
        

University of Bath

PHD

On the Multivariate Analysis of Animal Networks

Mlynski, David

Award date:
2016

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Jan. 2021

https://researchportal.bath.ac.uk/en/studentthesis/on-the-multivariate-analysis-of-animal-networks(ef987c4f-7ce6-4ce3-b265-e8c501d0d8bb).html


1 
 

 

On the Multivariate Analysis of Animal Networks 

 

David Thomas Mlynski 

 

A thesis submitted for the degree of Doctor of Philosophy 

University of Bath 

Department of Biology and Biochemistry 

September 2015 

 

 

COPYRIGHT 

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of 

this thesis has been supplied on condition that anyone who consults it is understood to 

recognise that its copyright rests with the author and that they must not copy it or use 

material from it except as permitted by law or with the consent of the author. 

 

Candidates wishing to include copyright material belonging to others in their theses are 

advised to check with the copyright owner that they will give consent to the inclusion of 

any of their material in the thesis. If the material is to be copied other than by 

photocopying or facsimile, then the request should be put to the publisher or the author 

in accordance with the copyright declaration in the volume concerned. If, however, a 

facsimile or photocopy will be included, then it is appropriate to write to the publisher 

alone for consent. 

 

This thesis may be made available for consultation within the University Library and 

may be photocopied or lent to other libraries for the purposes of consultation. 

 



2 
 

Table of Contents 
 

List of Abbreviations ...................................................................................................................... 4 

Declarations ................................................................................................................................... 5 

Acknowledgements ....................................................................................................................... 6 

Abstract ......................................................................................................................................... 7 

I. Introduction ........................................................................................................................... 8 

1. Introduction ........................................................................................................................... 8 

1.1 Thesis Overview ............................................................................................................. 8 

1.2 The Importance of Studying Networks .............................................................................. 10 

1.3 Networks in Evolution, Ecology and Behaviour ................................................................. 12 

2. Network Theory ....................................................................................................................... 17 

2.1 Fundamentals .................................................................................................................... 17 

2.2 Network measures ............................................................................................................ 21 

2.2.1 Node-level network metrics ....................................................................................... 22 

2.2.2 Intermediate level metrics ......................................................................................... 22 

2.2.3 Global network metrics .............................................................................................. 23 

2.3 Dependence ....................................................................................................................... 24 

2.3.1 Modelling attribute data ............................................................................................ 25 

2.3.2 Modelling relational data ........................................................................................... 31 

2.4 A Brief History of Network Science ................................................................................... 35 

2.5 Lost in Translation ............................................................................................................. 42 

2.5.1 Borrowed Metrics ....................................................................................................... 42 

2.5.2 Borrowed Models ....................................................................................................... 43 

2.5.3 Summary ..................................................................................................................... 45 

3. Typical approaches to analyse a network ............................................................................... 46 

3.1 Preface ............................................................................................................................... 46 

3.2 Network studies in Physics ................................................................................................ 46 

3.3 Network studies in Social Sciences .................................................................................... 47 

3.4 Network studies in in Behavioural Biology ........................................................................ 53 

3.5 Multivariate analyses in Behavioural Biology .................................................................... 59 

3.5.1 Improving animal network data ................................................................................. 60 

3.5.2 Modifying explanatory variables ................................................................................ 61 

3.5.3 CRAN R ........................................................................................................................ 62 

3.5.4 Adapting the MRQAP .................................................................................................. 64 



3 
 

II. Multivariate analysis of a report-based network ............................................................... 65 

4. Avian hybridisation networks ................................................................................................. 65 

4.1 Abstract ............................................................................................................................. 65 

4.2 Introduction ...................................................................................................................... 65 

4.2.1 Hypotheses................................................................................................................. 76 

4.3 Methods ............................................................................................................................ 79 

4.4 Results ............................................................................................................................... 89 

4.5 Discussion .......................................................................................................................... 98 

III. Multivariate analysis of remotely sensed network data .............................................. 105 

5. Inter-nest drifting in Paper wasps Polistes canadensis ......................................................... 105 

5.1 Abstract ........................................................................................................................... 105 

5.2 Introduction .................................................................................................................... 105 

5.3 Methods .......................................................................................................................... 110 

5.4  Results ............................................................................................................................ 124 

5.5 Discussion ........................................................................................................................ 129 

6.  Variable performance of radio proximity loggers: implications for multivariate analyses. 135 

6.1 Abstract ........................................................................................................................... 135 

6.2 Introduction .................................................................................................................... 135 

6.3 Static Correction ............................................................................................................. 143 

6.3.1 Methods ................................................................................................................... 143 

6.3.2 Results ...................................................................................................................... 148 

6.4 Temporal Correction ....................................................................................................... 153 

6.4.1 Methods ................................................................................................................... 154 

6.4.2 Results ...................................................................................................................... 165 

6.5  Discussion ........................................................................................................................... 169 

IV. General discussion and conclusions .................................................................................... 170 

7. General discussion and conclusions...................................................................................... 170 

7.1 Preface ............................................................................................................................ 170 

7.2 The consequences of ignoring data-quality issues ......................................................... 173 

7.3 Adapting the MRQAP: issues and future directions ....................................................... 178 

7.4 A note on Exponential random graph models (ERGMs) ................................................. 182 

7.5 Future Directions ............................................................................................................ 184 

Bibliography .............................................................................................................................. 187 

 



4 
 

List of Abbreviations 
 

Abbreviation Description 
DO Direct observation 
DSP Double-semi partialling (a form of 

residual-based permutation based on 
explanatory variables) 

ERGM Exponential random graph model (p* 
model) 

FLSP Freedman-Lane semi-partialling (a form 
of residual-based permutation based on 
the response variable) 

GoG Gambit of the Group (assumption that 
repeat co-occurrence in a social group 
represents social affiliation) 

GPS Global positioning system 
LED Light emitting Diode 
MEV Median edge value 
MLR Multiple linear regression 
NMBHT Null model based hypothesis testing 
OLS Ordinary Least Squares 
RA Reciprocal agreement (when two 

proximity loggers concurrently register 
one another) 

RFID Radio frequency identification 
RS Remote sensing 
PIT Passive integrative transponder 
QAP Quadratic assignment procedure (node-

label permutation) 
TLCA Time since last common ancestor (in a 

phylogeny) 
 

 

 

 

  







7 
 

Abstract 
 

From the individual to species level, it is common for animals to have connections with 

one another. These connections can exist in a variety of forms; from the social 

relationships within an animal society, to hybridisation between species. The structure of 

these connections in animal systems can be depicted using networks, often revealing non-

trivial structure which can be biologically informative.  

 

Understanding the factors which drive the structure of animal networks can help us 

understand the costs and benefits of forming and maintaining relationships. Multivariate 

modelling provides a means to evaluate the relative contributions of a set of explanatory 

factors to a response variable. However, conventional modelling approaches use 

statistical tests which are unsuitable for the dependencies inherent in network and 

relational data. A solution to this problem is to use specialised models developed in the 

social sciences, which have a long history in modelling human social networks. 

 

Taking predictive multivariate models from the social sciences and applying them to 

animal networks is attractive given that current analytical approaches are predominantly 

descriptive. However, these models were developed for human social networks, where 

participants can self-identify relationships. In contrast, relationships between animals 

have to be inferred through observations of associations or interactions, which can 

introduce sampling bias and uncertainty to the data. Without appropriate care, these issues 

could lead us to make incorrect or overconfident conclusions about our data. 

 

In this thesis, we use an established network model, the multiple regression quadratic 

assignment procedure (MRQAP), and propose approaches to facilitate the application of 

this model in animal network studies. Through demonstrating these approaches on three 

animal systems, we make new biological findings and highlight the importance of 

considering data-sampling issues when analysing networks. Additionally, our approaches 

have wider applications to animal network studies where relationships are inferred 

through observing dyadic interactions. 
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I. Introduction 
 

1. Introduction 
 

1.1 Thesis Overview 
 

Networks are often used to model interconnected systems across a range of scientific 

disciplines. The broad interest in networks has been one of the reasons why the field of 

network science has progressed so rapidly. However, the types of networks studied and 

the questions asked of them vary considerably across different scientific disciplines; as 

such, care is required when new terminology, metrics or analytical techniques cross over 

disciplines (Croft et al. 2008; James et al. 2009; Krause et al. 2014). In biology, 

particularly whole-organism biology, we are often interested in explaining a network in 

terms of a number of explanatory variables; identifying the factors which shape network 

structure. Describing a network in terms of more than one explanatory variable principally 

requires statistical modelling. However, the dependencies inherent in network data 

prevent the use of many conventional statistical tests (Krackhardt 1988;  Snijders 2011). 

These tests assume that data-points are independent from each other; this is not true for 

networks or often the explanatory variables used to describe them (see: Snijders 2011). 

Biologists have thus looked to other fields that have had a head-start in the multivariate 

statistical analyses of network data. This thesis concerns ways in which approaches used 

to model networks may be taken from the social sciences and adapted for the study of 

animal networks. 

 

Numerous multivariate network modelling techniques have been developed in the social 

sciences (Goldenberg et al. 2010). Taking these predictive, multivariate models and 

applying them to animal networks is attractive (see Pinter-Wollman et al. 2014). In studies 

of animal networks, statistical approaches have often been descriptive as opposed to 

predictive and univariate as opposed to multivariate; this has been due, in part, to the 

difficulties in observing animal interactions and producing reliable networks (Croft et al. 

2008). In the social sciences, multivariate network models have been developed primarily 

for the study of human social networks, where the researcher has had more control over 

the sampling of the study system and has been able to determine the presence or absence 

of ties between individuals with a high degree of certainty. In contrast to humans, animals 
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cannot be surveyed to find out with whom they are socially affiliated or otherwise. Taking 

models developed for human networks and applying them to animal networks could place 

undue trust in unreliable data, given the difficulty in inferring social ties between animals 

(see Croft et al. 2008; Krause et al. 2014).  

 

This thesis proposes novel approaches to determine the factors which shape networks 

associated with animals. Three animal networks are studied to illustrate each approach: 

the first representing hybridisation between warbler species (family: Parulidae) (chapter 

4); the second depicting workers that drift between nests in populations of the paper-wasp 

Polistes canadensis (chapter 5) and the third representing associative relationships within 

a herd of dairy cattle Bos taurus (chapter 6). The first of these networks is not strictly a 

social network, as interactions take place between different species and consist of mating 

events; however, all of these networks present challenges to multivariate analysis which 

stem from observing wild animals. In the first network, the presence of edges (reported 

hybridisation between two species) is relatively reliable, but the absence of edges cannot 

be trusted. In the second, the network is more reliable, but currently available statistical 

procedures are too generic for the study system and consequently need modification. In 

the third system, the method used to generate the network also biases the strength of edges 

(association time between pairs of cows), which has to be controlled prior to modelling.  

 

The major focus of this thesis is to find means to apply the modelling techniques 

developed in the social sciences on animal networks, thus allowing multivariate analyses 

to be conducted on animal networks whilst addressing the issues in data-quality. After 

considering network fundamentals (chapter 2) and how network approaches are typically 

conducted (chapter 3), this thesis focuses on three animal network case studies (chapters 

4-6). In each of these case studies, a unique approach to facilitate the use of multivariate 

analytical models is demonstrated. The first of these approaches involves restricting the 

use of multivariate models to just the explanatory variables (chapter 4) and using these 

modified explanatory variables to perform more complex and powerful hypothesis testing 

(see Croft et al. 2011). Explanatory variables may be easier to quantify reliably in animal 

network studies than the interactions which form the response variable, the network itself. 

An example being that if we expected a social network to be structured such that 

similarly-sized individuals were more likely to be connected, measuring the sizes of 

individuals and then calculating the difference might be easier than identifying patterns 

of interactions between all individuals in the population. The second approach is based 
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networks, excelling in tasks such as speech and visual recognition which otherwise pose 

a challenge to conventional rule-based programming (Hagan et al. 1996). National 

security services can be concerned with how organised crime syndicates and terrorist cells 

operate, network theory has contributed to their understanding of these systems ( Krebs 

2002; Qin et al. 2005; Xu & Chen 2005; Natarajan 2006; Ressler 2006). In domestic 

security, networks can enrich our understanding of phenomena such as riots and social 

epidemics- such as the spread of extremist ideologies ( Kennedy et al. 1997; Patten & 

Arboleda-Flórez 2004; Amblard & Deffuant 2004; Franks et al. 2008; Martins 2008; 

Radil et al. 2010). The study and refinement of logistic networks has made the transport 

of goods more efficient and less damaging to the environment (Bell & Iida 1997; 

Richardson 2005). In the field of engineering, inspirations from biological networks have 

been applied to the design of sensor networks (Dressler et al. 2005; Barbarossa & Scutari 

2007), communication  networks (Dressler 2005; Carreras et al. 2007) and swarm 

intelligence (Webb 2002). However, that is not to say everything about networks is known 

or that we are getting the most benefit from what we do know. A lack of predictive 

multivariate models suitable for use on animal networks has impeded our ability to both 

effectively analyse many networks occurring in nature and apply what we learn for the 

purposes of improving conservation and agricultural practises. 

 

1.3 Networks in Evolution, Ecology and Behaviour 
 

The networks studied in this thesis are biological, with nodes consisting of either whole 

organisms or species; this section serves as an introduction into some of the ways 

networks have been used to study biological systems. In particular, this section highlights 

how the structure of interconnected biological systems can be important to their properties 

and function, and how these structures may have evolved. For a review of the role of 

networks in studying biological systems, the reader is pointed towards: Proulx et al. 

(2005) for a biochemistry and ecology-based perspective, and Krause et al. (2009) for 

perspective from behavioural biology. 

 

The theory of evolution has been highlighted as the main unifying concept in Biology 

(Smocovitis 1996). The currency of evolutionary biology is fitness, the amount of genes 

an organism passes down to successive generations; this can be directly, through having 

offspring, or indirectly through increasing the reproductive success of closely related kin, 

which share some of the same genes, as outlined in inclusive fitness theory (Hamilton 
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1964; Bijma & Wade 2008). Typically, heritable traits that confer a fitness advantage 

spread throughout populations, whereas those that confer a disadvantage are lost. If the 

structure of a biological system can vary, and is somewhat heritable, then it is a viable 

target for selection and evolution (Hall 2008). Biologists may seek to understand how 

evolutionary forces shape network structure and whether certain networks structures 

observed in nature are adaptive, conferring fitness advantages to all or most of their 

members (Proulx et al. 2005).  Biological networks can range from those governing sub-

cellular processes through to those happening at the level of the organism and beyond. 

Molecular biologists may be concerned with whether the structure of gene-regulatory, 

metabolic, or protein interaction networks may be robust to random faults that happen 

across the genome (von Dassow et al. 2000; Edwards & Palsson 2000; Jeong et al. 2001). 

Behavioural biologists may seek to understand how the underlying social network of 

group-living animals affects individual and collective behaviour (Krause et al. 2009). 

Ecologists may examine the interactions between collections of organisms, such as 

populations of species, to better understand ecosystem function and fragility- informing 

conservation action and furthering our understanding of biodiversity (Iida 1999; Solé & 

Montoya 2001).  

 

At the molecular-level, genes are the fundamental blueprints of living organisms, 

regulating and encoding the production of different proteins. However, genes are 

continually subject to mutations, many of which get enzymatically repaired, whilst some 

of which persist (Alberts et al. 2002). Mutations are occasionally beneficial, conferring a 

fitness advantage, but most often deleterious (Peck 1994). Mutations of genes affect the 

production of proteins, which can guide metabolism through acting as catalysts of 

different biological reactions (Alberts et al. 2002). Although mutation rates vary across 

different parts of the genome (Wolfe et al. 1989) - they are broadly assumed to occur at 

random with respect to individual genes. Therefore, gene, protein and metabolic networks 

would theoretically benefit from having a structure robust to the random loss of their 

nodes (the individual genes, proteins, or metabolic agents). Both gene-regulatory and 

protein-protein interaction networks have been characterised (Uetz et al. 2000; Jeong et 

al. 2001; Abouheif & Wray 2002; Mittler et al. 2004), showing links between network 

structure and evolution at the molecular level. In protein interaction networks, Jeong et 

al. (2001) showed that the most highly connected proteins were three times more likely 

to be essential for survival than were weakly connected proteins. Subsequent studies 

found that these proteins were also more pleiotropic (Promislow 2004), evolved more 
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(see Wasserman and Faust 1999); this gives a network wide perspective on how often the 

connections of individual nodes are also connections of each other. 

 

In both chapters 4 and 5 we look for assortativity in networks based not on structural 

metrics such as degree, but external explanatory factors such as the physical distance 

between nodes (a particular type of assortativity called propinquity) or the similarity of 

nodes for a given trait (a particular type of assortativity called homophily) (see 

McPherson & Smith-Lovin 1987). Given that there are expected resource costs to edges 

existing, be it time spent maintaining a social relationship, and/or lost reproductive 

output, knowing which factors promote nodes to be connected can inform us as to the 

potential fitness payoffs of having or not having connections (see Krause & Ruxton 

(2002) for review of costs and benefits associated with group living). Given that many 

network features are known to depend on edge-density (see Croft et al. 2008), it is 

something that we preserve when testing certain features of our observed networks in 

chapter 4 and 6 (see chapter 3.5).  

 

2.3 Dependence  
 

Recall that one of the main themes of this thesis is to explain network structure in terms 

of a number of explanatory variables. One way in which this can be achieved is through 

statistical modelling, which allows the effect of each explanatory variable to be evaluated 

in light of other explanatory variables thought to influence the presence and strength of 

ties in the network. Modelling relational data, such as networks, requires a different set 

of statistical approaches to those commonly used for attribute data; due to the various 

sources of dependence in networks (see Snijders 2011 for a review). In this section, we 

are introduced to one widely-used multivariate modelling approach; the multiple linear 

regression (MLR). When an MLR is used with attribute data, the significance of each 

explanatory variable and the model as a whole are often evaluated using tests which have 

distributional assumptions (such as the t and F-test) (see Sokal & Rohlf 1987). In the first 

part of this section, the MLR is briefly introduced using a hypothetical example based on 

attribute data. Some of the assumptions that underpin both the fitting and the testing stage 

of the model are highlighted- including those based on independence. One set of 

independence assumptions are nearly always violated in relational data, which make 

conventional significance tests invalid. The second half of this section covers the causes 



https://en.wikipedia.org/wiki/Expected_value
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to fitting. Analyses by Osborne (2001) showed that removing these outliers reduces the 

probability of type 1 and type 2 errors in significance testing and improves accuracy of 

estimates.  

 

One of the assumptions of significance tests, such as the F-test and t-test, is that the 

distributions of errors in the model to be normal, and as such may be sensitive to 

departures from normality. Given that the effects on significance testing depend on both 

the test being considered and the way the errors in the model depart from normality, the 

reader is directed to Box & Watson (1962) for review on how robust regression tests are 

to this assumption. 

 

Homoscedasticity 

 

One assumption of an MLR which mainly pertains to significance testing is that the error 

distribution from the model is assumed to be homoscedastic. Homoscedasticity refers to 

the variance in the error from an MLR being constant across all values of the independent 

variable. Berry and Feldman (1985) state that slight departures from homoscedasticity 

(known as heteroscedasticity) have little effect on significance testing, but marked 

heteroscedasticity can lead to an increase in the possibility of type 1 error. One way in 

which heteroscedasticity is identified is through looking at the distribution of residuals 

(error) on the Y-axis for all predicted values of the response variable (shown on the X-

axis), if there is an even scatter around the line Y=0 then there is no heteroscedasticity. 

Tests for certain patterns of heteroscedasticity also exist, such as the  Goldfeld-Quandt 

test (Goldfeld & Quandt 1965) (when variance is proportional to the response variable) 

and the Glejser test (Glejser 1969) (when variance is greatest at the extremes of the 

observations). One solution to heteroscedastic error distributions in an MLR is through 

the use of mixed effects models, which contain terms which can control for unobserved 

causes of heterogeneity in the error distribution, i.e. by allowing the variance of error to 

be different at different sampling sites, or for the variability in error to be the response of 

an independent variable (see Zuur et al. 2009). Other solutions involve using tests which 

do not require distributional assumptions (introduced in section 2.3.2).  

 

Heteroscedasticity is not a violation of the assumption of OLS per se (estimators will still 

be unbiased), but it does violate the assumptions of significance tests in potentially three 

ways, firstly modelling error is not homoscedastic (by definition), secondly, there will 
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with a high number of closed triangles present will also be highly clustered. The term 

transitive triangle refers to a motif in a directed network where the exact pattern of ties is 

a to b, b to c, then a to c. A transitive triangle is different from a three-cycle where a is 

linked to b, b to c, then c to a (like the above reciprocal feeding example). In a transitive 

triangle, there is a clear dominant node, in our example a, the same cannot be said in a 

three-cycle. Hierarchies are another form of dependency in some directed networks 

exhibited by a high number of transitive triangles and few three-cycles. In our fish feeding 

example, feeding can be directed from low degree individuals to high degree individuals. 

In animal networks hierarchies can present themselves when an alpha male or female 

tends to dominate over a beta male or females and both tend to dominate over omega 

male and females (see Drews 1993); this kind of social structure is common, for example, 

in primates (e.g. Sade et al. 1988; Sapolsky 2005). 

 

The presence of hierarchies in networks leads onto another structural form of network 

dependence known as degree differentials (Snijders 2011). If we return to our trophylaxis 

example, every time a fish gets fed it may firstly gain a little more energy, perhaps 

increasing its ability to solicit more food. The fish may now attract even more food from 

low-degree individuals in what is sometimes known as the rich-gets-richer phenomenon 

(de Solla Price 1976). Conversely, a fish may get known as a feeder and attract more and 

more hungry fish. Assortativity of the basis of degree is a form of homophily when 

positive, i.e. high degree nodes being linked to high degree nodes, but it can also be 

negative (Newman 2002a). Social networks generally have positive assortativity (see 

Rombach et al. 2014), while biological and technological networks are generally 

dissortative (i.e., negative assortativity) (Stanton & Pinar 2011). Both forms of 

assortativity of the basis of degree mean that the connections in a network are not 

independent of one another. 

 

The presence of all types of structural and nuisance dependencies in real-world networks 

and their corresponding relational data mean that a common assumption of statistical 

tests, that data are independent and identically distributed iid, does not hold (see section 

1.4 of Clauset 2011 for a description of iid). Indeed, using models which rely on 

distributional assumptions for inference on relational data with a moderate amount of 

correlation amongst column and rows (a structural autocorrelation) biases significance 

testing to such an extent that it is not uncommon for type I errors of t -statistics to exceed 

50% (Krackhardt, 1988). Network models may take one of two main approaches to deal 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798974/#CR19
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3. Typical approaches to analyse a network 
 

3.1 Preface 
 

This chapter introduces some of the typical questions asked of networks across different 

disciplines and some of the broad methodologies used to answer them. The unique 

challenges faced in the study of animal networks are highlighted, along with some of the 

current approaches used to overcome them. The beginning of this chapter is roughly 

partitioned on the basis of discipline, although it should be noted that many network 

studies are interdisciplinary in nature. The weighting assigned to each discipline in this 

section increases as we go on; this is not a reflection of the relevant contributions of each 

discipline. The weighting instead reflects the goals of this thesis, to incorporate network 

modelling approaches from the social sciences into the study of animal networks. At the 

end of this chapter, we introduce the three approaches we will use in this thesis to facilitate 

the multivariate statistical analysis of animal network data and some of the relevant 

computational tools used in these approaches. 

 

3.2 Network studies in Physics 
 

The network studies conducted by physicists are often based on empirical studies of large 

real-world networks, such as the internet. The large size of these networks allows the use 

of approximations developed in the field of statistical mechanics (Hill 1963; Croft et al. 

2008; Newman 2008). In contrast to animal networks, the networks studied by physicists 

often contain little uncertainty; their edges being inferred from electronic (e.g. Faloutsos 

et al. 1999), physical (e.g. Crucitti et al. 2004) or chemical signatures (e.g. Uetz et al. 

2000). Physicists are often interested in the broader scale properties of a network, its 

shape and its statistical properties (Newman 2008). The focus on network properties and 

behaviour differs from the interests of social scientists, whom may be concerned with 

how the position of individuals in a network might affect their behaviour and the factors 

which determine the structure of social networks. A review into the interests and 

developments in studying networks by physicists is provided in Newman (2008). 

 

Physicists, computer scientists and mathematicians all have their own ways of 

constructing models which can help us to understand the important structural properties 

of an empirical network.  These models can help us understand the interplay between a 
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ERGM will predict networks structurally similar to the observed network using few 

parameters. 

 

The MRQAP and ERGM each has its strengths and weakness, both models were 

developed with high quality data in mind. Although both of these models are multivariate 

and have been described as predictive, it is worth noting that cause and correlation can be 

very hard to determine without experimental manipulation of the system (as highlighted 

in: Croft et al. 2008; Pinter-Wollman et al. 2014; Farine and Whitehead 2015). In our 

example, Y could very well be the factor that causes X2 and X3. Individuals that send more 

emails may very well end up in higher paid jobs and engage in more collaborations than 

those that shun their inbox. 

  

3.4 Network studies in in Behavioural Biology 
 

Behavioural biologists may be motivated to study many of the same phenomena in animal 

social networks as social scientists study in human social networks. However, 

the study of animal social networks requires fundamentally different methodologies than 

the study of human social networks. Animal networks, like human social networks, are 

often small and neither completely random nor completely regular. An initial interest of 

a behavioural biologist might be to investigate how the societies of group- living animals 

are organised. However, there are challenges unique to studying animals as opposed to 

humans or physical systems- many of which are covered in Croft et al. (2008). The first 

hurdle that may present itself is how individuals are identified, animals do not come with 

an Internet Protocol (IP) address like most computers, nor do they have faces which we 

have evolved to recognise. As such a mechanism is needed to identify individuals, or even 

groups of individuals. In many studies individuals have been identified through their 

markings. To use an example from Croft et al. (2008), it will be easier for species such as 

giraffes than it will be for ants, however, ants can be painted with nail varnish to make 

unique markings and contained in a laboratory setting- giraffes cannot. There is always 

an underlying risk that individuals may be misidentified in the wild when marking-based 

identification is used. An alternative is using tags to identify individuals; however, even 

this type of approach can lead to missing or misplaced data. Tags are designed to be 

unobtrusive to the animal, but practical to the researcher, this trade off means that 

sometimes an individual may be orientated so that its tag cannot be seen, the tag may get 

dirty, or fall off entirely (as experienced in chapter 6). 
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stream, an actor-by-actor matrix (the social network) would be constructed using the same 

procedure as the observed dataset. Employing the GoG assumption and using an index 

which takes into account how many times a pair of animals were observed in the same 

group relative to how much they were observed in any group (see Cairns & Schwager 

1987). 

 

A data-stream permutation null model ensures that the influence of the sampling protocol 

on the observed network is preserved in every null network and corresponding null value 

of wk (Bejder et al. 1998; Croft et al. 2011). We can expand this null model further to test 

more complex hypotheses. If we suspected that the observed wk is actually just the 

product of the tendency for ties to form between individuals in the same kinship group 

with no extra preference beyond, we may add a constraint to the null model which 

requires the kinship group structure to be represented in every null network, i.e. that 

individuals can only be swapped between groups into the positions occupied by another 

member of the same kinship group. This constraint may shift the reference distribution of 

wk towards the observed value, increasing the chance that the observed wk could occur 

under this new null hypothesis. Using NMBHT to control for one factor on top of more 

fundamental constraints (like the sampling protocol) is possible. However, NMBHT 

becomes increasingly computationally complex to perform as the number of factors we 

wish to control for gets large, resulting in its limited multivariate capacity (similar to 

conditionally uniform graphs- see section 2.4). 

 

Thus far, we have considered an example where the network has been constructed from 

association data. Animal networks may also be constructed from interactions. Interactions 

are a strong form of evidence for a relationship given that they require a choice to be 

made by the animal (Croft et al. 2008). In the case where Y is an undirected network 

created through observations of affiliative interactions between individuals, the raw-data 

and observed network may be the same i.e. an edge with a weight of 5 would represent 5 

observed social interactions. In which case, a simple and commonly used null model in 

human and animal network studies is a node-label permutation (a QAP). If a QAP is used 

to examine the significance of wk; this type of test is a single variable Mantel test (1967). 

The test statistic wk is a z-score and the two matrices Y and X1 are distance matrices - each 

is symmetric about the lead diagonal. Mantel tests can also be stratified so that nodes may 

only be permuted between individuals in the same block (e.g. family group); this could 

be used to investigate whether the observed relationship between strength of tie and 
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(see Whitehead 1995 for a good example) not accounted for in models developed for 

human social networks. 

 

Data censoring is a central problem in animal network analysis. In the social sciences, 

datasets can be complete in the sense that the relevant individuals can be accurately 

determined, the presence or absence of all possible associations sampled-evenly and 

network boundaries identified  (see Hanneman and Riddle 2005). Animal networks are 

often incomplete in the sense that individuals, or relationships between individuals may 

be missed, especially in non-laboratory populations; certain network metrics and 

structural features can be very sensitive to the inclusion of missed data (James et al. 2009; 

Farine & Whitehead 2015). In contrast to human networks, animal network data can also 

contain biases relating to the sampling regime used and the attributes of nodes, such as 

variation in identifiability (one sex of a species may be more conspicuous) or personality 

of the individuals studied (whether they are neophyllic or neophobic for instance) (Croft 

et al. 2008). Therefore, applying these models as they stand without addressing sampling 

issues common in animal data is ill-advised, yet the power of these approaches is a 

dangling carrot which has become the motivation for this thesis (and perhaps the recent 

review by Farine and Whitehead (2015)). The remainder of this chapter considers some 

rudimentary steps which can be taken to better marry these models to animal network 

data. 

 

3.5.1 Improving animal network data  
 

Whitehead and James (2015) took a MRQAP type approach to generate network indices 

from remotely sensed data. The approach was to model the duration of association 

between animals in terms of a number of confounding factors, such as having similar 

patterns of use of habitat in time and space, gregariousness and differential association 

rates among age/sex classes. The confounding factors would form a model to predict the 

association time, the residuals between the actual association times and those predicted 

by the confounding variables was taken as a more direct measure of social preference.  

 

This example shows that the MRQAP can be employed to remove many biases in network 

data. For many types of network enquiry the researcher can be more certain he or she is 

examining a social network instead of one depicting concurrent non-social activity- such 

as feeding at the same location. However, using the residuals from one MRQAP type 
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Figure 4: Examples of natural avian hybrid networks: (A) Anseriformes, (B) Galliformes, 

(C) Parulidae breeding in North America, and (D) Paradisaeidae.  Each edge represents 

a hybrid specimen recorded in nature weighted by the quality of evidence for the cross as 

defined by McCarthy (2006). Each node represents a species: as defined by (A) Gonzalez 

et al. (2009), (B) Kimball et al. (2011), (C) Lovette et al. (2010), (D) Irestedt et al. (2009). 

For clarity, species not reported to hybridise were omitted: (A) 62, (b) 124, (C) 17 and 

(D) 18. The number of species in the largest connected component in each hybrid network 

totals: (A) 96, (B) 30, (C) 38 and (D) 16. 
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In figure 4, a large interconnected component is observed in each hybrid network. A 

component being a collection of nodes all linked to each other. This may be surprising 

when you consider that in these networks, only 0.4% to 3.1% of possible edges exist. We 

might therefore expect that there is some biological explanation behind the formation of 

these network components. However, the large components in each of these networks are 

no bigger than expected by chance, which suggests that the presence of hybrid networks 

may just be the product of the frequency of hybridisation. We can show this by randomly 

allocating hybridisation events between the same number of species for each of the four 

taxa and record how often random networks contain a component larger than observed to 

derive a p-value (see Manly 1997). The results show that there is nothing especially large 

about the large components in these hybrid networks (p=0.9998, p=0.9096, p=0.4438, 

p=0.3068 respectively). For very large collections of nodes, network theory states that a  

large component will form when, on average, each node has at least one edge attached to 

it (see Newman, 2003). In the context of hybridisation; this would translate to a large 

component emerging when there are many cases of hybridisation as there are defined 

species in taxon. In each of the hybrid networks shown in figure 4, we find that the number 

of hybrid reports per species in the group is: Anseriformes 1.317; Galliformes 0.415; 

Parulidae 0.855, and Paradisaeidae 0.590. In three of four cases, there are fewer reports 

per species than expected to form a large component using theory designed for large 

networks; this suggests that the threshold of one report per species may be overly 

conservative for small collections of species. 

 

Given that the presence of hybrid networks (with large components) are an expected 

product of frequent hybridisation we are left asking what, if anything, is biologically 

interesting about these structures? Closer visual examination of the networks reveals non-

trivial structural features that suggest hybridisation does not take place randomly between 

species. The Parulidae network is partitioned into two halves, one of which contains 

predominantly species in the genus Setophaga and the other Geothlypis. The network of 

Anseriformes is partitioned into at least three communities (see Girvan & Newman 2002) 

representing species belonging to the whistling ducks Dendrocygninae, dabbling ducks 

Anatinae and the swans and geese Anserinae. Guimera, Sales-Pardo, & Amaral (2004) 

showed that random networks can exhibit community structure. However, the community 
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structure in at least two of our networks appear to be on preferential hybridisation between 

species of the same genus or subfamily, in line with the notion that hybridisation happens 

between evolutionarily recent species (see Mallet 2005). Community structure of this sort 

provides an indication that network structure is being influenced by homophily (see 

section 2.3.2) on the basis of certain traits. 

 

Another starting point to investigate hybrid networks may be to look at the number of 

connections each species has. Degree is perhaps the most suitable node-based measure to 

consider in hybrid networks. A missed hybrid report may have far reaching consequences 

on measures based on the shortest paths through the network, such as betweenness, but 

would only alter the degree of the two species involved by one. The degree of species in 

the hybrid network indicates how prolifically they hybridise with other species. If degree 

cannot be explained by chance, we might expect that certain factors promote some species 

to be prolific hybridisers. Using the same edge randomisation procedure previously 

stated, we find that some species have higher degree (they hybridise with more species), 

than we would expect. In the Anseriformes, we would only expect to see a species 

hybridise with four or more others once in every five thousand random networks 

(equivalent of a p-value of 0.0002), but the mallard duck Anas platyrhynchos is reported 

to hybridise with over thirty in nature. In Parulidae, the observation of three species with 

six or more connections is only expected in two of a thousand random networks. Species 

with unexpectedly high degrees under random hybridisation also exist in both the 

Galliformes and Paradisaeidae. To date, no study has considered the factors associated 

with prolific hybridisers such as these. In the Anseriformes hybrid network, there is visible 

centralisation (see figure 4 A), where many nodes are connected to one central node 

(Freeman 1979)- the mallard duck in this case. Clearly, the null expectation we might 

have, that hybridisation occurs randomly in these networks, is unlikely to be true. It seems 

plausible that specific traits of species may affect how much they hybridise and traits 

shared between species may therefore affect the species that any given species hybridises 

with. 

 

Assortment is the term that refers to the preferential attachment of nodes on the basis of 

a certain trait (Newman 2003). The non-random structural features of the four hybrid 

networks support the notion that there are factors which affect, or are otherwise linked to 
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hybridisation between species in each network. Finding these factors is important as they 

will provide a family or order-level indication of the patterns of hybridisation early in the 

speciation process, and indicate how these may promote, or limit, the diversification of 

the taxon. Furthermore, these factors may be able to help inform conservation action 

through directing observation efforts to those species with compatible traits. In Parulidae 

for example, the observed northward shift in the distribution of North American birds (La 

Sorte and Thomson 2007) may push many new pairs of species into contact. Given that 

these species are evolutionarily young (Bermingham et al. 1992; Jetz et al. 2012; Willis 

et al. 2014) and that the population of warbler species are also likely to decline in the 

future (Strode, 2003), hybridisation may pose a real conservation threat in the near future. 

 

The migratory wood warblers (family: Parulidae) are a good candidate system to look 

for assortment in a hybrid network. Sixty-nine percent of species have been reported to 

hybridise (McCarthy, 2006) and both species and hybrids in this group are often well 

observed and characterised (e.g. Curson et al. 1994). A study by Willis et al. (2014) (see 

section 4.1) suggested that hybridisation in wood warblers tends to take place between 

species that are evolutionarily young, have large breeding range overlap and sing similar 

mating songs. Migratory wood warblers, which we define on the basis of species which 

breed on the North American continent, are known for undergoing large scale northward 

migrations from South America to breed; adopting diverse and often brightly coloured 

male breeding plumages (see Curson et al. 1994).  This migratory behaviour is thought to 

have developed in periods of intermittent glaciation in the Pleistocene era where rapid 

speciation may have occurred in the clade (Bermingham et al. 1992; Price et al. 1998). 

The annual spring-summer migrations predominantly take place up the more densely 

populated coastal regions of North America. Thus, the assumption can be made that the 

migratory wood warblers are well observed in their breeding season, which is attractive 

when the identification of hybrid offspring is required to confirm a cross. There are also 

comprehensive libraries of data on wood warblers with which to examine the patterns of 

hybridisation in the network, including distribution maps (Birdlife International 2013), 

song records (Borror and Gunn 1985), plumage illustrations (Curson, Quinn and Beadle 

1994) and importantly, a recent molecular phylogeny (Lovette et al. 2010). 
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4.2.1 Hypotheses 
 

Reproductive isolation, the barrier to interspecific hybridisation, is achieved through 

numerous mechanisms, some of which happen before fertilisation, known as pre-zygotic 

isolation, and some after, known as post-zygotic isolation (Mayr 1963). Pre-zygotic 

isolation mechanisms can take a number of forms. Ecological isolation mechanisms 

restrict the co-occurrence of two separate species either spatially or temporally. In 

migratory warblers (family: Parulidae) for instance, there is variation both in the use of 

space for breeding and variation in the times of breeding migrations. Behavioural 

isolation is another pre-zygotic isolation mechanism which maintains the integrity of 

species. In species with distinct male and female organisms, certain behaviours associated 

with finding and choosing a mate also serve as isolation mechanisms. Birdsong is a 

mating ritual linked to reproductive isolation (King et al. 1980; Brambilla et al. 2008) 

and, although not a behaviour directly, male-plumage may also be linked to species 

recognition and isolation (Sæther et al. 2007; Martin et al. 2015). 

 

Breeding range and habitat 

 

To hybridise, two species must first come into contact, achieved either through 

translocation or sympatry. Species with large breeding ranges may have a greater 

opportunity to hybridise with others through being in sympatry with more compatible 

species, or smaller translocations being required to encounter them. Species with larger 

breeding ranges may therefore have a larger degree than those with smaller breeding 

ranges through increased contact with each other. Those species which use the same 

breeding habitats may not only be more likely to come in contact with each, but may also 

be better adapted to build nests and raise offspring together in these habitats. Species that 

are generalists with respect to breeding habitat may be more prolific hybridisers than 

those that are specialists through having breeding habitat in common with a greater 

number of species.  

 

Pairs of species which are geographically proximate will have more opportunity to 

hybridise, but may also have developed stronger barriers to introgression than those more 

isolated. In a recently radiated taxon such as the new world warblers we might expect that 
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barriers may not be fully formed, as such there would be a tendency for species with large 

breeding range overlaps to hybridise and there to be resulting positive assortment with 

respect to this trait in the warbler hybrid network. In a similar sense, species which use 

the same habitat types to breed may also be more inclined to hybridise, if so, we would 

expect to see positive assortment in the hybrid network on the basis of this trait. 

 

Breeding song and plumage 

 

Morphological and behavioural factors associated with mate choice, can vary 

significantly between families and orders of species. In the family of the New-world 

warblers Parulidae, song and breeding plumage are important for intra-species mate 

choice (Weatherhead and Shutler 1990; Byers, 2007; Taff et al. 2012), whereas the same 

may not hold true in other taxa. In the order Galliformes, plumage and visual displays 

may be important with intra-mate choices (Madge et al. 2002; Kolm et al. 2007; Lislevand 

et al. 2009; Kimball et al. 2011). Mating rituals have been identified in a number of cases 

to be potent isolation mechanisms (King et al. 1980; Sæther et al. 2007; Brambilla et al. 

2008; Martin et al. 2015) . We might expect warbler species with similar breeding 

plumage and song to hybridise, with these sexually selected traits only functioning as 

sufficient isolation mechanisms when significantly different to each other. If so, there will 

be positive assortment in the hybrid network for both song and male plumage traits. Song 

and plumage characteristics have been shown to be important factors for mate recognition 

in many species of birds (Searcy 1992; Bennett et al. 1997; Ballentine & Hill 2003; Hill 

& Mcgraw 2004; Byers & Kroodsma 2009; Toomey & McGraw 2012) 

 

Sexual selection has been linked to hybridisation in other species, such as the Yellow 

Swordtails Xiphophorus clemenciae (Schumer et al. 2013). If sexual selection does 

promote hybridisation, we would expect to see more sexually selected species to have 

higher degrees. 
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Phylogeny 

 

When pre-zygotic isolation mechanisms are underdeveloped or otherwise break down. 

The newly formed zygote is now subject to a number of post-zygotic isolation 

mechanisms which reduce the chance of a hybrid lineage being produced. Firstly, the 

accumulation of genetic incompatibilities between the parent species may lead to the 

zygote becoming inviable; this is part of the Bateson-Dobzhansky-Muller Model of 

speciation (Orr 1996). Species with recent common ancestors may be more likely to 

produce hybrid offspring, not having had enough time to accrue genetic incompatibilities 

(Orr 1996). We may therefore expect the hybrid network to assort such that hybridising 

species are often recently diverged; this would support the findings of Mallet (2005) and 

Willis et al. (2014). Further, we might expect that species that sit in large clades of the 

phylogeny will have higher degrees, having many recently diverged species with which 

to hybridise. 
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4.3 Methods 
 

Data Collection 

 

To look for network assortment and explain the variation in the degree of hybridising 

warbler species, data were collected for five traits thought to be associated with 

hybridisation. These traits broadly fall into the categories of phylogenetic, morphological, 

behavioural and biogeographic and ecological factors.  In particular, data were collected 

on song similarity, distance in a phylogeny, plumage similarity, the extent of sympatry, 

the amount of shared breeding habitat, and the distance between the breeding ranges of 

pairs of species. A summary of this data can be observed in figure 5. Species attribute 

data were taken to explain the number of connections each species has; these data were: 

the size of the species breeding range, the size of the clade of the phylogeny the species 

belongs to, the difference in the male and female plumages of the species as a proxy for 

the amount of sexual selection, and the number of habitats used to breed as a measure of 

ecological specialism. 
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that a 0 would represent identical songs within the remit of the measured traits and 1 the 

most disparate pair of species in the dataset.  

 

Data analysis 

 

Hybridisation data are relational by nature, as each case involves two species. The non-

independence of relational data (see section 2.3) coupled with the perceived threat of 

unreported hybrids means that care has to be taken with the choice of statistical analyses.  

As advocated in Croft et al. (2011), we opt for null model based hypothesis testing 

(NMBHT) of our hybrid networks (see section 3.5). Recall that in NMBHT, a test-statistic 

is chosen to represent a feature of interest in the observed network. To determine the 

statistical significance of the statistic, it is compared to a reference distribution of the 

same measure generated by a null model. Statistical significance is derived through 

examining how often the observed measure of the trait occurs in the networks produced 

by the null model, as outlined in Manly (1997).   

 

To look for assortativity in the hybrid-network, a test statistic was chosen to represent the 

tendency for species to hybridise on the basis of a given trait; we will refer to this statistic 

as the median-edge value (MEV). To calculate the MEV for a given trait, a median is 

taken of all of the trait values attributed to the edges present in the network. A median 

was chosen as opposed to a mean as it makes fewer assumptions about the distribution of 

the data it describes. The MEV has the advantage of only looking at the edges which are 

present in the network rather than those which are absent, which is very important given 

the perceived likelihood of unreported hybrids. Given the focus of our analyses on species 

which have been reported to hybridise, we restricted our explanatory datasets to include 

just these 38 species. 

 

To first see if recently diverged species were more likely to hybridise in the hybrid 

network, the MEV for Time Since Last Common Ancestor (TLCA) was taken as a test 

statistic. To determine if this observed MEV for TLCA was lower than we would expect 

if hybridisation was uncorrelated with this trait, the species labels on the warbler 
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residuals and used in the analysis outlined above; no other traits were significantly 

correlated with TLCA. 

 

In the studies of interspecific hybridisation using reports, the absence of reports is 

essentially missing data, providing little information that a hybrid has not at some point 

occurred. Hybrid offspring can be rare, in many cases only one confirmed hybrid may 

indicate that two species can cross and produce offspring (see McCarthy 2006). Adopting 

this conservative standpoint means that using a hybrid network as a response variable for 

model-based approaches is unwise. In the hybrid network of the new world warblers 

Parulidae, as few as 3.2% of possible edges were reported, meaning the other 96.8% are 

potentially missing data. Some network models have been developed with the ability to 

cope for some level of missing data (e.g. Robins et al. 2004; Koskinen et al. 2010). 

However, modelling approaches simply cannot function when there is no variation in the 

response variable, there needs to be at least some edges with which we can be confident 

of their absence. Using MRQAPs to partial out some of the phylogenetic signal from 

explanatory variables allows more complex multivariate hypotheses to be tested on 

networks which are unsuitable for use as a response variable in conventional modelling 

approaches. The approach is multivariate in the sense that the effect of one variable is 

evaluated using NMBHT (outlined in Croft et al. 2011) whilst controlling for one or more 

others. However, there are no effect sizes unlike purely model-based approaches.  

 

An assumption of using MRQAPs to remove the phylogenetic signal in song and plumage 

is that the relationship between TLCA and the trait in question is constant across the 

whole phylogeny. It is possible that the relationship between plumage or song similarity 

and TLCA varies with different clades of the phylogeny. For example, most Geophlypis 

species have yellow colourations whereas species in Setophaga exhibit more diverse 

plumage colourations. We resolve this issue when testing the subsequent effect of a 

modified explanatory variable on the hybrid network. The null model used to test these 

modified variables conserves the amount of hybridisation occurring in and between 

different clades of the phylogeny, allowing a comprehensive control for phylogenetic 

effects on the traits being tested. An advantage of the approach is that factors which may 

otherwise have been controlled for via the development of elaborate null networks with 

many constraints have instead been accounted for through modelling on the explanatory 
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variables. This allows the null model to be tailored to constrain for other biological or 

structural features of the focal system. 

 

The null model developed to assess the significance of the MEVs of traits other than 

TLCA randomly allocated edges between species, but conserved the number of crosses 

between species that were: sympatric within the same genera, sympatric between different 

genera and allopatric within the same genera - there were no allopatric crosses involving 

species of two different genera.  For the purposes of this study we use the term sympatric 

to denote any pair of species with a breeding range overlap. The phylogenetic constraint 

was necessary to account for the assumption of using a MRQAP to control for TLCA, 

which would only control for phylogenetic effects driven by patristic distance which may 

vary within and between different clades in the phylogeny. The constraint also ensured 

that null networks did not under-sample within-genera crosses, which account for the 

significantly high (pperm<0.0002) proportion (65%) of edges in the observed network but 

only 35% of all pairs of migratory warbler species. The biogeographic constraint 

conserved the high proportion of sympatric pairs of species in the observed network (42 

pairs, 89%) which is significantly higher (pperm<0.0002) than expected if 47 pairs of 

species were chosen at random, as only 55% of pairs of migratory warblers are sympatric. 

 

At this point, it could be argued that the null networks produced to determine the 

significance of traits correlated with TLCA would control for phylogeny as they 

contained the same number of within and between-genus crosses as the observed network 

and because of this the use of the MRQAP is unnecessary. However, the null networks 

produced were not conditionally uniform with respect to the MEV for TLCA as this 

would be difficult to constrain explicitly whilst controlling simultaneously for sympatry. 

The production of networks with high or low MEVs for TLCA would increase the 

variance of the test statistic under the null and affect hypothesis testing. A null network 

with a very low MEV for TLCA will tend to have very low plumage disparity and vice 

versa.  

 

Conserving the amount of crosses within and between genera, and those which were 

sympatric and allopatric, represented the null expectation that closely related species 














































































































































































































































































