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Abstract 

Materials which are both lighter and stronger have faced an increased demand over the past 

decades to fulfil the requirements across a range of industrial applications. More 

specifically, demands for titanium alloys have increased significantly due to its high 

strength to weight ratio which is particularly attractive for increasing fuel efficiency in 

aircrafts and cars and is also used in biomedical implants.  

Despite the increasing demand for titanium made products, machining titanium alloys 

remains a significant challenge. High material strength and hardness lead to excessive heat 

generation at the cutting zone which accumulates and results in high cutting temperatures 

due to the poor thermal conductivity. The high cutting temperatures together with inherent 

material properties of titanium are responsible for short tool life and poor surface finish. 

Despite the environmental and health drawbacks, a generous amount of cutting fluids is 

commonly used to control the cutting temperature in machining titanium alloys. However, 

conventional cutting fluids evaporate at high cutting temperatures which isolate the cutting 

zone by forming a vapour cushion resulting in further increases in cutting temperatures. 

This research investigates the effects of cryogenic cooling on machinability of Ti-6Al-4V 

alloy in CNC milling as compared to conventional dry and wet machining environments. 

Two literature reviews were conducted and a methodology has been developed and 

implemented consisting of three experimental stages of i) design and manufacture of a 

cryogenic cooling system, ii) comparative study of cryogenic cooling with dry and wet 

machining and iii) optimisation of cutting parameters for cryogenic machining. 

The major contribution of this research can be summarised as design, realisation and 

assessment of a novel cryogenic cooling system for CNC milling, termed cryogenic 

shower, which is retrofitable to an existing CNC machining centre. In addition, the 

research provides a thorough study on the effects of cryogenic cooling on machinability of 

Ti-6Al-4V alloy in comparison with dry and wet machining. The studies range from power 

consumption and tool wear through to surface topography and surface integrity. 

Furthermore, the optimum cutting parameters for cryogenic machining are identified. 

The research demonstrates that using the cryogenic shower has significantly improved 

machinability of Ti-6Al-4V through realisation of higher material removal rates, reduced 

tool wear and improved surface finish, surface topography and surface integrity. 
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Material cutting is one of the dominant parts of shaping materials into the final product. 

Machining operations, such as milling, turning and drilling, present a major proportion of 

material cutting operations. In machining operations, a cutting tool is used to remove 

material from a workpiece in the form of cutting chips by plastic deformation. This process 

consists of mechanical and thermal forces being induced into both cutting tool and 

workpiece. Some of the advanced materials, such as titanium and nickel alloys, possess 

high cutting forces and temperature during machining operations which have resulted in 

them being generally termed difficult-to-machine materials, as opposed to easy-to-machine 

materials such as aluminium alloys and medium carbon steels. 

It is well recognised that using cutting fluids is one of the most common methods to 

regulate the cutting temperature by removing excessive heat generated during machining 

operations. In addition, cutting fluids can lubricate the cutting zone and reduce friction. As 

a result, lower mechanical stress will be induced on the cutting tool and the heat generated 

due to friction will be reduced. However, cutting fluids, also known as metal cutting fluids, 

are known to be dangerous substances for both the environment and human health. This 

has resulted in overgrowing concerns and generation of different government rules 

regulating the use, maintenance and disposal of cutting fluids. 

A report by HSE WATCH committee (2007) identified a priority to the health issues as a 

result of respiratory exposure to cutting fluids and raised concerns with regards to the 

heavy contamination of cutting fluids with bacteria, endotoxin and other allergens. It has 

been estimated that more than 50,000 shop floor workers in the UK and 1,200,000 workers 

in the USA are exposed to cutting fluids that are prone to occupational respiratory and skin 

disease (WATCH-Commitee, 2007, Mirer, 2010, Meza et al., 2013). 

Since using cutting fluids is generally considered to be a beneficial technique for 

improving machinability, there are, on the contrary, evidence to suggest it cannot be 

extended to machining advanced materials. There are reports (Astakhov, 2006) stating that 

at high cutting temperatures in machining advanced alloys such as titanium and nickel 

alloys, cutting fluids evaporate in contact with hot surfaces. The vaporised cutting fluid 

forms a hot vapour cushion around the hot surfaces and isolates the cutting zone. Thus, the 

generated heat accumulates at the cutting zone resulting in further increases in the cutting 

temperature (Astakhov, 2006). This generated heat is expected to be dissipated through the 

workpiece, cutting chips and cutting tool. However, some advanced materials such as 
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nickel, titanium and cobalt-chromium alloys possess relatively poor heat conductivity. 

Therefore, the generated heat cannot be dissipated effectively through the workpiece and 

cutting chips. High cutting temperatures weaken the cutting tool material and result in 

short tool life and poor surface finish. In addition, high temperatures facilitate chemical 

reaction between the tool material and workpiece resulting in diffusion, smearing, welding 

and galling (Hong et al., 2001). A report (Kara, 2009) estimated that more than 94,500,000 

cutting tools are used in the UK annually and since domestic production cannot meet the 

demand, there is a potentially large saving which could be made through improved tool 

life. 

Using liquefied gases (e.g. liquid nitrogen and carbon dioxide) as a coolant is a technique 

to control the cutting temperature. This technique is termed cryogenic machining and has 

attracted significant attention from researchers globally (Yildiz and Nalbant, 2008). In this 

method, a super cold liquid gas is used to freeze the workpiece material and/or cutting tool 

in order to modify their material properties and control the cutting temperature. There are a 

number of reports on the effects of cryogenic cooling on machinability of different 

materials (Yildiz and Nalbant, 2008). Since different materials react differently at low 

temperatures, different approaches are required for different materials and machining 

operations. 

Advanced materials, arguably, have always been one of the key factors for advances in 

technology. For instance, aerospace engines require materials which can withstand higher 

temperatures, are stronger and weigh less. Biomedical implants, on the other hand, need 

materials which are stiffer, more wear resistant and biocompatible. Such advanced 

materials are inherently more difficult to manufacturer due to their specific material 

properties.  

Titanium and its alloys is one of the most attractive materials across different industries 

due to its high strength to weight ratio. The demand for titanium has increased by an 87% 

from 2005 to 2010 (Seong et al., 2009) and is expected to grow by 4.6% per year through 

to 2018 (Roskill, 2013). Whilst aerospace industries account for almost 50% of the global 

consumption of titanium metal, the demand for titanium is increasing significantly across 

other industries such as medical, chemical processes, sporting goods, jewellery and 

architecture. In medical industries alone, it is believed that more than 1000 tonnes of 

titanium alloys are used for medical implants annually.  
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The Ti-6Al-4V titanium alloy is one of the most used titanium alloys. It has been reported 

that Ti-6Al-4V forms more than 50% of the titanium alloys used globally where more than 

80% of it is used in medical and aerospace industries (Boyer et al., 1994). Whilst the 

annual production of titanium has increased significantly in recent years (Roskill, 2013), 

the machining of titanium and particularly Ti-6Al-4V has remained the bottleneck in 

manufacturing of titanium products. Therefore, this research is focused on cryogenic CNC 

milling of Ti-6Al-4V alloy. 

The organisation of the chapters presented in this thesis is such that initially, two sets of 

literature review have been conducted. As shown in figure 1.1, these chapters form the 

second and third chapters of this thesis. The aim of the first review in chapter 2 is to 

identify different difficult-to-machine materials and the material properties which have 

made them difficult to cut. In addition, different cutting fluids and the problems associated 

with their usage in machining operations are reviewed. Based on this section, it has been 

found that using conventional coolants is neither economical nor environmentally friendly. 

Thus different techniques to eliminate or reduce the use of cutting fluids in machining have 

been also reviewed. 

The second review, presented in chapter 3 is an overview of different studies on using 

cryogenic cooling in material cutting operations. The use of cryogenic cooling in material 

cutting is divided into two main sections, namely cryogenic processing and cryogenic 

cooling. The effect of cryogenic processing on the material properties and tool life of 

different tool materials has also been reviewed as part of chapter 3. In addition, the 

techniques used by other researchers for cryogenic cooling during material cutting 

operations and their effect on the machinability of different tool-workpiece materials, has 

been studied thoroughly. Furthermore, the research gaps in cryogenic processing and 

machining have been identified based on workpiece materials and machining operations. 

This research gaps have been presented to the funding body of this research and end 

milling of Ti-6Al-4V titanium alloy using solid carbide tools has been selected as the 

major focus of this research. 

Based on the findings from the literature, scope of the research, aims and objectives have 

been identified and are presented in chapter 4. The methodology which has been used to 

achieve the aim and objectives of this research is detailed in chapter 5. In the experimental 

phase of this research, the procedure of designing, making and developing a cryogenic 
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