

Citation for published version:
Dolgov, SV 2019, 'A Tensor Decomposition Algorithm for Large ODEs with Conservation Laws', Computational
Methods in Applied Mathematics, vol. 19, no. 1, pp. 23-38. https://doi.org/10.1515/cmam-2018-0023

DOI:
10.1515/cmam-2018-0023

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Copyright © 2018 Walter de Gruyter GmbH, Berlin/Boston.. The final publication is available at Computational
Methods in Applied Mathematics via https://doi.org/10.1515/cmam-2018-0023.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. Jan. 2021

https://doi.org/10.1515/cmam-2018-0023
https://doi.org/10.1515/cmam-2018-0023
https://researchportal.bath.ac.uk/en/publications/a-tensor-decomposition-algorithm-for-large-odes-with-conservation-laws(21d9f95b-afff-4074-be17-1fcd00b117c8).html

Sergey V. Dolgov
A tensor decomposition algorithm for
large ODEs with conservation laws

Abstract: We propose an algorithm for solution of high-dimensional evolutionary
equations (ODEs and discretized time-dependent PDEs) in the Tensor Train (TT)
decomposition, assuming that the solution and the right-hand side of the ODE
admit such a decomposition with a low storage. A linear ODE, discretized via
one-step or Chebyshev differentiation schemes, turns into a large linear system.
The tensor decomposition allows to solve this system for several time points
simultaneously using an extension of the Alternating Least Squares algorithm.
This method computes a reduced TT model of the solution, but in contrast to
traditional offline-online reduction schemes, solving the original large problem
is never required. Instead, the method solves a sequence of reduced Galerkin
problems, which can be set up efficiently due to the TT decomposition of the right-
hand side. The reduced system allows a fast estimation of the time discretization
error, and hence adaptation of the time steps. Besides, conservation laws can
be preserved exactly in the reduced model by expanding the approximation
subspace with the generating vectors of the linear invariants and correction of the
euclidean norm. In numerical experiments with the transport and the chemical
master equations, we demonstrate that the new method is faster than traditional
time stepping and stochastic simulation algorithms, whereas the invariants are
preserved up to the machine precision irrespectively of the TT approximation
accuracy.

Keywords: high–dimensional problems, tensor train format, DMRG, alternating
iteration, differential equations, conservation laws

1 Introduction
Large-scale evolutionary equations for many-body systems arise ubiquitously
in the numerical modeling. The cases of particular interest and difficulty in-
volve many configuration coordinates in the state space. For instance, the time-
dependent Schroedinger equation describes the wavefunction, which depends on

Sergey V. Dolgov, University of Bath, Claverton Down, BA2 7AY, Bath, United Kingdom
(s.dolgov@bath.ac.uk). The author acknowledges funding from the EPSRC fellowship
EP/M019004/1.

2 Sergey V. Dolgov

all positions of all quantum particles or states of spins. Another important exam-
ple is the joint probability density function, which is driven by the Fokker-Planck
or master equations in continuous or discrete spaces, respectively. The solution
of a problem with 𝑑 configuration variables is a 𝑑-variate function. When 𝑑 is
much larger than 3, a uniform discretization would require 𝒪(𝑛𝑑) degrees of
freedom. Typical examples in quantum physics involve 𝑑 being of the order of
hundreds, and the straightforward computation with 𝑛𝑑 unknowns is impossible.

To cope with such high-dimensional problems, one has to employ data-sparse
techniques, i.e. describe the solution by much fewer unknowns than 𝑛𝑑. Different
approaches exist for this task. Among the most successful ones we may identify
Monte Carlo (and Quasi Monte Carlo) methods [34, 12], Sparse Grids [43, 3], and
tensor product representations. In this paper, we adopt the latter framework.

Tensor product decompositions rely on the idea of separation of variables: a
𝑑-variate array (or tensor) can be defined or approximated by sums of products
of univariate factors. Extensive information can be found in recent reviews and
books, e.g. [29, 15, 27]. A promising potential of the tensor product methods
stems from the fact that a univariate factor is defined by only 𝑛 values. If a
tensor can be approximated up to the required accuracy with a moderate number
of factors, the memory and complexity savings can be outstanding.

There exist different tensor product formats, i.e. rules that map univariate
factors to the initial array. In case of two dimensions, one ends up with the
low-rank dyadic factorization of a matrix. A straightforward extension of such
sum of direct products of vectors in higher dimensions is called the CP format
[18]. However, the CP approximation problem may be ill-posed [5]. This issue is
circumvented in recurrent two-dimensional factorizations, where one can enforce
a certain stable form of the representation. In this paper, we focus on the
simplest example, the so-called Tensor Train (TT) decomposition [36]. It was
rediscovered several times, and the most important analogs in quantum physics
are Matrix Product States (MPS) [10] and Density Matrix Renormalization Group
(DMRG) [48]. This format possesses all the power of recurrent factorizations, but
algorithms are easier to describe. For higher flexibility in particular problems,
one can use more general tree-based constructions, such as HT [13] or Extended
TT/QTT-Tucker [6] formats.

DMRG is not only the name of the representation, but also a variety of
computational tools. It was originally developed for finding ground states (lowest
eigenpairs) of high-dimensional Hamiltonians of spin chains. The main idea behind
DMRG is the alternating optimization of a function (e.g. Rayleigh quotient)
over the factors of a tensor decomposition. It was noticed that this method
may manifest a remarkably fast convergence, and later extensions to the energy
function followed [22, 19].

A tensor decomposition algorithm for large ODEs with conservation laws 3

Besides the stationary problems, the same framework was applied to the
dynamical spin Schroedinger equation. Two conceptually similar techniques, the
time-evolving block decimation (TEBD) [46] and the time-dependent DMRG
(tDMRG) [49] take into account the nearest-neighbor form of the Hamiltonian in
order to split the operator exponent into two parts using the Trotter decomposi-
tions. Each part can then be integrated exactly, followed by the separation of
variables via the truncated singular value decomposition. These methods perform
very well for short times, but in a long time integration the error may accumulate,
and the storage of the tensor product decomposition grows dramatically [40].

To avoid this problem, one can use the so-called Dirac-Frenkel principle
[28, 30]. This scheme projects the dynamical equations onto the tangent space of
the Riemannian manifold, induced by the tensor decomposition. The storage of
the format is now fixed, but the approximation errors can be difficult to control.

As an alternative approach, we consider time as an extra variable and
discretize an ODE into a system of algebraic equations on many time steps
simultaneously [47, 8, 24]. If the original ODE is linear, so is this system. A
handful of time steps allows to estimate the time discretization error and adapt the
time grid accordingly. However, the global state-time system is non-symmetric
and requires a reliable solution algorithm in the tensor format. We use an
extension of DMRG, the so-called Alternating Minimal Energy (AMEn) method
[9]. It augments the tensor format of the solution by the tensor format of the
global residual. This improves the convergence and allows to adapt the tensor
format storage up to a desired accuracy tolerance.

The residual is not the only quantity we can enrich the solution with. The
approximation error of the tensor decomposition is distributed evenly in all
components of the solution. However, it might be beneficial to compute some
parts of the solution with a higher accuracy. For example, the exact ODE may
possess certain conservation laws (e.g. phase [39] or normalization), which are
worth to be preserved in a numerical scheme. We show that the basis vectors of
the co-kernel of the ODE matrix can be inserted into the TT representation of
the solution in addition to the residual. This preserves the corresponding linear
invariants. The second norm of the solution can then be corrected by rescaling.

The paper is structured as follows. In the next section we formulate the
ODE problem, investigate its properties related to the first- and the second-order
invariants, show the Galerkin model reduction concept and how the invariants can
be preserved in the reduced system, and suggest an adaptive linear discretization
in time. Section 3 starts with a brief introduction to tensor product formats
and methods and presents the new tAMEn algorithm (the name is motivated by
tDMRG). Section 4 demonstrates supporting numerical examples, followed by
the conclusion in Section 5.

4 Sergey V. Dolgov

2 Ordinary differential equations
Our problem of interest is a linear system of ODEs,

𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥, 𝑥(0) = 𝑥0, (1)

solved on 𝑡 ∈ [0, 𝑇], where 𝐴(𝑡) ∈ C𝑁×𝑁 is a stable matrix. Throughout the
paper, 𝑥 and other quantities denoted by small letters are 𝑁 × 1 vectors, such
that the inner products can be consistently written as 𝑐*𝑥 ∈ C1×1. Up to
technical changes, the formulation (1) can be extended to ODEs with forcing,
𝑑𝑥/𝑑𝑡 = 𝐴𝑥+𝑓(𝑡), or weakly nonlinear systems, where 𝐴(𝑡) = 𝐴(𝑡, �̌�(𝑡)) depends
on the solution from the previous Picard iteration.

2.1 Conservation laws and Galerkin reduction

Our goal will be to approximate the ODE solution in a compressed data-sparse
form. A particular question of interest is the following: if the system preserves
some quantities in time, is it possible to maintain this property in data-sparse
algorithms, which are based on the Galerkin projection approach?

The simplest conservation laws are defined by linear functions of the solution
and its euclidean norm. Given some detecting vector 𝑐 ̸= 0, the linear function can
be written as 𝑐*𝑥. It corresponds, for example, to the probability normalization
in the Fokker-Planck equation: 𝑥 represents the discretized probability density
function, and

∑︀𝑁
𝑖=1 𝑥(𝑖) = 𝑐*𝑥 = 1, with 𝑐 being a vector of all ones. For a

time-invariant system 𝑑𝑥/𝑑𝑡 = 𝐴𝑥, a sufficient condition for conservation of 𝑐*𝑥

is the nullspace equation 𝐴*𝑐 = 0.
Among the second-order invariants, we consider the euclidean (Frobenius)

norm of the solution, ‖𝑥‖ =
√

𝑥*𝑥. The conservation law ‖𝑥(𝑡)‖ = ‖𝑥0‖ is
a well-known property of the Schroedinger equation 𝑑𝑥/𝑑𝑡 = i𝐻𝑥, where i
is the imaginary unity, and 𝐻 = 𝐻⊤ ∈ R𝑁×𝑁 . A sufficient condition is the
skew-symmetry of the matrix, 𝐴 = −𝐴*.

An abstract Galerkin reduction can be written as follows. Given an orthogonal
set of columns 𝑋 ∈ C𝑁×𝑟, 𝑋*𝑋 = 𝐼, we replace the large system (1) by a reduced
ODE1,

𝑑𝑣

𝑑𝑡
= (𝑋*𝐴𝑋) 𝑣, 𝑣(0) = 𝑣0 = 𝑋*𝑥0. (2)

1 for simplicity, we consider the time-invariant ODE in this section.

A tensor decomposition algorithm for large ODEs with conservation laws 5

Numerical treatment of this equation is cheap if the basis size is small, 𝑟 ≪ 𝑁 .
The approximate solution of the initial problem (1) writes as �̃�(𝑡) = 𝑋𝑣(𝑡) ≈ 𝑥(𝑡).
Many approaches exist to determine the basis sets 𝑋, see e.g. [1, 2]. The Krylov
method for the computation of the matrix exponential [32] belongs to this class
as well. Another celebrated technique is the Proper Orthogonal Decomposition
(POD) [31, 42, 25, 35], which extracts principal components from a set of
snapshots {𝑥(𝑡𝑗)}𝒥

𝑗=1 using the singular value decomposition.
The accuracy ‖𝑥 − �̃�‖ of the reduced model depends on the approximation

capacity of the basis set. In this paper, we employ a tensor product algorithm,
which is similar to POD but computes both the basis and the reduced solution
adaptively without solving the large original problem. Most importantly, it
belongs to the Galerkin projection framework (2). Here we show how to preserve
first and second order invariants with an arbitrary Galerkin basis.

Suppose we are given vectors 𝐶 =
[︀
𝑐1 · · · 𝑐𝑀

]︀
such that 𝐴*𝐶 = 0. Let

us expand the basis by concatenating 𝐶 and 𝑋 and orthogonalizing the result,[︀
𝐶 𝑋

]︀
= �̂�𝑅, �̂�*�̂� = 𝐼 (QR decomposition). (3)

Since the first 𝑀 columns of �̂� belong to the kernel of 𝐴*, the reduced matrix
writes

�̂�*𝐴�̂� =
[︂

𝒞*𝐴𝒞 𝒞*𝐴𝒳
𝒳 *𝐴𝒞 𝒳 *𝐴𝒳

]︂
=
[︂

0 0
𝒳 *𝐴𝒞 𝒳 *𝐴𝒳

]︂
, where �̂� =

[︀
𝒞 𝒳

]︀
.

In order to derive the reduced solution 𝑣(𝑡) = exp
(︀
𝑡�̂�*𝐴�̂�

)︀
𝑣0 in the ex-

panded basis, consider one recursion step for the exponential series. For any
𝑘 = 1, 2, . . . ,[︂

0 0
(𝒳 *𝐴𝒳)𝑘−1 𝒳 *𝐴𝒞 (𝒳 *𝐴𝒳)𝑘

]︂ [︂
0 0

𝒳 *𝐴𝒞 𝒳 *𝐴𝒳

]︂
=
[︂

0 0
(𝒳 *𝐴𝒳)𝑘 𝒳 *𝐴𝒞 (𝒳 *𝐴𝒳)𝑘+1

]︂
,

and hence we obtain

exp
(︀
𝑡�̂�*𝐴�̂�

)︀
= 𝐼+

∞∑︁
𝑘=1

(︀
𝑡�̂�*𝐴�̂�

)︀𝑘

𝑘! =

⎡⎣ 𝐼 0
∞∑︀

𝑘=1

𝑡(𝑡𝒳 *𝐴𝒳)𝑘−1

𝑘! 𝒳 *𝐴𝒞 exp (𝑡𝒳 *𝐴𝒳)

⎤⎦ .

(4)
Since the first row contains only the identity, the linear invariants 𝒞*𝑥0 are

explicitly preserved in the solution, 𝑣(𝑡) =
[︂
𝒞*𝑥0
𝑤(𝑡)

]︂
.

The skew-symmetry, yielding conservation of the second norm, is even easier
to consider, since for any Galerkin projection, (𝑋*𝐴𝑋)* = 𝑋*𝐴*𝑋 = −𝑋*𝐴𝑋,
and hence ‖𝑣(𝑡)‖ = ‖𝑋*𝑥0‖. Moreover, ‖�̃�(𝑡)‖ = ‖𝑣(𝑡)‖ = ‖𝑋*𝑥0‖ if 𝑋 is

6 Sergey V. Dolgov

orthogonal. Thus, it is enough to guarantee ‖𝑋*𝑥0‖ = ‖𝑥0‖. A simple way to do
this is to rescale the projected initial state. However, this requires a certain care
if we need to preserve both the second norm and the linear invariants. Given

𝑣0 =
[︂

𝒞*𝑥0
𝒳 *𝑥0

]︂
, we can rescale only the bottom part. This means finding 𝜃 > 0

such that

‖𝑣0‖2 = ‖𝒞*𝑥0‖2 + 𝜃2‖𝒳 *𝑥0‖ = ‖𝑥0‖2, hence 𝜃 =
√︀

‖𝑥0‖2 − ‖𝒞*𝑥0‖2

‖𝒳 *𝑥0‖
, (5)

and the rescaled initial state reads

𝑣0 =
[︂

𝒞*𝑥0
𝜃𝒳 *𝑥0

]︂
.

Due to orthogonality of 𝒞 and 𝒳 , it holds that ‖𝒞*𝑥0‖ ≤ ‖�̂�*𝑥0‖ ≤ ‖𝑥0‖, and
hence 𝜃 is well-defined when 𝑥0 /∈ span(𝒞). Otherwise, ‖𝒳 *𝑥0‖ = 0, and the
rescaling is not needed.

2.2 Linear discretization in time

Assuming the solution 𝑥(𝑡) to be continuous, we can introduce a time dis-
cretization grid t = {𝑡𝑗}𝒥

𝑗=1 ∈ [0, 𝑇] and collocate the solution on this grid,
{𝑥𝑗} = {𝑥(𝑡𝑗)}. An approximate solution at any time can be computed by the
polynomial interpolation,

𝑥(𝑡) ≈
𝒥∑︁

𝑗=1
𝑥𝑗𝑝𝑗(𝑡), (6)

where 𝑝𝑗(𝑡) are polynomials, centered at 𝑡𝑗 , such as the global Lagrange polyno-
mials or local splines. Since both ODE (1) and the interpolation (6) is linear in
𝑥, the discrete system is linear as well, and can be generally written as

𝐵𝑥 = 𝑓, 𝐵 = 𝐼𝑁 ⊗ 𝑆 − (𝐼𝑁 ⊗ 𝑃) 𝐴(t), 𝑓 = 𝑥0 ⊗ (𝑆𝑒), (7)

where 𝐴(t) is a block-diagonal matrix constructed from the ODE matrices at
the grid points,

𝐴(t) =

⎡⎢⎣𝐴(𝑡1)
. . .

𝐴(𝑡𝒥)

⎤⎥⎦ , and 𝑥 =

⎡⎢⎣𝑥(𝑡1)
...

𝑥(𝑡𝒥)

⎤⎥⎦ (8)

is the vector of all snapshots stacked together, 𝑆 ∈ R𝒥 ×𝒥 is the stiffness
matrix corresponding to the time derivative, 𝑃 ∈ R𝒥 ×𝒥 is the mass matrix,

A tensor decomposition algorithm for large ODEs with conservation laws 7

𝑒 = (1, . . . , 1)⊤ ∈ R𝒥 is a vector of all ones, and ⊗ is the Kronecker product.
For a time-invariant ODE (8) simplifies to 𝐴(t) = 𝐴 ⊗ 𝐼𝒥 . For example, Euler
and Crank-Nicolson schemes belong to this class with 𝑆 = tridiag(−1, 1, 0), and
𝑃 = 𝑇

𝒥 𝐼 for the implicit Euler scheme on a grid 𝑡𝑗 = 𝑇𝑗/𝒥 , and

𝑃 = 𝑇

2(𝒥 − 1)

⎡⎢⎢⎢⎣
0
1 1

.
1 1

⎤⎥⎥⎥⎦
for the Crank-Nicolson scheme on a grid 𝑡𝑗 = 𝑇 (𝑗 − 1)/(𝒥 − 1). With these
schemes we can take linear splines at 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1 in the interpolation (6).

Alternatively, for the Chebyshev grid with nodes 𝑡𝑗 = 𝑇
2 (1 − cos(𝜋𝑗/𝒥)) we

obtain the spectral differentiation matrix [45, Chapter 6] 𝑆 = {𝑑𝑝𝑗(𝑡𝑖)/𝑑𝑡}𝒥
𝑖,𝑗=1,

where 𝑝𝑗 is the Lagrange polynomial centered at 𝑡𝑗 , and 𝑃 = 𝐼. An advantage of
the spectral discretization is the rapid convergence (exponential in 𝒥 , see [44] and
[45, Theorem 6]) when the solution is analytic on the Bernstein ellipse extension
of [0, 𝑇]. On the other hand, lower order schemes lead to sparse matrices and
lower condition numbers in (7).

The Galerkin reduction (2) can be combined with (7) straightforwardly.
Given an orthogonal basis matrix 𝑋, we assemble and solve the 𝑟𝒥 × 𝑟𝒥 system

(𝐼𝑟 ⊗ 𝑆 − (𝐼𝑟 ⊗ 𝑃) (𝑋 ⊗ 𝐼𝒥)*𝐴(t)(𝑋 ⊗ 𝐼𝒥)) 𝑣 = 𝑣0 ⊗ (𝑆𝑒), (9)

where 𝑣0 = 𝑋*𝑥0. Both linear and quadratic invariants can be preserved as
shown in (3) and (5), respectively.

Remark 1. Low-order schemes are often preferred to the spectral discretization
because of the particular sparsity of the stiffness and mass matrices, e.g. bidiago-
nality, which allows to solve (7) step by step. However, in this paper we solve
(7) indirectly via iterative tensor product algorithms (see Sec. 3.3), which require
a single system of equations, defining the entire solution. On the other hand,
tensor decompositions allow more freedom in the choice of 𝑆 and 𝑃 due to the
reduced cost; in fact, solving the global system (7) can be faster and more accurate
than the step by step integration [8], since it allows to take more accurate time
discretization.

Remark 2. If the ODE solution lacks smoothness, more sophisticated Discontin-
uous Galerkin techniques may be required [41, 24]. Otherwise, the collocation leads
to easier pointwise construction of the matrix (8), compared to the computation
of the Galerkin coefficients.

8 Sergey V. Dolgov

An analog of the Runge’s rule [16] can be used for estimating the discretization
error. Consider two grids with 𝒥 and 2𝒥 points, {𝑡𝑗}𝒥

𝑗=1 and {𝑡*
𝑖 }2𝒥

𝑖=1. Given an
approximation 𝑦(𝑡) ≈ 𝑑𝑥/𝑑𝑡 on the coarse grid {𝑡𝑗} (in our case 𝑦(𝑡) = 𝐴(𝑡)𝑥(𝑡)),
we can take the difference on the fine grid |𝑑𝑥/𝑑𝑡(𝑡*

𝑖)−𝑦(𝑡*
𝑖)| as our error estimate.

For evaluating the quantities on {𝑡*
𝑖 } we construct the fine-grid differentiation

matrix 𝑆 ∈ R2𝒥 ×2𝒥 and the interpolation matrix 𝑃 ∈ R2𝒥 ×𝒥 , which maps from
{𝑡𝑗} to {𝑡*

𝑖 }. Then the estimate can be computed from the snapshots as follows,

ℰ𝒥 ,𝑇 =
⃦⃦[︀

𝐼𝑁 ⊗ (𝑆𝑃) − (𝐼𝑁 ⊗ 𝑃)𝐴(t)
]︀

𝑥 − 𝑥0 ⊗ (𝑆𝑒)
⃦⃦

, (10)

where 𝑒 is a vector of all ones of size 2𝒥 . For the Chebyshev discretization, for
example, 𝑃𝑖,𝑗 = 𝑝𝑗(𝑡*

𝑖).

3 Tensor product representations and methods

3.1 Vectors and tensors

The unknowns in the whole discrete solution can be enumerated by at least two
independent indices, corresponding to the state space and time. Assuming that
𝑖 = 1, . . . , 𝑁 enumerates the state components of the solution, 𝑥𝑖(𝑡), and that
the time points are enumerated by an index 𝑗 = 1, . . . , 𝒥 , we can consider the
solution as a matrix 𝑋 = [𝑥𝑖(𝑡𝑗)]. Moreover, we will assume (and exploit) that the
state space can be further factorised into 𝑑 independent indices 𝑖1, . . . , 𝑖𝑑, running
from 1 to 𝑛1, . . . , 𝑛𝑑, respectively. An equivalence between digits 𝑖1, . . . , 𝑖𝑑 and
the original index 𝑖 holds due to the standard positional expression,

𝑖 = (𝑖1 − 1)𝑛2 · · · 𝑛𝑑 + (𝑖2 − 1)𝑛3 · · · 𝑛𝑑 + · · · + 𝑖𝑑. (11)

However, the solution can now be also seen as a tensor, x = [x(𝑖1, . . . , 𝑖𝑑, 𝑗)] ∈
C𝑛1×···×𝑛𝑑×𝒥 . The multi-index expansion can arise for example from a dis-
cretization of PDEs: if a PDE 𝜕𝑥

𝜕𝑡 (𝑞1, . . . , 𝑞𝑑, 𝑡) = 𝐴𝑥(𝑞1, . . . , 𝑞𝑑, 𝑡) is discretized
in 𝑞1, . . . , 𝑞𝑑 by collocation on a Cartesian product of independent univariate
grids {𝑞𝑘(𝑖𝑘)}, 𝑘 = 1, . . . , 𝑑, the nodal values of 𝑥 can be collected into a tensor
x, as described above.

To write the global state-time system (7) consistently, we need to reshape
the whole tensor x into a vector 𝑥 of size (𝑛1 · · · 𝑛𝑑)𝒥 × 1. We can extend (11)
to any set of indices, introducing a general multi-index

𝑖𝑝 . . . 𝑖𝑞 = (𝑖𝑝 − 1)𝑛𝑝+1 · · · 𝑛𝑞 + · · · + 𝑖𝑞, 𝑞 ≥ 𝑝. (12)

Now we can address the solution by either of the equivalent forms 𝑥(𝑖1 . . . 𝑖𝑑, 𝑗),
𝑋(𝑖1 . . . 𝑖𝑑, 𝑗) or x(𝑖1, . . . , 𝑖𝑑, 𝑗).

A tensor decomposition algorithm for large ODEs with conservation laws 9

3.2 Tensor Train decomposition

The Tensor Train (TT) [36], or Matrix Product States (MPS) [10] decomposition
for the tensor x (resp. vector 𝑥) is defined as follows,

𝑥(𝑖1 . . . 𝑖𝑑, 𝑗) =
𝑟1∑︁

𝛼1=1
· · ·

𝑟𝑑∑︁
𝛼𝑑=1

x(1)
𝛼1 (𝑖1)x(2)

𝛼1,𝛼2(𝑖2) · · · x(𝑑)
𝛼𝑑−1,𝛼𝑑(𝑖𝑑)x(𝑑+1)

𝛼𝑑 (𝑗). (13)

The summation indices 𝛼𝑘 = 1, . . . , 𝑟𝑘, 𝑘 = 1, . . . , 𝑑, are called the rank indices,
and their ranges 𝑟𝑘 are the tensor train ranks (TT ranks). The right-hand side
consists of the TT blocks x(𝑘) ∈ C𝑟𝑘−1×𝑛𝑘×𝑟𝑘 . Introducing uniform bounds
𝑟𝑘 ≤ 𝑟, 𝑛𝑘 ≤ 𝑛, we can estimate the storage complexity of the TT decomposition
as 𝒪(𝑑𝑛𝑟2). If the rank bound 𝑟 is small, this is much lower than 𝑁𝒥 = 𝒪(𝑛𝑑𝒥)
in the straightforward storage of 𝑥.

The matrix 𝐵 from (7) can be seen as a (2𝑑 + 2)-dimensional tensor and
decomposed in a slightly different matrix TT decomposition,

𝐵(𝑖1 . . . 𝑖𝑑, 𝑗, 𝑖1 . . . 𝑖𝑑, 𝑗
′) =

ℛ1∑︁
𝛾1=1

· · ·
ℛ𝑑∑︁

𝛾𝑑=1
B(1)

𝛾1 (𝑖1, 𝑖′
1) · · · B(𝑑)

𝛾𝑑−1,𝛾𝑑(𝑖𝑑, 𝑖′
𝑑)B(𝑑+1)

𝛾𝑑 (𝑗, 𝑗′).

(14)
The matrix TT decomposition is introduced for consistency with the Kronecker
product when ℛ1 = · · · = ℛ𝑑 = 1 and multiplication with a “vector” TT
decomposition of 𝑥 (13). Assuming an upper bound ℛ𝑘 ≤ ℛ, we can estimate
the storage of (14) by 𝒪(𝑑𝑛2ℛ2) for a dense matrix, and by 𝒪(𝑑𝑛ℛ2) for a
sparse matrix.

The multi-index notation (12) allows to notice that the TT decomposition can
be seen as a low-rank decomposition of a matrix 𝑋{𝑘} =

[︀
𝑋(𝑖1 . . . 𝑖𝑘, 𝑖𝑘+1 . . . 𝑗)

]︀
for any 𝑘 = 1, . . . , 𝑑. We can group the left, respectively, right subset of TT
blocks into interface matrices, or simply interfaces

𝑋(≤𝑘)(𝑖1 . . . 𝑖𝑘, 𝛼𝑘) =
𝑟1∑︁

𝛼1=1
· · ·

𝑟𝑘−1∑︁
𝛼𝑘−1=1

x(1)
𝛼1 (𝑖1) · · · x(𝑘)

𝛼𝑘−1,𝛼𝑘 (𝑖𝑘),

𝑋(>𝑘)(𝛼𝑘, 𝑖𝑘+1 . . . 𝑗) =
𝑟𝑘+1∑︁

𝛼𝑘+1=1
· · ·

𝑟𝑑∑︁
𝛼𝑑=1

x(𝑘+1)
𝛼𝑘,𝛼𝑘+1(𝑖𝑘+1) · · · x(𝑑+1)

𝛼𝑑 (𝑗). (15)

We can naturally extend this definition to 𝑋(<𝑘) = 𝑋(≤𝑘−1) and 𝑋(≥𝑘) =
𝑋(>𝑘−1). Then we can write 𝑋{𝑘} = 𝑋(≤𝑘)𝑋(>𝑘). Moreover, the interface
matrices allow to see the TT decomposition as a linear map of each TT block
x(𝑘). Indeed, reshaping it into a vector 𝑥(𝑘)(𝛼𝑘−1𝑖𝑘𝛼𝑘) = x(𝑘)

𝛼𝑘−1,𝛼𝑘 (𝑖𝑘), we can
write 𝑥 = 𝑋 ̸=𝑘𝑥(𝑘), where 𝑋 ̸=𝑘 is a frame matrix

𝑋 ̸=𝑘 = 𝑋(<𝑘) ⊗ 𝐼𝑛𝑘 ⊗
(︁

𝑋(>𝑘)
)︁⊤

. (16)

10 Sergey V. Dolgov

3.3 Computing TT decompositions by alternating iteration

Although a TT approximation can be computed for any tensor via a sequence of
singular value decompositions (SVD) [36], this is rarely efficient or even possible
when the tensor is large. The aim of the tensor product methodology is to avoid
fully stored tensors at all stages of computations. One of the most successful
approaches traces back to the alternating least squares optimization over the
tensor decomposition blocks. It was then generalized to the Alternating Linear
Scheme (ALS) [19]. A similar algorithm, called Density Matrix Renormalization
Group (DMRG) [48, 22], was proposed in quantum physic for calculation of
ground states, i.e. lowest eigenvalues of high-dimensional Hamiltonians.

Let us consider the linear system 𝐵𝑥 = 𝑓 as an overdetermined equation on
a particular block 𝑥(𝑘) in the TT decomposition (13); the linearity established
in the previous subsection makes this equation linear, (𝐵𝑋 ̸=𝑘)𝑥(𝑘) = 𝑓 . This
equation can be resolved in different ways (e.g. by least squares), but practically
the cheapest option is to use the same frame matrix,(︀

𝑋*
̸=𝑘𝐵𝑋 ̸=𝑘

)︀
𝑥(𝑘) = 𝑋*

̸=𝑘𝑓. (17)

This reduction can be justified by relation to the minimization of the energy
function 𝑥*𝐵𝑥 − 2Re 𝑥*𝑓 when the matrix 𝐵 is symmetric (hermitian) positive
definite (SPD). However, the projection formalism (17) is more general and
can be applied also if 𝐵 is not SPD, which is the case for (7). The alternating
iteration is realised by sweeping through different blocks, 𝑘 = 1, . . . , 𝑑 + 1, and
backwards from 𝑘 = 𝑑 + 1 to 𝑘 = 1 until convergence, solving (17) in each step.

Three essential details make the alternating iteration actually useful:
– efficient assembly of (17);
– orthogonality of �̸�=𝑘 and efficient solution of (17);
– adaptation of TT ranks of 𝑥.

The frame matrix, composed from the interface matrices (15) via Kronecker
products, can be seen as a special TT decomposition with the same number
of blocks as in 𝑥. In turn, the matrix 𝐵 and right-hand side 𝑓 are assumed to
be available in the TT format as well, such as (14). This allows to compute
𝑋*

̸=𝑘𝐵𝑋 ̸=𝑘 and 𝑋*
̸=𝑘𝑓 efficiently, using only multiplications of the TT blocks.

Moreover, sequential iteration over 𝑘 = 1, 2, . . . allows to reuse partial products
of the interfaces of 𝑥, 𝐵 and 𝑓 and make the algorithm even more efficient, with
the total asymptotic complexity linear in 𝑑 [19, 37].

The TT representation is not unique; any partition of identity can be in-
serted between adjacent TT blocks, e.g. 𝑋{𝑘} =

(︀
𝑋(≤𝑘)𝑅

)︀ (︀
𝑅−1𝑋(>𝑘))︀, without

changing the whole tensor. However, the matrix 𝑅 changes the interfaces, and

A tensor decomposition algorithm for large ODEs with conservation laws 11

we can choose it in order to empower the representation with desirable prop-
erties. For example, we can make 𝑋(<𝑘) and 𝑋(>𝑘) orthogonal by performing
QR decompositions of appropriately reshaped TT blocks. By construction (16),
�̸�=𝑘 is orthogonal, too. The orthogonality of the projection (17) leads to a well
conditioned reduced problem, which can be solved iteratively (we employ the
BiCGstab algorithm) using fast matrix-vector products due to the TT structure
inherited from the original problem [37].

For high-dimensional problems it is difficult to guess all 𝑑 rank parameters. It
becomes necessary to adapt them during the computations in such a way that the
TT solution is within the desired distance from the exact solution. If we possess
a solution with a satisfactory accuracy but overly large TT ranks, it is easy to
reduce them via SVD [36]. It is more important therefore to develop a procedure
for increasing the ranks. The DMRG method addresses this problem by reducing
the system to a two-dimensional block (merged from x(𝑘) and x(𝑘+1)), which
can be split via SVD up to a desired threshold. However, this requires solving a
larger problem on the merged block. The Alternating Minimal Energy (AMEn)
algorithm [9] solves one-dimensional problems in each step, but augments the
TT blocks of the solution by the TT blocks of an approximate global residual
𝑧 ≈ 𝑓 − 𝐵𝑥. Since 𝑓, 𝐵 and 𝑥 are all represented in the TT format, the residual
can be approximated efficiently by the second ALS iteration, applied to a simpler
problem 𝐼𝑧 = 𝑓 − 𝐵𝑥. Given a TT decomposition

𝑧(𝑖1 . . . 𝑖𝑑, 𝑗) =
𝜌1,...,𝜌𝑑∑︁

𝛽1,...,𝛽𝑑=1

z(1)
𝛽1

(𝑖1) · · · z(𝑑+1)
𝛽𝑑

(𝑗)

from the previous iteration, we define the interface matrices 𝑍(<𝑘) and 𝑍(>𝑘)

similarly to (15), and update the 𝑘-th TT block of the residual by projecting

𝑧(𝑘) =
(︁

𝑍(<𝑘) ⊗ 𝐼 ⊗ (𝑍(>𝑘))⊤
)︁*

(𝑓 − 𝐵𝑥). (18)

Performing this process simultaneously with the computation of the solution
blocks (17), we ensure that 𝑍(<𝑘) and 𝑍(>𝑘) are sufficiently good bases for the
residuals in all steps. In turn, projecting the residual onto the solution interface,

𝜁(𝑘) =
(︁

𝑋(<𝑘) ⊗ 𝐼 ⊗ (𝑍(>𝑘))⊤
)︁*

(𝑓 − 𝐵𝑥), (19)

we can expand the solution TT block,

x(𝑘)(𝑖𝑘) =
[︁
x(𝑘)(𝑖𝑘) 𝜁(𝑘)(𝑖𝑘)

]︁
, x(𝑘+1)(𝑖𝑘+1) =

[︂
x(𝑘+1)(𝑖𝑘+1)

0

]︂
. (20)

This allows to increase the solution TT ranks (by the ranks of 𝜁(𝑘)), and also
improves convergence in difficult cases, since the basis of the reduction (17)
contains now the residual of the original problem.

12 Sergey V. Dolgov

3.4 tAMEn: extended time integrator

The time-dependent version of the AMEn algorithm combined two enrichments
of the solution: by the residual (20) and by the co-kernel vectors (3). Assume
the latter to be given in a compatible TT format,

𝑐𝑚(𝑖1 . . . 𝑖𝑑) =
𝜌1,...,𝜌𝑑−1∑︁

𝛽1,...,𝛽𝑑−1=1

c(1)
𝛽1

(𝑖1)c(2)
𝛽1,𝛽2

(𝑖2) · · · c(𝑑)
𝛽𝑑−1,𝑚(𝑖𝑑),

where 𝑚 = 1, . . . , 𝑀 enumerates different vectors 𝑐𝑚. In the course of the
alternating iteration from 𝑘 = 1 to 𝑘 = 𝑑, the combined enrichment is performed
as follows,

x(𝑘)(𝑖𝑘) =
[︁
x(𝑘)(𝑖𝑘) 𝜁(𝑘)(𝑖𝑘) 𝒞𝑘c(𝑘)(𝑖𝑘)

]︁
, x(𝑘+1)(𝑖𝑘+1) =

⎡⎣x(𝑘+1)(𝑖𝑘+1)
0
0

⎤⎦ ,

(21)
where 𝒞𝑘 = (𝑋(<𝑘))*𝐶(<𝑘) is the projection onto the left interface of the solution.
We can see that 𝑐𝑚 ∈ span(𝑋(<𝑘) ⊗ 𝐼𝑛𝑘···𝑛𝑑) for all 𝑘 = 1, . . . , 𝑑 and 𝑚 =
1, . . . , 𝑀 . For 𝑘 = 1, for example, we can write

𝑐𝑚 =
(︁

x(1) ⊗ 𝐼𝑛2···𝑛𝑑

)︁
𝑐𝑚, 𝑐𝑚 =

⎡⎢⎣ 0
0

𝑐
(>1)
𝑚

⎤⎥⎦ ,

where 𝑐
(>1)
𝑚 is the (𝑛2 · · · 𝑛𝑑𝜌1) × 1 vectorisation of the interface matrix 𝐶

(>1)
𝑚 .

By induction, this extends to 𝑘 > 1. In order to maintain orthogonality of the
interfaces, we perform the QR decomposition of x(𝑘) after the enrichment (21).

For 𝑘 = 𝑑 + 1, we can notice that the frame matrix reduces to 𝑋(≤𝑑) ⊗ 𝐼.
Therefore, the local problem (17) for 𝑥(𝑑+1) is nothing else than the reduced
discretized ODE (9) with the interface being the Galerkin basis, 𝑋 = 𝑋(≤𝑑), and
the last TT block being the unknown, 𝑣 = 𝑥(𝑑+1). The enrichment (21) ensures
that this basis contains also the co-kernel matrix 𝐶. Moreover, the second norm
of the right hand side (reduced initial state) can be corrected according to (5). If
we stop the alternating iteration at this step, the error in the linear invariants
and the second norm depends only on the accuracy of the solution of (9) and the
time discretization, but not on the accuracy of the TT decomposition. If the last
TT rank 𝑟𝑑 is reasonably small, we can take sufficiently large 𝒥 and solve (9)
directly, which yields the machine precision accuracy in the conservation laws.

A tensor decomposition algorithm for large ODEs with conservation laws 13

Fig. 1: tAMEn algorithm

Require: Initial state 𝑥0, matrix 𝐴(𝑡) and right hand side 𝑓(𝑡) in the TT format,
final time 𝑇 , accuracy threshold 𝜀, discretization points t ∈ [0, 1] and matrices
𝑆, 𝑃, 𝑆 and 𝑃 , co-kernel basis 𝐶 in the TT format.

Ensure: Time splitting points 𝑇0 = 0 < 𝑇1 < · · · < 𝑇𝐿 = 𝑇 , solutions 𝑥ℓ(𝑡) in
the TT format.

1: Set 𝑡 = 0, 𝑇0 = 0, ℓ = 1, ℎ1 = 𝑇 .
2: while 𝑡 < 𝑇 do
3: Rescale t, 𝑆, 𝑃, 𝑆 and 𝑃 from [0, 1] to [𝑇ℓ−1, 𝑇ℓ−1 + ℎℓ].
4: Form 𝐵 = 𝐼 ⊗ 𝑆 − (𝐼 ⊗ 𝑃)diag(𝐴(t)) and 𝑓 = 𝑥ℓ−1 ⊗ (𝑆𝑒).
5: Set 𝑥 = 𝑥ℓ−1 ⊗ 𝑒.
6: for iter = 1, 2, . . . , do
7: Set 𝑥𝑝𝑟𝑒𝑣 = 𝑥.
8: for 𝑘 = 𝑑 + 1, 𝑑, . . . , 2 do
9: Orthogonalize 𝑋(>𝑘) and 𝑍(>𝑘), see [36, Section 3].

10: end for
11: for 𝑘 = 1, 2, . . . , 𝑑 do ◁ Solve
12: Solve (𝑋*

̸=𝑘𝐵𝑋 ̸=𝑘)𝑥(𝑘) = �̸�=𝑘𝑓 , as defined in (7) and (16).
13: Compute truncated SVD of x(𝑘) up to 𝜀.
14: Compute residual blocks as shown in (18) and (19).
15: Enrich x(𝑘) and x(𝑘+1) as shown in (21).
16: Orthogonalize 𝑋(<𝑘+1) and 𝑍(<𝑘+1), see [36, Section 3].
17: end for
18: Correct the norm of 𝑣0 = (𝑋(≤𝑑))*𝑥ℓ−1 as shown in (5).
19: Solve (𝑋*

̸=𝑑+1𝐵𝑋 ̸=𝑑+1)𝑥(𝑑+1) = 𝑣0 ⊗ (𝑆𝑒).
20: Compute the error estimate (22) and ℎℓ+1 = ℎℓ · (𝜀/ℰ𝒥 ,ℎℓ

)1/𝑞.

21: if ℰ𝒥 ,ℎℓ
≤ 𝜀 then

22: if ‖𝑥 − 𝑥𝑝𝑟𝑒𝑣‖ < 𝜀‖𝑥‖ then ◁ This step converged, accept it
23: Set 𝑥ℓ = 𝑥, 𝑇ℓ = 𝑇ℓ−1 + ℎℓ, 𝑡 = 𝑡 + ℎℓ, ℓ = ℓ + 1, and break.
24: end if
25: else ◁ Reject the step
26: Set ℎℓ = ℎℓ+1 and break.
27: end if
28: end for
29: end while

14 Sergey V. Dolgov

The time discretization error (10) can be also estimated from the reduced
system. Instead of the full solution, we consider only the last TT block, and
replace the state matrix by its projection2,

ℰ𝒥 ,𝑇 =
⃦⃦⃦(︁

𝐼𝑟𝑑 ⊗ 𝑆𝑃 −
[︁
(𝑋(≤𝑑))*𝐴𝑋(≤𝑑)

]︁
⊗ 𝑃

)︁
𝑥(𝑑+1) − 𝑣0 ⊗ (𝑆𝑒)

⃦⃦⃦
. (22)

This estimate can be used for refining the number of time points 𝒥 or the length
of the time interval. Instead of solving (7) on the whole desired interval [0, 𝑇],
we can split it into a sequence of subintervals [0, 𝑇1], . . . , [𝑇𝐿−1, 𝑇𝐿], taking the
solution at the last time point of the previous interval as the initial state in the
next interval. We determine an optimal splitting using the local error control
with rejections [4]. We aim to maintain the error in the next time interval below
a desired threshold, ℰ𝒥 ,ℎℓ+1 ≤ 𝜀, so we adjust the next interval length as follows,

ℎℓ+1 = 𝑇ℓ+1 − 𝑇ℓ = ℎℓ

(︂
𝜀

ℰ𝒥 ,ℎℓ

)︂1/𝑞

. (23)

The parameter 𝑞 reflects the order of convergence of the time scheme, which is 1
for the Euler method, 2 for the Crank-Nicolson scheme, and 𝒥 for the Chebyshev
differentiation. Moreover, if it appears that ℰ𝒥 ,ℎℓ

> 𝜀, such solution is rejected,
the current interval is shrunk according to (23), and the solution is started again
from 𝑇ℓ−1. The entire procedure is written in Fig. 1. Assuming the index ranges
from Sec. 3.2 (𝑟𝑘 ≤ 𝑟, ℛ𝑘 ≤ ℛ, 𝑛𝑘 ≤ 𝑛), the computational complexity of Alg.
1, inherited from AMEn [9], reads

𝒪(𝑑𝑛(ℛ𝑟3 + ℛ2𝑟2)).

4 Numerical experiments
We have implemented Algorithm 1 in Matlab. This research made use of
the Balena High Performance Computing (HPC) Service at the Univer-
sity of Bath. We carried out the computations on one core of the Balena
node, an Intel Xeon E5-2650 CPU at 2.6GHz. The code is available from
http://github.com/dolgov/tamen.

2 For non-autonomous ODEs the estimate can be extended accordingly.

http://github.com/dolgov/tamen

A tensor decomposition algorithm for large ODEs with conservation laws 15

4.1 Convection

Our first example is the transport equation in the periodic domain [−10, 10]2

with the central difference discretization scheme,

𝑑𝑥

𝑑𝑡
= (∇𝑛 ⊗ 𝐼𝑛 + 𝐼𝑛 ⊗ ∇𝑛) 𝑥, ∇𝑛 = 1

2ℎ

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 · · · −1

−1 0 1
.

−1 0 1
1 · · · −1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R𝑛×𝑛,

(24)
where ℎ = 20/𝑛 is the mesh step of the uniform grid 𝑞𝑘(𝑖𝑘) = −10 + ℎ(𝑖𝑘 − 1),
𝑖𝑘 = 1, . . . , 𝑛, 𝑘 = 1, 2, and the Gaussian initial state 𝑥0 = exp(−𝑞2

1 − 𝑞2
2). This

example is chosen for the following reasons. First, the exact solution repeats
with the period of 𝑇𝑝 = 20, hence we can estimate the error of our scheme as
the difference between the solution after a number of periods and the initial
state, ‖𝑥(𝑇) − 𝑥0‖ for 𝑇 = 20𝑚, 𝑚 ∈ N. Second, (24) possesses both types of
invariants: the solution mass 𝑐*𝑥 = 𝑐*𝑥0, where 𝑐 = (1, . . . , 1)⊤, and the second
norm, ‖𝑥‖2 = ‖𝑥0‖2. Third, the discrete solution of the pure convection is prone
to developing spurious oscillations when the discretization is not accurate enough.
For the central difference scheme, this requires taking rather fine grids, with 𝑛

ranging from 1024 to 4096, which makes the problem large enough to apply the
tensor decompositions.

In order to increase the efficiency of the TT methods, we apply them to the
quantized tensors [26]: instead of separating just two indices in 𝑋(𝑖1, 𝑖2), we split
each index into its binary digits,

𝑖𝑘 = 2𝐿−1(𝑖𝑘,1 − 1) + 2𝐿−2(𝑖𝑘,2 − 1) + · · · + 𝑖𝑘,𝐿, 𝑖𝑘,𝑙 ∈ {1, 2},

and consider the solution as a 2𝐿-dimensional tensor, x(𝑖1,1, . . . , 𝑖2,𝐿). Now the
TT decomposition can reduce the storage cost down to 𝒪(𝑟2𝐿) = 𝒪(𝑟2 log 𝑛), in
contrast to 𝒪(𝑟𝑛) in the low-rank decomposition of 𝑋(𝑖1, 𝑖2) or 𝑛2 in the full
representation of 𝑥. The ODE matrix can be constructed in this quantized TT
representation exactly [23].

First, we confirm conservation of the invariants. We fix the time interval
splitting to ℎℓ = 0.2 for all ℓ = 1, . . . , 𝑇/ℎℓ, the spatial grid size 𝑛 = 4096, and
vary the number of Chebyshev or Crank-Nicolson points, as well as the accuracy
threshold 𝜀. In Fig. 2 we show how the errors in both conserving quantities evolve
with time. We observe that the error in the invariants is much smaller than
the tensor approximation threshold in all cases. However, insufficient number of
Chebyshev points can increase the error in the second norm (Fig. 2, left). The

16 Sergey V. Dolgov

Fig. 2: Convection example. Degeneracy of ‖𝑢‖2 (solid lines) and 𝑐*𝑢 (dashed lines) vs.
time for Chebyshev (left) and Crank-Nicolson (right) schemes.

1 2 3 4

10−15

10−14

10−13

10−12

10−11

10−10

10−9

𝜀 = 10−5, 𝒥 = 16

𝜀 = 10−5, 𝒥 = 8

𝜀 = 10−4, 𝒥 = 8

𝑡/𝑇𝑝

error

1 2 3 4

10−15

10−14

10−13

10−12

10−11

10−10

10−9

𝜀 = 10−5, 𝒥 = 4097

𝜀 = 10−5, 𝒥 = 1025

𝜀 = 10−4, 𝒥 = 1025

𝑡/𝑇𝑝

error

Fig. 3: Convection example, TT ranks for Chebyshev (left) and Crank-Nicolson (right)
schemes.

1 2 3 415

20

25

30

35

𝑡/𝑇𝑝

max TT rank

𝜀 = 10−4, 𝒥 = 8

𝜀 = 10−5, 𝒥 = 8

𝜀 = 10−5, 𝒥 = 16

1 2 3 415

20

25

30

35

𝑡/𝑇𝑝

max TT rank

𝜀 = 10−4, 𝒥 = 1025

𝜀 = 10−5, 𝒥 = 1025

𝜀 = 10−5, 𝒥 = 4097

Crank-Nicolson scheme preserves both invariants up to the machine precision for
any number of points. In fact, it manifests the opposite situation that the errors
are larger for 𝒥 = 4097 points due to a larger condition number of the matrix in
(7). This shows that, although the explicit cost of the tensor schemes depends
mildly on the grid sizes, it is still recommended to avoid too fine grids due to
the conditioning issues.

The evolution of TT ranks with time is shown in Fig. 3. Since the shape
of the exact solution remains unchanged, its ranks should be the same for all
times. We see that the ranks are indeed stable with time, in particular with
the Chebyshev scheme. In the Crank-Nicolson scheme, the ranks grow slightly

A tensor decomposition algorithm for large ODEs with conservation laws 17

Fig. 4: Convection example, CPU times in seconds (left) and time intervals found in the
adaptive regime (right) with Chebyshev and Crank-Nicolson (CN) schemes.

1 2 3 4

500

1,000

1,500

2,000

𝑡/𝑇𝑝

cumulative CPU time

Cheb, 𝒥 = 8

Cheb, 𝒥 = 16

CN, 𝒥 = 513

CN, 𝒥 = 2049

1 2 3 4

0.05

0.1

0.15

0.2

0.25

𝑡/𝑇𝑝

ℎℓ

Cheb, 𝒥 = 8

CN, 𝒥 = 513

Table 1: Convection, CPU times (seconds) and errors for different time interval lengths.

Scheme Chebyshev, 𝒥 = 8 Crank-Nicolson, 𝒥 = 513

Time step 0.1 0.2 0.4 100𝑎𝑑𝑎𝑝 0.1 0.2 0.4 100𝑎𝑑𝑎𝑝
CPU time 1098.8 1391.1 5069.9 2014.7 4326.0 2213.7 10246.1 2652.9
104·‖𝑥−𝑥⋆‖

‖𝑥⋆‖
0.85 6.22 5.65 2.81 3.33 3.52 2.22 2.62

towards the end of the 5-period interval. This is also reflected by a slightly larger
CPU time, see Fig. 4 (left).

Now we consider how the tAMEn algorithm depends on the time interval
splitting. In Table 1 we show the CPU times and the errors of 𝑥(𝑇) with respect
to the reference solution 𝑥⋆, computed with the Chebyshev scheme with 𝒥 = 16
points on ℎℓ = 0.2 and 𝜀 = 10−7. For small time steps (ℎℓ = 0.1, 0.2 and 0.4),
we turn the adaptation off. However, we also start from the entire interval 100
and let the algorithm split it automatically. Due to rejections of some time steps,
the CPU time of the adaptive method is larger than the cost of the optimal
splitting (ℎℓ = 0.1 for Chebyshev and ℎℓ = 0.2 for Crank-Nicolson schemes),
but the overhead never exceeds a factor of 2. Moreover, the adaptive algorithm
is faster than the non-adaptive one with improperly chosen time steps. Fig. 4
(right) shows the time steps determined by the adaptive method. We see that the
average step lies between 0.1 and 0.2. Interestingly, the low-order Crank-Nicolson
scheme is more robust in estimating the error, and hence the time step.

Finally, we benchmark tAMEn against the standard Crank-Nicolson method
without the TT decomposition and the Riemannian TT time integrator [30].
We split the time into intervals of length ℎℓ = 0.2, but each interval is further

18 Sergey V. Dolgov

Table 2: Convection example. CPU times (seconds) and errors in different methods and
parameters for time splitting ℎℓ = 0.2.

tAMEn KSL Full CN
Cheb, 𝒥 = 8 CN, 𝒥 = 513 𝒥 = 16 𝒥 = 512 𝒥 = 16 𝒥 = 64

CPU time 1391.1 2213.7 694.9 14159 170732 102294
103·‖𝑥(𝑇)−𝑥0‖

‖𝑥0‖
2.36 2.16 583.8 7.44 16.0 2.93

partitioned into 𝒥 individual time steps, on which the full Crank-Nicolson or
Riemannian integration is carried out. The Riemannian integrator projects the
dynamical equations directly onto the Riemannian manifold of the TT represen-
tation, using the so-called Dirac-Frenkel principle [28]. The projected equations
can be split with respect to the different TT blocks and solved subsequently,
using the so-called KSL propagator [30]3 This scheme works with the TT de-
composition of only one snapshot at a time, which requires smaller TT ranks.
However, it requires integrating backward in time, which can introduce numerical
instabilities for large time steps. In Table 2 we see that for 𝒥 = 16 the solution
becomes qualitatively incorrect. For a smaller time step the scheme is stable,
but a large number of time steps leads to a large computational time. The full
Crank-Nicolson method is even slower, since each time step is more expensive.
In fact, the CPU time is larger for smaller number of time steps. This is due to
a larger condition number of the matrix in the implicit step.

4.2 Chemical master equation

In the second experiment, we investigate an example with a steady state, the
chemical master equation (CME), describing stochastic kinetics model of the
𝜆-phage virus [17, 21, 7]. Using the Finite State Projection [33], the CME is
turned into a large-scale ODE,

𝑑𝑥

𝑑𝑡
= 𝐴𝑥, 𝐴 =

𝑀∑︁
𝑚=1

(︁
𝐽𝑧𝑚

1 ⊗ · · · ⊗ 𝐽𝑧𝑚
𝑑 − 𝐼

)︁
diag(𝑤𝑚), (25)

Here, 𝐽𝑧 is the order-𝑧 shift matrix, defined as follows: 𝐽0 = 𝐼, 𝐽1 =
tridiag(1, 0, 0), 𝐽𝑧 = (𝐽1)𝑧 for 𝑧 > 1, and 𝐽𝑧 = (𝐽−𝑧)⊤ for 𝑧 < 0. The vector
z𝑚 = (𝑧𝑚

1 , . . . , 𝑧𝑚
𝑑) is the so-called stoichiometric vector, 𝑤𝑚 = 𝑤𝑚(𝑖1, . . . , 𝑖𝑑) is

3 The multi-dimensional Matlab version tt_ksl_ml.m was implemented by the author in
collaboration with I. Oseledets, and is available within TT-Toolbox.

http://github.com/oseledets/TT-Toolbox

A tensor decomposition algorithm for large ODEs with conservation laws 19

Table 3: Reactions in the 𝜆-phage model.

Generation Destruction

𝑤1 =
0.06

0.12 + 𝑖2
, z1 = e1 𝑤2 = 0.0025 · 𝑖1, z2 = −e1

𝑤3 =
(1 + 𝑖5) · 0.6

0.6 + 𝑖1
, z3 = e2 𝑤4 = 0.0007 · 𝑖2, z4 = −e2

𝑤5 =
0.15 · 𝑖2
𝑖2 + 1

, z5 = e3 𝑤6 = 0.0231 · 𝑖3, z6 = −e3

𝑤7 =
0.3 · 𝑖3
𝑖3 + 1

, z7 = e4 𝑤8 = 0.01 · 𝑖4, z8 = −e4

𝑤9 =
0.3 · 𝑖3
𝑖3 + 1

, z9 = e5 𝑤10 = 0.01 · 𝑖5, z10 = −e5

Fig. 5: CME example, ⟨𝑖𝑘⟩ (left) and maximal TT ranks in tAMEn with and without 𝐶-
enrichment (right)

0 1 2 3
10−3

10−2

10−1

100

101

102

103

104

log10(𝑡)

⟨𝑖𝑘⟩

⟨𝑖1⟩

⟨𝑖2⟩

⟨𝑖3⟩

⟨𝑖4⟩

⟨𝑖5⟩

0 1 2 3
101.2

101.4

101.6

101.8

102

rank

log10(𝑡)

tAMEn

tAMEn(𝐶)

the propensity rate of the 𝑚-th reaction, and diag(𝑤𝑚) constructs a 𝑁 ×𝑁 diago-
nal matrix from all elements of 𝑤𝑚. The total size of the problem is 𝑁 =

∏︀𝑑
𝑘=1 𝑛𝑘,

since each index is assumed to vary in the range 𝑖𝑘 = 0, . . . , 𝑛𝑘 − 1. The indices
𝑖1, . . . , 𝑖𝑑 denote the so-called copy numbers (numbers of molecules) of 𝑑 reacting
species (e.g. proteins), and the solution x(𝑖1, . . . , 𝑖𝑑, 𝑡) is the distribution function,
which defines the probability that at the time 𝑡, the system contains 𝑖1 molecules
of the first protein, 𝑖2 molecules of the second species, and so on.

The particular 𝜆-phage model contains 𝑑 = 5 species and 𝑀 = 10 reactions.
The stoichiometric vectors and propensities are given in Table 3 (e1, . . . , e5 are
unit vectors of size 5).

As the initial state, we choose all-zero copy numbers with probability 1,
i.e. 𝑥0(𝑖1, . . . , 𝑖5) = 1 when 𝑖1 = · · · = 𝑖5 = 0, and 0, otherwise. Under certain
conditions [14], fulfilled for the 𝜆-phage model, and infinite ranges of 𝑖𝑘, the CME

20 Sergey V. Dolgov

(25) converges to a unique stationary state 𝑥∞. For practical computations, we
truncate the state space to 𝑛1 ×· · ·×𝑛5 = 128×65536×64×64×64, respectively,
since the probability outside this box is negligible. In order to preserve existence
of the stationary state [20], we adjust the propensities of the generation reactions
such that

𝑤2𝑘−1(𝑖1, . . . , 𝑖𝑑) = 0 if 𝑖𝑘 = 𝑛𝑘 − 1, 𝑘 = 1, . . . , 𝑑.

This also guarantees that 𝐴*𝑒 = 0, therefore the probability normalization
𝑒*𝑥 = 1 is conserved.

The statistical outputs of interest are the mean copy numbers,

⟨𝑖𝑘⟩ =
i*

𝑘𝑥

𝑒*𝑥
, i𝑘 = e(1) ⊗ · · · ⊗ e(𝑘−1) ⊗ {𝑖𝑘} ⊗ e(𝑘+1) ⊗ · · · ⊗ e(𝑑) ∈ R𝑁 , (26)

where e(𝑝) are the all-ones vectors of size 𝑛𝑝. In order to preserve the normaliza-
tion, we add the vector of ones to the enrichment (21). However, we can also keep
the quantities of interest in the TT representation in order to make statistics
more accurate. Therefore, we use 6 enrichment columns, 𝐶 =

[︀
𝑒 i1 · · · i5

]︀
.

The Quantized TT representation of 𝐶 has TT ranks up to 6, and the ranks of
the residual (18) are set to 1. We compare tAMEn implementations with and
without the additional enrichment by 𝐶. For the fair comparison, we set the
residual ranks equal to those of 𝐶 plus 1 in the version without the 𝐶-enrichment.

The tAMEn algorithm is run in the fully adaptive regime using the Chebyshev
time discretisation scheme with 𝒥 = 8 points in each interval. The final time
𝑇 = 22000. We estimate the errors directly in the quantities of interest and
report the log-average of individual errors,

ℰ⟨𝑖⟩(𝑡) = exp

(︃
1
5

5∑︁
𝑘=1

log
⃒⃒
⟨𝑖𝑘(𝑡)⟩ − ⟨𝑖⋆

𝑘(𝑡)⟩
⃒⃒

⟨𝑖⋆
𝑘(𝑡)⟩

)︃
. (27)

We vary the accuracy thresholds 𝜀 from 10−2 to 10−5, and use the values
computed with 𝜀 = 3 · 10−7 as the reference ⟨𝑖⋆

𝑘⟩. In addition to the two versions
of tAMEn, we present the results of the classical Stochastic Simulation Algorithm
(SSA) [11] for comparison.

In Fig. 5 we show the evolution of the mean copy numbers and TT ranks.
Interestingly, the ranks with the 𝐶-enrichment are even smaller, since the special-
ized frame matrices constitute better bases for the solution. The computational
times and errors are shown in Fig. 6. We see that the normalization-preserving
solution is systematically more efficient in terms of the cost/accuracy ratio,
compared to the residual-only enrichment. Moreover, the direct solution of the
CME in the TT format is much faster than the stochastic simulation, since large
times and copy numbers require a large number of trajectories and time steps in
SSA.

A tensor decomposition algorithm for large ODEs with conservation laws 21

Fig. 6: CME example, errors (27) in the mean copy numbers for 𝑡 = 2000 (left) and
𝑡 = 22000 (right) versus computational Work (CPU time) for SSA and tAMEn with and
without the 𝐶-enrichment.

103 104

10−5

10−4

10−3

10−2

CPU time

ℰ⟨𝑖⟩

SSA

tAMEn

tAMEn(𝐶)

𝑊 −0.5

𝑊 −1.7

103 104

10−5

10−4

10−3

10−2

CPU time

ℰ⟨𝑖⟩

SSA

tAMEn

tAMEn(𝐶)

𝑊 −0.5

𝑊 −1.7

5 Conclusion
We have proposed and studied an alternating iterative algorithm for approximate
solution of ordinary differential equations in the TT format. The method combines
advances of DMRG techniques and classical iterative methods of linear algebra.
Started from the solution at the previous time interval as the initial guess, it often
converges in 2—4 iterations, and delivers accurate solution even for strongly non-
symmetric matrices in the right-hand side of an ODE. The numerical experiments
reveal a promising potential of this method in long time simulations when
the solution admits a low-rank decomposition. For example, nuclear magnetic
resonance models can be approached directly, without any a priori reduction of
the original Hilbert space [39].

The main limiting factor of the method is the TT ranks of the solution. A
theoretical rank bound remains in general an open question, especially if the ODE
is nonlinear. While for some problems (e.g. convection) it follows readily from
the continuous equation, analysis of realistic cases may be difficult. A beneficial
feature of the new algorithm is that it can determine the TT ranks adaptively in
the course of computations.

Existing convergence estimates for tensor algorithms in high dimensions
are far from being sharp. Although the time stepping scheme might be easier
for both local [38] and global [9] convergence analysis under an assumption of
small enough time step, the particular criterion for “small enough” might be
too restrictive. In practice, the method converges robustly for stable first-order

22 REFERENCES

systems. Unstable, higher-order and differential-algebraic systems require further
investigation, and potentially modification of the algorithm.

The method possesses a simple mechanism for maintaining linear conservation
laws in the reduced tensor model exactly, provided that the generating vectors
admit low-rank representations. In principle, this covers most of the needs in
statistical problems, where the solution defines a probability distribution, and
the invariants are means of some functions w.r.t. this distribution. However, it is
unclear whether general nonlinear invariants can be preserved in a tensor product
representation. Some abelian and non-abelian symmetries in quantum physics
can be preserved by further splitting of TT blocks into invariant sectors [40].

References
[1] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model

reduction methods for large-scale systems. Contemporary mathematics,
280:193–220, 2001.

[2] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based
model reduction methods for parametric dynamical systems. SIAM Review,
57(4):483–531, 2015.

[3] H.-J. Bungatrz and M. Griebel. Sparse grids. Acta Numerica, 13(1):147–269,
2004.

[4] G. D. Byrne and A. C. Hindmarsh. A polyalgorithm for the numerical
solution of ordinary differential equations. ACM Trans. Math. Softw.,
1(1):71–96, 1975.

[5] V. de Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best low-
rank approximation problem. SIAM J. Matrix Anal. Appl., 30(3):1084–1127,
2008.

[6] S. Dolgov and B. Khoromskij. Two-level QTT-Tucker format for optimized
tensor calculus. SIAM J. on Matrix An. Appl., 34(2):593–623, 2013.

[7] S. Dolgov and B. Khoromskij. Simultaneous state-time approximation of
the chemical master equation using tensor product formats. Numer. Linear
Algebra Appl., 22(2):197–219, 2015.

[8] S. V. Dolgov, B. N. Khoromskij, and I. V. Oseledets. Fast solution of
multi-dimensional parabolic problems in the tensor train/quantized tensor
train–format with initial application to the Fokker-Planck equation. SIAM
J. Sci. Comput., 34(6):A3016–A3038, 2012.

[9] S. V. Dolgov and D. V. Savostyanov. Alternating minimal energy methods

REFERENCES 23

for linear systems in higher dimensions. SIAM J. Sci. Comput., 36(5):A2248–
A2271, 2014.

[10] M. Fannes, B. Nachtergaele, and R.F. Werner. Finitely correlated states on
quantum spin chains. Comm. Math. Phys., 144(3):443–490, 1992.

[11] D.T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J Comput. Phys., 22(4):403–
434, 1976.

[12] I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl, and I.H. Sloan. Quasi-Monte
Carlo methods for elliptic PDEs with random coefficients and applications.
J. Comput. Phys., 230(10):3668–3694, 2011.

[13] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM
J. Matrix Anal. Appl., 31(4):2029–2054, 2010.

[14] A. Gupta and M. Khammash. Determining the long-term behavior of cell
populations: a new procedure for detecting ergodicity in large stochastic
reaction networks. IFAC Proceedings Volumes, 47(3):1711 – 1716, 2014.

[15] W. Hackbusch. Tensor Spaces And Numerical Tensor Calculus. Springer–
Verlag, Berlin, 2012.

[16] G. Hall and J.M. Watt. Modern numerical methods for ordinary differential
equations. Clarendon Press, 1976.

[17] M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth. A solver
for the stochastic master equation applied to gene regulatory networks.
Journal of Computational and Applied Mathematics, 205(2):708 – 724, 2007.

[18] F. L. Hitchcock. Multiple invariants and generalized rank of a p-way matrix
or tensor. J. Math. Phys, 7(1):39–79, 1927.

[19] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme
for tensor optimization in the tensor train format. SIAM J. Sci. Comput.,
34(2):A683–A713, 2012.

[20] T. Jahnke. On reduced models for the chemical master equation. Multiscale
Modeling and Simulation, 9(4):1646–1676, 2011.

[21] T. Jahnke and W. Huisinga. A dynamical low-rank approach to the chemical
master equation. Bulletin of Mathematical Biology, 70:2283–2302, 2008.

[22] E. Jeckelmann. Dynamical density–matrix renormalization–group method.
Phys. Rev. B, 66:045114, 2002.

[23] V. Kazeev, B. Khoromskij, and E. Tyrtyshnikov. Multilevel Toeplitz matrices
generated by tensor-structured vectors and convolution with logarithmic
complexity. SIAM J. Sci. Comput., 35(3):A1511–A1536, 2013.

[24] V. Kazeev, O Reichmann, and Ch. Schwab. hp-DG-QTT solution of high-
dimensional degenerate diffusion equations. Tech. Report 2012-11, ETH
SAM, Zürich, 2012.

[25] G. Kerschen, J. Golinval, A. Vakakis, and L. Bergman. The method of proper

24 REFERENCES

orthogonal decomposition for dynamical characterization and order reduction
of mechanical systems: An overview. Nonlinear Dynamics, 41(1):147–169,
2005.

[26] B. N. Khoromskij. 𝒪(𝑑 log 𝑛)–Quantics approximation of 𝑁–𝑑 tensors in
high-dimensional numerical modeling. Constr. Approx., 34(2):257–280, 2011.

[27] B. N. Khoromskij. Tensor numerical methods for multidimensional PDEs:
theoretical analysis and initial applications. ESAIM: Proc., 48:1–28, 2015.

[28] O. Koch and Ch. Lubich. Dynamical tensor approximation. SIAM J. Matrix
Anal. Appl., 31(5):2360–2375, 2010.

[29] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Rev., 51(3):455–500, 2009.

[30] Ch. Lubich, I. Oseledets, and B. Vandereycken. Time integration of tensor
trains. SIAM J. Numer. Anal., 53(2):917–941, 2015.

[31] J. L. Lumley. The structure of inhomogeneous turbulent flows. Atmospheric
turbulence and radio wave propagation, pages 166–178, 1967.

[32] C. Moler and C. Van Loan. Nineteen dubious ways to compute the ex-
ponential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49,
2003.

[33] B. Munsky and M. Khammash. The finite state projection algorithm for the
solution of the chemical master equation. The Journal of chemical physics,
124:044104, 2006.

[34] H. Niederreiter. Quasi–Monte Carlo methods and pseudo–random numbers.
Bull. AMS, 84(6):957–1041, 1978.

[35] A. Nouy. A priori model reduction through proper generalized decomposition
for solving time-dependent partial differential equations. Computer Methods
in Applied Mechanics and Engineering, 199(23):1603–1626, 2010.

[36] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput.,
33(5):2295–2317, 2011.

[37] I. V. Oseledets and S. V. Dolgov. Solution of linear systems and matrix
inversion in the TT-format. SIAM J. Sci. Comput., 34(5):A2718–A2739,
2012.

[38] T. Rohwedder and A. Uschmajew. On local convergence of alternating
schemes for optimization of convex problems in the tensor train format.
SIAM J. Num. Anal., 51(2):1134–1162, 2013.

[39] D. V. Savostyanov, S. V. Dolgov, J. M. Werner, and I. Kuprov. Exact NMR
simulation of protein-size spin systems using tensor train formalism. Phys.
Rev. B, 90:085139, 2014.

[40] U. Schollwöck. The density-matrix renormalization group in the age of
matrix product states. Annals of Physics, 326(1):96–192, 2011.

[41] D. Schötzau. hp-DGFEM for parabolic evolution problems. Applications to

REFERENCES 25

diffusion and viscous incompressible fluid flow. PhD thesis, ETH, Zürich,
1999.

[42] L. Sirovich. Turbulence and the dynamics of coherent structures. Quarterly
of applied mathematics, 45:561–571, 1987.

[43] S. A. Smolyak. Quadrature and interpolation formulas for tensor products
of certain class of functions. Dokl. Akad. Nauk SSSR, 148(5):1042–1053,
1963. Transl.: Soviet Math. Dokl. 4:240-243, 1963.

[44] E. Tadmor. The exponential accuracy of Fourier and Chebychev differencing
methods. SIAM J. Numer. Anal., 23:1–23, 1986.

[45] L. N. Trefethen. Spectral methods in MATLAB. SIAM, Philadelphia, 2000.
[46] G. Vidal. Efficient simulation of one-dimensional quantum many-body

systems. Phys. Rev. Lett., 93:040502, 2004.
[47] T. von Petersdorff and Ch. Schwab. Numerical solution of parabolic equa-

tions in high dimensions. ESAIM: Mathematical Modelling and Numerical
Analysis, 38(01):93–127, 2004.

[48] S. R. White. Density-matrix algorithms for quantum renormalization groups.
Phys. Rev. B, 48(14):10345–10356, 1993.

[49] S. R. White and A. E. Feiguin. Real-time evolution using the density matrix
renormalization group. Phys. Rev. Lett., 93:076401, 2004.

	A tensor decomposition algorithm for large ODEs with conservation laws
	1 Introduction
	2 Ordinary differential equations
	2.1 Conservation laws and Galerkin reduction
	2.2 Linear discretization in time

	3 Tensor product representations and methods
	3.1 Vectors and tensors
	3.2 Tensor Train decomposition
	3.3 Computing TT decompositions by alternating iteration
	3.4 tAMEn: extended time integrator

	4 Numerical experiments
	4.1 Convection
	4.2 Chemical master equation

	5 Conclusion

