flexible demand, game
theory, distributed price-based control, electricity markets.

NOMENCLATURE

j ∈ N Index and set of flexible appliances
t ∈ T Index and set of time instants
∆t Time discretization step (h)
Er

j Energy required byj-th appliance (KWh)
Pr

j Rated power ofj-th appliance (KW)
A j Time-availability interval of j-th appliance
u j(·) Power consumption profile ofj-th appliance (KW)
u∗j (·) Power profile of j-th appliance at Nash Eq. (KW)
u⋆j (·) Power profile of j-th appliance atε-Nash Eq. (KW)
U j Set of feasible power profiles forj-th appliance
Ū j Set of feasible ON/OFF power profiles forj-th appli-

ance
D(·) Broadcast demand signal (GW)
Di(·) Inflexible demand profile (GW)
D f (·) Flexible demand profile (GW)
Da(·) Aggregate demand profile (GW)
D∗

a(·) Aggregate demand profile at Nash Equilibrium (GW)
D⋆

a(·) Aggregate demand profile atε-Nash Equilibrium (GW)
Π(D) Electricity price function (£/MWh)
p(t) Broadcast price signal (£/MWh)
p⋆j (t) Price broadcast toj-th appliance in Alg. 2 (£/MWh)
Cj Expected energy cost of thej-th appliance (£)
C̄j Final energy cost of thej-th appliance (£)
ε Parameter of equilibrium approximation (£)

A. De Paola, D. Angeli and G. Strbac are with the Department of
Electrical and Electronic Engineering, Imperial College,London. (e-mail:
ad5709@imperial.ac.uk; d.angeli@imperial.ac.uk; g.strbac@imperial.ac.uk).

I. I NTRODUCTION

One of the defining elements of power systems transition
towards the smart grid paradigm is the increasing flexibility
of demand. A growing fraction of electric loads installed
in private households will accommodate the possibility to
reschedule (at least partially) their power consumption during
the day. Such developments can lead to significant benefits
[1], [2], [3], in the form of reduced operational costs and more
efficient integration of renewables in the system. To fulfil this
potential, it is necessary to devise robust and efficient con-
trol strategies for large-scale deployment of flexible demand,
pursuing its efficient integration in the electricity market. A
consistent amount of research has investigated this problem,
producing a wide array of different solutions [4]. Since central-
ized schemes [5] may not always be scalable to large systems
with many independent agents, several distributed techniques
have been proposed. These include adaptive strategies [6],
Lagrange relaxation [7], stochastic pricing [8], [9] and the
introduction of aggregators as mediating entities in the system
[10]. Distributed optimization using the Alternating Direction
Method of Multipliers (ADMM) has also received increasing
attention [11], [12]. With this approach, both the devices
and the system operator follow an iterative procedure that,
under certain convexity assumptions, converges to a final result
which is optimal for some combination of global and local
objective functions.

In this paper, the problem of appliances coordination with
distributed schemes is tackled within a game-theoretical frame-
work. Individual customers/devices are modelled as compet-
itive players that receive a price signal and schedule power
consumption so as to minimize the energy cost required
to complete their task. The main objective is to induce a
Nash equilibrium: no device can achieve a reduced energy
cost by unilaterally changing its initially scheduled power.
By accounting for the global effect of flexible demand on
energy prices, new demand peaks are avoided, achieving a
flattened aggregate demand profile and reduced generation
costs. Distinctive elements of such approach include:

• Full control of the individual agents over their behaviour.
Unlike centralized schemes, in our approach the central
coordinator only broadcasts electricity prices and does
not prescribe a certain power consumption.

• The loads do not need any external incentive and react to
the received signals by pursuing their self-interest, in the
form of their own cost minimization. This is not always
the case in distributed optimization schemes, where a
specific power update needs to be followed by each
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device, even if it does not always lead to a direct reduction
of its energy cost.

• Given the distributed nature of the considered framework,
reduced computational times and communication infras-
tructure can be achieved.

Note that the chosen game-theoretical framework naturally
focuses, through the concept of Nash equilibrium, on the
objectives of the individual devices. The optimization of global
quantities (such as total generation costs) is usually achieved
through particular design choices and does not constitute the
core element of the coordination strategy, as in centralized
schemes. In this respect, distributed optimization approaches
usually opt for an intermediate objective, optimizing some
combination of global and local cost functions.

Game theory has been extensively applied to the prob-
lem of demand response. For instance, [13] determines the
energy consumption of the appliances as the best response
to external signals. This concept is extended in [14], using
a larger time horizon to guarantee fairness for the devices
and better global results, and in [15], which approximates the
appliances population as infinite and models the problem as
a mean field game. It has been shown, mostly in the case of
electric vehicles, that distributed control schemes can converge
to a Nash equilibrium when additional quadratic terms are
introduced in the cost function of the devices [16], [17] or
under some conditions on the number of appliances and the
considered energy price [18], [19].

The main novelty of our approach is that, with the proposed
iterative strategy, convergence to an equilibrium is ensured
for any penetration level of flexible demand and for any
type of interruptible loads. The case of ON/OFF devices and
appliances with partial time availability is also accommodated
and no specific knowledge of the electricity price function is
required. This result is achieved with Lyapunov techniques,
showing that some global functional (e.g. total generation
costs) is reduced at each iteration of the proposed algorithm.
For faster practical implementations, a one-shot scheme is
also designed: at the price of a negligible reduction in the
equilibrium performance, the devices can be successfully co-
ordinated through a single broadcast of a price signal (different
in general for each device). In addition, it has been proved
that the proposed techniques are fair (devices with equal
parameters incur equal energy costs) and incentivize flexibility
(devices that are available at more time instants pay less
to complete their task). The presented strategies are finally
evaluated in simulation, considering likely future scenarios of
the UK grid, with high penetration of flexible demand.

The rest of the paper is structured as follows: Section II
presents the main modelling choices and characterizes the
demand response coordination problem as a static competitive
game. The description of the iterative control strategy, with a
discussion of its theoretical properties and possible practical
implementation, is included in Section III while Section IV
presents the same results for the alternative one-shot scheme.
Simulations of the proposed control strategies are presented in
Section V while Section VI contains some conclusive remarks.

II. COORDINATION OF PRICE-RESPONSIVEAPPLIANCES

This section presents the main modelling choices for the
flexible appliances and the electricity market. The problem
of coordinating the price-responsive demand in a distributed
manner is then formulated within a game-theoretical frame-
work.

A. Flexible Appliances

We consider a populationN = {1, . . . ,N} of price-
responsive appliances that are required to complete an assigned
task over a discrete time intervalT = {1, . . . ,T}. The objec-
tive of each device is to exploit its flexibility so as to consume
power at the cheapest hours of the day, reducing the total
energy cost required for task completion. The task of thej-th
device can be described by three quantities: the total amount
of required energyEr

j , its rated powerPr
j and its availability

windowA j ⊆T . These parameters unequivocally characterize
the setU j of feasible power consumption profilesu j : T →R+

that guarantee task completion for thej-th device. If one
denotes byIx the indicator function, it holds:

U j :=

{

u j(·) :
T

∑
t=1

u j(t)∆t = Er
j ,

0≤ u j(t)≤ Pr
j · IA j (t) ∀t ∈ T

}

.

(1)

Any feasible power profileu j ∈ U j must fulfil two properties.
The first condition in (1) states that the total consumed energy
(equal to the sum ofu j multiplied by the time discretization
step∆t) must correspond toEr

j , required for task completion.
From the second condition, at any time instantt ∈ A j the
power consumed by thej-th device cannot be greater thanPr

j
and must be equal to zero whent /∈ A j as the device is not
available to consume power.

Assumption 1:The parameters(Er
j ,P

r
j ,A j) of each device

j are such that the setU j of feasible power profiles is non-
empty. Equivalently, all appliances can complete their tasks by
operating at rated power during their time availability window:

∑
t∈A j

Pr
j ·∆t ≥ Er

j ∀ j ∈ N .

Each device is required to pay for the energy consumed while
completing its task. For a certain price signalp(t) and power
profile u j , the total costCj sustained by thej-th device is:

Cj =
T

∑
t=1

p(t) ·u j(t)∆t. (2)

Each term of the sum in (2) corresponds to the energy cost
of the devicej at time t and it is equal to the product of the
electricity pricep(t) by the consumed energyu j(t) ·∆t, where
∆t denotes the chosen time discretization step.

B. Power Demand and Electricity Prices

To quantify the energy costs sustained by the appliances, the
electricity market has been abstracted by a price functionΠ of
the aggregate power demand. At a certain time instantt ∈ T ,
the electricity price p(t) corresponds top(t) = Π(Da(t)),
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whereDa(t) denotes the total power demand at timet. This
quantity is the sum of two distinct terms: the total power
consumptionD f of the flexible appliances and the power
demandDi of the other (inflexible) loads. Denoted byu j(·)
the power consumption profile of thej-th device, the following
expressions can be provided:

D f (t) =
N

∑
j=1

u j(t) (3a)

Da(t) = Di(t)+D f (t) = Di(t)+
N

∑
j=1

u j(t). (3b)

Assumption 2:The single devicej has no market power and
cannot unilaterally modify the electricity price. Such quantity
only depends on the total power consumed by the whole
population of appliances:

Π(Da(t)) = Π

(

Di(t)+
N

∑
k=1

uk(t)

)

≃ Π

(

Di(t)+ ∑
k∈N \ j

uk(t)

)

.

This is not only a simplifying hypothesis for the game-
theoretical analysis presented next but it is also a crucial
technical remedy required to preserve equilibrium existence in
the case of high penetration of flexible demand. The proposed
approximation is reasonable if one considers domestic loads
whose individual power consumption is orders or magnitude
smaller than the total power demand in the system.

Assumption 3:The price functionΠ(Da) is strictly mono-
tone increasing with respect toDa.
It is assumed, in a first approximation, that electricity will
be more expensive when more power needs to be generated
to meet higher demand levels. The current formulation has
been chosen for its simplicity but the presented modelling
framework can also accommodate more realistic and detailed
cases. For example, in scenarios with high penetration of
renewables, one can assume that the electricity price is mono-
tone increasing with respect to the generation from traditional
sources. If Π(Da(t)) is replaced withΠ(Da(t)− Gr(t)) =
Π(Di(t)+D f (t)−Gr(t)), whereGr(t) represents the amount
of renewable generation, all the results presented in the rest
of the paper can still be obtained with minor modifications.
More generally, the presented analysis is valid as long as the
electricity price can be expressed asp(t) = Π(α(t)+D f (t)),
whereα(t) is an arbitrary function of time andΠ is monotone
increasing. It is worth mentioning that network constraints
could potentially impact the electricity prices. However,it is
a common assumption to neglect network models in studies
on large-scale coordination of flexible demand [13]-[18].

Remark 1:The control schemes in Section III and IV do
not require precise knowledge of the price functionΠ, only its
monotonicity with respect to power demand must be verified.

C. Game-theoretical Formulation

The main objective of the present work is to induce (in a
distributed manner) a system configuration which is satisfac-
tory for all the involved agents. In doing so, it is crucial to
take into account rebound effects and loss of diversity. For
high penetration of flexible demand, if all devices schedule

their power consumption at the same time instants, they will
increase total demand (and therefore electricity prices) at those
times, causing suboptimality of their operation strategy.To
tackle this problem, a game-theoretical framework is adopted,
modelling the flexible devices as competing rational players.
The elements of the considered static game are the following:

• Players:The setN of flexible electrical appliances.
• Strategies:For each playerj ∈N , the setU j of feasible

power profiles guaranteeing task completion.
• Objective function:Minimization of the actual energy

costC̄j sustained by the individual devicej to complete
its task. The considered energy price depends on the final
profile of aggregate demandDa through the functionΠ:

C̄j =
T

∑
t=1

Π(Da(t)) ·u j(t)∆t. (4)

In this context, a fair and desirable system configuration can be
described as a Nash equilibrium, in the sense specified below:

Definition 1: Consider the individual power consumption
profilesu∗j (·) ∈U j for all j ∈N . These quantities correspond
to a Nash equilibrium in the electricity market if the following
condition is fulfilled for all j ∈ N :

T

∑
t=1

Π(D∗
a(t)) ·u

∗
j (t)∆t = min

u j (·)

T

∑
t=1

Π(D∗
a(t)) ·u j(t)∆t

s. t. u j(·) ∈ U j

(5)

where the aggregate demand profileD∗
a is defined as:

D∗
a(t) = Di(t)+D∗

f (t) = Di(t)+
N

∑
j=1

u∗j (t) ∀t ∈ T . (6)

The proposed definition is conceptually similar to the equilib-
rium notions that have been recently presented for games with
infinite players, also referred to as mean field games [20], [21].
In these works, it is assumed that the (infinitesimal) single
agent does not have a significant impact on the global quan-
tities of the system and therefore only the global behaviour
of the players’ population (the mean field) must be taken into
account. In our case, it has been established in Assumption
2 that the single appliance has negligible market power and
only the aggregate power consumptionD f of the flexible load
impacts the electricity price. Therefore, at equilibrium,the
scheduled power profileu∗j of each player is cost-minimizing
for a certain aggregate demandD∗

a = Di +D∗
f (through (5))

and, at the same time, the whole set of power schedules
induces that very same demand profile (as a result of (6)).
Similar definitions of Nash equilibrium, in the context of
flexible demand, have been presented in [17] and [22].

From a global point of view, it is worth mentioning that
the problematic rebound effects associated to large penetration
of flexible demand are cancelled at the Nash equilibrium
solution. In fact, if new demand peaks were to be created
by the operation strategies of the price-responsive loads,new
demand valleys (characterized by cheaper electricity) would
also appear. It follows that the single appliances could reduce
their costs by shifting part of their power consumption to these
new valleys. By definition, this cannot occur when a Nash
equilibrium has been reached.
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III. I TERATIVE CONTROL STRATEGY

An iterative scheme is initially considered for distributed
coordination of flexible appliances with continuous power
consumption, incorporating in Section IV the case of ON/OFF
loads. The iterative control strategy is formally defined inSec-
tion III-A, proving its convergence and equilibrium properties
and discussing the results achieved at a global level. Practical
implementations are discussed in Section III-B.

A. Theoretical Control Scheme

The proposed iterative strategy is described by Algorithm 1,
which consists of three main phases.

Algorithm 1 Iterative scheme - Flexible demand coordination
1) Initialization phase. Starting values for power schedul-

ing of the appliances and flag variables are set:

u(0)j (·) = u0
j (·) ∈ U j ∀ j ∈ N l = 0 conv= 0

D(0)(·) = Di(·)+
N

∑
j=1

u(0)j (·)

2) Power scheduling update.The scheduled power profiles
of the individual appliances are iteratively updated :
WHILE (conv== 0)

a) conv= 1.
b) FOR j = 1 : 1 :N

i) l = l +1.
ii) D(l)(·) = D(l−1)(·) u(l)j (·) = u(l−1)

j (·) ∀ j ∈ N .
iii) FIND t1, t2 ∈ A j such that:

D(l−1)(t1)<D(l−1)(t2) u(l−1)
j (t1)<Pr

j u(l−1)
j (t2)> 0

iv) IF t1, t2 exist:

∆ = min
({

Pr
j −u(l−1)

j (t1),u
(l−1)
j (t2),

D(l−1)(t2)−D(l−1)(t1)
2

})

u(l)j (t1) = u(l−1)
j (t1)+∆ D(l)(t1) = D(l−1)(t1)+∆

u(l)j (t2) = u(l−1)
j (t2)−∆ D(l)(t2) = D(l−1)(t2)−∆

conv= 0.

3) Final results. The Nash equilibrium solution is returned:

D∗
a(·) = D(l)(·) u∗j (·) = u(l)j (·) ∀ j ∈ N .

As a first step, in theinitialization phase, preliminary
valuesu(0)j are set for the power scheduling of the flexible
devices, calculating the resulting aggregate demandD(0). In
phase two, namedpower scheduling update, the algorithm
verifies if the energy cost of each device can be reduced with
respect to the current configuration. At each iteration of the
WHILE cycle, all devicesj ∈ N are analysed sequentially.
During the l -th execution of theFOR cycle, it is verified
whether the single appliancej can switch a feasible amount∆
of its power consumption from timet2 to another time instant
t1, characterized by a lower demand value (and therefore
lower energy price). If this is the case, the scheduled power
u(l)j of the j-th device is updated while all other devices

preserve their previous strategy (u(l)k = u(l−1)
k for all k 6= j). The

corresponding values of the resulting aggregate demandD(l)

are modified accordingly. If, at some iteration of theWHILE
cycle, there is no devicej that can reduce its energy cost,
the variableconv (set to 1 in step 2.a) preserves its value
throughout theFOR cycle in step 2.b). This means that a
Nash equilibrium has been obtained and the second phase of
the algorithm is concluded. The resulting power profilesu∗j
and aggregate demandD∗

a (fulfilling (5) and (6) in Definition
1) will correspond to the values ofu(l)j and D(l) at the last
iteration, as established in theFinal results step.

Two important properties justify the use of Algorithm 1
for flexible demand coordination. It can be shown that such
algorithm always converges to a final configuration that is also
a Nash equilibrium. This is true for any penetration level of
flexible demand and for any feasible set of devices parameter
(Er

j ,P
r
j ,A j) fulfilling Assumption 1. To formally prove these

results, a technical lemma is preliminarily presented:
Lemma 1:Consider two demand profilesD− : T →R+ and

D+ : T → R+. Assume there existst1, t2 ∈ T such that:

D−(t1)< D+(t1)≤ D+(t2)< D−(t2) (7a)

D−(t1)+D−(t2) = D+(t1)+D+(t2) (7b)

D−(k) = D+(k) ∀k∈ T \{t1, t2} . (7c)

For any functionalV(D) = ∑T
t=1 f (D(t)) where f : R+ → R+

is a strictly convex function, it holds:

V(D+)<V(D−). (8)

The convergence and equilibrium properties of the proposed
control strategy can now be formally enunciated.

Theorem 1:Consider a populationN = {1, . . . ,N} of inter-
ruptible flexible devices with continuous power consumption.
Under Assumptions 1, 2 and 3, Algorithm 1 asymptotically
converges to the final resultu∗.

Proof: See Appendix A.
Theorem 2:Under Assumptions 1, 2 and 3, the power

schedulingu∗ returned by Algorithm 1 corresponds to a Nash
equilibrium in the electricity market, in the sense specified by
Definition 1.

Proof: See Appendix B.
We can conclude that the application of Algorithm 1 guar-
antees convergence to a Nash equilibrium under very general
assumptions and for any penetration level of flexible demand.
In the final stable configuration, no individual appliance can
change its scheduled power so as to reduce its energy cost.

The proposed control scheme also shows interesting global
properties. We wish to emphasize that, in general, the be-
haviour of competing agents under a market paradigm does
not lead to a maximization of the global welfare. In fact, the
greedy market participants will seek to maximize their own
private pay-off even if this implies suboptimal global solutions.
However, in the case of flexible demand deployment with the
proposed technique, the stable configuration characterized as a
Nash equilibrium corresponds to flattened demand profiles and
reduced generation costs, exhibiting strong affinities with the
global optimum. As demonstrated by Lemma 1 and the proof



5

of Theorem 1, each iteration of theFOR cycle in Algorithm
1 (where the scheduled power of single devices is updated)
reduces some convex functionalV of aggregate demand. Such
functional can be chosen as the total generation costs of the
system or quantify the achieved flattening of the aggregate
demand profile. It follows that the final configuration not only
corresponds to a Nash equilibrium but it also represents a
“local minimum” of these quantities. At the induced stable
solution, any functionalV of the kind described in Lemma
1, quantifying for example total generation costs, cannot be
further reduced by modifying the strategy of a single device.
A future study will determine if multiple minima of such kind
exist, modifying the control scheme so as to ensure converge
to a global optimizer.

B. Practical Distributed Implementation

The control strategy of Algorithm 1 is straightforward to
implement in a practical context, adopting a bi-directional
communication scheme between some central entity (e.g.
the system operator) and the individual flexible appliances.
The operations required to implement the different phases of
Algorithm 1 are analysed and discussed separately.

1) Initialization phase: As a first step, some initial price
signal p(0)(t) is broadcast to the devices. This quantity can be
chosen, for example, as the price of inflexible demand, setting
p(0)(t) = Π(Di(t)). In turn, each devicej ∈ N schedules its
initial power profileu(0)j so as to minimize its expected energy
cost:

u(0)j (·) ∈ argmin
u j (·)∈U j

T

∑
t=1

p(0)(t) ·u j(t)∆t.

The scheduled power profiles are then communicated to the
central entity that calculatesD(0) using the expression provided
in Algorithm 1.

2) Power scheduling update: Each iteration of theWHILE
cycle, summarized by the scheme in Fig. 1, can be imple-
mented through the following steps:

• The system operator keeps track of the logical variable
conv and the iteration counterl . At each execution of
the FOR cycle, the considered demand profileD(l) is
initialized as the one obtained at the previous iteration,
with D(l) = D(l−1). These operations correspond to steps
2.a), 2.b.i-ii) in Algorithm 1.

• The price signalp(l−1) = Π(D(l−1)) is broadcast to the
j-th device (Phasej.A in Fig. 1). On the basis of this
information and its previous power schedulingu(l−1)

j , the
j-th device can determine the time instantst1 and t2 at
which perform a power swap that reduces its energy cost.
Specifically,t1 andt2 must fulfil the following conditions:

p(l−1)(t1)< p(l−1)(t2) u(l−1)
j (t1)< Pr

j u(l−1)
j (t2)> 0.

Note that, as a result of Assumption 3 and definition
of p(l−1), these are equivalent to the inequalities in step
2.b.iii) of Algorithm 1.

• The quantity∆ (presented in step 2.b.iv) is internally
calculated by thej-th device. While the first two terms
in the min function of the provided expression are

straightforward to derive based on the power ratingPr
j

and previous power schedulingu(l−1) of the device, the
third term requires some extra information from the
central entity. This can be the demand profileD(l−1), as
supposed in Phasej.A in Fig. 1, or directly correspond to
the maximum allowed power shift∆MAX = (D(l−1)(t2)−
D(l−1)(t1))/2.

• The j-th device broadcasts the values oft1, t2 and ∆ to
the central entity (Phasej.B in Fig. 1), which in turn
modifies accordingly the new demand profileD(l) and
the flag variableconv.

3) Final results: After some iterations, as proved in Theo-
rem 1 and 2, theWHILE cycle described above is concluded
and the devices cannot further reduce their energy costs. Their
final power profilesu∗j , corresponding to a Nash equilibrium,

will be equal tou(l)j at the lastl -th iteration. In a similar way,
the resulting aggregate demandD∗

a will correspond toD(l).
Note that, if D(0) in Algorithm 1 is known, the proposed

implementation preserves the privacy of the appliances. These
are only required to communicate to the system operator their
power variation∆ (and the time instantt1 and t2 at which
occurs) and do not need to reveal their parameters(Er

j ,P
r
j ,A j).

Device #1

Device #2

PHASE 1.A
Initial price and 

aggregate demand 

are broadcast to a 

single device.

PHASE 1.B
Updated power 

scheduling is 

returned.

PHASE N.APHASE 2.B
New power 

profile is 

returned.

. . .

Device #N

System Operator

Sequential 

procedure is 

repeated until 

convergence.

PHASE N.B

PHASE 2.A
New price and 

demand signals

are broadcast.

Fig. 1. Practical implementation of thepower scheduling updatein the
iterative scheme of Algorithm 1.

Remark 2:For a compact and clear representation of its
core mechanisms, Algorithm 1 has not been optimized for
a practical implementation. To obtain faster convergence,
multiple minor changes can be considered. For example, in
order to require fewer iterations of its update steps 2.b.i)-
2.b.iv), the same devicej could perform multiple updates
before passing on to the( j + 1)-th appliance. The order in
which devices are contacted could also be modified.

IV. ONE-SHOT CONTROL STRATEGY

One of the main drawbacks in practical applications of
Algorithm 1 is the necessity to sequentially communicate (in
principle more than one time) with each flexible appliance.
When large populations of agents are considered, this could
require significant time and communication resources. For this
reason, we propose an alternative coordination scheme thatcan
be implemented through the broadcast of a single price signal
(different in general for each appliance). Such scheme not only
can be applied to devices with continuous power consumption
but it can also accommodate the case of ON/OFF loads. A
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(negligible) equilibrium approximation is introduced andthe
resulting final solution corresponds to anε-Nash equilibrium,
defined next.

Definition 2: Consider the individual power consumption
profiles u⋆j (·) ∈ U j for all j ∈ N . They correspond to anε-
Nash equilibrium in the electricity market if, for someε > 0,
the following condition is fulfilled for all j ∈ N :

T

∑
t=1

Π(D⋆
a(t)) ·u

⋆
j (t)∆t ≤ min

u j (·)

T

∑
t=1

(Π(D⋆
a(t)) ·u j(t)∆t)+ ε

s. t. u j(·) ∈ U j
(9)

where the aggregate demand profileD⋆
a is defined as:

D⋆
a(t) = Di(t)+D⋆

f (t) = Di(t)+
N

∑
j=1

u⋆j (t) ∀t ∈ T . (10)

When condition (9) holds, each device, by unilaterally chang-
ing its power schedulingu j , can at most reduce by a smallε its
energy cost. An expression will be provided for this quantity,
showing that in the considered scenariosε is negligibly small.

A. Theoretical Control Scheme

The modified control strategy for coordination of flexible
demand is defined by Algorithm 2. The only difference with

Algorithm 2 One-shot scheme - Flexible demand coordination
• Steps 1) - 2.b.iii)are equal to Algorithm 1.
• Step 2.b.iv): IF t1, t2 exist:

1) ∆ = min
({

Pr
j −u(l−1)

j (t1),u
(l−1)
j (t2)

})

.

2) ∆D =
D(l−1)(t2)−D(l−1)(t1)

2
.

3) IF ∆ ≤ ∆D

u(l)j (t1) = u(l−1)
j (t1)+∆ u(l)j (t2) = u(l−1)

j (t2)−∆

D(l)(t1) = D(l−1)(t1)+∆ D(l)(t2) = D(l−1)(t2)−∆

conv= 0.
• Step 3): The Nash equilibrium solution is returned

D⋆
a(·) = D(l)(·) u⋆j (·) = u(l)j (·) ∀ j ∈ N .

respect to the previous version is in the calculation, at step
2.b.iv.1), of the swapped power∆ between the time instantst2
and t1. In this case,∆ corresponds to the maximum feasible
amount of power that can be reallocated between the two time
instants. This quantity is compared with∆D, i.e. the maximum
amount of power that can be swapped while preserving the
following demand inequality:

D(l)(t1)=D(l−1)(t1)+δ ≤D(l−1)(t2)−δ =D(l)(t2) ∀δ ≤∆D.

If the condition∆ ≤ ∆D is not verified, no power swap occurs.
The main properties of Algorithm 2 are now formalized:

Theorem 3:Under Assumptions 1, 2 and 3, Algorithm 2
asymptotically converges to the power profilesu⋆, correspond-
ing to anε-Nash equilibrium as specified by Definition 2, with
ε defined as:

ε := max
j∈N

[

Π(D+
j )−Π(D+

j −2Pr
j )
]

Er
j . (11)

Given D⋆
a defined in (10) and using supp to denote function

support, the quantityD+
j is equal to:

D+
j := max

t∈supp(u⋆j )
D⋆

a(t). (12)

Proof: See Appendix C.
Remark 3: It can be shown that Algorithm 2 not only

converges asymptotically but it is actually completed in a finite
number of iterations. Proof is omitted for length reasons.

B. Equilibrium Approximation

At the ε-Nash equilibrium achieved by Algorithm 2, the
single device can at most reduce byε its energy cost. It is
important to point out that, in the considered context with
large numbers of small flexible appliances, such approxima-
tion in the equilibrium condition is theoretically required to
establish convergence but it has a negligible effect in practical
implementations. This can be verified by considering the value
of ε which is provided in (11) and quantifies the entity of the
equilibrium approximation. In this respect, we remind thatour
analysis accounts for the demand and price variations intro-
duced by the whole population of price-responsive devices.At
the same time, the effect of the single device is assumed to be
negligible as its maximum power consumptionPr

j is orders
of magnitude smaller than the total aggregate demandD⋆

a
(which determines the energy price). Therefore, the following
approximations can be considered for any devicej ∈ N :

D+
j ≃ D+

j −2Pr
j → Π(D+

j )≃ Π(D+
j −2Pr

j ) → ε ≃ 0.

For example, in the scenario analysed in the simulation sec-
tion, expression (11) returnsε = 1.7 ·10−6£.

More importantly, if one considers the final configuration
achieved through Algorithm 2, the maximum price differential
that could potentially be exploited by the individual device j
to reduce its energy cost is comparably small. Using algebraic
operations similar to the ones in the proof of Theorem 3,
one can verify that such price differential corresponds to
Π(D+

j )− Π(D+
j − 2Pr

j ). For instance, in the proposed case
study, its maximum value amounts to 3.68·10−5£/MWh. This
means that in practical implementations, if the final price of
aggregate demand is broadcast with reasonable approximation
(for example up to the third decimal digit), the devices willnot
detect any advantageous price differential at the final solution
and no power swap will occur.

C. Power Consumption as ON/OFF Profile

By using Algorithm 2, it is possible to obtain a stable
system configuration where the power consumptionu⋆j (t) of
each devicej, at the single time instantt, is either maximum
or zero. This result is obtained also for loads that can mod-
ulate their power consumption and it considerably facilitates
practical implementations, as discussed in the next subsection.
Reminding thatU j , defined in (1), denotes the set of feasible
power schedules ensuring task completion for devicej, its
subset of ON/OFF profilesŪ j can be defined as follows:

Ū j :=
{

u j(·) ∈ U j : u j(t) ∈ {0,Pr
j } ∀t ∈ T

}

. (13)
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Assumption 4:The subsetŪ j ⊆ U j is nonempty for allj ∈
N . Equivalently, there exists some constantγ j ∈ N such that
the following holds for the parameters of thej-th device:

Er
j = γ j ·P

r
j ·∆t.

Under Assumption 4, each device can always complete its task
by only operating at rated powerPr

j at certain time instants.
For this to be case, the required energyEr

j must be equal to
an integer multiple ofPr

j ·∆t. Note that such condition always
holds when ON/OFF appliances are considered. In the other
cases, it can be fulfilled by choosing a sufficiently small∆t or
admitting some approximation in the required energyEr

j .
Remark 4:The theoretical results and the distributed imple-

mentation presented in the rest of this section still hold when
Assumption 4 is not considered. In this case a more compli-
cated framework is required, defininḡU j as the set of feasible
u j that are always equal to 0 andPr

j , with the exception of a

single timet̄ whereu j(t̄) =
(

Er
j −
⌊

Er
j/(P

r
j ∆t)

⌋

Pr
j ∆t
)

∆t−1.
The following property of Algorithm 2 can now be introduced:

Lemma 2:If u(0)j (·) ∈ Ū j in step 1) of Algorithm 2, for the
final power profilesu⋆j it holds: u⋆j (·) ∈ Ū j .

Proof: Given step 3) in Algorithm 2, it is sufficient to
prove the same inclusion for any temporary profileu(l)j :

u(l)j (·) ∈ Ū j ∀l . (14)

This can be verified by induction. Sinceu(0)j (·) ∈ Ū j , we only

need to show that (14) holds whenu(l−1)
j (·) ∈ Ū j . From the

update equations at step 2.b.iv.3), it is sufficient to observe
that in the present case∆ is always equal toPr

j .

D. Practical Distributed Implementation

The ε-Nash equilibrium returned by Algorithm 2 can be
induced in realistic contexts by broadcasting a single price
signal (different in general for each appliance). This result
can be achieved, both for loads that can modulate their power
consumption and for ON/OFF devices, by applying the scheme
presented in Fig. 2. The individual implementation steps are

Device #1

Device #2

PHASE 1

All appliances communicate their 

parameters and availability windows 

PHASE 3
Final price signal 

(different for each 

device) is broadcast PHASE 2
Algorithm 2 is performed 

internally, until convergence 

to a Nash equilibrium.

. . .
Device #N

System Operator

. . .

Fig. 2. Implementation of the one-shot scheme of Algorithm 2.

performed as follows:
• Phase 1: All appliances communicate their parameters
(Er

j ,P
r
j ,A j) to the system operator.

• Phase 2: The central entity, using the received informa-
tion, is able to internally perform all the calculations

required by Algorithm 2. In doing so, it setsu(0)j ∈ Ū j

so that Lemma 2 holds. This is always possible under
Assumption 4, also in the case of devices that can
modulate their power consumption. For instance, one can
setu(0)j (t) = Pr

j in the firstγ j = E j/(Pr
j ·∆t) time instants

of the availability intervalA j and zero elsewhere. The
obtained final results are the desired power profilesu⋆j
for the individual appliances and the resulting demand
D⋆

a, defined in (10). As established in Theorem 3, these
quantities correspond to anε-Nash equilibrium in the
system.

• Phase 3: The power schedulesu⋆j are induced, in a
distributed manner, to the population of flexible appli-
ances. A different pricep⋆j is broadcast to each appli-
ance j which, on the basis of this signal, independently
schedules its own cost-minimizing power consumption,
corresponding tou⋆j .

We now characterize in detail the price signalsp⋆j broadcast in
Phase 3. In order to induce anε-Nash equilibrium, these must
be designed so thatu⋆j , calculated in Phase 2, is the unique
minimizer of the energy cost minimization problem for the
j-th device:

u⋆j (·) = argmin
u j (·)

T

∑
t=1

p⋆j (t) ·u j(t)∆t

s. t. u j(·) ∈ U j

(15)

We remind that, from Lemma 2, allu⋆j are ON/OFF power
profiles belonging to the setŪ j , defined in (13). Note that
this property is crucial for the calculation of a price signal p⋆j
satisfying (15), since in this casep⋆j needs only to fulfil the
following property:

p⋆j (t1)< p⋆j (t2) ∀(t1, t2) : t1 ∈ supp(u⋆j (·)), t2 6∈ supp(u⋆j (·))
(16)

It is generally not possible to simply choosep⋆j = Π(D⋆
a) in

order to induce theε-Nash equilibrium. In fact, ifD⋆
a takes

constant values over a certain time interval, there may exist
t1 ∈ supp(u⋆j (·)) and t2 ∈ A j\supp(u⋆j (·)) such that:

p⋆j (t1) = p⋆j (t2)

thus violating condition (16). In other words, the devicej
could potentially choose multiple power schedules yielding
the same energy cost. For this reason, the price signalsp⋆j
are chosen so as to incentivize consumption at specific time
instants over a flat demand valley. For example, givenu⋆ and
D⋆

a returned by the resolution of Algorithm 2, they can be
designed as follows:

p⋆j (t) :=

{

Π(D⋆
a(t)) if t ∈ supp(u⋆j (·))

λ ·Π(D⋆
a(t)) if t /∈ supp(u⋆j (·))

(17)

whereλ > 1 is some positive design constant. It is straight-
forward to verify thatp⋆j as defined in (17) fulfils (16) and
therefore (15), thus inducing the soughtε-Nash equilibrium.
Examples of broadcast price signals for different devices and
power schedules are presented in Fig. 4, in the simulation
section.

Remark 5:The actual electricity price, once the final con-
figuration is reached, will be equal for the whole population
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and will correspond toΠ(D⋆
a). As discussed in Section IV-B,

at the ε-Nash equilibrium the price differentials that could
potentially be exploited by the individual device to reduce
its energy cost become negligible. Therefore, no agent will
change its power scheduling whenp⋆j is replaced byΠ(D⋆

a).
Moreover, by choosingp⋆j as in (17), the energy cost sustained
by each load will remain the same when eitherp⋆j or Π(D∗

a)
are considered.

Remark 6:There is a clear trade-off between computational
time/communication resources and agents’ privacy in the two
presented coordination schemes. In fact, differently fromthe
iterative control strategy presented in Section III, implemen-
tation of Algorithm 2 does not require repeated exchange
of information between the system operator and the agents.
Since all the iterative calculations are internally performed
by the central entity, lower communication requirements and
computational times are achieved. On the other hand, in order
to obtain this result, the privacy of the devices is reduced as
they are required to divulge their parametersEr

j , Pr
j andA j .

The one-shot coordination scheme presented in this section
can potentially be applied in a receding horizon context,
allowing to implicitly account for uncertainties and appliances’
requirements that dynamically change over time. In particular,
on the basis of the parameters initially received by the price-
responsive loads, the central entity could run Algorithm 2 over
a 24-hour interval and broadcast the resulting prices to the
loads. After a short amount of time (for example 30 minutes),
the devices could communicate their updated parameters to the
system operator which, in turn, could repeat its calculations
and broadcast updated price signals. This whole procedure
can then be iteratively repeated over time. Future work will
investigate the equilibrium and convergence properties ofthis
approach.

E. Fairness and flexibility incentives

The pricing scheme and the resulting power allocation
u⋆ induced by Algorithm 2 have some important fairness
properties, summarized by the propositions presented next.

Proposition 1:Consider two devicesj1, j2 ∈N and denote
by C̄⋆

j1
and C̄⋆

j2
their energy cost at theε-Nash equilibrium

induced by Algorithm 2:

C̄⋆
j1 =

T

∑
t=1

Π(D⋆
a(t)) ·u

⋆
j1(t)∆t (18a)

C̄⋆
j2 =

T

∑
t=1

Π(D⋆
a(t)) ·u

⋆
j2(t)∆t. (18b)

If the devices are identical (Er
j1
=Er

j2
, Pr

j1
=Pr

j2
andA j1 =A j2)

then it holds:
|C̄⋆

j1 −C̄⋆
j2| ≤ ε. (19)

Proof: If the proposition statement is not true we can
assume, without loss of generality, thatC̄⋆

j1
> C̄⋆

j2
+ ε. Given

that u⋆j2 ∈ U j1 (devices are identical andU j1 = U j2), it holds:

min
u j1

(·)

T

∑
t=1

Π(D⋆
a(t)) ·u j1(t)∆t + ε ≤ C̄⋆

j2 + ε < C̄⋆
j1

s. t. u j1(·) ∈ U j1

(20)

This implies that (9) should not hold forj = j1, contradicting
the initial hypothesis ofε-Nash equilibrium and thus conclud-
ing the proof.

Proposition 2:Consider two devicesj1, j2 ∈N and assume
the following relationships between their parameters:

Er
j1 = Er

j2

Pr
j1 = Pr

j2

A j1 ⊆ A j2.

Let C̄⋆
j1

andC̄⋆
j2

in (18) denote their energy costs at theε-Nash
equilibrium induced by Algorithm 2. Ifε = 0, then it holds:

C̄⋆
j1 ≥ C̄⋆

j2.

Proof: SinceU j1 ⊆ U j2 under the current assumptions,
we have:

min
u j (·)

T

∑
t=1

Π(D⋆
a(t)) ·u j(t)∆t ≥ min

u j (·)

T

∑
t=1

Π(D⋆
a(t)) ·u j(t)∆t

s. t.u j(·) ∈ U j1 s. t.u j(·) ∈ U j2

(21)

As we are assumingε = 0, at the consideredε-Nash equilib-
rium the condition (9) becomes an equality. This implies that
the left and right-hand side of (21) correspond respectively to
C̄⋆

j1
andC̄⋆

j2
, thus concluding the proof.

Two important considerations can be made from the results
presented above. It follows from Proposition 1 that the energy
costs of two identical devices, at equilibrium, differ at most
by a negligible quantityε. This is true even if the price
signals they receive (and their resulting power profiles) are
different, showing that the proposed technique guarantees
a fair cost distribution among the devices. Moreover, from
Proposition 2, we can conclude that the considered pricing
scheme incentivizes the devices to be flexible: the larger is
their availability time window, the lower will be their energy
costs. This is true whenε can be approximated as zero, as
discussed in Section IV-B.

V. SIMULATION RESULTS

The performance of the proposed control strategies is now
evaluated in a simulation context, considering a time interval
of 24 h and a time discretization step∆t = 0.25 h. The UK
power system is chosen for our case study, assuming that the
profile of inflexible demandDi is equal to historical data of
total power consumption in the system [23]. A significant pe-
netration of flexible demand has been considered. Specifically,
we analyse a population ofN = 2·106 electric vehicles (EVs)
aiming at fully charging their batteries during night-time. It is
assumed that the rated power is equal for the whole population,
with Pr

1 = · · ·= Pr
N = 12 KW. The energyEr

j required for task
completion is different in general for each vehicle and depends
on the state of charge of its battery when it is connected
to the grid. In the chosen scenario,Er

j follows a gaussian
distribution with meanµE = 30 KWh and standard deviation
σE = 1.5 KWh, resulting in a total energy requirement by
the EVs of about 60 GWh. Each vehicle also specifies its
time availability window, i.e. the time instants during which
it is connected to the grid and available for charging. We
assume that a vehiclej ∈ N is available in the continuous
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time interval[t j , t j +d j ], wheret j andd j also follow gaussian
distributions, with the following mean and standard deviation:

µt = 20 : 00 h σt = 1 h µd = 10 h σd = 1 h.

It is straightforward to determine the availability interval A j

for the j-th vehicle in the chosen discrete time variable:

A j =
{

t ∈ T : t j ≤ t ·∆t ≤ t j +d j ]
}

.

Note that the setsA j characterize the driving patterns of the
considered EVs, specifying at which time instants thej-th
vehicle is not being driven and it is therefore available for
charging. Different driving scenarios also lead to different
values ofEr

j : the longer a car is driven, the higher will be
its required energy when plugged into the grid. We wish to
emphasize that the proposed coordination schemes guarantee
convergence to a Nash equilibrium for all driving patterns and
corresponding parameter valuesA j and Er

j , as long as As-
sumption 1 is verified and each vehicle is connected at least for
the minimum time required to complete its charge. However,
the parametersA j have an impact on the convergence speed of
the algorithm. If their values are sufficiently diversified,fewer
updates of the EVs charging profiles will be required. On the
other hand, if all vehicles tend to be available at similar time
instants, a larger number of iteration steps are necessary to
avoid demand peaks and efficiently spread power consumption
over time.

The coordination of the electric vehicles has been performed
with Algorithm 2, choosingD(0) as the profile of aggregate
demand obtained if the priceΠ(Di) were to be broadcast to
the appliances. To speed up calculations, it is assumed that
the power update of steps 2.b.iv.1)-2.b.iv.3) can be performed
multiple times on the devicej before moving on to the
agent j +1. This modification does not alter the equilibrium
results presented in Theorem 3. The simulation has been
performed in MATLAB on a computer with a 4-core 2.40
GHz Intel(R) Xeon(R) E5620 processor and 12 GB of RAM.
The calculations have been completed in about 2 hours but, in
real applications, reduced computational times can be easily
obtained by further optimization of the algorithm, utilization
of more powerful machines and possibly aggregation of the
flexible loads. It follows that the computational complexity of
the proposed algorithm does not constitute a practical limit
to its implementation. The profilesD(l), corresponding to the
aggregate power demandDa obtained at thel -th iteration of
the coordination algorithm, are shown in Fig. 3 for different
values ofl . It is immediate to verify thatDa = D(0) does not
correspond to a Nash equilibrium. In this case, most of the
appliances are operating betweent = 2 : 00h and t = 5 : 00h,
increasing demand (and therefore prices) in such interval.They
could reduce their costs by shifting power consumption in the
two valleys that appear inD(0). By a gradual update of the
power scheduling, the algorithm converges to a flat profile of
aggregate demand. Whenl = 1.25· 106 and approximatively
half of the devices have updated their strategy, significant
peak-shaving/valley-filling has already been introduced.The
final demand profileD⋆

a =D(l) with l = 4·106 (magenta trace),
obtained when the algorithm has converged to equilibrium, is
completely flat. It should be emphasized that, when Algorithm
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Fig. 3. Aggregate demand profile at different iterationsl of Algorithm 2.

2 is implemented, the singlel -th iteration corresponds to
internal calculations of the coordinating entity and does not
require actual communication between the flexible loads and
the system operator.

As a final step, the price signalsp⋆j that need to be broadcast
to the devices in order to induce the Nash equilibrium are
calculated according to (17). Some representative examples of
their values are shown in Fig. 4. In all three cases, it can be
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Fig. 4. Examples of scheduled power consumption profilesu⋆ for different
devices (subscriptj is neglected), together with corresponding availability
interval A , broadcast demand pricep⋆ and final priceΠ(D⋆

a) of aggregate
demand.

seen thatu⋆ corresponds to the unique minimizer of the energy
cost when the price signalp⋆ is considered. Note that each
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Fig. 5. Total generation costsVC(D(l )) of the system, at thel-th iteration of
Algorithm 2.

device operates at maximum power during the time instants
(within the grey area of its availability interval) with thelowest
price values. Furthermore, optimality ofu⋆ is preserved when
the final priceΠ(D⋆

a) is considered, as there is no time instant
with cheaper electricity in the grey availability interval, where
power consumption can be shifted. To evaluate the global
performance of the final stable solution, we consider the total
generation costs of the system at different iterations of the
coordination algorithm. Assuming a marginal generation cost
CM(G) = a·G+b, the total generation costs for the aggregate
demandDa can be rewritten as:

VC(Da(·)) =
T

∑
t=1

a
2

D2
a(t)+b ·Da(t).

Note thatV =VC fulfils the functional properties of Lemma 1,
implying from the proof of Theorem 3 that the total generation
costs are reduced at each algorithm iteration, until convergence
to the Nash equilibrium. The decreasing values ofVC in
the current case study are shown in Fig. 5. The asymptotic
behaviour of the curve is a result of the specific way in which
the power scheduling of the individual device is updated at
each iteration. The feasible power swap is performed between
the time instants with higher price differential, corresponding
to higher reductions inVC. As the demand profile is gradually
flattened, the price differentials are reduced, implying dimin-
ished reductions of the generation costs.

The proposed control scheme (hereby denoted as“Nash-
equilibrium” - NE) has been compared to other strategies,
assuming that devices aim at completing their tasks as soon as
possible (“time-greedy” - TG) or minimize their energy cost
on the basis of the price of inflexible demand (“price-greedy”
- PG). The corresponding profiles of aggregate demand are
compared in Fig. 6. It is evident that theTG andPG strategies
do not introduce any valley-filling and, on the contrary, lead to
new peaks in the demand profile. It can also be verified that
an equilibrium is not reached: in both cases, the individual
devices could reduce their energy cost by shifting part of
their power consumption to the new valleys of the aggregate
demand (with lower prices). The performance of the three
considered schemes is also evaluated according to some quan-
tities of interest, presented in Table I. We compare the total
generation costsVC, the average energy costCav sustained by
the individual device and its average time of task completion
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Fig. 6. Inflexible demand profileDi and aggregate power demand for theNE
policy (magenta trace),TG policy (blue trace) andPG policy (gren trace).

TABLE I
TOTAL GENERATION COSTVC, AVERAGE ENERGY COSTCav AND AVERAGE

FINAL TIME OF OPERATIONt f in
av FOR INDIVIDUAL DEVICES.

VC Cav tfin
av

NE 1.7632·107 £ 1.76£ 5:10 h

PG 1.8082·107 £ 2.31£ 4:54 h

TG 1.9176·107 £ 2.71£ 23:20 h

tfin
av . As expected, the proposed distributed control schemeNE
allows to achieve lower generation costs for the system and
considerably reduces the price paid by the individual devices
(24% reduction with respect to thePG policy). This is obtained
with an average time of task completiontfin

av which is slightly
higher in theNE scenario. In this case, since the appliances
cannot all operate at the same time, it is necessary to distribute
their power consumption over a larger time interval.

VI. CONCLUSIONS

This paper presents novel distributed control schemes for
efficient deployment of large populations of price-responsive
loads in the power system. Within a game-theoretical frame-
work, an iterative distributed algorithm is initially proposed,
theoretically proving its capability to induce a Nash equi-
librium in the electricity market for any penetration level
of flexible demand. This is used as a starting point for
the formulation of a one-shot algorithm that guarantees a
faster and easier practical implementation, at the price ofa
minimum degradation in the equilibrium results (theoretically
quantified). Case studies of future scenarios of the UK-power
system, with large penetration of flexible devices, are usedto
assess the performance of the proposed control scheme.

Our ongoing work is focused on the inclusion of network
constraints and on the assessment of ancillary services pro-
vision by the flexible loads. Moreover, the modeling frame-
work is being adjusted for the expected future energy market
paradigm, designing the broadcast prices at a household level.
Extensions of the proposed technique to a receding horizon
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framework will also be evaluated, determining the resulting
convergence and stability properties. Finally, the globalopti-
mality of the sought Nash equilibrium will be investigated,in
order to obtain an improved control scheme which also induces
maximum total welfare.

APPENDIX A
PROOF OFTHEOREM 1

Asymptotic convergence of Algorithm 1 is proved with
Lyapunov techniques. A functionalV(D), lower bounded and
such that Lemma 1 can be applied, is chosen (e.g.V(D) =

∑T
t=1 D2(t)). We show that, when theIF condition in step

2.b.iv) is verified, we haveV(D(l))<V(D(l−1)). This implies
thatV(D) asymptotically converges to some minimum value.
At such minimum, theIF condition is never fulfilled and step
2.b.iv) is not performed anymore. It follows that the variable
conv, initialized at step 2.a), will remain equal to 1 throughout
the FOR cycle of step 2.b), ensuring that step 3) is reached.
To prove the reduction ofV(D) and therefore the theorem
statement, we apply Lemma 1 withD−(·) = D(l−1)(·) and
D+(·) = D(l)(·), when theIF condition in step 2.b.iv) is veri-
fied. In this case,D− andD+ only differ at t1 andt2, implying
that (7c) is fulfilled. Moreover, sinceD+(t1) = D−(t1)+∆ and
D+(t2) = D−(t2)−∆, also (7b) holds. To check that also (7a)
is verified, note that its first and last inequalities follow from
∆ > 0. In fact, from the properties oft1 andt2 in step 2.b.iii),
∆ is the minimum of three positive quantities. It follows:

D+(t1) = D(l)(t1) = D(l−1)(t1)+∆ = D−(t1)+∆ > D−(t1)
D−(t2) = D(l−1)(t2) = D(l)(t2)+∆ = D+(t2)+∆ > D+(t2).

The second inequality of (7a) holds since, from the expression
of ∆ in step 2.b.iv) of Algorithm 1, we have:

2∆ ≤ D(l−1)(t2)−D(l−1)(t1) = D+(t2)−D+(t1)+2∆.

Given that (7) is fulfilled by the current choice ofD− andD+,
we haveV(D(l))<V(D(l−1)) at each iteration of step 2.b.iv),
concluding the proof.

APPENDIX B
PROOF OFTHEOREM 2

To verify the theorem statement, it is sufficient to show that
u∗ returned at step 3) of Algorithm 1 fulfils condition (5). To
this end, we point out that anyu j ∈ U j can be expressed as
the sum ofu∗j andP distinct power swaps:

u j(·) = u∗j (·)+
P

∑
p=1

δp(·) (22)

Each termδp, for some t p
1 , t

p
2 ∈ A j and ∆p > 0, has the

following structure:

δp(t) =







∆p if t = t p
1

−∆p if t = t p
2

0 otherwise
(23)

This is true since all feasible power profiles inU j (including
u j and u∗j ) have equal total sum. Without loss of generality,

one can also assume that eachδp is a feasible power swap
between two time instants, implying:

0< ∆p ≤ min
(

Pr
j −u∗j (t

p
1 ),u

∗
j (t

p
2 )
)

. (24)

The cost function in the right-side of (5) can be evaluated as:

T

∑
t=1

Π(D∗
a(t)) ·u j(t)∆t =

T

∑
t=1

Π(D∗
a(t)) ·u

∗
j (t)∆t

+
P

∑
p=1

[

Π(D∗
a(t

p
1 ))−Π(D∗

a(t
p
2 ))
]

·∆p∆t.
(25)

If u∗j does not fulfil (5), there is at least one(t1
p, t

2
p) such that:

Π(D∗
a(t

p
1 ))< Π(D∗

a(t
p
2 )). (26)

As Π is strictly monotone increasing, this is equivalent to:

D∗
a(t

p
1 )< D∗

a(t
p
2 ). (27)

Moreover, since∆p must be positive, from (24) we have:

u∗j (t
p
1 )< Pr

j (28a)

u∗j (t
p
2 )> 0. (28b)

Note that (27) and (28) are equivalent to the conditions
of step 2.b.iii) in Algorithm 1 fort1 = t p

1 and t2 = t p
2 , when

D(l−1) = D∗
a and u(l−1)

j = u∗j . Since step 3) of Algorithm 1
has been reached, they are never fulfilled, for anyj ∈ N and
t p
1 , t

p
2 ∈ T . This implies that (26) never holds, (5) is fulfilled

and the theorem is verified.

APPENDIX C
PROOF OFTHEOREM 3

Convergence of Algorithm 2 can be verified as in the
proof of Theorem 1, showing that each iteration of steps
2.b.i)-2.b.iv) reduces the value of some functionalV of ag-
gregate demand. IfV is chosen to be lower bounded (e.g.
V(D) = ∑T

t=1 D2(t)), it will asymptotically converge to some
minimum value, at which further iterations of steps 2.b.i)-
2.b.iv) are not performed and the algorithm is completed. Itis
now proved that the resulting power profilesu⋆j correspond to
an ε-Nash equilibrium, withε fulfilling (11). From the proof
of Theorem 2, any feasibleu j(·) ∈ U j can be expressed as
u j(·) = u⋆j (·)+∑P

p=1δp(·), with δp as in (23). To reduce the
cost of the j-th device with respect to the caseu j = u⋆j , it is
necessary to findt p

1 , t
p
2 ∈ A j such that:

D⋆
a(t

p
1 )< D⋆

a(t
p
2 ) (29a)

u⋆j (t
p
1 )< Pr

j (29b)

u⋆j (t
p
2 )> 0 (29c)

When the finalu⋆ is reached, further reductions ofV(D)
cannot be achieved through steps 2.b.i)-2.b.iv). As a result,
if there existt p

1 andt p
2 as specified above, theIF condition in

step 2.b.iv.3) is not fulfilled forD(l−1)(·) = D⋆
a(·):

Pr
j ≥ Pr

j −u⋆j (t
p
1 )≥ ∆ >

D⋆
a(t

p
2 )−D⋆

a(t
p
1 )

2
= ∆D. (30)
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As D+
j in (12) is the maximum value ofD⋆

a over the support
of u⋆j , if condition (29a) is ever fulfilled than it must also hold
for D⋆

a(t
p
2 ) = D+

j . Applying this substitution in (30) yields:

D⋆
a(t

p
1 )> D+

j −2Pr
j . (31)

Denote now byC⋆ and C the total costs of the individual
device whenu⋆j and an arbitrary feasibleu j = u⋆j +∑P

p=1δp

are applied, respectively. Suppose also that, for the chosen u j ,
we haveC < C⋆. Similarly to (25), the following expression
can be provided:

C=C⋆+
P

∑
p=1

[

Π(D⋆
a(t

p
1 ))−Π(D⋆

a(t
p
2 ))
]

∆p∆t =C⋆+∆C (32)

where each pair(t p
1 , t

p
2 ) fulfils (29). The following chain of

inequalities is now considered:

∆C=
P

∑
p=1

[

Π(D⋆
a(t

p
1 ))−Π(D⋆

a(t
p
2 ))
]

∆p∆t

a
≥

P

∑
p=1

[

Π(D⋆
a(t

p
1 ))−Π(D+

j )
]

∆p∆t

b
≥

P

∑
p=1

[

Π(D+
j −2Pr

j )−Π(D+
j )
]

∆p∆t

c
≥
[

Π(D+
j −2Pr

j )−Π(D+
j )
]

Er
j = ∆Cmin.

(33)

Since the price functionΠ is monotone increasing, inequality
a is fulfilled becauseD⋆

a(t
p
2 )≤D+

j by definition ofD+
j in (12).

Inequality b can be proved in a similar manner, considering
that in this case (31) holds. To verify thatc holds, note that
Π(D+

j −2Pr
j )−Π(D+

j )< 0. Moreover, since the shifted power
cannot be greater than the total power consumption, we have:

P

∑
p=1

∆p∆t ≤
T

∑
t=1

u⋆j (t)∆t = Er
j .

From (32) and (33),C⋆ =C−∆C≤C−∆Cmin. From (11) we
haveε ≥ −∆Cmin and thereforeC⋆ ≤ C+ ε. Such inequality
holds for anyC and it is equivalent to (9) whenC is minimum,
concluding the proof.
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