PHD

Ring-Opening Polymerisation of Lactide and Other Related Monomers

Manton, Lois

Award date:
2014

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Ring-Opening Polymerisation of Lactide and Other Related Monomers

Lois B. Manton

A thesis submitted for the degree of Doctor of Philosophy

Department of Chemistry
University of Bath
March 2014

COPYRIGHT
Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.

RESTRICTIONS
This thesis may not be consulted, photocopied or lent to other libraries without the permission of the author and Corbion Purac for three years from the date of acceptance of the thesis.
This thesis is dedicated to Mama and Pops
Contents

Acknowledgements vi
Abstract vii
Glossary of Abbreviations viii
Publications and Conferences x

Introduction

1 Introduction ... 2

1.1 Sustainable plastics ... 2

1.2 Polymerisation ... 6

1.2.1 Anionic Polymerisation ... 6

1.2.2 Cationic Polymerisation ... 7

1.2.3 Coordination-Insertion Ring-Opening Polymerisation .. 8

1.3 Polylactide Architecture ... 11

1.3.1 Homonuclear decoupled NMR spectroscopy .. 13

1.3.2 Co-polymers ... 16

1.4 Initiators .. 19

1.4.1 Tin Initiators ... 19

1.4.2 Group 4 Initiators ... 21

1.4.3 Other Initiators .. 26

1.5 Co-polymers ... 29

1.5.1 Lactide co-polymers with ε-caprolactone and δ-valerolactone 29

1.5.2 Lactide co-polymers with PDL ... 31

1.5.3 Synthesised Monomers .. 32

1.6 Outlook ... 35

1.7 Research aims ... 36

1.8 References ... 37

Group 4 Complexes as Initiators

2 Preamble .. 44

Synthesis of complexes ... 45

2.1 Synthesis of L1 Complexes ... 45
Group 4 complexes as initiators in the solvent-free ROP of rac-LA

2.4 Solvent-free ROP of rac-LA at 135°C.. 61
2.5 Solvent-free ROP of rac-LA at 165°C.. 65
2.6 In situ Fourier Transform Infra-Red Spectroscopy (FT-IR).......................... 68
2.7 Conclusion .. 71
2.8 Further work.. 72
2.9 References.. 73

Co-polymerisation of lactide with other commercially available co-monomers

3. Preamble.. 76
3.1. Synthesis of tri-block co-polymers.. 77
3.2. Synthesis of penta-block co-polymers... 87
3.3. ω-Pentadecalactone (PDL) co-polymers.. 94
 3.3.1. Synthesis of di-block co-polymer... 96
 3.3.2. Synthesis of tri-block co-polymer ... 99
3.4. Conclusion .. 103
3.5. Further work.. 104
3.6. References... 105

Synthesis of co-monomers and kinetics of lactide co-polymerisations

4. Preamble.. 108
4.1. Synthesis of Monomers.. 108
4.2. Co-polymerisations with lactide... 112
 4.2.1. Vinyl-LA co-polymerisations ... 112
4.3. Kinetic investigations of co-polymerisation ... 114
 4.3.1. Et-LA Polymerisations.. 114
 4.3.2. Ph-LA Polymerisations ... 121
 4.3.3. BrPh-LA Polymerisations ... 131
4.4. Conclusions... 136
4.5. Further work... 136
4.6. References.. 137
Conclusions ..138

Experimental
5 Experimental ...143

5.1 Methods ...143
 5.1.1 Kinetics of polymerisation ..143
 5.1.2 Gel-permeation chromatography (GPC) ...144
 5.1.3 Differential scanning calorimetry (DSC) ..146
 5.1.4 FT-IR ...146

5.2 General considerations ..147

5.3 Synthetic Procedures ..148
 5.3.1 Synthesis of complexes ..148
 5.3.2 Synthesis of monomers ...151

5.4 Polymerisations ..154
 5.4.1 General considerations ..154
 5.4.2 Polymerisations – Typical Syntheses ..155
 5.4.3 Kinetic Investigations ..159

5.5 References ..161

5.6 APPENDIX – Single crystal X-ray data ..163
Acknowledgements

Firstly, I would like to thank Professor Matthew Davidson for the opportunity to undertake a PhD within his research group. The University of Bath and Corbion Purac are also acknowledged for their sponsorship, and Dr Gerrit Gobius du Sart for his guidance over the last 3 years.

Dr Gabriele Kociok-Köhn and Dr John Lowe are thanked for their assistance with X-ray crystal structure determination and NMR problem solving respectively.

A sincere thank you to all members of the Davidson and Jones groups, past and present, especially Emma, Carlo, Tom, Daniel, Kirsty, Chris R, Chris H, Chris C, and Rhodri. Antoine, for all his knowledge and proof-reading, and those who made the department and lunchtime a fun place to be (Jeff, Dave and Heather). A big thank you to Ben for all his pearls of wisdom and support… I can’t believe we did it!

I also wish to thank Abi for being the best friend a girl can have, and my sister Hannah for always looking out for me. Justin, I love you, and cannot put into words how much I appreciate all that you have done for me. Thank you for all your encouragement, and for everything, I could not have done it without you. I cannot wait to become Dr Manton-O’Byrne.

Finally, I would like to thank my lovely parents, you always had faith in me and told me I could achieve anything I put my mind to. Mum, I am the person I am today because of you. Dad, it was definitely worth it in the end.
Abstract

Polylactide (PLA) as a biodegradable and biocompatible polymer has had a lot of interest as an alternative to petrochemical-based polymers. PLA is synthesised from bio-renewable resources by the ring-opening polymerisation (ROP) of cyclic monomer lactide (LA). A variety of polymers can be synthesised with variations of microstructure and molecular weight. Initiators currently utilized in industry exhibit little stereocontrol, allowing a high demand for active stereoselective initiators. This thesis will discuss the synthesis of initiators, as well as investigations into co-polymerisations with other monomer.

Chapter 1 initially introduces the synthesis of PLA, with a detailed discussion of possible polymer architectures along with previously reported initiators will be discussed and their influences on the polymeric physical properties. To date, the formation of lactide co-polymers and investigations into the morphology and microstructures of the resulting co-polymers.

Chapter 2 describes a series of Group 4 isopropoxide complexes using inexpensive, commercially available ligands. Interesting coordination chemistry of such complexes will be discussed and their potential as initiators in the ROP of PLA will be investigated with kinetic studies to probe the control of architecture and molecular weights.

Chapter 3 concerns the formation of lactide co-polymers using inexpensive, commercially available co-monomers. The study of block co-polymers by either one-pot or sequential polymerisations will be assessed and subsequent thermal properties analysed.

Chapter 4 initially details the synthesis of cyclic monomers for lactide co-polymerisations. The ability to synthesise random or alternating lactide co-polymers in a one-pot synthesis will be probed with a variety of different cyclic monomers with varying stoichiometries and their properties examined.

Chapter 5 reports the overall conclusions of the thesis and what work should be carried forward.

Chapter 6 provides details analytical techniques, procedures and characterisations used throughout this thesis.
Glossary of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-CL</td>
<td>ε-caprolactone</td>
</tr>
<tr>
<td>δ-VL</td>
<td>δ-valerolactone</td>
</tr>
<tr>
<td>ω-PDL</td>
<td>ω-pentadecalactone</td>
</tr>
<tr>
<td>BDI</td>
<td>β-diiminate</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2'-bis(diphenylphosphino)-1,1'-binaphthyl</td>
</tr>
<tr>
<td>D-LA</td>
<td>D-Lactide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DRI</td>
<td>differential refractometer</td>
</tr>
<tr>
<td>DSC</td>
<td>differential scanning calorimetry</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and drug administration</td>
</tr>
<tr>
<td>GPC</td>
<td>gel permeation chromatography</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>HTMA</td>
<td>hexamethylenetetramine</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>i</td>
<td>isotactic</td>
</tr>
<tr>
<td>OiPr</td>
<td>isopropoxide</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectroscopy</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>k_{app}</td>
<td>apparent rate of propagation</td>
</tr>
<tr>
<td>k_{p}</td>
<td>propagation rate constant</td>
</tr>
<tr>
<td>L_{1}</td>
<td>lactic acid ligand</td>
</tr>
<tr>
<td>L_{2}</td>
<td>2,2',2'"'-diylbis(azanetriyl)tetraethanol ligand</td>
</tr>
<tr>
<td>L_{3}</td>
<td>amine tris(phenolate) L_{2} derivative ligand</td>
</tr>
<tr>
<td>L-LA</td>
<td>L-LA</td>
</tr>
<tr>
<td>LALLS</td>
<td>low angle light scattering detectors</td>
</tr>
<tr>
<td>MALLS</td>
<td>multi angle light scattering</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>Min</td>
<td>minutes</td>
</tr>
<tr>
<td>M_n</td>
<td>number average molecular weight</td>
</tr>
<tr>
<td>M_n, theo</td>
<td>theoretical number average molecular weight (calculated)</td>
</tr>
<tr>
<td>M_w</td>
<td>weight average molecular weight</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccimide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>PDI</td>
<td>polydispersity index</td>
</tr>
<tr>
<td>PDLA</td>
<td>poly(D-lactide)</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PLA</td>
<td>polylactide</td>
</tr>
<tr>
<td>PLLA</td>
<td>poly(L-lactide)</td>
</tr>
<tr>
<td>P_m</td>
<td>probability of meso enchainment</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>P_r</td>
<td>probability of racemic enchainment</td>
</tr>
<tr>
<td>rac</td>
<td>racemic</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>ROP</td>
<td>ring-opening polymerisation</td>
</tr>
<tr>
<td>s</td>
<td>syndiotactic</td>
</tr>
<tr>
<td>T_c</td>
<td>polymer crystallisation temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>glass transition temperature</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>T_m</td>
<td>polymer melting temperature</td>
</tr>
<tr>
<td>TOEED</td>
<td>2,2',2'',2''-(ethane-1,2-diylbis(azanetriyl))tetaethanol</td>
</tr>
<tr>
<td>Toluene-d_8</td>
<td>deuterated toluene</td>
</tr>
<tr>
<td>w_i</td>
<td>weight fraction</td>
</tr>
</tbody>
</table>
Publications

Conferences

SuBiCat Conference, St Andrews 2013. Poster presented.
Chapter 1

Introduction
1 Introduction

This thesis concerns the synthesis of industrially relevant sustainable polymers. The introduction will cover product and reactant sustainability, polymerisations, co-polymerisations and initiators used to date.

1.1 Sustainable plastics

Sustainability is a seemingly easy concept to grasp, but when asked for a definition, it becomes more difficult to distil to a single concept. Depending on who you ask, the answer will be different. This means that a multi-faceted answer must be described, which means a multi-faceted approach will be needed to tackle issues related to sustainability. Figure 1.1.1 shows a Venn diagram where the Social, Economic, and Environmental issues are addressed to find a Sustainable solution.

Figure 1.1.1: Venn diagram showing Sustainability as a combination of Economic, Social, and Environmental approaches.¹

Plastics are ubiquitous in modern life, generating 140 million tons in the global marketplace.²,³ Our increasingly disposable lifestyles mean that more and more waste plastics are making their way into the environment. Many Western governments are making concerted efforts to recycle waste plastics but large volumes still make their way to landfill and to the environment at large. Many of these generated plastics are unable to degrade in the environment within acceptable lifetimes, and pose a threat to natural ecosystems. The Great Pacific garbage patch is a prime example of an area of the natural environment which has been damaged by, among other things,
plastics that have not been degraded fully. Figure 1.1.2 shows how natural currents cause plastic in the ocean to form large “islands” of un-degraded waste.

Figure 1.1.2: Map of garbage patches and convergence zones in the Pacific Ocean.

These garbage patches are a major example of how waste can interfere with the environment, but there are many other examples of plastic waste interfering with the natural world. One major source of waste plastic comes in the form of shopping bags. Shopping bags, if not disposed correctly can block drains, cause animals and fish to choke, and can contaminate soils and waterways. In order the combat this, either the usage of plastic should be reduced, or recycled where possible. There are many initiatives in place to combat plastic usage, recently there has been a push to charge a fee per plastic bag in supermarkets. This has proven very successful in Ireland which has seen a reduction in usage of plastic bags by 90 %. In the cases where substantial plastic use reduction is inappropriate or difficult, a replacement plastic that can degrade more easily and be synthesised from sustainable sources should be found.

Traditionally, large-volume plastics are generally produced from oil based sources. Reserves of oil globally are not infinite, and some have predicted that we have nearly consumed more oil than is left in reserves. In any case, we will inevitably run out of fossil precursors for plastic so an alternative source of starting materials will need to be found. Bioplastics is a term coined often with different definitions. Sometimes it is meant to refer to bio-based polymers, sometimes it represents a class of biodegradable polymers. It is also used to define the
combination, a polymer which are biobased and biodegradable. A claim for biodegradability in turn should only be used if the product complies with well-established testing protocols and norms, such as EN13432 or ASTM D6400. Globally, the market for bioplastics is growing exponentially whereby approximately 1 million metric tons were produced in 2011 and a forecast of over 6 million metric tons is predicted for 2017.

Polylactide is a biodegradable and biocompatible aliphatic polyester produced by the polymerisation of lactide, the cyclic monomer of two lactate units. Lactic acid, ultimately being the starting material for PLA can be produced by fermentative processes, from for example starch. Currently, sugar beet and corn-starch are the most widely used feedstocks due to their economic feasibility. In the future, however, cellulose based materials such as agricultural waste and residual biomass will be used in place of food plants. In the interim, as demand increases for PLA the biomass feedstock could be supplemented by purpose grown crops. Due to increased pressure on the world’s oil supplies as well as rising prices and a move toward “green” industry, degradable and biocompatible plastics are increasingly sort. PLA is seen as a “green” alternative to oil based plastics not only due to its eco-friendly nature but also for its physical properties such as tensile strength and stiffness of subsequent polymeric materials.

Figure 1.1.3: PLA cycle showing the formation of lactide, ring-opening polymerisation, and degradation steps.
There are two possible routes to PLA, polycondensation of lactic acid or ring-opening polymerisation of lactide. Lactic acid is synthesised by the fermentation of sugars in plants as shown in Figure 1.1.3. The oligomerisation of lactic acid gives off H₂O and affords a low molecular weight LA oligomer, which in turn is depolymerized to the cyclic dimer of lactic acid, lactide. By using lactide, high molecular weight PLA can be produced via ring-opening polymerisation. The mechanical and thermal properties of the resultant PLA can vary greatly and are determined by the varying chirality of the methyl substituents.

Due to the biologically recyclable nature of PLA it can be composted when the product is no longer required. Breakdown of the PLA takes place through hydrolytic degradation where enzymes break down PLA to form lactic acid. PLA can be hydrolysed in the body (in vivo) or in the environment, which in turn is broken down into CO₂ and H₂O closing the PLA cycle. The tacticity of the polymer chains determine the kinetics and products of the degradation.

There are many uses for renewable biodegradable plastics synthesised from lactic acids as shown below (Figure 1.1.4).

Figure 1.1.4: Applications of the biodegradable polymers based on lactic acids.

PLA is a versatile bioplastic that has many applications such as food packaging that can be readily composted, cutting down on problematic waste. The degradability of PLA to
biocompatible molecules is utilized in medical applications such as in surgery. For bone fixation, PLA screws can be used that will degrade in vivo and eliminate the need for follow-up surgery to remove the screw. PLA can also be used as an erodible vehicle for controlled drug delivery enabling the controlled release of active ingredients at the required site in the body.14

1.2 Polymerisation

Many initiators have been investigated for the ring-opening polymerisation (ROP) of lactide such as enzymes, organo-catalysts and organometallic catalysts.10,11 The most widely studied ROP utilises organometallic complexes due to the high levels of stereo-control achieved. Three mechanisms will be discussed in this section including anionic, cationic and coordination-insertion.

1.2.1 Anionic Polymerisation

To date, lithium complexes are reported to have the highest stereocontrol in ROP of rac-lactide via anionic ROP mechanism. Kasperczyk et al. reported PLA using lithium tert-butoxide as the initiator at 25°C, with increased stereocontrol at reduced temperature (-20 °C).15 The anionic mechanism is initiated by either the deprotonation of the methine proton of the monomer (Scheme 1.2.1i) or nucleophilic attack on the carbonyl carbon of the monomer (Scheme 1.2.1ii), breaking the acyl bond forming a metal alkoxide. Propagation occurs with the addition of another monomer forming a growing polymer chain.
1.2.2 Cationic Polymerisation

Cationic polymerisation is a type of chain growth polymerisation where a cationic initiator transfers charge to a monomer which becomes reactive. Cationic ROP of lactide is the least favoured of the polymerisation routes, due to poor control. In 1980’s, Dittrich and co-workers followed by Kricheldorf et al. illustrated that only a few initiators such as trifluoromethanesulfonate (MeOTf) and trifluoromethanesulfonic acid (HOTf) were active in the cationic polymerisation of lactide.\(^\text{17,18}\) Studies by \(^1\)H NMR spectroscopy using trifluoromethanesulfonate as an initiator, showed the end group to be a methyl ester, which suggests the mechanism was initiated by the protonation of the carbonyl-oxygen leading to cleavage of the alkyl-oxygen bond by nucleophilic attack (S\(_{N2}\)) rather than an acyl-oxygen cleavage (Scheme 1.2.2).\(^\text{19}\)
Scheme 1.2.2: Proposed cationic mechanism in the ROP of lactide via cleavage of alkyl-oxygen bond.\(^{10}\)

Conversely, Bourissou et al. later investigated trifluoromethanesulfonic acid as a catalyst in the presence of a protic solvent.\(^{20}\) It was reported that the mechanism in this case underwent cleavage of acyl-oxygen bond as shown below (Scheme 1.2.3).

Scheme 1.2.3: Proposed cationic mechanism in the ROP of lactide via cleavage of acyl-oxygen bond.\(^{20,21}\)

The disadvantage of this method is the optimum reaction temperature is 50 °C resulting in a slow conversion with varying low molecular weights. At higher temperatures the reaction rate increased, however an undesired dark-coloured product was recovered. Lower temperatures give slow conversion and low yields.

1.2.3 Coordination-Insertion Ring-Opening Polymerisation

Ring-opening polymerisation via a coordination-insertion mechanism can achieve PLA with high stereocontrol and high molecular weights using metal alkoxides as initiators. The lactide monomer coordinates to the Lewis acidic metal centre. The coordination of the monomer to the metal centre of the catalyst through the carbonyl group is thought to control the stereochemistry. Insertion proceeds via nucleophillic addition of the alkoxide to the activated carbonyl carbon leading to the ring-opening of the monomer and the breaking of the acyl-oxygen bond. Insertion of a new lactide monomer propagates the growing polymer chain. Termination of the polymerisation occurs by protonation (Scheme 1.2.4).\(^{10}\)
There are many variants on designing the metal based catalysts which affect this mechanism. The steric bulk of the ligand, the identity of the metal, the ratio of metal centres to ligands and the nature of the metal centre in the system all influence the rate and stereocontrol of the polymerisation reaction. The lability of the ligand also contributes to the activity of the initiator.

The main disadvantage with ring-opening polymerisation is transesterification. This is the breaking of the polymer chain due to initiator groups competitively reacting with the polymer chains breaking the bonds and increasing the polydispersity of the polymer. Transesterification can occur via intra- or inter-molecular reactions (Scheme 1.2.5).
Intramolecular transesterification occurs when the chain end reacts with the propagating end of the same polymer resulting in a large cyclic oligomer. Intermolecular transesterification can be observed as the propagating chain end reacts with another polymer chain limiting propagation. An increased reaction temperature is thought to increase the rate of transesterification. Intermolecular transesterification between random ester bonds in the chains will result in a broadening of PDI.

The stereocontrol of the growing polymer chain can be developed by two different routes; chain end control and enantiomorphic site control. Chain-end control is when the chirality of the last inserted monomer of the growing polymer chain determines the chirality of the next monomer to be inserted. Enantiomorphic site control is when the chirality of the inserted monomer on the growing polymer chain is determined by the catalyst.
1.3 Polylactide Architecture

Polylactide contains two chiral centres with the three possible configurations: L-lactide (RR), D-lactide (SS) and meso-lactide (RS) (Figure 1.3.1). Rac-lactide (DL-LA) refers to a 50:50 mixture of L-LA and D-LA.

![Figure 1.3.1: The three stereoisomer structures of lactide (3,6-dimethyl-1,4-dioxane-2,5-dione).](image)

The distribution of stereocontrol within the polymer determines the physical properties of the material. There are four possible microstructures of PLA; isotactic, heterotactic, syndiotactic and atactic (Figure 1.3.2). Isotactic PLA can be produced from either L-LA or D-LA or a mixture of both in combination with a stereoselective catalyst. Heterotactic and atactic PLA can be synthesised from rac-lactide. Heterotactic, syndiotactic and atactic PLA can be synthesised from meso-LA.

The relative probability of the next stereocentre being racemic is represented as P_r and the relative probability of the next stereocentre being the same (meso) is represented as P_m. Heterotactic PLA has a P_r value of 1 ($P_m = 0$). This shows that the next consecutive pair of stereocentres must be different (-RR-SS-), giving a double alternating stereogenic polymer. Isotactic PLA has a P_r value of 0 ($P_m = 1$), where the neighbouring stereo-centres must have the same orientation. Atactic PLA, $P_r = 0.5$ ($P_m = 0.5$), thus a random enchainment of stereocentres occurs.
A polymer with high regularity of methyl substituents in the same orientation along the polymer chain (isotactic) will have a semi-crystalline morphology such that poly L-lactide (PLLA) displays a melting temperature (T_m) up to 180 °C with a glass transition temperature (T_g) around 50 °C. Whereas, a polymer with random orientation of stereocontrol (atactic), will exhibit an amorphous structure with a phase transition at the T_g only. An equimolar mixture of PLLA and poly D-lactide (PDLA) can result in an unusually stable type of crystal, called stereocomplex PLA. These crystals are of particular interest, since they exhibit a significantly higher melting point around 220-260 °C.\(^{11,25}\) Stereocomplexation occurs when opposite chains (PLLA and PDLA) come into close proximity and form significantly more stable and crystalline stereocomplexed PLA than their isolated counterparts. Stereoblock copolymers also show stereocomplexation with an increase in T_m. Syndiotactic PLA is prepared from meso-LA giving
a polymer with singly alternating stereocentres.26 Due to the high stereo-regularity of the polymer, syndiotactic PLA is also typically crystalline.

The combination of stereocentre pairs is used to describe the relationship of the neighbouring stereocentres. If the next subsequent stereocentre in the polymer chain is the same as the previous such as –RR-RR- and –SS-SS- it is described as isotactic (i). If the next subsequent stereocentre in the polymer chain is different to the previous such as –RS-RS- and –SR-SR- it is described as syndiotactic (s). It is possible to think of polylactide at a tetrad level (four stereocentres in a row, Figure 1.3.3).27

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{tetrads.png}
\caption{Tetrads of poly(rac)-lactide.27}
\end{figure}

Poly(L-LA) and poly(D-LA) have isotactic relationship between stereocentres and can be denoted as \textit{iii}. The polymerisation of rac-lactide or meso-LA will have additional stereocentre relationships such as \textit{sii}, \textit{iis}, \textit{sis} and \textit{isi} (Figure 1.3.3).27 Di(syndiotactic) tetrads cannot be formed in the synthesis of poly(rac)lactide (i.e. sss, iss or ssi).

\subsection{1.3.1 Homonuclear decoupled NMR spectroscopy}

The schematic representation of poly(rac-)lactide below shows the 1H homonuclear decoupled NMR and 13C\{1H\} NMR proton decoupled NMR for atactic PLA. For poly(rac-)lactide it is assumed that \textit{iis} and \textit{sii} are equivalent due to Bernoullian statistics. The integrals of the proton NMR are 1:1:1:3:2 as shown in Figure 1.3.4.
Atactic PLA will exhibit five resonances in the homonuclear decoupled 1H NMR, heterotactic PLA will display two resonances (sis and isi) and isotactic PLA will show one resonance (iii). The polymerisation of meso-LA will have stereocentre relationships such as sss, ssi, iss, sis, isi. No di(isotactic) tetrads can be present for poly(meso)-lactide.

For poly(meso)-lactide it is assumed that ssi and iss are equivalent due to Bernoullian statistics (Figure 1.3.6).
Previously, Munson et al. illustrated optical activity as a way of determining the tacticity of a polymer with poly(L-LA) PLLA as the standard ($M_w > 6000$, $\alpha_{22}^D = 142^\circ$). More recently 13C{1H} NMR and 1H NMR homonuclear decoupled spectroscopy are used to determine the tacticity of the polymer. Decoupling the methine proton from the methyl group allows the integrals of the peaks to be compared accurately. Homonuclear decoupled NMR can be used to determine the tacticity of the polymer using the tetrad probabilities with current NMR fields. Reports by Thakur et al. even showed that hexad probabilities are possible to measure with a field of 500MHz. There are five possible tetrads for PLA derived from both rac- and meso-lactide (Table 1.3.1).

Table 1.3.1: Tetrad probabilities based on Bernoullian statistics.

<table>
<thead>
<tr>
<th>Tetrad</th>
<th>Probability rac-lactide</th>
<th>Probability meso-lactide</th>
</tr>
</thead>
<tbody>
<tr>
<td>[iii]</td>
<td>$P_m^2 + P_r P_m/2$</td>
<td>0</td>
</tr>
<tr>
<td>[iis]</td>
<td>$P_r P_m/2$</td>
<td>0</td>
</tr>
<tr>
<td>[sii]</td>
<td>$P_r P_m/2$</td>
<td>0</td>
</tr>
<tr>
<td>[sis]</td>
<td>$P_r^2/2$</td>
<td>$(P_m^2 + P_r P_m)/2$</td>
</tr>
<tr>
<td>[sss]</td>
<td>0</td>
<td>$P_r^2 + P_r P_m/2$</td>
</tr>
<tr>
<td>[ssi]</td>
<td>0</td>
<td>$P_r P_m/2$</td>
</tr>
<tr>
<td>[iss]</td>
<td>0</td>
<td>$P_r P_m/2$</td>
</tr>
<tr>
<td>[isi]</td>
<td>$(P_r^2 + P_r P_m)/2$</td>
<td>$P_m^2/2$</td>
</tr>
</tbody>
</table>
equations must be used to deduce the P_r value. Polymers derived from *meso*-LA use the equation $[isi] = P_m^2/2$.

1.3.2 Co-polymers

A co-polymer is a polymer that contains two or more different repeat units. Interestingly, the properties of polylactide can be adjusted, not only by adjusting the tacticity as discussed in the preceding paragraph, but also by incorporation of chemically different co-monomers into the chain. The physical properties of the resulting co-polymer are determined by the sequence and stoichiometric proportions of monomers in the copolymer. The ability to exploit the change in thermal and mechanical properties of the polymer with the introduction of another monomer by copolymerization is of great interest both academically and industrially. There are a variety of polymer architectures from linear to branched co-polymers, of which just a few are shown below (Figure 1.3.7).

![Co-polymer architectures](image)

Figure 1.3.7: Co-polymer architectures.

A homo-polymer describes a polymer where the next monomer inserted is always the same as the previous ($P_r = 0$) and repeat units in the chain are all the same (Figure 1.3.7a). In a one-pot co-polymerisation of two different monomers (monomer 1 = M_1 and monomer 2 = M_2), the co-
polymer composition is dependent on the rate of propagation reactions as shown below (where k is the rate coefficient).

\[
\begin{align*}
\sim M_1^* + M_1 & \rightarrow k_{1,1} \sim M_1 M_1^* \\
\sim M_1^* + M_2 & \rightarrow k_{1,2} \sim M_1 M_2^* \\
\sim M_2^* + M_1 & \rightarrow k_{2,1} \sim M_2 M_1^* \\
\sim M_2^* + M_2 & \rightarrow k_{2,2} \sim M_2 M_2^*
\end{align*}
\]

Figure 1.3.8: Four possible propagation reactions of co-polymerisation.

A random co-polymer (Figure 1.3.7b) is a type of statistical co-polymer and the repeat units are randomly distributed along the polymer chain. Alternating co-polymers (Figure 1.3.7c) consist of equal amounts of each monomer sequenced in a strictly alternating fashion (only \(k_{1,2}\) and \(k_{2,1}\), Figure 1.3.8). The distribution of repeat units alternates along the polymer chain and the probability of the next monomer in the chain being different is 1 \((P_r = 1)\) and is relatively rare. The ability to fully disperse two different monomers with different properties in the chain is of great interest. Block co-polymers (Figure 1.3.7d) exhibit long blocks of one type of repeat unit followed by a long block of another type of repeat unit. There are different methods to synthesising block co-polymers; two of them being a one-pot synthesis or a sequential polymerisation. For a one-pot polymerisation, both monomers are put into a reaction flask in the presence of an active initiator. If the reaction rates of the monomers are different under these conditions, one monomer will preferentially polymerise, initially forming a homo-polymer. Thus, monomer 1 will preferentially polymerise after the polymerisation of a monomer 1 unit \((k_{1,1})\), and monomer 2 will preferentially polymerise after the polymerisation of a monomer 2 unit \((k_{2,2})\). As the monomer reaches near depletion, the other monomer will start to polymerise forming a di-block co-polymer. In order to determine the co-polymer composition, Mayo and Lewis devised an equation (Equation 1.3.1) using the kinetic data of co-polymerisations at low conversions (below 15 %).
Equation 1.3.1: Mayo-Lewis equation for the co-polymerisation of rac-LA with Ph-LA.

\[F_1 = 1 - F_2 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2} \]

The Mayo-Lewis equation can be used to determine the reactivity ratios of the co-polymerisation of \(M_1 \) with \(M_2 \) where \(f_1 \) and \(f_2 \) are the mole fraction of LA and Ph-LA in the feed. \(F_1 \) and \(F_2 \) are the mole fraction of \(M_1 \) and \(M_2 \) in co-polymer. \(r_1 \) and \(r_2 \) are the reactivity ratios of \(M_1 \) and \(M_2 \) respectively in the co-polymer and are defined below:

\[r_1 = \frac{k_{1,1}}{k_{1,2}} \quad r_2 = \frac{k_{2,2}}{k_{2,1}} \]

Alternatively, sequential polymerisation is achieved when monomer feed is controlled throughout the reaction. The polymerisation of one monomer (reaches near completion), followed by the introduction of another monomer to the reaction vessel allowing the formation the desired di-block co-polymer. Enantiopure lactide segments as the blocks in block copolymers can be utilized for the formation of stereocomplexed PLA crystals. Graft polymers are a type of branched polymers, where generally a core homo-polymer backbone is observed with branches of a different homo-polymer consisting of a different repeat unit, as shown in Figure 1.3.7e. As previously mentioned, stereocomplex PLA (sc-PLA) is the mixing of enantiomerically pure poly L-lactide (PLLA) with pure poly D-lactide (PDLA) either as two homo-polymers or as components of the copolymer itself (Figure 1.3.9).\(^32-34\)

![Figure 1.3.9: Synthesis of stereocomplexed PLA.](image)
These hydrogen bond interactions between two pure forms of polylactide enhance the mechanical properties, as well as the thermal resistance and the hydrolysis-resistance of the PLA based material. The result is a significant increase in both melting temperature (T_m) and glass transition temperature (T_g) which can be monitored using differential scanning calorimetry (DSC).14

1.4 Initiators

1.4.1 Tin Initiators

PLA is predominantly synthesised using tin (II) bis(2-ethylhexanoate), otherwise known as tin(II) octanoate or Sn(Oct)\textsubscript{2}.35 It is commercially available, inexpensive, easy to handle and soluble in common organic solvents and lactide. Many mechanisms were reported for the reaction of Sn(Oct)\textsubscript{2} with lactide including activated monomer, cationic and ROP. During the reaction of Sn(Oct)\textsubscript{2} with lactide, a non-linear relationship on catalyst amount was observed; the reaction was dependent on the quantity of impurities such as water and octanoic acid present in the initiator. Interestingly, these impurities allow the \textit{in situ} formation of tin (II) alkoxides which act as the active species in the polymerisation of lactide. Thus, it is accepted that the mechanism in question is in fact coordination insertion13 In the presence of a protic reagent, such as an alcohol, additional formation of tin (II) alkoxides occurs from Sn(Oct)\textsubscript{2} (Figure 1.4.1).12,36

\begin{center}
\textbf{Figure 1.4.1:} Formation of active tin(II) alkoxide in the presence of a protic reagent.36
\end{center}

Addition of benzyl alcohol which acts as a co-initiator allows a much faster reaction rate. In the ROP of lactide, Sn(Oct)\textsubscript{2} in the presence of benzyl alcohol forms high molecular weight polymers using low catalytic loadings under solvent free conditions (at 110°C for 24 h affords 98% conversion). Benzyl alcohol is generally used as it is inexpensive, commercially available, easy to handle and is also a valuable end group due to possible cleavage by H\textsubscript{2}/Pd in order to re-activate the carboxylic end group. This cleavage enables the possibility of functionalising the final polymer, which is of great interest.37 Although Sn(Oct)\textsubscript{2} is accepted as a non-toxic initiator
and is approved by the American Food and Drug Administration (FDA), the toxicity associated with harmful tin hydroxide species contribute to considerable limitations for use in the biomedical industry.38

In 2001, Gibson and co-workers reported the first single-site tin(II) initiator for the ROP of lactide. A tin(II) isopropoxide coordinated to a BDI ligand was synthesised as shown below (Scheme 1.4.1).

\begin{center}
\includegraphics[width=8cm]{Scheme_1.4.1.png}
\end{center}

*Scheme 1.4.1: Synthesis of tin initiator developed by Gibson et al.*39

Initially, [HC\{C\{Me\}NAr\}_2]Li was reacted with SnCl\textsubscript{2} to afford \textbf{a}, followed by treatment with lithium isopropoxide to yield the desired initiator \textbf{b}. Investigations into the ROP of rac-lactide using initiator \textbf{b} were undertaken in CH\textsubscript{2}Cl\textsubscript{2} at 25°C with a monomer to initiator loading of 100:1. Under these conditions, complete conversion (>99%) of monomer occurred after 96 h to yield a resulting polymer that coincided with the theoretical molecular weight ($M_n = 17100$ and 14400 g.mol-1, are the observed and calculated molecular weights respectively), with a narrow PDI (PDI = 1.11). The reaction was repeated at the elevated temperature of 60°C in toluene, increasing the activity of the initiator (85% conversion in 4 h) whilst maintaining a narrow molecular weight distribution (PDI = 1.05). Various tin BDI-type derivatives including some aromatic and alkyl substituents were synthesised and trialled for the ROP of rac-lactide. All initiators demonstrated a moderate heterotactic bias and polymerised via chain end control due to the 5s2 lone pair of electrons present on the central tin(II) moiety.

Later, in 2002, Tolman et al. reported monomeric initiators of tin(II) alkoxide complexed to bulky amidinate ligands.40 Various complexes with modified alkyl silyl moieties were active for the polymerisation of lactide at 80°C in toluene with a monomer: initiator loading of 450:1. Further control of polymerisations was achieved with addition of an exogenous alcohol co-initiator such as benzyl alcohol.

In 2003, Chisholm and co-workers reported the synthesis of tin(IV) initiators including Ph\textsubscript{2}SnX\textsubscript{2} (where X = NMe\textsubscript{2} or OPri) complexes.41 These initiators demonstrated activity for the ROP of
L-lactide, although at a slow rate. For Ph₂Sn(NMe)₂, GPC analyses of the final polymer displayed bi-modal traces indicative of cyclic and long chains (24 kDa) polymers via both intra- and inter-chain transesterification. Ph₂Sn[OCHMeC(O)OPr]₂ was generated due to the vast amount of transesterification taking place. Conversely, polymers obtained using Ph₂Sn(O’Pr)₂ displayed mono-modal GPC traces along with the formation of Ph₂Sn[OCHMeC(O)OPr]₂ suggesting only inter-chain transesterification occurred. Further investigations with Ph₃SnX complexes were trialled and showed similar results.⁴¹

1.4.2 Group 4 Initiators

Group 4 metal initiators are recognized to give high activity and selectivity due to their strong Lewis acidic nature.⁴²-⁴⁹ Kricheldorf et al. first reported active Group IV metal alkoxides for the ROP of various cyclic esters. It was reported that zirconium n-propoxide was active in the polymerisation of L-lactide under solvent free conditions (95°C), converting 92 % of monomer in 24 h.⁵⁰ Later, Kol and co-workers reported titanium and zirconium complexes incorporating bulky dianionic and trianionic amine-phenolate ligands which were active in the ROP of L-lactide.⁵¹,⁵² Zirconium initiators were found to have a much higher activity than the titanium complexes.

Group 4 metal complexes coordinated to tetradentate bis(phenolate) (ONNO)-type ligands such as salan, salen and salalen and their activity in the ROP of lactide will be discussed in this section. Davidson and co-workers investigated symmetrically substituted salan-type ligands which when complexed to Group 4 metals exhibit a C_2 pseudo-octahedral orientation as shown below (Scheme 1.4.2).⁴⁴

![Scheme 1.4.2: Synthesis of Group 4 amine bis(phenolate) complexes.](image-url)
The Group 4 amine bis(phenolate) complexes (Scheme 1.4.2) were trialled in the ROP of L-lactide and rac-lactide. Kol and co-workers synthesised chloro- substituted and tert-butyl substituted Ti\textsubscript{1b}(O\textsubscript{i}Pr\textsubscript{2}) complexes which demonstrated moderate activity for the ROP of L-lactide under solvent-free conditions.45 In solution, Davidson and co-workers reported only Zr\textsubscript{1a}(O\textsubscript{i}Pr\textsubscript{2}) was active in the ROP of rac-lactide in toluene converting >99 % monomer with a monomer to initiator loading of 100:1 at 110°C. Under solvent-free conditions, analogous titanium initiators afforded atactic PLA (62 % - 74 % conversion, 2 h, 130°C, 300:1 monomer:initiator loading). Promisingly, under solvent free conditions, where M = Zr, M\textsubscript{1a}(O\textsubscript{i}Pr\textsubscript{2}), afforded isotactic PLA in the ROP of rac-lactide.44 The C\textsubscript{2}-orientation of the Zr and Hf complexes attributes to the tacticity of the resulting polymer. The lack of stereocontrol for titanium species was attributed to the inability of the titanium-lactate species to back-chelate due to its small coordination sphere.

More recently, Davidson et al. investigated zirconium and hafnium amine tris(phenolate) analogues in the ROP of rac-lactide under solvent-free conditions at 130°C (Figure 1.4.2).53

![Scheme 1.4.2](image_url)

\textbf{Figure 1.4.2:} Amine tris(phenolate) initiators reported by Davidson et al.53

Interestingly, zirconium and hafnium complexes demonstrate an unprecedented combination of high activity (95 % conversion in 30 min) whilst retaining high stereoselectivity (P\textsubscript{r} > 0.90).53 Conversely, titanium amine tris(phenolate) afforded atactic PLA (P\textsubscript{r} = 0.5). It is suggested that small differences in the coordination mode of the metal centre to the growing chain account for
the differences in tacticity between metal centres. Furthermore, the ligand exhibits C_3 symmetry and appears propeller-like. In the case of zirconium and hafnium amine tris(phenolate) complexes, it is proposed that axial inversion of the ligand occurs after addition of a monomer to the propagating chain, which is responsible for the desired heterotactic bias (alternating stereochemistry) at the active metal centre of the initiator. It is still unknown which mechanism is predominant during polymerisation, either ligand dependent sterical chain-end control or dynamic enantiomorphic site control.

Verkade and co-workers synthesised a variety of 5-coordinate titanium complexes (titanatranes) with varying steric bulk and ring sizes as shown below (Scheme 1.4.3). Titanatranes where an alkoxy moiety lies trans-axial to Ti-N in orientation was utilized in order to further labilize the OR group and forming OR as the end group, thus controlling molecular weight. The complexes were trialled for the ROP of L- and rac-lactide under solvent free conditions (300:1 monomer:initiator, 130°C).
Verkade et al. reported as the number of 5-membered rings in the tetradeinate ligand increases, the activity of the initiator increases along with increased PDI. Unfortunately, the initiators generally yielded polymers with high PDI values and low molecular weights. This could be attributed to $k_{\text{initiation}} < k_{\text{propagation}}$. Furthermore, bimodal traces were observed by GPC for some of the polymers, which is indicative of transesterification or slow initiation. All polymers synthesised from rac-lactide yielded atactic polymers, whereas for L-lactide only isotactic PLA was afforded, as expected.
Verkade and co-workers also studied dimeric titanium alkoxides in the ROP of lactide under solvent free conditions.56,57 (Ti(L)O3Pr\textsubscript{2}) was synthesised using commercially available triethanolamine ligands with titanium \textit{tetra}-isopropoxide as shown in Scheme 1.4.4.

\begin{center}
\includegraphics[width=\textwidth]{Scheme1.4.4.png}
\end{center}

\textbf{Scheme 1.4.4:} Synthesis of bi-meric (Ti(L)O3Pr\textsubscript{2}).56

(Ti(L)O3Pr\textsubscript{2}) was screened for the ROP of L-lactide and \textit{rac}-lactide and proved an active initiator in both solution and bulk conditions. The solvent free polymerisation of \textit{rac}-lactide was trialled ([monomer]:[Ti] 300:1 at 130°C) and converted 66 \% in 2 h with molecular weight of 135.0 kg.mol-1 (PDI = 1.70). The reaction was repeated and allowed to reach near completion (90\%), here, a much higher molecular weight and PDI were observed ($M_w = 303.6$ kg.mol-1, PDI = 2.55). A linear relationship was observed for Mw and conversion suggesting a well-controlled polymerisation.56 A mono-modal trace was observed by GPC for the first reaction however, with the second polymerisation exceeding 80\% conversion a bi-modal trace was reported suggesting higher degrees of transesterification are present at elevated conversion.56

Verkade \textit{et al}. also reported a tetrameric titanium alkoxide initiator (Scheme 1.4.5) for the ROP of lactide both in solution and under solvent free conditions (130°C).58
It was thought that the increased number of possible labile initiator groups would increase possible activity of the complex. Moderate activity was achieved converting L-lactide under solvent free conditions converting to near completion after 12 h. Broad molecular weight distributions were observed for bulk polymerisation whereas solution polymerisation afforded polymers with a narrower molecular weight distribution and thus a more controlled polymerisation.

1.4.3 Other Initiators

There are many ligand systems that have been studied in the synthesis of stereocontrolled PLA as shown below (Figure 1.4.3).
Spassky et al. first reported the stereoselective ROP of rac-lactide with an aluminium initiator containing a chiral BINAP derived salen Schiff base-type ligand (Figure 1.4.3a).60 Initial conversion was slow but relatively enantiomerically enriched with poly-(D-LA). This suggests that most of the D-LA was used up first, then L-LA is incorporated into the polymer. An increase in melting point was reported suggesting stereocomplexation. Coates et al. used this chiral initiator and formed highly syndiotactic PLA from meso-LA. By replacing aluminium for yttrium, atactic PLA from meso-LA was afforded.66 Majerska and Duda devised an experiment using one enantiomer of the chiral aluminium initiator until 50% of the rac-lactide is converted. Then addition of the other enantiomer of the chiral aluminium initiator, this afforded a PLLA-PDLA stereoblock co-polymer which is thought to occur via a ligand exchange mechanism. Stereocomplexation is observed as the thermal stability significantly increased ($T_m = 210 \degree C$).61

Feijen et al. complexed aluminium to commercially available cyclohexylsalen ligand, otherwise known as Jacobsen’s ligand (Figure 1.4.3b). ROP of lactide in toluene at 70\degree C generated PLA with controlled M_w and low PDI. Kinetic analysis of the reaction suggests pseudo-first order
reaction. (R,R)-CyclohexylsalenAlOPr polymerises L-LA preferentially over D-LA (k_L/k_D of ~14). The polymerisation of rac-lactide under melt conditions (solvent free, 135 °C) affords crystalline PLA. The polymerisation of L-LA: D-LA 80:20 yields isotactic-atactic block co-polymer with highly crystalline properties ($T_m = 155$ °C) due to domains of stereocomplexation.

A number of achiral salen-type ligands have been reported with promising results. Nomura et al. and Gibson and co-workers reported that by increasing the steric bulk around the metal centre of the initiator PLA with increased stereocountrol was produced, resulting in heterotactic PLA (Pr = 0.81) (Figure 1.4.3c). Whilst the polymerisation rates are slow with increased steric bulk at the ortho-position of the phenoxy-moiety, the increase in resulting stereocontrol more than compensates ($T_m = 170$-192 °C). This suggests a chain end control mechanism is taking place. Nomura reported that by increasing the imine linker moiety and thus making the linker more flexible, an increase in stereocontrol was observed.

Carpentier et al. introduced electron withdrawing trifluoromethyl substituents to the salen Schiff base type ligand asymmetrically (Figure 1.4.3d). In solution (70 °C, toluene), the polymerisation afforded isotactic PLA ($P_m = 0.81$).

β-Diketiminato (BDI) complexes have also illustrated stereocontrol in the ROP of rac-lactide (Figure 1.4.4).

![Figure 1.4.4: Reported BDI-type initiators for the ROP of lactide.](image)

Coates et al. studied zinc isopropoxide BDI systems (Figure 1.4.4a) which afforded heterotactic PLA (Pr = 0.94) with low PDI. Decreasing the steric hindrance of the ortho-substituents on the aromatic rings around the metal centre results in decreased rate and stereocontrol of polymerisation. Tin (II) and magnesium BDI complexes were also active in the ROP of lactide and demonstrate a degree of stereocontrol. Tin (II) isopropoxide BDI complex (Figure 1.4.4b)
produces PLA with a slight heterotactic bias ($P_r = 0.70$). It is thought this value is low due to the lone pair on the metal centre. Interestingly, magnesium BDI complexes (Figure 1.4.4c) are only stereoselective in THF solvent ($P_r = 0.90$). Under the same conditions changing the solvent to dichloromethane or benzene resulted in atactic PLA. Chisholm and co-workers investigated the effect of THF studying low temperature 1H NMR of ROP using zinc and magnesium BDI systems. Chisholm and co-workers concluded that for the zinc complex the THF moiety rapidly dissociates with toluene-d_8 or CD$_2$Cl$_2$. Conversely, both THF coordinated to the metal centre, and free THF were observed in the low temperature 1H NMR spectrum for the analogous magnesium complex. It is proposed that THF coordinated to the magnesium BDI complex, yielding a more sterically hindered metal centre. Computational studies determined both electrostatic and stereocelectronic interactions control the insertion of monomer and a chain end control mechanism occurs.

The reader is directed to the following recent publications for further details regarding numerous other known initiators in the ring-opening polymerisation of lactide.

1.5 Co-polymers

Industrially, the use of inexpensive commercially available monomers is of great interest in synthesising functional copolymers that are industrially viable. The ability to incorporate copolymers blocks with a significantly different glass transition with blocks of lactide will be probed, with the further intention of stereo-complexing the copolymers either with themselves or with the addition of another copolymer. Fusing the two principles of copolymerisation and stereocomplexation to obtain a polymer with fine-tuned properties is a useful tool for the design of functional materials.

1.5.1 Lactide co-polymers with ε-caprolactone and δ-valerolactone

The co-polymerisation of lactide with ε-caprolactone (ε-CL) and δ-valerolactone (δ-VL) have been well documented as they are both biodegradable and biocompatible. Thus, there have been various investigations in their potential in both medical and pharmaceutical applications. PCL is flexible, tough and has great potential in drug delivery as it hydrolyses into 6-hydroxy caproic acid in vivo which can be fully metabolised by the citric cycle. PVL (T_m 62°C) exhibits similar properties to PCL, however as it is less reactive in ROP than PCL, it is less explored. The ability of combining the physical properties of each polymer with lactide in the resulting co-polymer through co-polymerisation is of great interest (Scheme 1.5.1). For
example, PCL ($T_m 61{^\circ}C$, $T_g -60{^\circ}C$) exhibits good elasticity at room temperature but with a low modulus. Conversely, PLA displays a high Young’s modulus but poor elasticity, hence co-polymer of PCL-PLA could show both good elasticity and mechanical properties. The combination of rapid degradation (PLA) and permeability at body temperature (PCL) allow co-polymers to be utilised in drug delivery systems.

Davidson et al. reported the synthesis of PCL-PLA block co-polymers using Group 4 amine bis(phenolates). In order to generate block co-polymers, the importance of monomer addition was highlighted. By sequential polymerisation, only PCL-PLA co-polymers were synthesised. Conversely, attempts to synthesise PLA-PCL co-polymer were unsuccessful, only generating PLA homo-polymers. In 2008, Florczak and Duda reported the one-pot synthesis of PLA-PCL co-polymers in solution (THF, 80{^\circ}C) using a chiral Schiff base-type ligand coordinated to aluminium alkoxide. Interestingly, the co-polymer architecture differed depending on the chirality of the diphenolate Schiff base. (S)-ligand complexed to aluminium alkoxide yielded block co-polymers whereas the (R)-ligand analogue afforded random copolymers. More recently (2012), Pellecchia et al. studied the synthesis of random co-polymerisation of rac-lactide and ε-caprolactone. It was found that depending on the relative proportional content of PCL and PLA within the resulting co-polymer, the thermal properties could be modified in a linear fashion (T_g ranging from -60{^\circ}C to 45{^\circ}C).

Scheme 1.5.1: Synthesis of lactide co-polymers with a) ε-caprolactone and b) δ-valerolactone.
Similar to PCL, in the co-polymerisation of lactide with PVL, the amount of PVL present in the resulting co-polymer can alter its polymeric physical properties. Darenbourg and co-workers probed the activity of Schiff base aluminium complexes for the ROP of δ-valerolactone and lactide. The results showed lactide was preferentially polymerised over δ-valerolactone. Thus, yielding a PLA-PVL co-polymer from a one-pot synthesis.

1.5.2 Lactide co-polymers with PDL

ω-Pentadecalactone (PDL) is a commercially available 16-membered cyclic ester. Due to abundance of methylene moieties within the structure, a low ring strain is observed compared to lactide and therefore a reduction in reactivity. The ROP of PDL to PPDL is little explored and the ability to incorporate long aliphatic chains into a lactide co-polymer is of great interest (Scheme 1.5.2).

![Scheme 1.5.2: Co-polymerisation of lactide and ω-pentadecalactone.](image)

Initially, Kobayashi and co-workers investigated the polymerisation of PDL enzymatically using lipase. Gross et al. then successfully achieved high molecular weight PPDL (M_w 86.00 kg.mol$^{-1}$) using Novozyme 435 (lipase B from *Candida Antarticca*) converting 90% of monomer in 2 hours. Later, investigations into organometallic initiators were of interest. Feijen and co-workers utilised commercially available yttrium isopropoxide under solvent free conditions (400:1 monomer: initiator, 100°C) converting 70% to PPDL in 5 minutes. In 2011, Tsutsumi et al. demonstrated rare earth tetrahydroborates were highly active in the ROP of PDL converting 83% in 1 minute in solution (THF, 60°C 150:1 monomer: initiator). More recently,
Duchateau and co-workers have probed the co-polymerisation of PDL with other small-ring lactones such as ε-caprolactone.81,82 PCL-PDL co-polymers exhibit a good combination for biodegradable shape-memory materials.83,84 Co-polymerisation of PDL with ε-caprolactone was investigated using an inexpensive commercially available N-heterocyclic organo-catalyst (1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)) in the presence of benzyl alcohol under solvent free conditions.81 Various PCL-PDL random co-polymers were afforded by careful control of monomer feed. The ability to modify thermal properties was observed by varying the co-monomer content. For example, the melting temperature (T_m) of the co-polymer decreases with increasing amounts of PCL (T_m from 95°C to 54°C).81 In 2013, Duchateau \textit{et al.} reported the co-polymerisation of PDL with small-ring lactones using aluminium salen initiators.85 The influence of initiator, kinetics and co-polymerisation were investigated. Initially, the synthesis of PCL-PPDL block co-polymers was unsuccessful due to rapid transesterification yielding random co-polymers. However, it was found that block-co-polymers were achieved by careful monitoring of monomer feed during sequential polymerisation.85

1.5.3 Synthesised Monomers

In order to enhance and improve the properties of lactide, a range of related monomers have been reported with the intention to polymerise and co-polymerise with lactide. A variety of methods are reported in the literature.

Baker \textit{et al.} reported the synthesis of various functionalised lactides. Commercially available α-hydroxy acids were selected and reacted \textit{via} three different methods.86 Method a) formation of cyclic ester occurs by acid catalysed oligomerisation of the α-hydroxy acid followed by cracking at 180°C. Method b) involves the addition of bromoacetyl bromide in the presence of triethylamine. Method c) utilises the dimerization of α-hydroxy acid in the presence of p-toluenesulfonic acid.87
The synthesised cyclic monomers were trialled for the ROP with Sn(Oct)$_2$ in the presence benzyl alcohol under solvent free conditions (130°C, 100:1:1 monomer: initiator: ROH). It was reported that with increased steric bulk of the monomer, a decrease in reactivity rate was observed.87

Alternatively, by utilizing the commercial abundance of L-lactide, Hillmyer and co-workers devised an approach to synthesise novel monomers using L-lactide as a starting material. Initially, L-lactide underwent bromination, followed by elimination to yield an alkene substituent (vinyl-LA). This could then be utilised and exploited as a potential dienophile and reacted with various cyclic dienes via a Diels-Alder reaction to afford a new tricyclic monomer on a multi-gram scale as shown below in Scheme 1.5.4.88

Various monomers were synthesised via this method (Scheme 1.5.4) enabling polymers with varying properties to be investigated. ROP of monomers was attempted using organo-catalyst TBD in the presence of benzyl alcohol with subsequent polymer properties investigated.
Trimaille and co-workers developed the synthesis of hexyl-LA as shown below from heptaldehyde (Scheme 1.5.5).37,89

\begin{center}
\includegraphics[width=\textwidth]{synthesis_hexyl-LA.png}
\end{center}

Scheme 1.5.5: Synthesis of Hexyl-LA.37

Initially, commercially available heptaldehyde was treated with sodium cyanide to afford 2-hydroxy octanoic acid. A ‘one pot, two step’ reaction was performed with the addition of 2-bromopropionyl bromide to afford a brominated intermediate.37 A cyclic monomer is afforded with the addition of a base (Et\textsubscript{3}N).

Baker and co-workers investigated the thermal properties of the AB-type polymers as shown below (Scheme 1.5.6).90
A trend in thermal properties was observed, as steric bulk of the substituent on the lactide derivative increase, the T_g increases. Furthermore, in the case of poly(Ph-LA) π-π stacking is thought to occur hence increasing the T_g further. Conversely, this trend does not suffice for alkyl chain substituents, whereby the longer the chain (increased steric bulk) the lower the glass transition temperatures. The ability to incorporate these properties into lactide co-polymers is extremely interesting, allowing polymers with tuneable properties to be synthesised.

1.6 Outlook

Recent developments in coordination chemistry of Group 4 metal complexes in the ROP of lactide and other cyclic esters have been ample and well documented. However, the ability to couple inexpensive, commercially available ligands to Group 4 metals with ROP under industrially relevant solvent-free conditions is little explored. Additionally, the ability to co-polymerise lactide with other cyclic monomers to favourably combine the properties and afford a co-polymer for a tailored purpose is of great interest and requires deeper exploration.
1.7 Research aims

Polylactide as a biodegradable polymer, has had a lot of interest as it is synthesised from bio-renewable resources and also degrades into non-toxic products. The use of PLA in biomedical applications has enabled developments in production of large-volume lactide production, thus enabling the manufacture of traditional commodity PLA materials. In order to synthesise such polymers, developments in synthesis of initiators that form well defined, stereospecific polymers with controlled molecular weights are required. Furthermore, the capability of co-polymerising polylactide with other cyclic monomers to form statistical co-polymers or block co-polymers is of great interest from a morphology and materials science point of view. From block co-polymers, stereocomplexation can be exploited to further increase thermal and mechanical properties. Statistical co-polymerisation allows the incorporation of co-monomers with different properties to be combined to form a co-polymer with finely tuned properties. The main topics covered in this thesis are;

a) The synthesis of Group 4 initiators using inexpensive, commercially available ligands for the well-defined controlled synthesis of PLA. The effect of metal and ligand stoichiometry in the synthesis of such complexes will be investigated and the interesting coordination chemistry discussed. It is proposed that these initiators will synthesise PLA with controlled architecture and controlled molecular weights.

b) The synthesis of block co-polymers of lactide with other commercially available cyclic esters to yield polymers with desired altered properties. The exploitation of stereo-controlled initiators will be investigated along with both one-pot and sequential polymerisation. Further improvements by combining enantiomerically pure PLA segments of block co-polymers will be probed to afford stereocomplexed domains with improved thermal properties.

c) Synthesis of cyclic monomers using different techniques will be investigated and the ability to synthesise alternating or random co-polymers with lactide is rare. This will be probed with a variety of different cyclic monomers with varying stoichiometries and their properties examined.
1.8 References

(49) Hancock, S. L.; Mahon, M. F.; Jones, M. D. Dalton Trans. 2011, 40, 2033–2037.

(81) Bouyahyi, M.; Pepels, M. P. F.; Heise, A.; Duchateau, R. **2012**.

Chapter 2

Group 4 Complexes as Initiators
2 Preamble

As mentioned in Chapter 1, the quest for more stereoselective and robust initiators is of great interest. Currently, commercially available Sn(Oct)$_2$ is widely used for the ROP of lactide, due to its air stability, low cost and solubility. However, polymerisation using Sn(Oct)$_2$ requires addition of a co-initiator and while the molecular weight can be controlled, stereocontrol of the resulting polymer cannot, thus yielding atactic PLA. Group 4 metal initiators are recognized to give high activity and selectivity due to their strong Lewis acid nature. Kricheldorf et al. first reported active Group 4 metal alkoxides for the ROP of various cyclic esters. In this chapter, the use of inexpensive ligands complexed to Group 4 metals will be investigated. Lactic acid (L$_1$) is an inexpensive, commercially available bidentate ligand that has the ability to form Group 4 metal complexes. Interestingly, by forming a complex, this will give an insight into the binding mode of lactide moieties to Group 4 metal initiators during the coordination insertion ring-opening polymerisation of lactide. Tulloch and co-workers reported Group 4 metals complexed to N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (L$_2$) in a 1:1 stoichiometric ratio. Ti$_2$(L$_2$_2) was synthesized by reacting L$_2$ with Ti(OiPr)$_4$ in the presence of water at 25°C, while Zr(L$_2$_2) was reportedly synthesised by reacting tetra-n-propyl zirconate in n-propyl alcohol with L$_2$ at 25°C in the presence of air. These complexes displayed a unique air and water stability whilst retaining catalytic activity and show great promise for the ring-opening polymerisation of lactide. By incorporating labile isopropoxide groups into the complex, its activity as an initiator should increase, and this will be investigated in this chapter. Ligand L$_3$, a synthesised analogue of L$_2$ with increased steric bulk, will be complexed to Group 4 metals and trialled in the ring-opening polymerisation of rac-lactide. By varying the nature of the coordinating group, the effect on the activity and stereocontrol of the polymerisation can be assessed.

A range of Group 4 complexes with such ligands were synthesised and structurally characterised (Table 2.0). The potential of the resulting complexes was initially probed for the ROP of sublimed rac-LA at both 135°C and 165°C with investigations into activity, stereocontrol and molecular weight control. The most promising initiators were trialled on a larger scale with recrystallized (non-sublimed) rac-LA and monitored in real time by FT-IR spectroscopy using a diamond composite insertion probe and compared to commercially available initiators: Ti(OiPr)$_4$, Zr(OiPr)$_4$HOiPr and Sn(Oct)$_2$.

44
Table 2.0: List of complexes synthesised in this chapter.

<table>
<thead>
<tr>
<th>Complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>OH (L₁)</td>
</tr>
<tr>
<td>HO</td>
</tr>
<tr>
<td>NH (L₂)</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>OH (L₃)</td>
</tr>
<tr>
<td>(L₄)</td>
</tr>
<tr>
<td>OH (L₅)</td>
</tr>
<tr>
<td>(L₆)</td>
</tr>
<tr>
<td>OH (L₇)</td>
</tr>
<tr>
<td>(L₈)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ti₈[dimer]₂(L₁)₄(OPr)₂₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr(L₁)₂</td>
</tr>
<tr>
<td>Ti₄(L₂)₃(OPr)₃</td>
</tr>
<tr>
<td>Zr₂(L₂)₂</td>
</tr>
<tr>
<td>Ti₄(L₅)</td>
</tr>
<tr>
<td>Hf₂(L₅)₂</td>
</tr>
<tr>
<td>Zr₂(L₅)</td>
</tr>
<tr>
<td>Hf₂(L₅)₃</td>
</tr>
</tbody>
</table>

Synthesis of complexes

2.1 Synthesis of L₁ Complexes

L-lactic acid, L₁, an inexpensive commercially available ligand, was used to study and mimic the binding mode of a growing polylactide chain from the active titanium metal centre in the ROP of lactide. The incorporation of isopropoxide groups into the complex should increase the activity of the complex for the ROP of rac-LA, whilst obviating the addition of a co-initiator. A stoichiometric reaction of L₁ with Ti(OPr)₄ afforded Ti₈[dimer]₂(L₁)₄(OPr)₂₀, 1 (Scheme 2.1.1).

```
OH
HO
O
L₁
```

```
Ti(OPr)₄
30 min, 25 °C
```

```
O
OH
L₁
```

```
Ti₈[dimer]₂(L₁)₄(OPr)₂₀
```

Scheme 2.1.1: Synthesis of Ti₈[dimer]₂(L₁)₄(OPr)₂₀, 1.

The compound obtained was characterised by ¹H NMR spectroscopy and single crystal X-ray crystallography. In the solid state, Ti₈[dimer]₂(L₁)₄(OPr)₂₀, 1, displays eight metal centres in four different environments, all of which are in a six coordinate pseudo-octahedral geometry (Figure 2.1.1).
Figure 2.1.1: Crystal structure of Ti₈[dimer]₂(L₁)₄(O'Pr)₂₀, 1, (Thermal ellipsoids for Ti and O are drawn at 30% probability level. H atoms were omitted for clarity).

The unit cell is arranged monoclinically with a primitive-type lattice. Each titanium centre formed a dimer with one bridging lactic acid and one bridging isopropoxide group. Each of these dimers are linked to two other dimers by various lactate bridges to afford a ‘tetramer of dimers’. The bond angles do not fit the true octahedral orientation of 90° and 180°, instead, four lactic acid bridging groups exhibit a bond angle distortion of < 90° due to chelation (O31-Ti7-O33 = 81°). Equally, terminal isopropoxide groups showed a bond angle distortion of > 90° due to electronic repulsion and the chelating effect of the opposing lactic acid bridge (O28-Ti6-O29 = 96°). The M-O bond lengths of the titanium metal centres to the bridging isopropoxide groups are elongated (> 1.8 Å) due to their bridging properties and also due to steric hindrance around the metal centre (Ti4-O15 = 1.96 Å). The titanium-isopropoxide bond lengths also differ throughout the structure due to the differing steric environments afforded by the lactic acid ligands around the metal centre.

Interestingly the ligand, L₁, has been esterified in situ forming a dimer that is incorporated into the complex (Scheme 2.1.2). The structure can be thought of as a partial representation of the coordination displayed by propagating lactide with the active Ti metal centre. A simplified drawing of 1 is shown below (Figure 2.1.2).
A simplified drawing of 1 (Figure 2.1.2) illustrates the connectivity of the differing titanium metal centres. In the solid state, Ti8 is connected to Ti5 and Ti6 by a lactic acid dimer bridge (Figure 2.1.2 (purple)). The dimer is linked to Ti8 through a bidentate chelate of O38, an α-hydroxyl group (C76-O38 = 1.413 Å), and a carboxylic group (O37) forming a stable 5-membered ring. Formation of such ring conformation stability has been observed by Nakamura et al. for the synthesis of water soluble diammonium tris(2-hydroxyproionato)titanate with a Ti:L1 ratio of 1:3. An observed shortening of bond lengths C76-O37 and C78-O42 of 1.215 Å and 1.336 Å respectively is due to delocalised electrons of the carbonyl moiety. Interestingly, the dimer is linked to Ti5 and Ti6 by a carboxylate bridge, here, similar shortened C-O bond lengths (C61-O27 = 1.245 Å and C61-O24 = 1.265 Å) are observed in accordance with delocalised electrons across the carboxylate bridge. Meyer et al. demonstrated comparable characteristics of delocalised electrons over a carboxylate bridging in dizinc complexes. Ti5 and Ti6 are μ2-bridged by both an isopropoxide group and an L1 ligand which also μ2-bridges Ti6 and Ti7. Again, a shortening of interatomic distances, C51-O30 (1.296 Å) and C51-O31 (1.264 Å), is indicative of a delocalised carboxylate. Ti5 is linked by the delocalised carbonyl (C36-O21 = 1.238 Å) of L1 to Ti3 and Ti4 by O16 and O20. Ti7 and Ti8 are μ2-bridged by an isopropoxide group and a L1 (O33 and O34) which is connected to Ti1 by O1 of L1.
The proton NMR spectrum shown below (Figure 2.1.3), was consistent with the single crystal X-ray crystallographic structure obtained of 1 (Figure 2.1.3).

![Proton NMR spectrum](image)

Figure 2.1.3: 1H NMR spectrum of Ti$_8$[dimer]$_3$(L$_1$)$_4$(O$_2$Pr)$_{20}$, 1, in CDCl$_3$ at 298K (* denotes residual solvent peak of hexane).

In Figure 2.1.3, broad peaks are observed for 1 indicating protons may be fluctuating in solution. The integrals are consistent with the crystal structure of 1, with the broad peak at 5.27-4.70 ppm attributing to methine protons of the isopropoxide moiety. Peaks at 4.51 and 4.21-3.90 ppm correspond to methine protons of L$_1$ and dimer. All methyl protons are accounted for in the broad multiplet of 1.41-1.10 ppm. A residual solvent peak (hexane) was observed at 0.88 ppm.

The reaction was repeated using Zr(O$_2$Pr)$_4$.HO$_2$Pr and Hf(O$_2$Pr)$_4$.HO$_2$Pr instead of Ti(O$_2$Pr)$_4$. However, both reactions yielded products that were insoluble in all common solvents (hexane, Tol, AcOEt, EtOH, CH$_2$Cl$_2$, THF, AcN, CHCl$_3$). Elemental analysis was inconclusive as the results were not consistent with a valid ligand:metal ratio. An alternative method using tetrakis(dimethylamido)zirconium yielded 2 that again, was insoluble in all common solvents (Scheme 2.1.3).
Commercially available zirconium lactate displays a Zr:L ratio of 1:4. In our case however, the elemental analysis of the insoluble product \(2\) using tetrakis(dimethylamido)zirconium was consistent with the calculated results of \(\text{Zr}(\text{L}_1)_2\) complex (Anal: Calc C: 26.96 %, H: 3.02 %. Found C: 26.87 %; H: 3.15 %). This is consistent with the empirical formula of \(\text{C}_6\text{H}_8\text{O}_6\text{Zr}\) whereby a ratio of 1:2 zirconium metal centre to \(\text{L}_1\) ligand was observed (Scheme 2.1.3).

2.2 Synthesis of \(\text{L}_2\) Complexes

\(\text{N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine, L}_2\), is an inexpensive, benign and commercially available ligand similar to EDTA exhibiting hexadentate chelating properties. Verkade and co-workers first reported monomeric and dimeric titanatranes as initiators in the ROP of lactide.\(^{17,18}\) As discussed previously, Tulloch and co-workers complexed Group 4 metals to \(\text{L}_2\) in a 1:1 stoichiometric ratio. Tulloch et al. reported \(\text{Ti(O}^\text{iPr})_4\) was complexed to \(\text{L}_2\) in the presence of water at \(25^\circ\)C to afford \(\text{Ti}_2(\text{L}_2)_2\), whilst \(\text{Zr}(\text{L}_2)_2\) was reportedly synthesised by reacting tetra-\(n\)-propyl zirconate in \(n\)-propyl alcohol with \(\text{L}_2\) at \(25^\circ\)C in the presence of air. These complexes displayed a unique air and water stability whilst retaining catalytic activity.\(^{14}\) A series of novel complexes were synthesised by the reaction of ligand \(\text{L}_2\) with \(\text{Ti(O}^\text{iPr})_4\), \(\text{Zr(O}^\text{iPr})_4\text{HO}^\text{iPr}\) and \(\text{Hf(O}^\text{iPr})_4\text{HO}^\text{iPr}\) to give a collection of well-defined complexes with varying amount of labile isopropoxide groups as summarised Scheme 2.2.1. All were characterized by NMR spectroscopy, elemental analysis and single X-ray diffraction.\(^{19}\)
Scheme 2.2.1 Synthesis of Group 4 \({\text{L}}_2 \) complexes (\(M = \text{Zr} / \text{Hf} \), structures 5/6 and 7/8 respectively) under inert conditions, in toluene at 25°C.

Initially, under inert conditions, the reaction of \(\text{L}_2 \) and \(\text{Ti(O}^\text{iPr})_4 \) in 1:1 stoichiometric amounts in toluene at 25°C was expected to yield dimeric complex \(\text{Ti}_2(\text{L}_2)_2 \) as reported by Tulloch and co-workers. However, \(\text{Ti}_3(\text{L}_2)_3(\text{O}^\text{iPr})_3 \), 3, was isolated as the only product due to differing synthetic procedures. The reaction was repeated under the correct 4:3 stoichiometry and the product was fully characterized (Figure 2.2.1).
In the solid state, Ti₄(L₂)₃(O⁻iPr)₄, 3, exhibits a triclinic crystal system with space group consisting of a primitive-type lattice. Complex 3 consists of four Ti metal centres interestingly, in two different environments; two metal centres lie in a 6 coordinate environment bridged by a ligand (Ti(1)), and two terminal metal centres (Ti(2)) in a 7 coordinate environment (Figure 2.2.1). Ti(2) possesses a distorted octahedral geometry with two mutually \textit{cis} N atoms and isopropoxide groups.

In order to increase the number of isopropoxide groups within the complex a similar reaction of Ti(O⁻iPr)₄ and L₂ with 4:1 stoichiometry yielded Ti₄(L₂)(O⁻iPr)₁₂, 4. The proton NMR spectrum was consistent with the presence of twelve isopropoxide groups per L₂ ligand.
Inspection of the structural parameters revealed similar to 3, the unit cell displayed triclinic motif with space group consisting of primitive-type lattice. Complex 4 exhibits two metal centres (Ti(2)) which lie in a 6 coordinate environment bridged by a ligand (L₂). The bond angles at Ti(2) suggest pseudo-octahedral geometry, which was consistent with that of Ti(2) in Ti₄(L₂)₃(O'Pr)₄. Two terminal metal centres (Ti(1)) lie in a 5 coordinate orientation, both surrounded by labile isopropoxide groups. The bond angles of Ti(1) imply a distorted trigonal bipyramidal geometry.

In contrast, initial reactions of Zr(OiPr)₄HO'iPr and Hf(OiPr)₄HO'iPr (instead of Ti(OiPr)₄) with L₂ in 1:1 stoichiometric amounts yielded Zr₂(L₂)₂, 5, and Hf₂(L₂)₂, 6, respectively as reported by Tulloch et al via a modified synthesis.¹⁴
Although the structure can still be elucidated by single crystal X-ray crystallography, the crystals diffracted weakly resulting in a disordered poor quality structure. In the solid state, the acquired structure of 5 suggests that both metal centres lie in 7 coordinate environment encapsulated by the chelating ligand. Both complexes exhibit a monoclinic system with base centring Bravais lattice. The ligand geometry around the metal centres favours mutually cis N atoms. Due to the chelating nature of the ligand the 1H NMR spectrum was consistent with the replacement of all isopropoxide groups (Figure 2.2.4).

Variable temperature NMR (VT-NMR) spectroscopy was undertaken of Zr$_2$(L$_2$)$_2$, 5, to achieve a higher resolution of spectra. Figure 2.2.4, a proton NMR spectrum at low temperature (at 223K), displayed distinguishable peaks that were consistent with crystal structure (Figure 2.2.3). Although individual proton splitting could not be accounted for, peaks from 4.66 ppm to 3.98 ppm were seen to be attributed to R1CH$_2$OR2 (16 protons) and peaks from 3.61 ppm to 2.65 ppm corresponded to R3NH$_2$R4 (24 protons).
The reaction of Zr(OiPr\textsubscript{4})\textsubscript{4}HOiPr and L\textsubscript{2} in a 2:1 stoichiometry afforded Zr\textsubscript{3}(L\textsubscript{2})(OiPr\textsubscript{8}, 7, as the isolated product. The reaction was repeated under the correct stoichiometry of 3:1 and upon recrystallization gave colourless crystals. Although the structure can still be elucidated, the crystals diffracted weakly resulting in a disordered poor quality structure (Figure 2.2.5).

Figure 2.2.5: X-ray crystal structure of Zr\textsubscript{3}(L\textsubscript{2})(OiPr\textsubscript{8}, 7 (Thermal ellipsoids are drawn at 30% probability level. H atoms were omitted for clarity).

In the solid state, two metal centres (Zr(1) and Zr(3)) exhibit 6-coordinate geometry whilst Zr(2) displays an 8-coordinate geometry due to the chelating nature of the ligand. The proton spectrum, was consistent with the replacement of four isopropoxide groups with the ligand L\textsubscript{2} (Figure 2.2.6).
The complex proton spectrum of Zr₃(L₂)(OiPr)$_8$, 7, was assigned with the additional use of HMQC and COSY NMR spectroscopy techniques. The bridging isopropoxide CH moiety was displayed as a septet at 4.67 ppm. The remaining terminal isopropoxide CH moieties (4.32 ppm – 4.24 ppm) were hidden under various O-CH$_2$ multiplets at 4.36 – 4.03 ppm. A triplet of doublet (td) is observed at 3.68 ppm and a double doublet of doublets (ddd) at 3.26-3.13 ppm due to AA’BB’ splitting. H$_A$ is observed as td as H$_A$ is first split by H$_A'$ forming a doublet ($^2J_{HH}$ geminal coupling). Further splitting (2-fold) where H$_A$ is split by H$_B$ and H$_B'$ on the opposing carbon ($^3J_{HH}$ vicinal coupling). Multiplets are observed for the remaining CH$_2$ groups, while CH$_3$ isopropoxide groups are observed as doublets.

Under the same conditions, Hf(OiPr)$_4$HOiPr was reacted with L$_2$ in a 3:1 stoichiometry yielded analogous complex, Hf$_3$(L$_2$)(OiPr)$_8$, 8, (Figure 2.2.7).
Figure 2.2.7: X-ray crystal structure of Hf₃(L₂)(ŌPr)₈, 8 (Thermal ellipsoids are drawn at 50% probability level. H atoms were omitted for clarity).

In the solid state, the adduct 8 consists of three metal centres bound to one ligand. Again, two metal centres lie in a 6 coordinate environment (Hf(1) and Hf(3)) adopting a pseudo-octahedral geometry, one central metal centre (Hf(2)) lies in an 8 coordinate environment. The M-O bond lengths are similar in both 7 and 8 however, there is a shortening of the M-N bond length on moving from zirconium to hafnium. This shortening is indicative of the lanthanide contraction whereby, hafnium has a slightly smaller atomic radii than zirconium. The lanthanide contraction describes the shielding effect of inner electrons (4f) on outer shell electrons (6s) from the nuclear charge (Z). Electrons in the 4f orbital exhibit poor shielding properties and do not compensate for the increase in Z leading to a lower atomic radius than expected.⁴

In summary, all Ti, Zr and Hf complexes originate from the Group 4 metal isopropoxide and as the amount of ligand in a complex increases so does the coordination number around the metal centre. Ti₄(L₂)(ŌPr)₁₂ 4, and Ti₄(L₂₃)(ŌPr)₄ 3, have an increased number of isopropoxide groups within their complex and can be thought of as isolated successive intermediates between the starting material Ti(ŌPr)₄ and the coordinately saturated Ti₂(L₂)₂. Again, Zr₃(L₂)(ŌPr)₇ 7, and Hf₃(L₂)(ŌPr)₈ 8, can be thought of as intermediates which were formerly M(ŌPr)₄.HŌPr and further addition of ligand leads to the loss of all remaining isopropoxide groups yielding the common structure M₂(L₂)₂ (Scheme 2.2.2).
2.3 Synthesis of \(\text{L}_3 \) Complexes

Gibson et al. demonstrated a general trend whereby increasing the steric bulk of phenoxy salen complexes in turn increased stereocontrol.20 Attempts to enhance microstructural stereocontrol of Group 4 \(\text{L}_2 \) complexes with the incorporation of bulky di-substituted phenol moieties onto the \(\text{L}_2 \)-type backbone were undertaken. The ligands were synthesised \textit{via} Mannich condensation as shown in Scheme 2.3.1.
Initially, the synthesis of 2,4-dimethylaminetrisphenolate (a methyl substituted analogue ligand of L_3, R=Me in Scheme 2.3.1) was attempted by the reaction of 2-[2-aminoethyl]amino] ethanol (1 eq.) in the presence of aqueous formaldehyde (3 eq.) followed by addition of 2,4-dimethylphenol (3 eq.) and stirred at 100°C in toluene for 3 days. The 1H NMR spectrum illustrated the formation of numerous ill-defined products. Attempts to purify by recrystallization and column chromatography using various solvent systems failed to separate multiple observed products and the ligand was discarded.

2,4-di-tertbutyl diaminetrisphenolate ligand, L_3, was synthesised in an analogous method as above using 2,4-di-tert-butylphenol instead of 2,4-dimethylphenol. The crude product was purified by column chromatography (eluent hexane:ethyl acetate 9:1) to afford L_3. Mass spectrometry ([M+H]$^+$: 781.58) and 1H NMR spectrum were consistent with three di-tert-butyl phenol moieties (Figure 2.3.1).
In the 1H NMR spectrum, singlets were observed for all $R^1\text{NCH}_2\text{Ar}$ protons in the NMR spectrum, as they were seen to be in the same environment (3.67 ppm). The same is true for $R^2\text{NCH}_2\text{CH}_2\text{NR}^4$ protons where all four protons are in similar environments (2.78 ppm). The ethanol moiety however, shows two triplets for $\text{NCH}_3\text{CH}_2\text{OH}$ protons (2.56 ppm and 3.61 ppm respectively) due to $^3J_{HH}$ vicinal coupling. All aromatic protons appear as doublets with a $^4J_{HH}$-coupling of 2.4 Hz due to allylic ‘w-coupling’.

L_3 was reacted with Ti(OiPr)$_4$ in a 1:1 stoichiometric reaction to yield the proposed structure of Ti$_2$(L$_3$)$_2$, 9 (Scheme 2.3.2).
Scheme 2.3.2: Synthesis and schematically proposed structure of Ti$_2$(L$_3$)$_2$, 9 (chelating ligand moiety (green), bridging aliphatic alcohol (red)).

Although the complex was recrystallized, needle-type crystals formed which were unsuitable for single crystal X-ray crystallography. Elemental analysis was consistent with an empirical formula of C$_{49}$H$_{74}$N$_2$O$_4$Ti (Anal: Calc. C: 73.29 %, H: 9.29 %, N: 3.49 %. Found C: 72.75 %, H: 9.22 %, N: 3.72 %). As the ligand L$_3$ is an analogue of L$_2$ with increased steric bulk, it is suggested that the most stable structure was formed consisting of two titanium metal centres with two ligands (Ti$_2$(L$_3$)$_2$, 9) an analogue of Ti$_2$(L$_2$)$_2$. It is proposed that the aliphatic alcohol pendant arm of L$_3$ may form a μ^2-bridge between the two titanium metal centres due to steric effects (Scheme 2.3.2). Characterisation by 1H NMR and 13C{H} NMR spectroscopy were consistent with a 1:1 Ti:ligand ratio (Figure 2.3.2).

Figure 2.3.2: 1H NMR spectrum of ligand TiL$_3$, 9, in CDCl$_3$ at 298K.
In solution, all aromatic protons of \(\text{TiL}_3 \) are inequivalent and appear as doublets with \(^4J_{\text{HH}}\) coupling of \(\sim 2.1 \) Hz. Although many of the \(\text{R}^3\text{NCH}_2 \) moieties displayed are overlapping, some doublets can be distinguished with \(^2J_{\text{HH}}\) geminal coupling of \(\sim 13.0 \) Hz corresponding to inequivalent protons adjacent to the aromatic moiety. The remaining \(\text{R}^3\text{NCH}_2 \) multiplets experience both \(^2J_{\text{HH}}\) geminal and \(^3J_{\text{HH}}\) vicinal coupling. The overlapping \(\text{R}^2\text{CH}_2\text{O} \) multiplet at \(3.64 - 3.54 \) ppm was deduced with the aid of COSY spectroscopy. The \(\text{tBu} \) residues were observed as singlets due to the protons being equivalent.

The reaction was repeated using \(\text{Zr(OiPr)}_4 \text{HOiPr} \) and \(\text{Hf(OiPr)}_4 \text{HOiPr} \) instead of \(\text{Ti(OiPr)}_4 \); however, both reactions yielded products that were insoluble in all common solvents. An alternative method using tetrakis(dimethylamido)zirconium instead of zirconium isopropoxide with \(\text{L}_3 \) was trialled under the same conditions. However, the reaction again yielded a product that was insoluble in all common solvents and the reactions were discarded.

Group 4 complexes as initiators in the solvent-free ROP of rac-LA

2.4 Solvent-free ROP of rac-LA at 135°C

The Group 4 initiators discussed in this chapter, were investigated for their ability as initiators in the ROP of sublimed rac-LA. As discussed in Chapter 1, monomer conversions were determined by NMR spectroscopy due to a distinct downfield shift in the methine region for the polymer methines being observed compared to the monomer methine protons. The tacticity of the polymers were established by homonuclear decoupling of the methine moiety from the methane region revealing distinct differing tetrads. Molecular weights were verified by GPC (calibrated with polystyrene standards, in THF, 35 °C, 1.0 ml/min).

Polymerisations of sublimed rac-LA, using initiators 1 to 9 were initially screened under solvent-free conditions at 135°C with a 300:1 monomer to monomeric initiator ratio. For initiators with no labile isopropoxide groups (\(\text{Zr}_2(\text{L}_2)_2 \), \(\text{Hf}_2(\text{L}_2)_2 \), and \(\text{Ti}_2(\text{L}_3)_2 \)), one equivalent of benzyl alcohol was added as a co-initiator. Aliquots were take every hour for 4 h, again at 24 h and conversion determined by \(^1\text{H} \) NMR spectroscopy (Figure 2.4.1).
Figure 2.4.1: Reaction rate of lactide to PLA conversion in the solvent-free polymerisations of sublimed rac-LA at 135°C, 300:1 monomer to monomeric initiator ratio using initiators 1-8 and Ti(O’Pr)₄.

At 135°C, Ti₈[dimer]₂(L₁)₄(O’Pr)₂₀ 1 showed reasonable activity with 32% conversion of monomer in 1 h whilst Zr(L₁)₂ 2 demonstrated moderate activity at 135°C with 48% conversion of lactide in 4 h. The initiators with no isopropoxide groups (Zr₂(L₂)₂ 5, and Hf₂(L₂)₂ 6) were the least active converting less than 10% in 1 h whilst Ti₄(L₁)₂ 9 was completely inactive. 5 and 6, the most stable initiators in the series, exhibit strong bonds to the chelating ligand reducing the accessibility of the metal centre to the approaching lactide monomer. This is also demonstrated by an increase in activity with increased isopropoxide groups (Zr₃(L₂)(O’Pr)₆ 7, and Hf₃(L₂)(O’Pr)₈ 8). A similar increase in activity is observed between Ti₄(L₂)₃(O’Pr)₄ 3, and Ti₄(L₂)(O’Pr)₁₂ 4. The most active initiators, 4 and 7 showed good activity yielding over 80% conversion to PLA in 4 h. At 135°C, kinetic data illustrates the metal is of less importance than the number of isopropoxide groups present in the initiator. Multiple initiation sites on the metal centre of the complex may have occurred, or the ligand may have initiated polymerisation potentially leading to branched or star-shaped polymers. Under the same conditions, commercially available Ti(O’Pr)₄ and Zr(O’Pr)₄(HO’Pr) were trialled for the ROP of rac-LA.
Although Ti(O’Pr)₄ converted over 50% in 1 h, Zr(O’Pr)₄(HO’Pr) was unreactive. The reactions were terminated by addition of methanol at 24 h, and the resulting polymers were analysed (Table 2.4.1).

Table 2.4.1: Solvent-free polymerisations of lactide at 135°C (300:1 monomer to monomeric initiator ratio).

<table>
<thead>
<tr>
<th>Initiator</th>
<th>T (°C)</th>
<th>Time (h)</th>
<th>Conv. (%)</th>
<th>Mₙ (kg.mol⁻¹)</th>
<th>Mₙ, theo (kg.mol⁻¹)</th>
<th>PDI</th>
<th>Pᵣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti₈[dimer]₂(L₄)₄(O’Pr)₂₀</td>
<td>135</td>
<td>24</td>
<td>88</td>
<td>5.2</td>
<td>38.1</td>
<td>1.47</td>
<td>0.54</td>
</tr>
<tr>
<td>Zr(L₁)₂</td>
<td>2</td>
<td>135</td>
<td>24</td>
<td>93</td>
<td>4.8</td>
<td>40.3</td>
<td>1.22</td>
</tr>
<tr>
<td>Ti₄(L₂)₃(O’Pr)₄</td>
<td>3</td>
<td>135</td>
<td>24</td>
<td>90</td>
<td>7.0</td>
<td>38.9</td>
<td>1.43</td>
</tr>
<tr>
<td>Ti₄(L₂)(O’Pr)₁₂</td>
<td>4</td>
<td>135</td>
<td>24</td>
<td>92</td>
<td>7.2</td>
<td>39.8</td>
<td>1.49</td>
</tr>
<tr>
<td>Zr₂(L₂)²*</td>
<td>5</td>
<td>135</td>
<td>24</td>
<td>78</td>
<td>2.6</td>
<td>33.8</td>
<td>1.53</td>
</tr>
<tr>
<td>Hf₂(L₂)²*</td>
<td>6</td>
<td>135</td>
<td>24</td>
<td>64</td>
<td>2.1</td>
<td>27.7</td>
<td>1.62</td>
</tr>
<tr>
<td>Zr₃(L₂)(O’Pr)₈</td>
<td>7</td>
<td>135</td>
<td>24</td>
<td>93</td>
<td>4.2</td>
<td>40.3</td>
<td>1.41</td>
</tr>
<tr>
<td>Hf₂(L₂)(O’Pr)₈</td>
<td>8</td>
<td>135</td>
<td>24</td>
<td>81</td>
<td>12.2</td>
<td>35.1</td>
<td>1.34</td>
</tr>
<tr>
<td>Ti₂(L₃)²*</td>
<td>9</td>
<td>135</td>
<td>34</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ti(O’Pr)₄</td>
<td></td>
<td>135</td>
<td>24</td>
<td>93</td>
<td>11.8</td>
<td>40.3</td>
<td>1.27</td>
</tr>
<tr>
<td>Zr(O’Pr)₄(HO’Pr)</td>
<td></td>
<td>135</td>
<td>24</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Addition of benzyl alcohol (1 equiv.) as co-initiator.

All polymerisations gave atactic PLA with Pᵣ’s of 0.49 to 0.54. Ti₈[dimer]₂(L₄)₄(O’Pr)₂₀ 1 showed moderate activity converting 88% in 24 h with an observed $Mₙ$ of 5.2 kg.mol⁻¹, a much lower $Mₙ$ than theoretically calculated of 38.1 kg.mol⁻¹ assuming that one initiator complex initiates one polymer chain. As previously discussed in this chapter, there are 20 isopropoxide groups within the structure of the initiator and the vast number of labile isopropoxide groups could account for the low $Mₙ$. Multiple polymer chains may have grown from each metal centre and formed many shorter chained polymers. Zr(L₁)₂ 2 converted 90% in 24 h with a $Mₙ$ of 4.8 kg.mol⁻¹. All Group 4 L₂ complexes controlled polymerisations were observed for all initiators with PDI’s ranging from 1.34 to 1.62. 4 and 7 were the most active converting over 90% in 24 h with 8 affording the highest $Mₙ$ (12.2 kg.mol⁻¹). Again, $Mₙ$ values are much lower than expected (35.1 kg.mol⁻¹), this may be due to the vast number of isopropoxide initiator groups. Commercially available Ti(O’Pr)₄ showed high activity (93% in 24 h), however, exhibited low molecular weight control ($Mₙ$ 11.8 kg.mol⁻¹) whilst Zr(O’Pr)₄(HO’Pr) was inactive.
In order to investigate the effect of co-initiator using Hf$_2$(L$_2$)$_2$ 6 on molecular weight control, ROP of sublimed rac-LA was trialled using 6 with varying equivalents of benzyl alcohol at 135°C, and the resulting polymers analysed (Table 2.4.2).

Table 2.4.2: Solvent-free polymerisations of rac-LA using Hf$_2$(L$_2$)$_2$, 6, at 135°C.

<table>
<thead>
<tr>
<th>Co-initiator (Benzyl alcohol)</th>
<th>T (°C)</th>
<th>Time (h)</th>
<th>Conv. (%)</th>
<th>M_n (kg.mol$^{-1}$)</th>
<th>M_n, theo (kg.mol$^{-1}$)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq.</td>
<td>135</td>
<td>24</td>
<td>53</td>
<td>5.9</td>
<td>11.5</td>
<td>1.35</td>
</tr>
<tr>
<td>4 eq.</td>
<td>135</td>
<td>24</td>
<td>49</td>
<td>4.8</td>
<td>5.4</td>
<td>1.40</td>
</tr>
<tr>
<td>10 eq.</td>
<td>135</td>
<td>24</td>
<td>48</td>
<td>1.3</td>
<td>2.1</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Although the observed M_n is not comparable to previous experiments possibly due to monomer batch variation or inconsistencies of GPC traces at low molecular weights, the results in Table 2.4.2 are comparable to each other. As expected, as the quantity of co-initiator (benzyl alcohol) was increased from 2 eq. to 10 eq., a reduction in M_n of 5.9 to 1.3 kg.mol$^{-1}$ respectively was observed. A higher amount of smaller chain-length polymers were generated. This confirms that the amount of co-initiator within the system influences the molecular weights of the resulting polymer.

Matrix assisted laser desorption and time of flight mass spectrometry (MALDI-ToF/MS) analysis of polymers can be used to determine end groups, repeat units within the polymer chain and examine molecular weight distributions, as discussed in Chapter 1. Polymers using Ti$_4$(L$_2$)(OiPr)$_4$ 3, Ti$_4$(L$_2$)(OiPr)$_{12}$ 4, and Zr$_3$(L$_2$)(OiPr)$_8$ 7, initiators at 135°C were characterised by MALDI-ToF as shown in Figure 2.4.2.

![Figure 2.4.2: MALDI-ToF of PLA synthesised using Zr$_3$(L$_2$)(OiPr)$_8$, 7, at 135°C.](image-url)
The major series for 3, 4 and 7, however, could not be identified and may be due to an alternative polymerisation route via ligand fragmentation. All possibilities of cyclic, fragmented and alternative end groups were investigated, none of which fitted the trend (Figure 2.4.2). The MS revealed a repeat unit of 72.1 Da in both series, which is indicative of the occurrence of transesterification.

In order to examine the active species within the reaction, VT-NMR spectroscopy was performed on Ti₄(L₂)(OiPr)₁₂ 4, at 135°C in d₁₀ o-xylene (Figure 2.4.3).

![Figure 2.4.3: 1H NMR spectra of Ti₄(L₂)(OiPr)₁₂ 4, at 25°C: a) after it was heated to 135 °C; b) without heating, in o-xylene d₁₀.](image)

The initiator, 4, was heated to 135°C and monitored by ¹H NMR spectroscopy at 10°C intervals. It was observed that there were no significant differences between spectra taken at 25°C before heating and the spectrum at 25°C after heating to 135°C. This indicates that the catalyst survives these high temperature reaction conditions.

2.5 Solvent-free ROP of rac-LA at 165°C

Polymerisations of sublimed rac-LA, using initiators 1 to 9 were screened under solvent-free conditions at an elevated temperature of 165 °C with a 300:1 monomer to initiator ratio. Again, for initiators with no labile isopropoxide groups (Zr₂(L₂)₂ 5, Hf₂(L₂)₂ 6, and Ti₂(L₃)₂ 9), one equivalent of benzyl alcohol was added as a co-initiator. Aliquots were take every hour for 4 h, again at 24 h and conversion determined by ¹H NMR spectroscopy (Figure 2.5.1).
At 165°C, Ti₈[dimer]₄(L₄)(OPr)₂₀ 1 and Zr(L₄)₂ 2 showed an increased activity with increased temperature with 55% and 57% conversion of monomer respectively in 1 h. All Group 4 L₂ initiators displayed a significant increase in activity converting over 90% in 4 h compared to polymerisations performed 135°C. The relative activity does not appear to be associated with either the identity of the metal centre or the number of isopropoxide groups. At this elevated temperature the initiators may be degrading forming an inactive species that is similar in each initiator. This is further supported later in this chapter whereby an induction period is observed for 4 using FT-IR spectroscopy to monitor the reaction. Ti₃(L₄)₉ 9, was again inactive at 165°C. Commercially available Ti(OiPr)₄ and Zr(OiPr)₄(HOiPr) were also tested at 165°C. Ti(OiPr)₄ was comparable to 4 converting 92% in 4 h, Zr(OiPr)₄(HOiPr) however, showed poor activity only converting 12% to polymer in 4 h. GPC measurements are shown below (Table 2.5.1).
Table 2.5.1: Solvent-free polymerisations of lactide at 165°C (300:1 monomer to monomeric initiator).

<table>
<thead>
<tr>
<th>Initiator</th>
<th>T (°C)</th>
<th>Time (h)</th>
<th>Conv. (%)</th>
<th>M_n (kg.mol$^{-1}$)</th>
<th>M_n,theo (kg.mol$^{-1}$)</th>
<th>PDI</th>
<th>P_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_8$[dimer]$_2$(L$_4$)4(OiPr)${20}$ 1</td>
<td>165</td>
<td>24</td>
<td>91</td>
<td>1.1</td>
<td>39.4</td>
<td>1.34</td>
<td>0.52</td>
</tr>
<tr>
<td>Zr(L$_1$)$_2$ 2</td>
<td>165</td>
<td>24</td>
<td>92</td>
<td>7.0</td>
<td>39.8</td>
<td>1.43</td>
<td>0.50</td>
</tr>
<tr>
<td>Ti$_4$(L$_2$)$_4$(OiPr)$_4$ 3</td>
<td>165</td>
<td>24</td>
<td>96</td>
<td>6.0</td>
<td>41.5</td>
<td>1.60</td>
<td>0.55</td>
</tr>
<tr>
<td>Ti$_4$(L2)(OiPr)${12}$ 4</td>
<td>165</td>
<td>24</td>
<td>92</td>
<td>4.8</td>
<td>39.8</td>
<td>1.79</td>
<td>0.49</td>
</tr>
<tr>
<td>Zr$_2$(L$_2$)$_2$* 5</td>
<td>165</td>
<td>24</td>
<td>97</td>
<td>5.4</td>
<td>41.9</td>
<td>1.65</td>
<td>0.54</td>
</tr>
<tr>
<td>Hf$_2$(L$_2$)$_2$* 6</td>
<td>165</td>
<td>24</td>
<td>94</td>
<td>2.1</td>
<td>40.7</td>
<td>2.07</td>
<td>0.49</td>
</tr>
<tr>
<td>Zr$_2$(L$_2$)(OiPr)$_8$ 7</td>
<td>165</td>
<td>24</td>
<td>96</td>
<td>5.9</td>
<td>41.5</td>
<td>1.49</td>
<td>0.59</td>
</tr>
<tr>
<td>Hf$_2$(L$_2$)(OiPr)$_8$ 8</td>
<td>165</td>
<td>24</td>
<td>97</td>
<td>17.5</td>
<td>41.9</td>
<td>1.42</td>
<td>0.49</td>
</tr>
<tr>
<td>Ti$_2$(L$_3$)$_2$* 9</td>
<td>165</td>
<td>24</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ti(OiPr)$_4$</td>
<td>165</td>
<td>24</td>
<td>95</td>
<td>13.2</td>
<td>41.1</td>
<td>1.41</td>
<td>0.49</td>
</tr>
<tr>
<td>Zr(OiPr)$_4$(HOiPr)</td>
<td>165</td>
<td>24</td>
<td>24</td>
<td>0.6</td>
<td>10.4</td>
<td>1.07</td>
<td>0.51</td>
</tr>
</tbody>
</table>

* Addition of benzyl alcohol (1 equiv.) as co-initiator.

At 165°C, all polymerisations yielded atactic PLA. The M_n of 1 was further lowered (1.1 kg.mol$^{-1}$) at this elevated temperature, this is indicative of an increased level of transesterification at a higher temperature. Zr(L$_2$)$_2$ gave over 90% conversion of monomer after 24 h with M_n of 5.4 kg.mol$^{-1}$, a distinctly larger M_n, although still lower than expected. Group 4 L$_2$ initiators gave atactic PLA with 7 exhibiting a slight heterotactic bias with a P_r of 0.59. Increased levels of transesterification were observed due to lower M_n than expected (43.0 kg.mol$^{-1}$) with further evidence of this phenomenon given by an increase in PDI with increase temperature. Markedly low M_n’s could also be indicative of branched polymers possibly being produced. Further characterization was necessary in order to test this hypothesis and determine the structural architecture of the polymers. The Mark-Houwink plots of polymers prepared using 4 and 8 at 165°C, and 3 at 135°C (Table 2.5.2) were generated using an absolute GPC with light scattering, concentration and viscosity detectors.
Table 2.5.2: GPC viscometry measurements.

<table>
<thead>
<tr>
<th>Sample</th>
<th>IV (dl/g)</th>
<th>MH a</th>
<th>MH log K</th>
<th>g' 1</th>
<th>B_n^{2}</th>
<th>λ^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_4$(L$_2$)$_3$(O†Pr)$_4$ 3</td>
<td>0.14</td>
<td>0.78</td>
<td>-3.82</td>
<td>0.66</td>
<td>2.49</td>
<td>18.2</td>
</tr>
<tr>
<td>(135°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf$_3$(L$_2$)(O†Pr)$_8$ 8</td>
<td>0.23</td>
<td>0.90</td>
<td>-4.33</td>
<td>0.79</td>
<td>1.54</td>
<td>11.1</td>
</tr>
<tr>
<td>(165°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti$_4$(L2)(O†Pr)${12}$ 4</td>
<td>0.13</td>
<td>0.33</td>
<td>-2.12</td>
<td>0.66</td>
<td>2.99</td>
<td>24.3</td>
</tr>
<tr>
<td>(165 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$g': g' = IV_{branched} / IV_{linear}$, When g' equals 1 the sample is linear.

B_n: The absolute number of branches in a sample compared to a linear sample.

λ : Lambda, the absolute number of branches compared to a linear sample per repeat unit.

Branched polymers are more compact than linear polymers at equal molecular weights and thus display a smaller hydrodynamic volume. A comparison of branched polymers relative to linear polymers (control) with similar molecular weights is given as g'. The results are typical for branched polymers ($g' < 1$), tentatively suggesting branching to some extent is present in the resulting polymers (Table 2.5.2). This may be due to a degree of incorporation of the ligand into the polymer structure. Alternatively, transesterification may be promoted by another metal centre in the initiator. In this case, further investigations are required to prove branching of polymers occurred.

2.6 In situ Fourier Transform Infra-Red Spectroscopy (FT-IR)

To achieve a better understanding of ROP of lactide at 165°C, an initiator was trialled under more industrially relevant conditions. At 165°C, all initiators screened demonstrated similar activity and Ti$_4$(L$_2$)(O†Pr)$_{12}$ 4, was selected for further investigation to deduce its viability as a replacement for Sn(Oct)$_2$. To mimic industrial conditions on a larger scale, non-sublimed rac-LA (35 g) was polymerized at 165°C with a much lower catalytic loading of 5000:1. The polymerisation kinetics were monitored by in situ FT-IR under a positive flow of argon in a jacketed vessel with a mechanical stirrer. The C-O-C asymmetric vibration of the monomer (1240 cm$^{-1}$) was integrated linearly from the baseline and monitored throughout the reaction to assess the depletion of monomer. Simultaneously, the C-O-C asymmetric vibration of the polymer (1185 cm$^{-1}$) was monitored to assess the relative concentration of the growing PLA polymer (Figure 2.6.1).
Figure 2.6.1: a) 3D time resolved FT-IR spectra, b) 2D time resolved FT-IR spectra of the polymerisation of rac-lactide with Ti₄(L₂)(OiPr)₁₂ 4 at 165°C, 5000:1.

Rac-LA (35 g) was melted in the jacketed vessel at 165°C under a positive flow of argon. The initiator, 4, was dissolved in a minimal amount of dry toluene, transferred to reaction vessel and stirred. An induction period was observed for the initial 5 minutes until the initiator dissolved fully. An identical method was applied for Sn(Oct)₂ with benzyl alcohol and the polymerisation was monitored by FT-IR. The same conditions were used for Ti(OiPr)₄, however the polymerisation was monitored by ¹H NMR spectroscopy with an aliquot taken every 5 to 10 minutes due to lack of FT-IR availability (Figure 2.6.2a).
Figure 2.6.2: a) Solvent-free polymerisation rate of unsublimed rac-LA at 165°C, 5000:1 with Sn(Oct)$_2$ (blue), Ti$_4$(L$_2$)(OiPr)$_{12}$ 4 (red) and Ti(OiPr)$_4$ (green). b) Semi-log plot of ln[M$_0$/M$_t$] against time for ROP using Sn(Oct)$_2$ (blue), Ti$_4$(L$_2$)(OiPr)$_{12}$ 4 (red) and Ti(OiPr)$_4$ (green).
The polymerisation of recrystallized (non-sublimed) rac-LA with Sn(Oct)$_2$ was highly active and reached near completion within 1 h, as expected. The precursor to 4, Ti(OiPr)$_4$ was markedly less active under industrially relevant conditions converting only 57 % in over 2 h. This may be due the low stability of Ti(OiPr)$_4$ to lactic acid and water impurities in the non-sublimed lactide, thus Ti(OiPr)$_4$ is not a viable initiator for the ring-opening polymerisation under industrially relevant conditions. 4 was significantly more active than Ti(OiPr)$_4$ under industrially relevant conditions and reached near completion in 3 h showing great potential as a viable initiator. The semi-logarithmic plot of 4 shows an apparent rate constant (k_{app}) of 0.0204 min$^{-1}$ which is comparable to that of Sn(Oct)$_2$ ($k_{app} = 0.0385$ min$^{-1}$). Ti(OiPr)$_4$ was considerably slower with k_{app} of 0.0065 min$^{-1}$. All showed pseudo-first order kinetics suggesting well-controlled polymerisation.

Table 2.6.1: Solvent-free polymerisations of lactide at 165°C, 5000:1

<table>
<thead>
<tr>
<th>Initiator</th>
<th>T (°C)</th>
<th>Time (min)</th>
<th>Conv. (%)</th>
<th>M_n (kg.mol$^{-1}$)</th>
<th>M_n, theo (kg.mol$^{-1}$)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn(Oct)$_2$</td>
<td>165</td>
<td>80</td>
<td>99</td>
<td>94.3</td>
<td>712.8</td>
<td>1.21</td>
</tr>
<tr>
<td>Ti$_4$(L2)(OiPr)${12}$ 4</td>
<td>165</td>
<td>180</td>
<td>99</td>
<td>8.2</td>
<td>712.8</td>
<td>1.32</td>
</tr>
<tr>
<td>Ti(OiPr)$_4$</td>
<td>165</td>
<td>130</td>
<td>99</td>
<td>37.4</td>
<td>712.8</td>
<td>1.56</td>
</tr>
</tbody>
</table>

For the amount of initiator used in the polymerisation (monomer: initiator 5000:1), Ti$_4$(L$_2$)(OiPr)$_{12}$ 4 gave relatively low M_n of 8.2 kg.mol$^{-1}$. The PDI however, was smaller with reduced initiator loading. Sn(Oct)$_2$ generated a much higher M_n of 94.1 kg.mol$^{-1}$ with a relatively narrow PDI of 1.21. Ti(OiPr)$_4$ displayed a moderate M_n of 37.4 kg.mol$^{-1}$ but with an increased PDI (PDI = 1.56).

2.7 Conclusion

Several new group 4 complexes have been prepared and characterized. The activity of these complexes was assessed for the ROP of sublimed rac-LA under solvent-free conditions at 135°C and 165°C. All initiators were active with the exception of Ti$_2$(L$_3$)$_2$. Group 4 complexes with lactic acid, Ti$_6$[dimer]$_2$(L$_4$)$_4$(OiPr)$_{20}$ and Zr(L$_4$)$_2$, showed moderate activity. Whilst Zr(L$_4$)$_2$ was the least active at 135°C, it was shown to be one of the most active at 165°C (89% in 4 h) in this series. For Group 4 L$_2$ complexes, at 135°C, activity was found to increase with an increase in the number of labile isopropoxide groups. Under these conditions, the identity of the metal was found to be of less importance than the number of labile initiator groups present, with
similar Zr, Hf and Ti complexes giving similar conversions. On increasing the temperature to 165°C, all the complexes demonstrated a higher activity irrespective of the identity of the metal or number of labile initiator groups. It is likely that the actual active species at elevated temperatures is a degradation product of the catalyst, rather than the original catalysts. Unfortunately, complexes with increased steric bulk were inactive under these conditions. The most active titanium species, $\text{Ti}_4(L_2)(O\text{^iPr})_{12}$, was further examined under conditions more closely replicating industrial polymerisations: at 165°C with a low initiator loading (5000:1) and using unsublimed lactide. Under these conditions, and in contrast to commercially available Group 4 metal alkoxides ($\text{Ti}(O\text{^iPr})_4$ and $\text{Zr}(O\text{^iPr})_4(\text{HO\text{^iPr}})$), $\text{Ti}_4(L_2)(O\text{^iPr})_{12}$, 4, was found to be highly active, facilitating a >99% polymerisation of the monomer to PLA within 3 hours thus highlighting the potential of Group 4 complexes as initiators for the commercial production of PLA.

2.8 Further work

The Group 4 metal complexes discussed in this chapter show promise and further work could be conducted into gradually varying the steric bulk of the ligand to extensively probe the potential of stereocontrol. In addition, large-scale polymerisations could be performed with the most promising initiator $\text{Ti}_4(L_2)(O\text{^iPr})_{12}$ with unrecrystallised lactide. Investigations into the stability of $\text{Ti}_4(L_2)(O\text{^iPr})_{12}$ in the presence of impurities (lactic acid and H$_2$O) in order to probe its potential as an initiator for L-LA or D-LA polymerisations with the intention of forming stereocomplexed PLA upon mixing of enantio-pure polymers.
2.9 References

Chapter 3

Co-polymerisation of lactide with commercially available co-monomers
3. Preamble

As discussed in Chapter 1, many different polymer architectures are possible from linear to branched co-polymers. The properties of these polymers are influenced by the sequence and proportion of monomers in the copolymer. The ability to exploit the change in thermal and mechanical properties of the polymer with the introduction of another monomer by copolymerization is of great interest both academically and industrially. Industrially, the use of inexpensive commercially available monomers shows promise in both keeping costs down and also synthesising functional copolymers. In this chapter, we report incorporation of a range of commercially available monomers for copolymerisation with lactide. In order to prove the principle that such polymerisations can occur, reactions were performed under solution conditions (toluene, 80°C). The most promising monomers are discussed in this chapter and include ε-caprolactone, δ-valerolactone and ω-pentadecalactone (Figure 3.1). There are many methods to synthesise copolymers and an amalgamation of these methods (one-pot, sequential polymerisation, etc.) will be discussed in this chapter and subsequent physical and mechanical properties of polymers investigated. The ability to incorporate long flexible copolymer blocks with blocks of lactide will be probed, with the further intention of stereocomplexing the copolymers either with themselves or with the addition of another copolymer. Fusing the two principles of copolymerization and stereocomplexation to obtain a polymer with fine-tuned properties is a useful tool for the design of functional materials.

![Figure 3.1: Commercially available monomers: (a) lactide; (b) δ-valerolactone; (c) ε-caprolactone; (d) ω-pentadecalactone.](image-url)
The thermal properties of these copolymers such as melting temperature (T_m), glass transition temperature (T_g) and crystallisation temperatures (T_c) are investigated by differential scanning calorimetry (DSC). For comparison, previously reported data for the thermal properties of relevant homopolymers are given below in Table 3.1.

<table>
<thead>
<tr>
<th></th>
<th>T_m (°C)</th>
<th>T_g (°C)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(L-lactide) (PLLA)</td>
<td>170 - 190</td>
<td>50 - 65</td>
<td>Ref from [4]</td>
</tr>
<tr>
<td>Poly(D-lactide) (PDLA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterotactic PLA (PhetLA)</td>
<td>-</td>
<td>< 45</td>
<td>Ref from [2]</td>
</tr>
<tr>
<td>Atactic PLA</td>
<td>-</td>
<td>45 - 55</td>
<td>Ref from [7]</td>
</tr>
<tr>
<td>Syndiotactic PLA</td>
<td>152</td>
<td>34</td>
<td>Ref from [6]</td>
</tr>
<tr>
<td>Stereocomplex-PLA (sc-PLA)</td>
<td>210 - 230</td>
<td>65 - 72</td>
<td>Ref from [2]</td>
</tr>
<tr>
<td>Poly-caprolactone (PCL)</td>
<td>57</td>
<td>-60</td>
<td>Ref from [3]</td>
</tr>
<tr>
<td>Poly-valerolactone (PVL)</td>
<td>60</td>
<td>-63</td>
<td>Ref from [7]</td>
</tr>
<tr>
<td>Poly-pentadecalactone (PPDL)</td>
<td>96</td>
<td>-25</td>
<td>Ref from [5]</td>
</tr>
</tbody>
</table>

Table 3.1: Thermal Properties of various forms of PLA and other related polymers. 2–7

3.1. Synthesis of tri-block co-polymers

For the synthesis of tri-block co-polymers, a Zr-based initiator ($\text{L}^{\text{iBu}}\text{Zr(O'Pr)}$) designed by Davidson and co-workers was utilized (Scheme 3.1.1) due to its high levels of stereocontrol coupled with high reactivity ($k_{\text{app}} = 0.6 \times 10^{-3} \text{ min}^{-1}$). 8
Initially, an ABC-type triblock polymer with a ‘soft’ B block was synthesised using L- and D-lactide (L-LA and D-LA) and ε-caprolactone (ε-CL). Although the properties of polymers of ε-CL and lactide are very different, they complement one another in such a way that PCL has good elasticity, drug permeability and thermal properties whereas PLA has good mechanical properties but poor elasticity.\(^9\)\(^{10}\) Whilst such polymers have been previously reported in the literature, the use of \(L^{Bu}\)Zr(O’Pr) has not been investigated, but would be advantageous as it has exhibited very good stereocontrol in the polymerisation of lactide whilst retaining high activity. Di-block polymers, (PLLA-PCL) and (PDLA-PCL), have been reportedly stereocomplexed in supercritical \(\text{CO}_2\) to form polymers with ‘soft’ blocks along with enhanced thermal melt stability.\(^11\) However, ABC type polymers have been little studied and are of great interest due to the potential for self-stereocomplexation of the individual PLLA and PDLA segments.

During the synthesis of \(L^{Bu}\)Zr(O’Pr).HO’Pr, various methods were used to remove the remaining isopropanol adduct (heat in vacuo, drying via azeotrope etc.), but were unsuccessful. Sequential polymerisation of the unsymmetrical ABC-type tri-stereoblock PLLA-PCL-PDLA polymer was trialled using L-LA, ε-CL and D-LA with \(L^{Bu}\)Zr(O’Pr).HO’Pr (Figure 3.1.1).
Figure 3.1: Sequential polymerization of ABC (PLLA-PCL-PDLA) type tri-stereoblock polymer.

The polymerization was performed using a monomer to initiator loading of 100:1 relative to all monomers (L-LA, ε-CL, D-LA). Initially, under inert conditions, sublimed L-LA and L^BuZr(OiPr).HOiPr were dissolved in dry toluene and stirred at 90°C for 36 h. The reaction was monitored by 1H NMR spectroscopy, and when near completion (93% conversion), distilled ε-CL was added and the reaction was stirred for a further 12 h until near completion (>99%). Upon further addition of sublimed D-LA, the reaction was stirred for 48 h and monitored until a completed (<99%) tri-block co-polymer was formed.

In order to monitor the reaction, samples were taken for analysis after each polymer segment reached near completion. Upon completion of PLLA, an aliquot of the sample was dried under vacuum at 25°C and a 1H NMR spectrum was taken (Figure 3.1.2a). The same was done for di-block PLLA-PCL and tri-block PLLA-PCL-PDLA co-polymers (Figure 3.1.2b and Figure 3.1.2c respectively).
Figure 3.1.2: 1H NMR spectrum in CDCl$_3$ at 298K of (a) PLLA; (b) PLLA-PCL; (c) PLLA-PCL-PDLA.

1H NMR spectrum Figure 3.1.2a illustrates a quartet for the methine region of PLLA polymer (5.15 ppm), with a quartet for the unreacted monomer L-LA at 5.0 ppm. A conversion of 93% from L-LA monomer to PLLA polymer was calculated, which is explained in further detail in
Chapter 1. Figure 3.1.2b illustrates a 1H NMR spectrum of the di-block copolymer, PLLA-PCL. It is shown that > 99% of ε-CL monomer was converted into polymer due to an up-field shift in the protons adjacent to the oxygen (RCH_2-O-R, PCL, 4.05 ppm). A quartet for the two methine (CH) protons of PLLA are observed at 5.15 ppm and a triplet for the methylene (CH_2) protons of PCL at 4.05 ppm. There is a ratio of 1:1.2, deduced by integration, suggesting that approximately equal equivalents of PLLA and PCL are present in the di-block co-polymer. This was expected as equal molar equivalents of monomers were added sequentially. Figure 3.1.2c, a 1H NMR spectrum of tri-block co-polymer PLLA-PCL-PDLA, exhibits a ratio of 1:0.58 which accounts for four PLA methine protons (two for PLLA (H_A) and two for PDLA (H_D)) and two PCL methylene protons (H_B). This suggests that there is a 1:1.2:1 ratio of PLLA:PCL:PDLA in the tri-block co-polymer. Figure 3.1.3 shows a 1H NMR spectrum of the purified (by precipitation) tri-block co-polymer PLLA-PCL-PDLA.

![Diagram of PLLA-PCL-PDLA](image)

Figure 3.1.3: 1H NMR spectrum of final tri-block co-polymer PLLA-PCL-PDLA in CDCl$_3$ at 298 K.

The 1H NMR spectrum of final tri-block co-polymer (Figure 3.1.3) illustrates a quartet at 5.16 ppm for methine protons of PLA due to vicinal coupling ($^3J_{H_i-H_i} = 7.1$ Hz) with the methyl moiety represented as a doublet at 1.58 ppm ($^3J_{H_i-H_i} = 7.1$ Hz). Methylene protons of PCL
adjacent to oxygen (OCH$_2$), displayed as a triplet at 4.06 ppm ($J = 6.7$ Hz), was used in order to measure conversion (> 99 %). A triplet at 2.31 ppm is also observed for the methylene adjacent to the carbonyl moiety ($^3J_{H-H} = 7.6$ Hz). Multiplets were observed between 1.73 – 1.28 ppm for the remaining methylene protons of PCL.

To confirm chain growth of the co-polymer after completion of each block, the remaining aliquots taken after completion of each polymer segment were dissolved in a small amount of dichloromethane and the polymers were precipitated with methanol. The polymeric material was filtered, washed with methanol and dried under vacuum. GPC analysis was used to determine growth in molecular weight (M_n). It is shown in Table 3.1.1 that upon addition of the next monomer, the polymer chains are in fact increased and form a hetero-polymer as opposed to individual homopolymers. Theoretically calculated M_n assumes one initiator complex initiates one polymer chain.

Table 3.1.1: GPC samples of PLLA-PCL-PDLA during sequential polymerization.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n kg.mol$^{-1}$</th>
<th>M_n,theo kg.mol$^{-1}$</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLLA</td>
<td>16.1</td>
<td>14.5</td>
<td>1.10</td>
</tr>
<tr>
<td>PLLA – PCL</td>
<td>37.3</td>
<td>25.6</td>
<td>1.46</td>
</tr>
<tr>
<td>PLLA-PCL-PDLA</td>
<td>Insoluble in THF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initially, PLLA was synthesised with a M_n of 16.0 kg.mol$^{-1}$. Upon addition of l-CL, and with complete polymerisation, an increase in M_n was observed suggesting a di-block co-polymer was synthesised. For both, the observed M_n was higher than the theoretically calculated. The final polymer (PLLA-PCL-PDLA) was insoluble in THF which is consistent with the possible synthesis of a stereocomplexed tri-block polymer, as the di-block readily dissolved in THF.

In order to determine the thermal properties of the resulting tri-block polymer, a sample was analysed by differential scanning calorimetry (DSC). For reference, literature values of homopolymers are shown in Table 3.1. The thermal properties of the final triblock PLLA-PCL-PDLA polymer are shown below (Figure 3.1.4).
Figure 3.4: DSC trace of triblock PLLA-PCL-PDLA.

For sc-PLA, synthesised from homo-polymers of PLLA and PDLA, an expected melting temperature (T_m) would be between 210-230°C. However, in our case, a reduction in T_m (199°C) was observed and a T_c of 112°C. Furthermore, a possible increase in glass transition temperature of -17°C was observed for PCL (Lit. PCL $T_g = -60°C$). The observation of one T_g at -17°C may be due to short blocks (approximately 14.0 kg.mol$^{-1}$ each). Additionally, conversion of L-LA to PLLA (93 %) followed by conversion of ϵ -CL to PCL may have yielded a co-polymer where the segments were missible, this may be due to unreacted L-LA monomer (7 %) interfering with the polymerisation of ϵ -CL, the thus allowing of a mixed T_g.

Stereocomplexation of this tri-block co-polymer can occur by two different pathways as shown below (Figure 3.1.5).
Firstly, intramolecular stereocomplexation, whereby the tri-block co-polymer stereocomplexed with itself. Furthermore, with intramolecular complexation loops and clusters may be formed. Secondly, intermolecular stereocomplexation can occur whereby separate tri-block polymer chains come together to form stereocomplexed PLA.

An analogous polymer was synthesised under the same conditions (100:100:100:1 LLA:VL:DLA:Initiator) using δ-valerolactone (δ-VL) instead of ε-CL as the co-monomer, as shown below (Figure 3.1.6).
Figure 3.1.6: Sequential polymerization of tri-block co-polymer PLLA-PVL-PDLA.

A 1H NMR spectrum of final polymer PLLA-PVL-PDLA displayed distinct peaks for PLA and PVL blocks (Figure 3.1.7).

Figure 3.1.7: 1H NMR spectrum of tri-block copolymer, PLLA-PVL-PDLA in CDCl$_3$ at 298K.
Tri-block co-polymer PLLA-PVL-PDLA, displayed a similar 1H NMR spectrum to the analogous polymer PLLA-PCL-PDLA. A quartet is observed at 5.15 ppm ($J_{HH} = 7.1$ Hz) that attributes to four methine protons (H_A) of PLA which is coupled to a doublet at 1.58 ppm ($J = 7.1$ Hz) representing twelve methyl protons (H_E) of PLA. Methylene region (OCH$_2$) of PVL, displayed as a triplet (H_B, $J = 6.6$ Hz), was used in order to measure conversion (91 %), where the peak at 4.05 ppm denotes the polymer and a peak at 4.15 ppm denotes the unreacted valerolactone monomer. A triplet is also observed for the methylene protons (H_C) adjacent to the carbonyl moiety ($J_{HH} = 7.4$ Hz). Multiplets between 1.73 and 1.20 ppm were observed for the remaining four methylene protons (H_D).

GPC was utilised in order to determine growth in molecular weight. It is shown in Table 3.1.2 that an increase in M_n was observed with increased monomer feed suggesting and a hetero-polymer was synthesised as opposed to three distinct homopolymers.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n kg.mol$^{-1}$</th>
<th>M_n,theo kg.mol$^{-1}$</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLLA</td>
<td>11.8</td>
<td>14.3</td>
<td>1.10</td>
</tr>
<tr>
<td>PLLA - PVL</td>
<td>26.4</td>
<td>24.2</td>
<td>1.41</td>
</tr>
<tr>
<td>PLLA-PVL-PDLA</td>
<td>Insoluble in THF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initially, a GPC trace of PLLA revealed a M_n (11.8 kg.mol$^{-1}$) relative to the theoretical value ($M_n = 14.3$ kg.mol$^{-1}$) with a narrow PDI of 1.10. The living characteristic of this system was supported by an increase in M_n (26.4 kg.mol$^{-1}$) upon sequential addition of ε-VL monomer. GPC analysis of triblock PLLA-PVL-PDLA was not possible due to the insolubility of the polymer in THF. Whilst a GPC trace could not be obtained, interestingly this could further support the synthesis of a stereocomplexed tri-block co-polymer as the di-block polymer was readily soluble. The thermal properties of the final tri-block co-polymer were investigated by DSC as shown below (Figure 3.1.8).
Figure 3.1.8: DSC trace of tri-block co-polymer PLLA-PVL-PDLA.

The T_m at 34°C attributes to PVL and is lower than the literature value (57 °C). Variations in T_m may be due to dependence on M_n, low isotactic lengths and heat/cooling rates of DSC analyses. T_m at 205 °C suggests a degree of stereocomplexation and is typical for stereoblock PLA as the PDLA is finally incorporated into the triblock. A T_g of -48°C was observed, higher than the literature value of -67°C for PVL homopolymer which could suggest slight phase mixing with the PLA segments and a T_c at 114°C further supports the formation of stereocomplexed PLA.

3.2. Synthesis of penta-block co-polymers

Interestingly, Davidson et al. reported the initiator, LBuZr(O’Pr).HOiPr, exhibits a heterotactic bias for the conversion of sublimed rac-LA. An inequivalent mixture of L- and D- lactide can be added to the initiator and will preferentially form heterotactic polymer (PhetLA) with equal amounts of L and D alternating along the polymeric chain. When all of the minority stereoisomer has been consumed an isotactic PLA block is formed with the remaining lactide isomer originally in excess. The rate significantly decreases as the isotactic block starts to grow (Figure 3.2.1).
Exploitation of the heterotactic bias in the ring-opening polymerization of lactide with \(\text{L}^{\text{Bu}}\text{Zr(OPr)} \) was investigated. A penta-block co-polymer was synthesised with an aliphatic PCL linker (Figure 3.2.2).

The polymerization was performed using an initiator loading of 100:100:100:1 (LA:CL:LA:Initiator). In solution, an inequivalent mixture of L- and D- LA (3:1 ratio...
respectively, L-LA + D-LA = 100 eq. overall LA) with the addition of LiBuZr(OiPr).HOiPr preferentially formed heterotactic polylactide followed by a PLLA block (PhetLA-PLLA with a 50:50 ratio). Once conversion reached near completion (96 %) sequential addition of ε-CL (100 eq.) was polymerised to afford PhetLA-PLLA-PCL triblock (50:50:100 ratio). 1H NMR spectrum of the tri-block co-polymer is shown below (Figure 3.2.3).

\textbf{Figure 3.2.3:} 1H NMR spectrum of tri-block co-polymer PhetLA-PLLA-PCL.

Figure 3.2.3 illustrates a 1H NMR spectrum of the intermediate tri-block co-polymer PhetLA-PLLA-PCL. A multiplet was observed at 5.05-5.45 ppm for the methine protons of PLA due to overlapping of quartets of both isotactic and heterotactic PLA being present. Additionally, two overlapping doublets are also observed for the methyl protons of PLA. Similar to PLLA-PCL-PDLA, triplets were observed for the methylene protons of PCL segment at 4.05 and 2.30 ppm. Again, a multiplet was observed for the remaining methylene protons of PCL. A 1:1 ratio of PLA:PCL was observed in the tri-block co-polymer due to equal equivalents of overall PLA and PCL were added sequentially.

Inequivalent amounts of L- and D- LA (1:3 respectively, L + D - LA = 100 eq. overall LA) were then added to the tri-block PhetLA-PLLA-PCL and polymerised under the same conditions to
achieve the final pentablock polymer \((\text{P}het\text{LA}-\text{PLLA}-\text{PCL}-\text{P}het\text{LA}-\text{PDLA},\ 50:50:100:50:50\) ratio\). The monomer ratios within the polymer are shown below in Figure 3.2.4.

Figure 3.2.4: Equivalents of individual polymer segments within the co-polymer.

Figure 3.2.4 displays the theoretical equivalents of each segment within the final penta-block co-polymer. There are three main segments to the polymer: PLA (100 eq.), PCL (100 eq.) and another PLA (100 eq.) segment. Each PLA segment is then split in two, whereby the first half is heterotactc PLA (50 eq.) and the latter isotactic PLA (50 eq.) as shown above (Figure 3.2.4).

In order to elucidate polymer chain growth, GPC analysis was utilised and displayed formation of a penta-block co-polymer due to an increase in \(M_n\) after addition of each monomer (Table 3.2.1).

Table 3.2.1: GPC analysis of sequential polymerisation of penta-block co-polymer.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(M_n) kg.mol(^{-1})</th>
<th>(M_{n,\text{theo}}) kg.mol(^{-1})</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{P}het\text{LA}-\text{PLLA})</td>
<td>7.2</td>
<td>13.9</td>
<td>1.12</td>
</tr>
<tr>
<td>(\text{P}het\text{LA}-\text{PLLA}-\text{PCL})</td>
<td>10.4</td>
<td>25.6</td>
<td>1.08</td>
</tr>
<tr>
<td>(\text{P}het\text{LA}-\text{PLLA}-\text{PCL}-\text{P}het\text{LA}-\text{PDLA})</td>
<td>15.8</td>
<td>39.9</td>
<td>1.15</td>
</tr>
</tbody>
</table>

A normalised GPC distribution curve illustrates the chain growth that occurred during the sequential steps (Figure 3.2.5).
The elution curve of the final penta-block co-polymer shows the presence of a shoulder peak on the low molecular weight side which suggests that a number of triblock copolymers may not have partaken in the final polymerization step. This could have been caused by possible impurities in the new monomer batch or stirring issues as the polymeric material becomes more viscous. Analysis of the thermal properties of the final polymer by DSC interestingly gave no distinct peaks. This may be due to the majority of the polymeric domains being amorphous. Furthermore, an inability to obtain crystals may be due to the relatively small segments of isotactic enchainment within the final co-polymer.

Under the same conditions, the analogous polymer (PhetLA-PLLA-PVL-PhetLA-PDLA) was synthesised with a poly(δ-VL) linker (Figure 3.2.6).

Figure 3.2.5: Normalised GPC distribution curve during synthesis of penta-block co-polymer.
Firstly, di-block (PhetLA-PLLA 1:1) was synthesised by one-pot polymerisation of inequivalent amounts of sublimed L- and D-LA (25% and 75% respectively) with initiator LBuZr(O-iPr)$_2$.HO-iPr. Sequential addition of monomer, distilled δ-VL, with reaction monitored by 1H NMR spectroscopy (Figure 3.2.7).

Figure 3.2.6: Synthesis of penta-block PhetLA-PLLA-PVL-PhetLA-PDLA in toluene at 90°C.
Figure 3.2.7: 1H NMR spectrum of tri-block co-polymer PhetLA-PLLA-PVL.

1H NMR spectrum displays an analogous spectrum to Figure 3.2.3 of PhetLA-PLLA-PCL. Overlapping quartets are observed at 5.18 ppm for methine protons and a multiplet at 1.56 ppm for methyl protons of PLA. Two triplets at 4.08 and 2.34 ppm attribute the methylene protons of PVL. Multiplets are observed for the remaining methylene protons of PVL and the methyl protons of PLA (1.78 – 1.46 ppm). Inequivalent amounts of L- and D-LA (75% and 25% respectively) were added upon completion of the tri-block and a PLA: PVL ratio of 1:1.2 was observed. Physical polymer properties are investigated below using GPC (Table 3.2.2 and Figure 3.2.8). Theoretical M_n was calculated assuming assuming that one initiator complex initiates one polymer chain.

Table 3.2.2: GPC analysis of sequential polymerisation of penta-block co-polymer.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n kg.mol$^{-1}$</th>
<th>$M_{n,\text{theo}}$ kg.mol$^{-1}$</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhetLA-PLLA</td>
<td>6.6</td>
<td>14.3</td>
<td>1.11</td>
</tr>
<tr>
<td>PhetLA-PLLA-PVL</td>
<td>16.6</td>
<td>24.2</td>
<td>1.25</td>
</tr>
<tr>
<td>PhetLA-PLLA-PVL-PhetLA-PDLA</td>
<td>24.9</td>
<td>38.50</td>
<td>1.15</td>
</tr>
</tbody>
</table>
GPC traces of aliquots taken upon completion of each block illustrate with an increase in conversion, an increase in M_n was observed. PDI measurements remain relatively consistent indicating growing block co-polymer chains (Table 3.2.2). Furthermore, GPC traces appear monomodal, thus supporting the hypothesised synthesis of a penta-block co-polymer.

3.3. ω-Pentadecalactone (PDL) co-polymers

Polymerization of commercially available monomer ω-pentadecalactone (PDL) is of interest due to its long aliphatic chain. Hydrocarbon chains are increasingly flexible with increased length and PDL exhibits a long 15-carbon chain. Incorporating a longer aliphatic chain into the polymer could lead to more flexible amorphous domains within the polymers and when coupled with the potential of self-stereocomplexing lactide segments, could make for some interesting polymers. Literature reports show the enzymatic ring-opening polymerization of PDL to PPDL exhibits a T_g of -25°C and T_m at 96°C, which is similar to low density polyethylene (LDPE, T_m = 120°C).15-18 Initially, the homo-polymerisation of PDL to poly-pentadecalactone (PPDL) was attempted under similar conditions as above (100:1 monomer to initiator ratio in toluene at 80°C). Unfortunately, no polymerisation was achieved with $\text{L}^{\text{Bu}}\text{Zr(OiPr)}\cdot\text{HOiPr}$, only monomer
remained. A range of different initiators were trialled including an initiator designed by Coates ((BDI-Pr)ZnN(SiMe$_3$)$_2$, Scheme 3.3.1), commercially available yttrium isopropoxide and organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) with benzyl alcohol, all yielding polymers.19,20

Scheme 3.3.1: Polymerisation of ω-pentadecalactone (PDL) to poly-pentadecalactone (PPDL).

The initiator designed by Coates and co-workers, ((BDI-Pr)ZnN(SiMe$_3$)$_2$), was reportedly active for the polymerisation of lactide, butyrolactone and valerolactone.21,22 Interestingly, this initiator proved active for the polymerisation of PDL and was trialled for the synthesis of block co-polymers. Figure 3.3.1 displays an 1H NMR spectra overlay of monomer PDL with polymer PPDL.
(BDI-^3Pr)ZnN(SiMe_3)_2 was selected as it displayed good activity for both lactide and PDL. It is illustrated that >99% of monomer was converted into polymer due to an upfield shift in the protons adjacent to the oxygen (RCH_2-OR) as shown below (Figure 3.3.1). ^1H NMR spectrum of PPDL displays a triplet at 4.05 ppm which can be attributed to methylene protons adjacent to oxygen, with a triplet at 2.30 ppm that corresponds to methylene protons adjacent to a carbonyl moiety. A further triplet is displayed at 1.60 ppm along with a multiplet between 1.41 and 1.16 ppm for the remaining CH_2 protons.

3.3.1. Synthesis of di-block co-polymer

Synthesis of a di-block copolymer of PLLA-PPDL was attempted in a one-pot one-step method. Equal amounts of L-LA and PDL were reacted with (BDI-^3Pr)ZnN(SiMe_3)_2 in a ratio of 100:100:1 in toluene at 80°C. The reaction was monitored by ^1H NMR spectroscopy, it was observed that whilst PLLA was synthesised (96% in 24hrs), no PPDL formed and thus not yielding a di-block copolymer. The same is true for the reaction of PDL and D-LA with the same initiator, thus suggesting the initiator preferentially polymerises lactide. Sequential
polymerisation was trialled firstly with the polymerisation of PDL, which reached 84% conversion in 24 h. Addition of L-LA converted to PLLA (93% in 24 h) suggesting formation of either the desired di-block polymer, or a mixture of the two homo-polymers (Figure 3.3.2). The same was true for the analogous polymer containing D-LA.

![Diagram of di-block co-polymer PPDL-PLLA](image)

Figure 3.3.2: 1H NMR spectrum of PPDL-PLLA in CDCl$_3$ at 298K. * (blue) denotes presence of unreacted monomer.

Figure 3.3.2 displays a 1H NMR spectrum of di-block co-polymer PPDL-PLLA, before the final work-up and wash with methanol, thus unreacted monomers (*) were still present to enable calculation of final conversion. Methine protons of PLLA are displayed as a quartet (H_A) at 5.16 ppm ($^3J_{H-H} = 7.1$ Hz), with another quartet visible for the monomer L-LA at 5.04 ppm. Again, triplets at 4.05 ppm and 2.28 ppm were observed for methylene protons (H_B and H_C respectively) of PPDL along with multiplets between 1.70 - 1.17 ppm (H_D). A doublet at 1.58 ppm ($^3J_{H-H} = 7.1$ Hz), coupled to the methine protons (H_A), attributes to methyl protons (H_E) of PLLA.

Under standard GPC techniques (eluent: THF, flow rate: 1.0 ml.min$^{-1}$, polystyrene standards), no rational peaks for the homopolymer of PPDL were observed. Duchateau et al. successfully reported GPC traces of PPDL using the eluent 1,2,4-trichlorobenzene at 160°C with M_n calculated with respect to polyethylene standards.19,20,23 Unfortunately, GPC techniques under these conditions were unavailable for use. 1H NMR spectroscopy analyses of the di-block co-
polymers was used instead to determine conversion and potential ratios of polymer segments within the co-polymer. Whilst it is unclear if homo-polymers or a co-polymer were synthesised, a 1:1.2 ratio of PLLA:PPDL was observed via 1H NMR spectroscopy (Figure 3.3.2) suggesting similar equivalents of monomers are present in the final polymers.

Equal amounts of PPDL-PLLA and PPDL-PDLA (final worked-up polymers) were firstly dissolved in CH$_2$Cl$_2$ with the solvent allowed to evaporate slowly over 7 days to form a stereocomplexed co-polymer. Any remaining solvent was removed in vacuo and the subsequent polymer was analysed by DSC (Figure 3.3.3).

![Figure 3.3.3: DSC of stereocomplexation (PPDL-PLLA with PPDL-PDLA).](image)

DSC analysis was undertaken in order to determine domains of stereocomplexed PLA within the copolymer. Figure 3.3.3 shows a T_c was observed on the first cycle at 73°C whilst the second cycle displayed a T_g of 57°C corresponding to the PPDL segment of the polymer, and two T_m's at 90°C and 214°C attributing to PPDL and sc-PLA respectively. The T_m at 214°C further supports formation of stereocomplexed domains within the co-polymer.
The reaction whereby the polymerisation of LA was reacted first, followed by the sequential addition of PDL upon completion. Here, PLA was synthesised but no polymerisation of PDL occurred. This indicates that the relatively large PDL ring is unable to insert into the metal-LA bond possibly due to steric hinderance. On the other hand, the relatively small lactide ring can insert into the metal-PDL bond forming PPDL-PLA di-blocks.

3.3.2. Synthesis of tri-block co-polymer

Duchateau and co-workers, have synthesised di-block copolymers of PPDL and PCL using an organo-catalyst (TBD) with benzyl alcohol as a co-initiator.\(^\text{19,24}\) To our knowledge, it has not been reported with the addition of a PLA block. This could lend itself to the possibility of stereocomplexed PLA with interesting properties. Initially, the synthesis of co-polymers with PCL was trialled in order to allow PLLA-PCL-PPDL block co-polymers to be synthesised. However, sequential polymerisation to yield PCL-PPDL was unsuccessful. Sequential polymerisation of PDL, CL and L-LA was then trialled to afford tri-block PPDL-PCL-PLLA using initiator (BDI-Pr)ZnN(SiMe\(_3\))\(_2\) (100:100:100:1 catalytic loading). The reaction was monitored by \(^1\text{H} \text{NMR} \) spectroscopy, with the analogous co-polymer PPDL-PCL-PDLA synthesised in the same manner. Thermal analyses of these polymers are shown below (Figure 3.3.4).
Figure 3.3.4: DSC trace of a) PDL-PCL-PLLA and b) PDL-PCL-PDLA.

DSC trace of PDL-PCL-PLLA (Figure 3.3.4a) has three T_m peaks at 52°C, 88°C and 161.79°C attributing to PCL, PDL and PLLA respectively. The temperatures are lower than expected for homopolymers due to their incorporation into the copolymer. Two peaks are observed for T_c,
one at 63°C for PLLA and the other at 30°C corresponding to PDL. PDL-PCL-PLLA and PDL-PCL-PDLA co-polymers were then stereocomplexed together and analysed by 1H NMR spectroscopy (Figure 3.3.5).

Figure 3.3.5: 1H NMR spectrum in CDCl$_3$ at 298 K of PPDL-PCL-PLLA with PPDL-PCL-PDLA.

Figure 3.3.5 shows a 1H NMR spectrum of the stereocomplexation of co-polymers PPDL-PCL-PLLA with PPDL-PCL-PDLA. A quartet at 5.17 ppm attributes to methine protons (H$_A$) of PLA. Overlapping triplets at 4.05 ppm correspond to methylene protons adjacent to oxygen (H$_B$) in both PPDL and PCL. Here, a 1:2.9 ratio of PLA: (PPDL+PCL) was observed. Ideally, an expected ratio of 1:2 was expected due to two methine PLA protons (H$_A$) and four methylene protons (H$_B$, two from PPDL and two from PCL). Thermal analysis by DSC was performed on PPDL-PCL-PLLA and PPDL-PCL-PDLA tri-block co-polymers (Figure 3.3.6).
Figure 3.3.6: DSC traces of a) first heat and b) second heat of stereocomplex triblock PPDL-PCL-PLA.

The first heat generated many thermal events for the stereocomplexed tri-block PPDL-PCL-PLA. Glass transition temperatures of the first heat (T_{gl}) of -20°C and 45°C are attributed to...
PPDL and PLA respectively. A T_{m1} of 92°C for PPDL was observed along with a T_{m2} at 220°C, corresponding to sc-PLA (Figure 3.3.6a). Although it is still unknown whether co-polymers of homo-polymers were synthesised, the presence of stereocomplexed PLA is still clear (T_m 220°C). As previously reported in this chapter, when PLA is incorporated into a co-polymer and stereocomplexed, a reduction in T_m was usually observed. Here, sc-PLA T_m of 220°C may suggest either lactide homo-polymers were stereocomplexed, high molecular weight or more isotactic enrichment. Upon cooling, two cold crystallisation temperatures (T_c) were observed. Figure 3.3.6b illustrates the second heating of the sample, interestingly, no T_g’s are observed whilst two T_m’s at 56.75°C and 88.47°C are attributed to PCL and PDL respectively. No T_m for sc-PLA was observed possibly due to rapid cooling which may lead to insufficient crystallisation and thus no stereocomplex reformation.

3.4. Conclusion

Various copolymers were synthesised using commercially available, inexpensive monomers (LA, CL, VL, PDL) were synthesised. Initially, unsymmetrical ABC tri-block copolymers containing α-LA, CL and δ-LA were produced using $\text{L}^\text{Bu}^\text{Zr(O}^\text{OiPr}).\text{HO}^\text{OiPr}$ as initiator and partially characterised. Whilst GPC analysis of the final polymer was inconclusive, the tri-block copolymers insolubility in THF suggested a stereocomplex tri-block was formed. DSC traces further supported stereocomplexation with a T_m of 199°C. The analogous polymer utilizing δ-VL instead of ε-CL was also synthesised and characterised. The ability to exploit the initiator $\text{L}^\text{Bu}^\text{Zr(O}^\text{OiPr}).\text{HO}^\text{OiPr}$ bias towards the formation of heterotactic PLA from rac-LA lends itself to the synthesis of unsymmetrical penta-block co-polymers. Whilst DSC traces were inconclusive, GPC analyses supported the living polymerisation of the system, showing growing polymer chains (Figure 3.2.5). Co-polymers incorporating PDL were synthesised using initiator (BDI-$^\text{iPr})\text{ZnN(SiMe}_3)_2$ (Scheme 3.3.1). Here, addition of smaller monomer (LA or CL) to the PDL propagating chain was possible. However, the addition of macrocycle PDL to a chain of PCL or PLLA was not due to size. Although it is unclear if homo-polymers or co-polymers were synthesised, distinct thermal traces suggest the presence of sc-PLA domains.
3.5. Further work

Further investigations into morphology and rheology of block co-polymers could be performed to gain more information about these polymeric materials. A study of varying the block lengths in order to optimise polymeric properties could lead to co-polymers with tailor made properties. Synthesis of isopropoxide derivative of (BDI-Pr)ZnN(SiMe$_3$)$_2$ developed by Coates et al. to increase activity of initiator in the lactide copolymerisation with PDL. Furthermore, characterisation of lactide co-polymers of PDL using GPC techniques described by Duchateau et al. could be utilised.
3.6. References

Chapter 4

Synthesis of co-monomers and kinetics of lactide co-polymerisations
4. Preamble

There are many different pathways to synthesise new lactone monomers, some of which are discussed in this chapter. Polymerisation of monomers with differing properties under a controlled fashion into a co-polymer is of great interest as discussed in the previous chapters. Lactide is a symmetrical monomer for which nucleophilic attack of the co-initiator can occur on either side of the ring. When using an unsymmetrical analogue of lactide with a bulky substituent on one side of the ring, in combination with an initiator which is active for the polymerisation of lactide (such as $\text{L}^{\text{Bu}}\text{ZrO}^\text{Pr}.\text{HO}^\text{Pr}$), ring-opening polymerisation should occur at the methyl site with the possibility of forming either an alternating homo-polymer (Me R Me R Me R) or co-polymer. The co-polymerisation of lactide with different monomers at various stoichiometric amounts and their differing properties will be investigated. Furthermore, the exploitation of the heterotactic bias of initiator $\text{L}^{\text{Bu}}\text{ZrO}^\text{Pr}.\text{HO}^\text{Pr}$ (see chapter 3) towards rac-LA will be probed in order to synthesise either alternating or random co-polymers.

4.1. Synthesis of Monomers

There are various methods to synthesise unsymmetrical monomers, as discussed in chapter 1. The simplest method is to react under inert conditions a commercially available α-hydroxy acid with 2-bromopropionyl bromide in the presence of triethyl amine to yield the desired cyclic monomer (Scheme 4.1.1).

\[\begin{align*}
\text{OH} & \quad + \quad \text{BrBr} \\
\text{OH} & \quad \text{i) 110 °C, 4 hrs} \\
\text{O} & \quad \text{ii) Et$_3$N, THF} \\
\end{align*} \]

Scheme 4.1.1: Synthesis of unsymmetrical mono-substituted lactide.

Few α-hydroxy acids are commercially available and they appear to be relatively expensive. The ability to synthesise α-hydroxy acids widens the range of monomers that can be obtained. There are two pathways of synthesising α-hydroxy acids, firstly, Möller et al. developed a synthetic pathway that involved treating an aldehyde with sodium cyanide to afford an α-hydroxyl acid (Method A, Scheme 4.1.2a). Secondly, an alternative route to the synthesis of α-hydroxy acids is to reflux the relevant bromo-hydroxy acid in the presence of potassium hydroxide in water (Method B, Scheme 4.1.2b).
Scheme 4.1.2: Synthesis of α-hydroxy acids via a) Method A (aldehyde) and b) Method B (bromo-hydroxy acid).

The relevant α-hydroxy acid was then reacted with inexpensive, commercially available 2-bromopropionyl bromide, in the presence of triethyl amine to afford the cyclic monomer. The monomers that were successfully synthesised are shown below (Figure 4.1.1).

Figure 4.1.1: Summary of monomers synthesised in this chapter; a) Et-LA; b) diMe-LA; c) BrMe-LA; d) vinyl-LA; e) Ph-LA and f) BrPh-LA g) Hexyl-LA.

Methylethylglycolide (Et-LA) was synthesised directly from 2-hydroxybutyric acid to form the cyclic monomer by a modified synthesis developed by Baker and co-workers. Similar methods were used to synthesise methyldimethylglycolide (diMe-LA), methylphenylglycolide (Ph-LA) and methylbromophenylglycolide (BrPh-LA) from hydroxyisobutyric acid, DL-mandelic acid and 4-bromo-DL-mandelic acid respectively.
3-methyl-6-hexyl-1,4-dioxane-2,5-dione (Hexyl-LA) was synthesised via Method A (Scheme 4.1.2a), initially treating heptaldehyde with sodium cyanide to afford 2-hydroxyoctanoic acid (Figure 4.1.2). All monomers were purified further, as described in chapter 5.

Figure 4.1.2: 1H NMR spectrum of 2-hydroxyoctanoic acid.

Figure 4.1.2 illustrates the 1H NMR spectrum of 2-hydroxyoctanoic acid. Two overlapping doublets at 4.28 ppm and 4.27 ppm (both $^3J = 7.5$ Hz) are observed for the methine proton (H_A) as the methylene protons (H_B) are inequivalent. Multiplets at 1.91 ppm to 1.64 ppm are observed for the methylene protons H_D. Additionally two multiplets are observed at 1.54 ppm to 1.39 ppm and 1.39 ppm to 1.22 ppm, attributed to methylene protons H_C and H_D respectively. A triplet is observed for the methyl protons (H_E) at 0.88 ppm ($^3J = 6.8$ Hz). The α-hydroxyacid was added to 2-bromopropionyl bromide in the presence of triethyl amine to give 3-methyl-6-hexyl-1,4-dioxane-2,5-dione (hexyl-LA) as shown below in the 1H NMR spectrum (Figure 4.1.3).
Figure 4.1.3: 1H NMR spectrum of 3-methyl-6-hexyl-1,4-dioxane-2,5-dione (hexyl-LA).

As shown above (Figure 4.1.3), methine protons (H_A and H_B) are displayed as multiplets (5.09-4.97 ppm and 4.94-4.83 ppm) with the remaining multiplets attributed to methylene protons (H_C, H_E and H_F). The tertiary methyl moiety corresponds to an overlapping of doublets at 1.68 ppm (H_D, $^3J = 6.7$ Hz) due to vicinal coupling with H_A and geminal coupling with the other H_D protons. The remaining methyl protons are displayed as a triplet at 0.88 ppm ($^1J = 7.1$ Hz).

Hillmyer and co-workers developed a synthesis for the vinyl monomer (vinyl-LA) as shown below (Figure 4.1.4).

Figure 4.1.4: Synthesis of vinyl-LA.5

1-LA was reacted with N-bromosuccinimide with benzene as solvent. The reaction was heated under reflux followed by dropwise addition of benzyol peroxide and stirred for 2 hours. The intermediate $(3R, 6S)$-3-bromo-3,6-dimethyl-1,4-dioxane-2,5-dione (BrMe-LA) was isolated and characterised. The reaction then proceeded in CH_2Cl_2 with the presence of triethyl amine to
afford vinyl-LA. All of the above monomers were trialled for the ROP of using various initiators.

4.2. Co-polymerisations with lactide

Initially the monomers synthesised in Section 4.1 were trialled for co-polymerisations with lactide. All co-polymerisations discussed in this section were performed on NMR-scale (combined monomers moles: \(3.46 \times 10^{-4}\) mol), 100:1 combined monomers: initiator ratio with \(L^{\mu\mu}\text{ZrO}^{\mu\mu}\text{Pr.HO}^{\mu\mu}\text{Pr} \text{ initiator in } d_8 \text{ toluene (0.6 ml) at 353 K are shown below (Table 4.2.1).}

Table 4.2.1: Initial screening of co-monomers for lactide polymerisation

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Ratio Mon:rac-LA</th>
<th>(M_n) kg.mol(^{-1})</th>
<th>(M_n,\text{theo}) kg.mol(^{-1})</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrMe-LA</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vinyl-LA</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Et-LA</td>
<td>1:1</td>
<td>4.3</td>
<td>15.0</td>
<td>1.22</td>
</tr>
<tr>
<td>DiMe-LA</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ph-LA</td>
<td>1:1</td>
<td>9.9</td>
<td>17.4</td>
<td>1.08</td>
</tr>
<tr>
<td>BrPh-LA</td>
<td>1:1</td>
<td>5.9</td>
<td>21.2</td>
<td>1.18</td>
</tr>
<tr>
<td>Hexyl-LA</td>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Et-LA, Ph-LA and BrPh-LA were all active in the co-polymerisation with lactide. Conversely, BrMe-LA, vinyl-LA, diMe-LA and hexyl-LA failed to co-polymerise, and no conversion of the monomer was observed. Various other initiators were trialled for the polymerisation of vinyl-LA (Section 4.2.1) and a full kinetic study was performed for co-monomers; Et-LA, Ph-LA and BrPh-LA.

4.2.1. Vinyl-LA co-polymerisations

Hillmyer and co-workers reported the synthesis of vinyl-LA as an intermediate in the synthesis of other monomers via a Diels-Alder reaction.\(^5\) To our knowledge, the homo-polymerisation of this monomer has not been reported and could yield polymers with ample post-polymerisation derivation options. Initially, the solvent-free polymerisation of recrystallized vinyl-LA was trialled using the initiator developed by Davidson and co-workers, \(L^{\mu\mu}\text{ZrO}^{\mu\mu}\text{Pr.HO}^{\mu\mu}\text{Pr} \text{, with a monomer loading of 300:1 (monomer: initiator) at 135^\circ C however, no reaction occurred and only monomer remained. Secondly, the commercially available initiator tin octanoate Sn(Oct)_2;
(tin(II) 2-ethylhexanoate) (300:1 monomer to initiator loading) with benzyl alcohol as a co-initiator (1.0 equivalent) was trialled at 135°C, with success, and the 1H NMR spectra of vinyl-LA monomer and polymer obtained are shown below (Figure 4.2.1).

![Figure 4.2.1: 1H NMR spectra of vinyl-LA a) monomer and b) polymer.](image)

The vinyl-LA polymeric material was insoluble in all common solvents, however an 1H NMR spectrum was achieved upon prolonged heating in DMSO. For the monomer, there are two distinct doublets at 5.88 and 5.48 ppm that are split due to geminal coupling ($^2J = 3.0$ Hz) of the protons on unsaturated double bond. A quartet at 4.96 ppm corresponds to the methine proton with a coupling constant of $^3J = 6.0$ Hz. Figure 4.2.1 b) illustrates that polymeric material was synthesised however, unreacted monomer remained. DSC analyses displayed no thermal events, thus suggesting the polymer is amorphous. Unfortunately, as the polymeric material was insoluble in THF, no GPC analyses were obtained. Cross-linking may have occurred during polymerisation.

Alternatively, Duchateau and co-workers reported the commercially available organic initiator TBD was active for the polymerisation of LA, and was thus trialled for the polymerisation of vinyl-LA.6 The reaction was performed in solution (CH$_2$Cl$_2$) at 25°C with a much lower catalytic loading. Initially L-LA was polymerised using 100:0.1:1 monomer: initiator: co-initiator loadings and converted $>99\%$ monomer in 5 minutes. Co-polymerisation was then carried out with the addition of 5% and 10% vinyl monomer. The reaction was performed under the same conditions however, no conversion occurred suggesting vinyl-LA may inhibit catalytic
activity. This may be due to impurities in the monomers, inhibiting the initiator’s behaviour. Various monomer: initiator ratios were tested with successful polymerisations of L-LA with 5% vinyl monomer under the optimal conditions of 100:2.5:1 L-LA+5%vinyl-LA: TBD: benzyl alcohol and for 10% vinyl monomer 100:5:0:1 (Table 4.2.2).

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Initiator eq.</th>
<th>Conv.</th>
<th>M_n kg.mol$^{-1}$</th>
<th>M_n theo kg.mol$^{-1}$</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-LA</td>
<td>0.1</td>
<td>99 %</td>
<td>33.2</td>
<td>142.7</td>
<td>1.68</td>
</tr>
<tr>
<td>L-LA + 5% vinyl-LA</td>
<td>2.5</td>
<td>57 %</td>
<td>37.9</td>
<td>82.1</td>
<td>1.42</td>
</tr>
<tr>
<td>L-LA + 10% vinyl-LA</td>
<td>5.0</td>
<td>99 %</td>
<td>36.2</td>
<td>142.7</td>
<td>1.62</td>
</tr>
</tbody>
</table>

A trend was observed of increased molecular weight with increased amounts of vinyl-LA. No thermal events occur by DSC which is indicative of extensive cross-linking.

4.3. Kinetic investigations of co-polymerisation

Et-LA, Ph-LA and BrPh-LA monomers were all active in the co-polymerisation with lactide using $L^{Bu}_{Bu}ZrO\Pr.HO\Pr$. This section investigates lactide co-polymerisations using $L^{Bu}_{Bu}ZrO\Pr.HO\Pr$ and various monomer ratios in a one-pot synthesis.

4.3.1. Et-LA Polymerisations

In order to synthesise a random co-polymer, the rates of reaction should be similar. As Et-LA is very similar in structure to lactide, the possibility of synthesising a co-polymer is plausible. The syntheses of both homo-polymers and co-polymers of lactide with Et-LA were done using initiator $L^{Bu}_{Bu}ZrO\Pr.HO\Pr$. All co-polymerisations discussed in this section were performed on NMR-scale (combined monomer moles; 3.46 x 10$^{-4}$ mol), 100:1 combined monomer: initiator ratio with $L^{Bu}_{Bu}ZrO\Pr.HO\Pr$ initiator in d_8 toluene (0.6 ml) at 353 K. The reactions were monitored in situ by 1H NMR spectroscopy. Inconveniently, the different polymer peaks overlapped (Figure 4.3.1), so that a series of equations were derived in order to calculate conversion accurately (Equation 4.1).
In order to calculate conversion during reaction, \textit{in situ} 1H NMR spectroscopy was used. Here, both the monomer peaks and the polymer peaks are overlapping (Figure 4.3.1). The triplet at 3.95 ppm corresponds to the methine proton of Et-LA adjacent to the ethyl moiety. The overlapping quartet at 4.03 ppm attributes to the methine protons of both Et-LA and \textit{rac}-LA adjacent to the methyl moiety (three protons; two from \textit{rac}-LA and one from Et-LA). The polymer peaks for the conversion of both monomers was observed as a multiplet at 4.87 – 5.39 ppm. In order to calculate conversion of each monomer to the desired co-polymer, an equation was devised as shown below (Equation 4.1).

\textbf{Equation 4.1:} Devised equation to calculate conversion during co-polymerisation of Et-LA and \textit{rac}-LA.

\[\text{(i)} \]
\[
\frac{[M_A]_0}{[M_B]_0} = \alpha = \frac{M_A + P_A}{M_B + P_B}
\]

\[
\alpha(M_B + P_B) = M_A + P_A
\]

(iii)

Simultaneous equations:

\[
\alpha P_B - P_A = M_A - \alpha M_B
\]

(iv)

\[
P_A + P_B = \beta
\]

(vi)

\[
(1 + \alpha)P_B = \beta + M_A - \alpha M_B
\]

(vii)

Rearrange:

\[
P_B = \frac{\beta + M_A - \alpha M_B}{1 + \alpha}
\]

(viii)

\[
P_B = \beta - P_A
\]

(ix)

It was known that the monomer concentration of rac-LA to Et-LA was 1:1, thus M_{[A]} corresponds to three protons and M_{[B]} corresponds to one proton. From this, along with the integral for the combined co-polymer, conversion can be calculated as described above (Equation 4.1). Using these equations, conversion of the monomers to polymer was determined.

\(^1\text{H NMR spectrum was taken every 15 minutes for 8 hours as shown below (Figure 4.3.2).}
Figure 4.3.2: Semi-log plot of homo-polymerisation of rac-LA (blue), Et-LA (red) and the 1:1 co-polymerisation of rac-LA (green) and Et-LA (orange) using $L^{\text{Bu}}\text{ZrO}^*\text{Pr.HO}^*\text{Pr}$ (100:1 combined monomer: initiator loading) in toluene - d_8.

Figure 4.3.2 illustrates the semi-log plot for homo-polymerisations of rac-LA and Et-LA. It was observed that rac-LA has a much faster reaction rate than Et-LA. However, when the two monomers are co-polymerised together at a 1:1 monomer: monomer ratio the reaction rates appear to be enhanced and to converge. The apparent rate constants (k_{app}) for these reactions are shown below with calculated linear regression displayed in brackets (Table 4.3.1).

Table 4.3.1: Apparent rate constants for homo-polymerisation of rac-LA (blue), Et-LA (red) and the co-polymerisation with a rac-LA (green) to Et-LA (orange) monomer ratio of 1:1 using $L^{\text{Bu}}\text{ZrO}^*\text{Pr.HO}^*\text{Pr}$ (100:1 combined monomer: initiator loading) in d_8 tol.

<table>
<thead>
<tr>
<th>[LA]$_0$</th>
<th>[Et-LA]$_0$</th>
<th>k_{app} LA (min$^{-1}$)</th>
<th>k_{app} EtLA (min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.0285</td>
<td>0.0326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(±0.004)</td>
<td>(±0.0001)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.0173</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(±0.003)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(±0.0001)</td>
</tr>
</tbody>
</table>
For the homo-polymerisation of rac-LA a k_{app} of 0.0173 min$^{-1}$ was observed, which was significantly faster than that of Et-LA ($k_{\text{app}} = 0.0030$ min$^{-1}$). As described in Figure 4.3.3 this suggests that the addition of rac-LA monomer to a polymer chain propagating from a poly(rac-LA) moiety ($k_{\text{rac-LA-rac-LA}}$) is a lot faster than the addition of a Et-LA monomer to a polymer chain propagating from a polyEt-LA moiety ($k_{\text{Et-LA-Et-LA}}$), therefore $k_{\text{rac-LA-rac-LA}} >> k_{\text{Et-LA-Et-LA}}$. Conversely, during the co-polymerisation (1:1 rac-LA:Et-LA), the k_{app} values for both monomers were similar. Here, both rac-LA and Et-LA experienced an increase reaction rates ($k_{\text{app}} = 0.0285$ min$^{-1}$ and 0.0326 min$^{-1}$ respectively). Interestingly, at this monomer ratio (1:1), the apparent rate constants are similar. Statistically, using linear regression, both rates ($k_{\text{app}} = 0.0285$ min$^{-1}$ (±0.004) and 0.0326 min$^{-1}$ (±0.0001) for rac-LA and Et-LA respectively) are within the same range. An alternative co-polymer is likely to have occurred, with EtLA homo-polymer block tendencies. This behavioural phenomenon is well documented with co-polymerisations behaving very differently to their homo-polymerisation counterparts. As the reaction rates are closer at 1:1 monomer ratio, this suggests the formation of a true co-polymer may be possible. Investigations into the co-polymerisation of rac-LA and Et-LA were undertaken. Similar calculations were performed using different ratios, of which the kinetic plots are displayed below (Figure 4.3.4).
Figure 4.3.4: Semi-log plot of co-polymerisation using LdiuZrOiPr.HOiPr (100:1 combined monomer: initiator loading) with a rac-LA (green) to Et-LA (orange) monomer ratio of a) 9:1, b) 4:1, c) 3:1, d) 1:3.

At 9:1 rac-LA: Et-LA, the reaction rates observed (rac-LA \(k_{\text{app}} = 0.004 \text{ min}^{-1}\) and Et-LA \(k_{\text{app}} = 0.016 \text{ min}^{-1}\)) suggest that the initial co-polymerisation occurred at a fast rate, followed by the slow rate of the remaining homo-polymer segment (\(k_{12} \sim k_{21} > k_{11}\)). As the amount of co-monomer is increased the reaction rates increase whereby at 1:3 rac-LA: Et-LA monomer ratio the apparent rate constants appear to be very similar. This suggests formation of a true random co-polymer where the addition of either monomer to either polymer end are similar or the reactivity ratios \(r_1\) and \(r_2\) both approximately 1 (\(k_{\text{rac-LA-rac-LA}} \sim k_{\text{Et-LA-rac-LA}} \sim k_{\text{Et-LA-Et-LA}} \sim k_{\text{rac-LA-Et-LA}}\)). Unfortunately, reactivity ratios could not be calculated due to high initial conversion illustrated was over 15 % (must be >20%).
Coates et al. reported the ROP of lactide using a chiral salen aluminium complex for which the chirality of the metal complex and the chirality of the alkoxide moiety played a crucial role in the influence of stereoselectivity in the initial ring-opening event. In our case, similar activity may be observed as in the initial ring-opening event, the initiator could preferentially ring-open an Et-LA monomer instead of a rac-LA monomer. Thus high initial conversion of Et-LA was displayed.

A full semi-log plot of copolymerisation at 1:3 rac-LA: Et-LA is shown below.

Figure 4.3.5: Semi-log plot of co-polymerisation using $L^{\text{Bu}}\text{ZrO}^{\text{iPr}}\text{HO}^{\text{iPr}}$ (100:1 combined monomer: initiator loading) with a rac-LA (green) to Et-LA (orange) monomer ratio of 1:3.

Figure 4.3.5 displays a full semi-log plot of co-polymerisation using $L^{\text{Bu}}\text{ZrO}^{\text{iPr}}\text{HO}^{\text{iPr}}$ (100:1 combined monomer: initiator loading) with a rac-LA (green) to Et-LA (orange) monomer ratio of 1:3. Initially, the rates appear similar, corresponding to a co-polymerisation where $k_{12} \sim k_{21}$. However, when all the minor monomer (rac-LA) was consumed the reaction rate decreases significantly similar to that of the homo-polymer due to $k_{\text{EtLA-EtLA}} \ll k_{\text{EtLA-rac-LA}} \sim k_{\text{rac-LA-EtLA}}$.

All polymerisations were terminated after 8 hours with addition of methanol (0.2 ml). The solvent was removed and the resulting polymer was washed with methanol to remove any unreacted monomers. The polymers were dried in vacuo and GPC was used to determine molecular weights (Table 4.3.2).
Initially, at 9:1 rac-LA:Et-LA, a bimodal GPC trace was observed with a high-molecular weight GPC trace ($M_n = 54.0 \text{ kg.mol}^{-1}$), along with a much smaller polymer ($M_n = 10.8 \text{ kg.mol}^{-1}$). This bimodal trace suggests two different polymers were synthesised, possibly a rac-LA homo-polymer ($M_n = 54.0 \text{ kg.mol}^{-1}$) and a rac-LA and Et-LA co-polymer ($M_n = 10.8 \text{ kg.mol}^{-1}$). Interestingly, at 1:1 rac-LA:Et-LA, a mono-modal trace was observed suggesting a co-polymer may have been synthesised. A trend of decreasing M_n coupled with a decrease in T_g was observed with increasing quantities of Et-LA further suggesting co-polymerisation.

4.3.2. Ph-LA Polymerisations

Poly(Ph-LA) has increased T_g (85°C) compared to polylactide (60°C) which is of great significance in the industrial market. Interestingly, the properties of polymandelide ($T_g = 100°C$) coupled with the degradability of lactide could lend themselves to a promising degradable co-polymer. All co-polymerisations discussed for now on in this chapter were performed on NMR-scale (combined monomer moles; 3.46×10^{-4} mol), 100:1 combined monomer: initiator ratio in d_8 toluene (0.6 ml) at 353 K.

An initial screening of $\text{L}^{\text{Buc}}\text{ZrO}^\text{iPr}.\text{HO}^\text{iPr}$ as an initiator in the ring-opening homopolymerisations of rac-LA, L-LA and Ph-LA was completed at 80°C with a 100:1 monomer to initiator ratio in toluene-d_8. The reactions were monitored 	extit{in situ} by 1H NMR spectroscopy (Figure 4.3.6).

Table 4.3.2: GPC analyses of co-polymers of rac-LA with Et-LA.

<table>
<thead>
<tr>
<th>[LA]$_0$: [Et-LA]$_0$</th>
<th>M_n kg.mol$^{-1}$</th>
<th>$M_{n,\text{theo}}$ kg.mol$^{-1}$</th>
<th>PDI</th>
<th>T_g (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 : 1</td>
<td>54.0</td>
<td>14.5</td>
<td>1.18</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td></td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>4 : 1</td>
<td>10.7</td>
<td>14.6</td>
<td>1.33</td>
<td>37</td>
</tr>
<tr>
<td>3 : 1</td>
<td>32.0</td>
<td>14.7</td>
<td>1.22</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td></td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>1 : 1</td>
<td>3.5</td>
<td>15.0</td>
<td>1.22</td>
<td>16</td>
</tr>
<tr>
<td>1 : 3</td>
<td>2.7</td>
<td>15.4</td>
<td>1.24</td>
<td>0</td>
</tr>
<tr>
<td>0 : 1</td>
<td>2.4</td>
<td>15.7</td>
<td>1.15</td>
<td>3</td>
</tr>
</tbody>
</table>
Previously, Davidson et al. reported the homo-polymerisation of rac-LA and L-LA in CDCl$_3$ at 25°C with a 100:1 monomer to initiator to have a pseudo-first order rate constant (k_{app}) of 4.2×10^{-3} min$^{-1}$ and 0.6×10^{-3} min$^{-1}$ respectively. Under our conditions (100:1 monomer to initiator loading in toluene-d_8, 80°C), kinetic analyses suggest pseudo-first order for rac-LA and L-LA with an apparent rate constant (k_{app}) of 16.0×10^{-3} min$^{-1}$ and 2.3×10^{-3} min$^{-1}$ respectively. This is consistent with the previously reported data and is due to the initiator preferentially forming heterotactic PLA over isotactic PLA. Baker and co-workers reported the synthesis and polymerisation of Ph-LA using L^{sal}ZrOiPr.HOiPr initiators affording low M_w polymers. In our case, the homo-polymerisation of rac-Ph-LA (100:1 monomer to initiator loading in d_8 toluene, 80°C) suggests pseudo-first order kinetics with an observed k_{app} of 0.4×10^{-3} min$^{-1}$, considerably slower than the rac-LA and L-LA counterparts. The reduction in k_{app} may be due to the steric hindrance of the phenyl ring prohibiting the coordination of the initiator activating the carbonyl group alpha to the aromatic moiety. Nevertheless, during polymerisation in situ NMR spectra were used to determine conversion (Figure 4.3.7).

Figure 4.3.6: Semi-log plot of the homo-polymerisation of rac-LA (green), L-LA (blue) and Ph-LA (red) with L^{sal}ZrOiPr.HOiPr, 100:1 monomer:initiator loading, 80°C in d_8 toluene.
Upon closer inspection of the 1H NMR spectra during polymerisation, it can be seen that whilst polymerisation does occur, epimerisation of the monomer is observed simultaneously. Baker and co-workers reported the preferred monomers configuration during synthesis was the enantiomers with stereocentres of SS or RR. During polymerisation, and in the presence of the initiator, the delocalised electrons within the aromatic ring pull electron density away from the lactide backbone forcing the adjacent H_B to be more acidic. This in turn leads to epimerisation, which is displayed in the 1H NMR (Figure 4.3.7). Epimerisation is the process of forming an epimer via a change of one stereocentre in a molecule that has more than one stereocentre. This leads to the formation of diastereoisomers with the configuration SR or RS, from SS and RR respectively, where H_B is displayed as a downfield shift from δ 5.21 ppm to 5.58 ppm. This in turn has an effect on H_A, demonstrated by an upfield shift from δ 4.25 ppm to 4.18 ppm, whilst the growing polymer chain is observed as a broad multiplet at δ 6.23-5.85 ppm. It was observed that the epimerisation lead to a statistical mixture of enantiomers and diastereoisomers (1:1).

A range of copolymers were synthesised with five different monomer ratios. Initially, 1:1 ratio of rac-LA and Ph-LA was synthesised under the same conditions as above (Figure 4.3.6). Kinetic analyses were carried out using in situ by NMR and conversions determined by integrating both monomer and polymer peaks.
Figure 4.3.8: Semi-log plot of polymerisation of rac-LA (green) and Ph-LA (red) with LfluZrOPr.HOPr, 50:50:1 rac-LA:Ph-LA:initiator loading, 80°C in d\textsubscript{6} toluene.

Whilst the homopolymerisation rates of reaction were very different, during a 1:1 copolymerisation of rac-LA and Ph-LA the rates appear to be similar (k_{app} rac-LA and Ph-LA are both 1.4×10^{-3} min\(^{-1}\)). However, this does not prove the formation of a perfectly alternating or a truly random copolymer as it is unknown whether the active site chain ends in a Ph-LA or a LA monomer and thus what sequence the initiator would preferentially polymerise the monomers.

Figure 4.3.9: Reaction rates of co-polymerisation of rac-LA (green) and Ph-LA (red).
The possible microstructures include block, random, and alternating polymers. Further investigation of the microstructure by MALDI-ToF analyses and determination of reactivity ratios was required. MALDI-ToF analysis can be used in order to determine both the end groups and the microstructural sequence of the polymer. A proposed (not measured) schematic is shown below illustrating a perfectly alternating co-polymer (Scheme 4.3.1).

Scheme 4.3.1: Proposed (not measured) schematic representation using MALDI-ToF analysis of perfectly alternating copolymer with monomers rac-LA (blue) and Ph-LA (red), end groups (yellow patterned) and sodium cation (+).
A modified schematic by Duchateau et al. (Scheme 4.3.1),10 illustrates the possible interpretation of MALDI-ToF analysis in order to depict the microstructure of the copolymer. For a perfectly alternating co-polymer, a peak at 3936 m/z would correspond to a calculated intensity of eleven LA monomers with eleven Ph-LA monomers, with a sodium cation and an isopropoxide initiating group. Interestingly, if the next peak was to be 4080 m/z, this would indicate the addition of a LA monomer, if this was then followed by an addition of a Ph-LA monomer a peak at 4286 m/z would be detected.

In 1944, Mayo and Lewis investigated the behaviour of the monomers methylmethacrylate and styrene in free radical co-polymerisation.11 They developed a theoretical equation to determine the reactivity ratios of the co-polymerisation and thus establish the final microstructure of the polymer. Polymerisations consisting of five different monomer ratios, ranging from 9:1 to 1:9, were used to calculate reactivity ratios of the reaction. There are various methods to determine reactivity ratios as discussed in chapter 1. Mayo and Lewis devised an equation (Equation 4.2) using the kinetic data of co-polymerisations at low conversions (below 15 %). Firstly, kinetic analyses of polymerisations with varying monomer:monomer ratios were investigated. Under the same conditions as for the homo-polymerisations, the reaction of $\text{L}^{\text{tBu}}\text{ZrO}^+\text{Pr}.\text{HO}^-\text{Pr}$ with monomers rac-LA and Ph-LA was performed with a combined monomer to initiator ratio of 100:1. Whilst the overall concentration remained constant for all co-polymerisations, the rac-LA to Ph-LA monomer to monomer ratio differed. Initially, polymerisations with rac-LA: Ph-LA monomer ratios of 9:1 and 3:1 were adopted as shown below (Figure 4.3.10).
Figure 4.3.10: Copolymerisation using ZrL\textsubscript{Bu}O\textsubscript{iPr} with a rac-LA (green) to Ph-LA (red) monomer ratio of a) 9:1 and b) 3:1.

Firstly, a 9:1 monomer to monomer ratio was employed and kinetic analyses were undertaken as shown in Figure 4.3.10a. Surprisingly, it is observed that polymerisation of rac-LA demonstrates a much slower k_{app} (9.9×10^{-3} min-1) than that of its homopolymerisation ($k_{\text{app}} = 14.0 \times 10^{-3}$ min-1). Conversely, the polymerisation of Ph-LA demonstrates a much faster k_{app} (5.8×10^{-2} min-1) than that of its homopolymerisation ($k_{\text{app}} = 0.4 \times 10^{-3}$ min-1). Although there are examples of this phenomenon in the literature with the copolymerisation of ε-CL and LA, there is still no explanation.12–14 The reverse rac-LA to Ph-LA monomer ratios were polymerised (1:9 and 1:3 equivalents) as shown in Figure 4.3.11.
A rac-LA to Ph-LA monomer ratio of 1:9 was employed and the kinetic analyses examined (Figure 4.3.11a). Whilst the polymerisation rate of rac-LA was faster ($k_{\text{app}} = 1.0 \times 10^{-2} \text{ min}^{-1}$) than rac-LA homo-polymerisation ($k_{\text{app}} = 16.0 \times 10^{-3} \text{ min}^{-1}$), the behaviour mimics the homo-polymerisation, as it is faster than the Ph-LA co-polymerisation ($7.4 \times 10^{-3} \text{ min}^{-1}$). Kinetic analyses of polymerisation with rac-LA to Ph-LA monomer ratio of 1:3 (Figure 4.3.11b) displays similar co-polymerisation rates for rac-LA ($k_{\text{app}} = 7.1 \times 10^{-3} \text{ min}^{-1}$) and Ph-LA ($k_{\text{app}} = 6.4 \times 10^{-3} \text{ min}^{-1}$). This observation suggests that as the ratio’s get closer to 1:1 the k_{app}’s also converge to a similar rate.
Equation 4.2: Mayo-Lewis equation for the co-polymerisation of rac-LA with Ph-LA.

\[F_1 = 1 - F_2 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2} \]

\[r_1 = \frac{k_{1,1}}{k_{1,2}} \quad r_2 = \frac{k_{2,2}}{k_{2,1}} \]

As discussed in Chapter 1, the Mayo Lewis equation was used to determine the reactivity ratios of the co-polymerisation of rac-LA with Ph-LA where \(f_1 \) and \(f_2 \) are the mole fraction of LA and Ph-LA in the feed. \(F_1 \) and \(F_2 \) are the mole fraction of LA and Ph-LA in co-polymer. \(r_1 \) and \(r_2 \) are the reactivity ratios of LA and Ph-LA respectively in the co-polymer.

Table 4.3.3: Reactivity ratios for the co-polymerisation of rac-LA with Ph-LA.

<table>
<thead>
<tr>
<th>[LA]₀ (f₁)</th>
<th>[Ph-LA]₀ (f₂)</th>
<th>LA conv. (%)</th>
<th>Ph-LA conv. (%)</th>
<th>LA copolymer (F₁)</th>
<th>Ph-LA copolymer (F₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>13.12</td>
<td>13.11</td>
<td>0.89</td>
<td>0.10</td>
</tr>
<tr>
<td>0.75</td>
<td>0.25</td>
<td>2.04</td>
<td>0.01</td>
<td>0.83</td>
<td>0.18</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>11.32</td>
<td>11.21</td>
<td>0.49</td>
<td>0.50</td>
</tr>
<tr>
<td>0.25</td>
<td>0.75</td>
<td>7.12</td>
<td>8.19</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>9.03</td>
<td>6.41</td>
<td>0.15</td>
<td>0.85</td>
</tr>
</tbody>
</table>

\[r_{1(\text{calc})} = 0.74 \]

\[r_{2(\text{calc})} = 0.69 \]

The reactivity ratios \((r_1 \) and \(r_2 \) derived from the Mayo-Lewis equation are similar in values and are below 1. Florczak and Duda investigated chiral Schiff base enantiomers and their effect on the co-polymerisation of \(\varepsilon \)-caprolactone and L,L-lactide which also exhibited similar reactivity ratios to one another.\(^{14} \) This trend indicates the microstructure of the copolymer is a statistical distribution of rac-LA and Ph-LA monomer units along the polymeric chain. A random co-polymerisation displays \(r_1 = r_2 = 1 \) and for a true alternating polymer \(r_1 = r_2 = 0 \). Conversely, in our case, \(r_1 \) and \(r_2 \) are less than 1 but higher than 0 indicating the synthesis of a random co-polymer. A plot of co-polymer composition \((F_1) \) versus monomer feed ratio \((f_1) \) was used to further investigate the microstructural sequence of the co-polymers (Figure 4.3.12).
For a truly random co-polymer a plot of copolymer composition \((F_1)\) versus monomer feed ratio \((f_1)\) would display a straight line with the intercept at 0, gradient of 1 and an \(R^2\) value close to 1. Here, in our case, the monomer feed ratio \((f_1)\) directly relates to the copolymer composition \((F_1)\) as illustrated by the gradient of the curve having a value close to 1 (0.9919, Figure 4.3.12). This is further supported by the trend-line both fitting the data well \((R^2 = 0.98989)\) and having an intercept close to 0 (0.0271), corroborating the previous conclusion that a random copolymer was synthesised. Selected physical and thermal properties of the synthesised co-polymers are shown below (Table 4.3.4).
Table 4.3.4: GPC and DSC analyses of co polymers of rac-LA and Ph-LA at various monomers ratios.

<table>
<thead>
<tr>
<th>[LA]₀ : [Ph-LA]₀</th>
<th>Mₙ</th>
<th>Mₙ,tho</th>
<th>PDI</th>
<th>Tₕ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg.mol⁻¹</td>
<td>kg.mol⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 : 1</td>
<td>10.0</td>
<td>15.0</td>
<td>1.79</td>
<td>44</td>
</tr>
<tr>
<td>3 : 1</td>
<td>12.2</td>
<td>15.9</td>
<td>1.13</td>
<td>43</td>
</tr>
<tr>
<td>1 : 1</td>
<td>9.1</td>
<td>17.4</td>
<td>1.08</td>
<td>55</td>
</tr>
<tr>
<td>1 : 3</td>
<td>33.8</td>
<td>18.9</td>
<td>1.24</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td></td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>1 : 9</td>
<td>21.9</td>
<td>19.8</td>
<td>1.06</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td></td>
<td>1.17</td>
<td></td>
</tr>
</tbody>
</table>

As the amount of Ph-LA increased within the lactide co-polymer, the molecular weight generally increased. For lactide: PhLA monomer ratios of 1:3 and 1:9, bimodal GPC traces were observed suggesting two different polymers may have been synthesised. Interestingly, polyPh-LA is similar to polymandelide, and expresses a high Tₕ value due to possible π-π stacking of the aromatics in the polymer chain. This is observed in Table 4.3.4 whereby with increased portion of Ph-LA present in the lactide co-polymer, an increase in Tₕ was observed. Molecular weight may also influence the Tₕ as an increase in molecular displays an increase in Tₕ.

4.3.3. BrPh-LA Polymerisations

Whilst polyPh-LA mimics similar functionality to polystyrene, the analogous monomer BrPh-LA should exhibit similar characteristics with the advantage of possible functionalization after polymerisation with nucleophilic substitution at the bromo-substituent. Initially, an NMR-scale homo-polymerisation of BrPh-LA (monomer moles; 3.46 x 10⁻⁴ mol), was performed with L₄μZrO’Pr.HO’Pr (100:1 monomer: initiator ratio) in d₈ toluene (0.6 ml) at 353 K. Then, a co-polymerisation of BrPh-LA with rac-LA was screened with a combined monomer: initiator ratio of 100:1. The reactions were monitored by NMR spectroscopy and a comparison of homo-polymerisations versus co-polymerisations are shown below and the reaction rates determined by semi-log plots (Figure 4.3.13).
Again, as seen for Ph-LA, the homo-polymerisation rates of rac-LA and BrPh-LA were very different ($k_{app} = 0.016$ and 0.0004 min$^{-1}$ respectively) suggesting $k_{rac-LA} - k_{rac-LA} >> k_{BrPh-LA} - k_{BrPh-LA}$ during 1:1 co-polymerisation, the rates of reaction decrease for both monomers and appear to have similar k_{app} values of 0.0008 and 0.0005 min$^{-1}$ for rac-LA and BrPh-LA respectively. This suggests that at 1:1 co-polymerisation ratio $k_{BrPh-LA} - k_{rac-LA} ~ k_{BrPh-LA} - k_{BrPh-LA}$, suggesting a true co-polymer may have been synthesised. A simplified graphic of the co-polymerisation is shown below (Figure 4.3.14).

Figure 4.3.13: Semi-log plot of the homo-polymerisation of rac-LA (blue), L-LA (red), BrPh-LA (orange) and 1:1 co-polymerisation rac-LA (green) and BrPh-LA (purple) with $\text{L}^{\text{dmeZrO}^\text{Pr.HO}^\text{Pr}, 100:1}$ monomer:initiator loading, 80°C in d_8 tol.

Figure 4.3.14: Reaction rates of co-polymerisation of rac-LA (green) and BrPh-LA (purple).
Further investigations into the co-polymerisation of rac-LA and BrPh-LA were undertaken using different ratios ranging from 9:1 to 1:9 rac-LA to BrPh-LA. For each of them, kinetic plots are displayed below (Figure 4.3.15).

Figure 4.3.15: Semi-log plot of co-polymerisation using $^{\text{flu}}$ZrO$^{\text{Pr}}$.HO$^{\text{Pr}}$ (100:1 combined monomer: initiator loading) with a rac-LA (green) to BrPh-LA (purple) monomer ratio of a) 9:1, b) 3:1, c) 1:3, d) 1:9.

For the co-polymerisation of rac-LA and BrPh-LA when rac-LA was in excess (9:1 and 3:1), BrPh-LA reaction rate was faster than that of rac-LA. This is the opposite of what was observed for the homo-polymerisations where rac-LA had a much faster reaction rate. This could be due to $k_{\text{rac-LA-BrPh-LA}} > k_{\text{rac-LA-rac-LA}}$. Due to the low concentration of BrPh-LA in the reaction,
conversion to near completion occurs fairly rapidly. The opposite was observed with increased concentration of BrPh-LA (1:3 and 1:9 rac-LA: BrPh-LA). Here, a much faster reaction rate was observed for rac-LA. This could be due to $k_{BrPh-LA\rightarrow BrPh-LA} \ll k_{rac-LA\rightarrow BrPh-LA} < k_{rac-LA\rightarrow rac-LA}$. As the co-polymerisation rate of rac-LA is so much faster, this suggests that a co-polymer is synthesised initially until most of the rac-LA monomer has been consumed, followed by a block segment of polyBrPh-LA homopolymer. Reactivity ratios were calculated for the copolymerisation of rac-LA with BrPh-LA (Table 4.3.5) in the same fashion as for Ph-LA.

Table 4.3.5: Reactivity ratios for the co-polymerisation of rac-LA with Ph-LA.

<table>
<thead>
<tr>
<th>[LA]₀ (f₁)</th>
<th>[BrPh-LA]₀ (f₂)</th>
<th>LA conv. (%)</th>
<th>BrPh-LA conv. (%)</th>
<th>LA copolymer (F₁)</th>
<th>BrPh-LA copolymer (F₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>6.94</td>
<td>7.02</td>
<td>0.91</td>
<td>0.09</td>
</tr>
<tr>
<td>0.75</td>
<td>0.25</td>
<td>4.88</td>
<td>6.08</td>
<td>0.70</td>
<td>0.30</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>5.99</td>
<td>5.41</td>
<td>0.53</td>
<td>0.47</td>
</tr>
<tr>
<td>0.25</td>
<td>0.75</td>
<td>13.39</td>
<td>8.95</td>
<td>0.36</td>
<td>0.64</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>22.03</td>
<td>9.79</td>
<td>0.22</td>
<td>0.78</td>
</tr>
</tbody>
</table>

$r₁(calc) = 0.55$

$r₂(calc) = 0.32$

The reactivity ratios ($r₁$ and $r₂$) derived from the Mayo-Lewis equation are less than 1 ($r₁ = 0.5429$ and $r₂ = 0.3226$). This trend indicates the microstructure of the copolymer is a statistical distribution of rac-LA and BrPh-LA monomer units along the polymeric chain. As expected, these results are similar to that discussed previously in this chapter for the co-polymerisation of rac-LA and Ph-LA. As $r₁$ and $r₂$ are again less than 1 but higher than 0, this indicates the synthesis of a random co-polymer with alternating tendencies. A plot of co-polymer composition ($F₁$) versus monomer feed ratio ($f₁$) was used to further investigate the microstructural sequence of the co-polymers (Figure 4.3.16).
Figure 4.3.16: Plot of co-polymer composition \((F_1) \) versus monomer feed ratio \((f_1) \).

For a truly random co-polymer a plot of copolymer composition \((F_1) \) versus monomer feed ratio \((f_1) \) would display a straight line with the intercept at 0, gradient of 1 and an \(R^2 \) value close to 1. Here, in our case, the monomer feed ratio \((f_1) \) directly relates to the copolymer composition \((F_1) \) as illustrated by the gradient of the curve having a value close to 1 (0.8066, Figure 4.3.16), although not as close to 1 as that observed for the lactide co-polymerisation with Ph-LA. This is further supported by the trend-line both fitting the data well \((R^2 = 0.98553) \) and having an intercept close to 0 (0.14). Again, although this suggests a random copolymer was synthesised, coupling this information with the reactivity ratios reported previously in this chapter, the overall microstructural sequence of the co-polymer is thought to be a random co-polymer with alternating tendencies (similar to copolymerisation of rac-LA and Ph-LA).

Table 4.3.6: GPC and DSC analyses of co-polymers of rac-LA and BrPh-LA at various monomer:monomer ratios.

<table>
<thead>
<tr>
<th>[LA]₀ : [BrPh-LA]₀</th>
<th>(M_n) kg.mol⁻¹</th>
<th>(M_{n,\text{theo}}) kg.mol⁻¹</th>
<th>PDI</th>
<th>(T_g) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 : 1</td>
<td>8.9</td>
<td>15.7</td>
<td>1.37</td>
<td>41</td>
</tr>
<tr>
<td>3 : 1</td>
<td>4.7</td>
<td>17.8</td>
<td>1.26</td>
<td>52</td>
</tr>
<tr>
<td>1 : 1</td>
<td>5.0</td>
<td>21.3</td>
<td>1.18</td>
<td>66</td>
</tr>
<tr>
<td>1 : 3</td>
<td>3.4</td>
<td>24.8</td>
<td>1.17</td>
<td>67</td>
</tr>
<tr>
<td>1 : 9</td>
<td>2.1</td>
<td>26.9</td>
<td>1.18</td>
<td>69</td>
</tr>
</tbody>
</table>
With increased ratio of BrPh-LA, a decrease in molecular weights was observed. As expected, as the quantity of BrPh-LA in the co-polymerisation is increased there is a general trend of increased T_g. Increase amount of aromatic substituents should increase thermal properties coupled with the possible further stability due to $\pi-\pi$ stacking afford some very interesting co-polymers.

4.4. Conclusions

A series of monomers were synthesised and co-polymerised with lactide. Lactide co-polymerisations with 5% and 10% vinyl-LA was achieved using TBD and benzyl alcohol. Due to Et-LA exhibiting similar properties to lactide, co-polymerisation with varying monomer stoichiometries with L-$^\text{Bu}ZrO^\text{iPr}.HO^\text{iPr}$ was trialled. A trend of decreasing M_n was observed with increasing quantities of Et-LA which could contribute to a lowering of T_g, suggesting co-polymerisation. Ph-LA and BrPh-LA were also tested in co-polymerisation under the same conditions with varying monomer amounts. Kinetic studies illustrated random co-polymers were synthesised with lactide where increased amounts of Ph-LA or BrPh-LA afforded co-polymers with increased thermal properties. The ability to synthesise a polymer that can mimic characteristics of polystyrene and yet exhibit degradability has huge industrial potential.

4.5. Further work

In this chapter, a series of promising co-polymers have been synthesised. In order to probe the morphology further, 13C NMR spectroscopy could be utilised to investigate the microstructural linking of the repeat units. Large scale reactions yielding grams of polymer would enable rheology experiments. Further investigations into the polymerisations using enantiopure monomers to try and exploit the heterotactic bias of the initiator would potentially yield very interesting alternating co-polymers.
4.6. References

Chapter 5

Conclusion
Overall, a series of active initiators were synthesised and characterised for the ROP of rac-lactide under solvent-free conditions. These initiators were based on Group 4 metals complexed to ligands L₁, L₂ and L₃. The resulting polymers were characterised using GPC, DSC, and NMR, and Ti₄(L₂)(OiPr)₁₂, 4, was found to be the most active initiator showing comparable activity to the commercially used tin(II) hexanoate. Commercially available monomers were also trialled for ROP using L_{d}Zr(OiPr).HOiPr, whereby block co-polymers were synthesised and the heterotactic bias of the initiator was exploited to form penta-block co-polymers. A series of unsymmetrical monomers were synthesised and polymerised to synthesise co-polymers using different stoichiometric amounts of monomers. Kinetic studies were performed to probe the activity of the initiator and deduce the microstructure of the resulting co-polymers.

Chapter 2 describes the synthesis of several new group 4 complexes that were trialled in the ROP of sublimed rac-LA under solvent-free conditions at 135°C and 165°C. All initiators were active with the exception of Ti₂(L₃)₂. Titanium and zirconium were successfully complexed to lactic acid ligand to form Ti₈[dimer]₄(L₁)₄(OiPr)₂₀ and Zr(L₁)₂ and gave an insight into possible binding mode lactide derivatives to group 4 metals during polymerisation. Both initiators exhibited moderate activity in the ROP of rac-lactide. While Zr(L₁)₂ was the least active at 135°C, it was shown to be one of the most active at 165°C (89% in 4 h) in this series. For Group 4 L₂ complexes, activity was found to increase with an increase in the number of labile isopropoxide groups at 135°C, indicating the identity of the metal was found to be of less importance than the number of labile initiator groups present, with similar Zr, Hf and Ti complexes giving similar conversions. When an elevated temperature of 165°C was trialled, all the complexes demonstrated a higher activity irrespective of the identity of the metal or number of labile initiator groups. It is likely that the actual active species at elevated temperatures is a degradation product of the catalyst, rather than the original catalyst. In order to enhance stereocontrol, complexes with increased steric bulk were trialled but remained inactive under these conditions. The most active titanium species of the series, Ti₄(L₂)(OiPr)₁₂, was further examined under conditions more closely replicating industrial polymerizations: at 165°C with a low initiator loading (5000:1) and using unsublimed (recrystallized) lactide. Under these conditions, and in contrast to commercially available Group 4 metal alkoxides (Ti(OiPr)₄ and Zr(OiPr)₄(HOiPr)), Ti₄(L₂)(OiPr)₁₂, 4, was found to be highly active, facilitating a >99 % polymerization of the monomer to PLA within 3 hours thus highlighting the potential of Group 4 complexes as initiators for the commercial production of PLA. Although Ti(OiPr)₄ exhibited a far higher activity and molecular weight control at 135°C and 165°C with sublimed rac-lactide than 4, under more industrially relevant conditions (5000:1 initiator loading at 165°C) a far lower activity was observed. This loss in activity and control indicates that Ti(OiPr)₄ would not
be suitable for scale up to industrial conditions. In contrast, the synthesised initiator Ti₄(L₂)(O'iPr)₁₂, 4, does not work as well under the conditions of 135°C and 165°C with sublimed rac-lactide, however, when recrystallized (unsublimed) lactide is used under more industrial conditions the activity and control during polymerisation was much higher. In the future, further large-scale polymerisations could be performed with the most promising initiator Ti₄(L₂)(O'iPr)₁₂ with unrecrystallised lactide. Investigations into the stability of Ti₄(L₂)(O'iPr)₁₂ in the presence of impurities (lactic acid and H₂O) in order to probe its potential as an initiator for L-LA or D-LA polymerisations with the intention of forming stereocomplexed PLA upon mixing of enantio-pure polymers. The initiators synthesised in this chapter could also be trialled for the ROP of other lactones and the activity probed.

Chapter 3 describes the synthesis of various copolymers using commercially available, inexpensive monomers (LA, ε-CL, VL, PDL). Initially, unsymmetrical ABC tri-block copolymers containing L-LA, ε-CL and D-LA were produced using L⁶BuZr(O'iPr).HO'iPr as initiator and characterised using GPC, NMR and DSC. While GPC analysis of the final polymer was inconclusive, the tri-block copolymers insolubility in THF suggested a stereocomplex tri-block was formed. In chapter 3, DSC traces of the tri-block copolymers further supported stereocomplexation with a Tₘ of 199°C. The analogous polymer utilizing δ-VL instead of ε-CL was also synthesised and characterised. The ability to exploit the initiator L⁶BuZr(O'iPr).HO'iPr bias towards the formation of heterotactic PLA from rac-LA lends itself to the synthesis of unsymmetrical penta-block co-polymers. While the DSC traces were inconclusive and showed no thermal analysis results, this further indicates cross-linking within the polymer. GPC analyses supported the living polymerisation of the system, showing growing polymer chains with sequentially added monomer. Co-polymers incorporating PDL were synthesised using initiator (BDI⁻Pr)ZnN(SiMe₃)₂ where addition of a relatively small monomer (LA or CL) to the PDL propagating chain resulted in a co-polymer. However, the addition of macrocyclic monomer PDL to a chain of PCL or PLLA was not possible, potentially due to steric hinderance whereby a large monomer cannot coordinate and insert onto a block of smaller monomer chains. Although it is unclear if homo-polymers or co-polymers were synthesised, distinct thermal traces suggest the presence of sc-PLA domains. Further investigations into morphology and rheology of block co-polymers could be performed to gain more information about these polymeric materials. In addition, repeating the polymerisations under more industrially relevant conditions would indicate if such co-polymers were viable commercially. Further investigations into the polymer architecture could be performed using GPC analysis with different solvent systems to attempt to dissolve the polymers and gain accurate molecular weights. In addition SAXS and WAXS analysis may be utilized to determine the morphology and phase separation.
of blocks within the co-polymer. A study of varying the block lengths in order to optimise polymeric properties could lead to co-polymers with tailor made properties. Synthesis of isopropoxide derivative of (BDI-Pr)ZnN(SiMe$_3$)$_2$ developed by Coates et al. to increase activity of initiator in the lactide copolymerisation with PDL both in solution and under melt conditions would be interesting. Furthermore, characterisation of lactide co-polymers of PDL using GPC techniques described by Duchateau et al. could be utilised to probe the morphology and microstructure of the polymers synthesised.

Chapter 4 describes the synthesis of a series of monomers were synthesised and co-polymerised with lactide. Lactide co-polymerisations with 5% and 10% vinyl-LA was achieved using TBD and benzyl alcohol. Due to Et-LA exhibiting similar properties to lactide, co-polymerisation with varying monomer stoichiometries with L^{Bu}ZrOiPr.HOiPr was trialled. A trend of decreasing M_n was observed with increasing quantities of Et-LA which could contribute to a lowering of T_g, suggesting co-polymerisation. Ph-LA and BrPh-LA were also tested in co-polymerisation under the same conditions with varying monomer amounts. Kinetic studies illustrated random co-polymers were synthesised with lactide where increased amounts of Ph-LA or BrPh-LA afforded co-polymers with increased thermal properties. The ability to synthesise a polymer that can mimic characteristics of polystyrene and yet exhibit degradability has huge industrial potential. In order to probe the morphology further, 13C NMR spectroscopy could be utilised to investigate the microstructural linking of the repeat units. Large scale reactions yielding grams of polymer would enable rheology experiments. Further investigations into the polymerisations using enantio-pure monomers to try and exploit the heterotactic bias of the initiator would potentially yield very interesting alternating co-polymers. Sequential polymerisation to afford block co-polymers incorporating isotactic PLA segments could lead to stereocomplexed domains within the co-polymer. The polymerisations (both block and random co-polymers) could be performed under more industrially relevant solvent-free conditions in order to test the viability of these systems in the commercial market. There is a lot of scope to investigate these interesting co-polymers in the future.
Chapter 6

Experimental
6 Experimental

6.1 Methods

In this section, important methods utilized throughout this work will be discussed.

6.1.1 Kinetics of polymerisation

A majority of lactide polymerisations can be described using the second-order rate law (see below).

\[-d[LA]/dt = k_p[LA][I]_0^n\]

Where \(k_p\) is propagation rate constant, \([LA]_0\) is initial lactide concentration, \([I]_0\) is initial initiator concentration and \(n\) is order of initiator concentration (aggregation number).\(^1\)

However, this can be simplified to a *pseudo*-first order rate law, given below, as only a catalytic amount of the initiator ([I]) was used and the monomer is in such excess the monomer concentration ([LA]) more or less stays the same. It also takes into account any impurities within the reaction such as lactic acid and water which may kill the catalyst.

\[-d[LA]/dt = k_{app}[LA],\]

Here, \(k_{app}\) is the first order rate constant. Integration, then simplification gives the following equation;

\[\ln\left(\frac{[LA]_0}{[LA]_t}\right) = kt\]

A plot of \(\ln([LA]_0/[LA]_t)\) against time allows the *pseudo*-first order rate constant to be calculated from the gradient.
6.1.2 Gel-permeation chromatography (GPC)

Gel-permeation chromatography is used to determine the weight average molecular weight (M_w), number average molecular weight (M_n) and polydispersity index (PDI) of the polymer synthesised, via size exclusion. A sample of the polymeric material is injected into a column containing porous beads. The beads allow small weight materials to enter the pores and elute from the column slower, while larger molecular weight materials cannot enter the pores of the beads and elute quicker. The eluting solvent (THF) can be analysed continuously using a detector calculating the concentration by weight of the polymer, as shown below (Figure 6.1.1).

![Diagram of GPC column](image)

Figure 6.1.1: Diagram of GPC column.

Polystyrene of a known molecular weight is used to calibrate the system. The retention time of the sample can be compared to the calibration graph (response against retention time of standard), thus determining the molecular weights with respect to the standard. There are two main types of detectors available; concentration sensitive detectors and molecular weight sensitive detectors. Concentration sensitive detectors such as UV absorption, differential refractometer (DRI) or refractive index (RI) detectors, infrared (IR) absorption and density detectors. Molecular weight sensitive detectors such as low angle light scattering detectors (LALLS) and multi angle light scattering (MALLS).

PLA material contains a variety of polymer chains with different chain lengths and molecular weights. The number average molecular weight (M_n) is dependent on the number of chains with each molecular weight.
$M_n = \frac{\sum n_i M_i}{\sum n_i}$

Where the Σn_i is the total number of molecules in the sample. $\Sigma n_i M_i$ is the sum of the weight of each molecule.

The weight average molecular weight (M_w) can be calculated from the relative weight of each fraction (w_i), which is expressed as $n_i M_i$.

$$M_w = \frac{\sum w_i M_i}{\sum w_i} = \frac{\sum n_i M_i^2}{\sum n_i}$$

The M_w is influenced by the larger fractions of the polymer. Thus, M_w tends to have a larger value than M_n. The polydispersity index (PDI) can be calculated from the M_w and M_n. It describes the distribution of polymer chains with differing lengths.

$$PDI = \frac{M_w}{M_n}$$

For lactide polymerisations whereby $k_{\text{initiation}} > k_{\text{propagation}}$, the chain length can be predicted using the following equation:

$$M_n = \frac{\text{Monomer ratio} \times \text{Conversion} \times \text{monomer (Mₐ)}}{\text{Initiator ratio}} + \text{End group (Mₐ)}$$

Intrinsic viscosity (IV) is a measure of how branched a polymer sample is, providing Mark Houwink-Sakurada parameters are readily available. In solution, branched polymers exhibit a smaller hydrodynamic volume compared to linear polymers are they are more compact. Experimentally, the degree of branching can be calculated by comparison to a known polymer of similar molecular weight, where g' is a contraction factor (Equation 6.1.1). When g' equals 1 the sample is linear.4

Equation 6.1.1: Mark Houwink-Sakurada equation.

$$g' = \frac{[IV]\text{branched}}{[IV]\text{linear}}$$
6.1.3 Differential scanning calorimetry (DSC)

Differential scanning calorimetry (DSC) is a thermo-analytical technique. In our case a heat-flux system was used that requires two aluminium tzero pans; one containing the polymeric sample and an empty pan for reference. Inside a single cell, both pans are heated or cooled at the same rate and the relevant heat capacities are recorded. As thermal transitions occur in the sample, the difference between the sample pan and reference pan will result in a depiction of the heat flux into or out of the sample, thus revealing both exo- and endothermal events.

As a polymeric sample is heated, the amorphous regions may change from the glassy to the rubbery state, a phenomenon which is observed as a jump in the heat capacity of the material. This point is called the glass transition (T_g) temperature. The amorphous material may become crystalline exhibiting an exothermic rearrangement which results in a peak from the base-line, known as the crystallisation temperature (T_c). As the temperature is increased further an endothermic trace is observed which correlates to the melting temperature (T_m) of the polymeric material.

6.1.4 FT-IR

For IR measurements a Bruker Matrix-MF FT-IR spectrometer equipped with a diamond ATR probe (IN350 T) suitable for Mid-IR in situ reaction monitoring was used. Reactions were performed under inert conditions in a specifically designed jacketed vessel fitted with a mechanical stirrer and connected to a Huber PETITE FLEUR-NR circulation thermostat (Figure 6.1.2).

![Figure 6.1.2: Drawing of FT-IR reaction vessel.](image)
The jacketed vessel was placed under a positive pressure of argon and heated to the reaction temperature of 165 °C. The lactide (recrystallized) was added (35 g) and allowed to melt with stirring from the overhead mechanical stirrer. A background spectrum was recorded at this point before the probe was placed in the reaction solution. The initiator (5000:1 monomer:initiator loading) was dissolved in a minimal amount of toluene and transferred using a cannula into the reaction under argon. Spectra were collected over a set period of time and the decrease in the C-O-C lactide peak was calibrated against ^1H NMR spectrum measurements. To assess the applicability of selected catalysts for the industrial polymerisation of lactide solvent-free conditions at 165 °C and a 5000:1 monomer:initiator ratio were assessed. The asymmetric C-O-C vibration gives a characteristic peak at 1240 cm$^{-1}$ and as such can be used to determine the monomer concentration (Figure 6.1.3).

![Figure 6.1.3: Skeletal framework and C-O-C asymmetric stretching of the ester functional group.](image)

For the polymer, this peak is shifted to 1185 cm$^{-1}$ and the integral of these peaks are related to the concentration and used to accurately assess the kinetics.5–7

6.2 General considerations

For the preparation and characterization of metal complexes, all reactions and manipulations were performed under an inert atmosphere of argon using standard Schlenk or glovebox techniques. All solvents were dried using a solvent purification system. The ligand, N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (TOEDH$_4$) (technical grade Sigma-Aldrich), was dried under vacuum, dissolved in dry THF to afford a 1M solution and stored under an inert atmosphere. Ti(OiPr)$_4$ (97%, Aldrich) was purified by vacuum distillation prior to use, Zr(OiPr)$_4$PrOH (99.9%, Aldrich) and Hf(OiPr)$_4$PrOH (99%, Aldrich) were used without further purification. Yields were obtained from recrystallized products. Solution NMR experiments were performed CDCl$_3$ at ambient temperature unless otherwise stated using a Bruker Advance-250, Bruker Advance-300, Bruker DRX400 or Bruker DRX500 MHz FT-NMR spectrometer. Norell 5mm NMR tubes were used for ligand characterisation, while Young’s tapped NMR
tubes were used for metal complex characterisation. All chemical shifts were quoted as δ values in ppm relative to residual protio solvent resonances; all J-coupling constants are given in Hertz. Elemental analyses of ligands, metal complexes and monomers was carried out at London Metropolitan University, London.

Suitable crystals were selected for single crystal X-ray diffraction using the oil drop technique, in perfluoropolyether oil and mounted at 150(2) K. Intensity data were collected on an Nonius Kappa CCD single crystal diffractometer using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). Data were processed using the Nonius Software. A symmetry-related (multi-scan) absorption correction was applied. Crystal parameters and details on data collection, solution and refinement for the complexes are provided. The structures were solved by direct methods using the program SIR97 followed by full-matrix least squares refinement on F² using SHELXL-97 implemented in the WINGX-1.80 suite of programs throughout. Hydrogen atoms were placed in calculated positions and isotropically refined using a riding model. Additional programs used for analysing data and graphically manipulating them included: SHELXL, PLATON, and ORTEP 3 for Windows.

6.3 Synthetic Procedures

6.3.1 Synthesis of complexes

Preparation of Ti₈[trimer][O(Pr)]₂₄, 1: Lactic acid (L₁, 0.45 g, 10.0 mmol) was dried in vacuo and dissolved in dry isopropanol (10 ml) with stirring. Ti(OPr)₄ (1.42 g, 5.00 mmol) was then added dropwise via syringe to the solution of lactic acid and stirred at 0 °C for 1 hour. The reaction was warmed to room temperature and stirred for a further 1 hour. The solvent was removed in vacuo and the dry residue was recrystallized from dichloromethane to yield an off white solid. Yield = 36 %. El. Anal: Calc for C₉₆H₂₀O₄₂Ti₈: C: 47.86 %, H: 8.37 %. Found C: 41.37 %; H: 8.31 %. ¹H NMR (300.22 MHz, CDCl₃, 298 K) δ 5.27-4.70 (m, 20H, C₃H₅O₃), 4.51 (q, J = 6.0 Hz, 4H, C₃H₅), 4.21-3.90 (m, 4H, CH₃) 1.41-1.10 (m, 144H, CH₃).

Preparation of Zr(L₁)₂, 2: To a solution of tetrakis(ethylmethylamino) zirconium (0.025 g, 0.093 mmol) in toluene (2 ml) was added ligand lactic acid (0.069 g, 0.093 mmol) and stirred at 25 °C for 12 hours. The solvent was removed in vacuo and the product was washed with hot toluene. Yield = 56 %. El. Anal: Calc for C₆H₈O₆Zr: C: 26.96 %, H: 3.02 %. Found C: 26.87 %; H: 3.15 %.
Preparation of Ti\(_4\)(L\(_2\))(O\(^3\)Pr)\(_4\), 3: Ti(O\(^3\)Pr)\(_4\) (1.5 ml, 5.06 mmol) was added to 1M solution of TOEEDH\(_4\) (L\(_2\)) in THF (3.81 ml, 3.81 mmol) dropwise with a syringe and stirred for 16 hours at 50 °C. The solvent was removed in vacuo and the dry residue was recrystallized from dichloromethane. Isolated crystalline yield = 24 %. El. Anal: Calc for C\(_{42}\)H\(_{88}\)N\(_6\)O\(_{16}\)Ti\(_4\): C: 48.85 %, H: 7.89 %, N: 7.47 %. Found C: 44.68 %, H: 7.81 %, N: 7.39 %. \(^1\)H NMR (300.22 MHz, CDCl\(_3\), 298 K): \(\delta\) 4.92-4.74 (m, 4H, OCH\(_3\)), 4.73-4.18 (m, 20H, ROCH\(_2\)), 4.17-3.93 (m, 4H, ROCH\(_2\)), 3.69-3.53 (m, 4H, RNCH\(_2\)), 3.51-3.15 (m, 14H, RNCH\(_2\)), 3.14-3.00 (m, 4H, RNCH\(_2\)), 3.00-2.70 (m, 14H, RNCH\(_2\)), 1.31-1.15 (m, 24H, RCH\(_3\)). \(^{13}\)C\{\(^1\)H\} NMR (75.0 MHz, CDCl\(_3\), 298 K): \(\delta\) 74.16 (O(CH)), 71.39 (O(CH\(_2\))), 69.44 (O(CH\(_2\))), 69.09 (O(CH\(_2\))), 64.78 (N(CH\(_2\))), 61.61 (N(CH\(_2\))), 61.04(N(CH\(_2\))), 60.98 (N(CH\(_2\))), 60.52 (N(CH\(_2\))), 60.06 (N(CH\(_2\))), 26.64 (RCH\(_3\)), 25.43 (RCH\(_3\)).

Preparation of Ti\(_4\)(L\(_2\))(O\(^3\)Pr)\(_4\), 4: Ti(O\(^3\)Pr)\(_4\) (1.48 ml, 5.00 mmol) was added to 1M solution of TOEEDH\(_4\) (L\(_2\)) in THF (1.25 ml, 1.25 mmol) dropwise with a syringe and stirred for 16 hours at 50 °C. The solvent was removed in vacuo and the dry residue was recrystallized from dichloromethane. Isolated crystalline yield = 28 %. El. Anal: Calc for C\(_{48}\)H\(_{94}\)N\(_8\)O\(_{18}\)Ti\(_4\): C: 48.77 %, H: 9.25 %, N: 2.47 %. Found C: 48.65 %, H: 9.15 %, N: 2.39 %. \(^1\)H NMR (300.22 MHz, CDCl\(_3\), 298 K): \(\delta\) 4.85 (sept, J = 6.0 Hz, 2H, O-CH), 4.79-4.53 (m, 4H, O-CH\(_2\)), 4.48 (sept, J = 6.0 Hz, 10H, O-CH), 4.42-3.96 (m, 4H, O-CH\(_2\)), 3.73-3.32 (m, 4H, N-CH\(_2\)), 3.32-3.03 (m, 4H, N-CH\(_2\)), 3.02-2.69 (m, 4H, N-CH\(_2\)), 1.23 (d, J = 6.0 Hz, 60H, RCH\(_3\)), 1.19 (d, J = 6.0 Hz, 12H, RCH\(_3\)). \(^{13}\)C\{\(^1\)H\} NMR (75.0 MHz, CDCl\(_3\), 298 K): \(\delta\) 72.0 (O(CH)), 68.5 (O(CH\(_2\))), 64.1 (O(CH\(_2\))), 61.3 (N(CH\(_2\))), 55.5 (N(CH\(_2\))), 51.0 (N(CH\(_2\))), 26.5 (RCH\(_3\)), 25.3 (RCH\(_3\)).

Preparation of Zr\(_2\)(L\(_2\))\(_2\), 5: Zr(O\(^3\)Pr)\(_3\)(HO\(^3\)Pr) (0.55 g, 2.32 mmol) in THF (5 ml) was added to 1M solution of TOEEDH\(_4\) (L\(_2\)) in THF (2.32 ml, 2.32 mmol) with a syringe. The reaction was stirred overnight at 50 °C. The solvent was removed in vacuo and the dry residue was recrystallized from THF. Isolated crystalline yield = 28 %. El. Anal: Calc for C\(_{38}\)H\(_{40}\)N\(_8\)O\(_8\)Zr\(_2\): C: 37.13 %, H: 6.23 %, N: 8.66 %. Found C: 37.01 %; H: 6.23 %, N: 8.47 %. \(^1\)H NMR (300.22 MHz, CDCl\(_3\), 298 K): \(\delta\) 4.71-3.90 (m, 16H, O-CH\(_2\)), 3.80-2.38 (m, 24H, N-CH\(_2\)). \(^{13}\)C\{\(^1\)H\} NMR (75.0 MHz, CDCl\(_3\), 298 K): \(\delta\) 67.0 (O(CH\(_2\))), 60.8 (N(CH\(_2\))).

Preparation of Hf\(_2\)(L\(_2\))\(_2\), 6: Hf(O\(^3\)Pr)\(_3\)(HO\(^3\)Pr) (0.42 g, 1.01 mmol) in THF (10 ml) was added to 1M solution of TOEEDH\(_4\) (L\(_2\)) in THF (1.0 ml, 1.0 mmol) dropwise with a syringe and stirred for 16 hours. The solvent was removed in vacuo and the dry residue was recrystallized from dichloromethane. Isolated crystalline yield: 14 %. El. Anal: Calc for C\(_{38}\)H\(_{40}\)N\(_8\)O\(_8\)Hf\(_2\): C: 29.24 %, H: 4.91 %, N: 6.82 %. Found C: 29.13 %; H: 5.00 %, N: 6.72 %. \(^1\)H NMR (300.22 MHz, CDCl\(_3\), 298 K): \(\delta\) 4.75-4.01 (m, 16H, O-CH\(_2\)), 3.79-3.49 (m, 2H, N-CH\(_2\)), 3.49-3.18 (m, 8H, N-
CH$_2$), 3.18-2.50 (m, 14H, N-CH$_2$). 13C(1H) NMR (75.0 MHz, CDCl$_3$, 298 K): δ 66.5 (O(CH$_2$)), 60.9 (N(CH$_2$)).

Preparation of Zr$_3$(L$_2$)(OPr)$_8$: 7: Zr(OPr)$_4$(HOPr) (0.97 g, 2.50 mmol) in THF (10 ml) was added to 1M solution of TOEEDH$_4$ (L$_2$) in THF (0.83 ml, 0.834mmol) dropwise with a syringe and stirred for 16 hours at room temperature. The solvent was removed in vacuo and the dry residue was recrystallized from toluene. Isolated crystalline yield = 34 %. El. Anal: Calc for C$_{34}$H$_{10}$N$_2$O$_{16}$Zr$_3$: 41.72 %, H: 7.82 %, N: 2.86 %. Found C: 42.27 %, H: 7.86 %, N: 2.74 %.

1H NMR (300.22 MHz, CDCl$_3$, 298 K): δ 4.67 (sept, J = 6.0 Hz, 2H, O-CH$_2$), 4.36-4.32 (m, 2H, O-CH$_2$), 4.32-4.24 (m, 6H, O-CH$_2$). 3.29-3.16 (m, 2H, N-CH$_2$), 2.89-2.83 (m, 2H, N-CH$_2$), 2.77-2.65 (m, 4H, N-CH$_2$), 1.28 (d, J = 6.0 Hz, 6H, R-CH$_3$).

Preparation of Hf$_3$(L$_2$)(OPr)$_8$: 8: Hf(OPr)$_4$(HOPr) (0.42 g, 1.01 mmol) in THF (10 ml) was added to 1M solution of TOEEDH$_4$ (L$_2$) in THF (0.33 ml, 0.33 mmol) dropwise with a syringe and stirred for 16 hours at room temperature. The solvent was removed in vacuo and the dry residue was recrystallised from dichloromethane. Isolated crystalline yield = 14 %. El. Anal: Calc for C$_{34}$H$_{10}$N$_2$O$_{16}$Hf$_3$: 32.92 %, H: 6.18 %, N: 2.26 %. Found C: 32.78 %, H: 6.06 %, N: 2.33 %. 1H NMR (300.22 MHz, CDCl$_3$, 298 K): δ 4.79 (sept, J = 6.0 Hz, 2H, O-CH$_2$), 4.50-4.41 (m, 2H, O-CH$_2$), 4.41-4.28 (m, 6H, O-CH$_2$). 4.28-4.19 (m, 2H, O-CH$_2$), 4.19-4.08 (m, 2H, O-CH$_2$), 4.08-3.94 (m, 2H, O-CH$_2$), 3.67 (td, J = 6.0 Hz + 12.0 Hz, 2H, N-CH$_2$). 3.38-3.29 (m, 2H, N-CH$_2$), 3.29-3.16 (m, 2H, N-CH$_2$), 2.89-2.83 (m, 2H, N-CH$_2$), 2.77-2.65 (m, 4H, N-CH$_2$), 1.28 (d, J = 6.0 Hz, 6H, R-CH$_3$).

13C(1H) NMR (75.0 MHz, CDCl$_3$, 298 K): δ 68.5 (O(CH$_2$)), 66.9 (O(CH$_2$)), 64.8 (N(CH$_2$)), 63.6 (O(CH$_2$)), 62.4 (N(CH$_2$)), 60.0 (N(CH$_2$)), 26.6 (RCH$_3$), 26.1 (RCH$_3$), 25.5 (RCH$_3$).

Preparation of Ligand L$_5$: 2-[(2-aminoethyl)amino]ethanol (0.82 ml, 8.0 mmol) and 37 % formaldehyde aqueous solution (1.95 ml, 24 mmol) were stirred neat at for 110 °C for 15 minutes. 2,4-diterbutyl phenol (5.0 g, 24mmol) in 5 ml toluene was then added and stirred at 100°C for 4 days. Purification by column chromatography (eluent hexane: ethyl acetate 9:1). Yield = 62 %. Anal: Calc for C$_{49}$H$_{78}$N$_2$O$_4$: 77.52 %, H: 10.36 %, N: 3.69 %. Found C: 77.47 %, H: 10.35 %, N 3.68 %. Mass spec: Calc for [M+H]+: 781.58. Found: 781.58. 1H NMR (300.22 MHz, CDCl$_3$, 298 K) δ 7.22 (d, J = 2.4 Hz, 2H, Ar-H), 7.18 (d, J = 2.4 Hz, 1H, Ar-H), 6.91 (d, J = 2.4 Hz, 2H, Ar-H), 6.77 (d, J = 2.4 Hz, 1H, Ar-H), 3.67 (s, 6H, RNCH$_2$), 3.61 (t, J =
5.3, 2H, RCH₂OH), 2.78 (s, 4H, RNCH₂), 2.56 (t, J = 5.3, 2H, RNCH₂), 1.40 (s, 18H, CH₃'Bu), 1.34 (s, 9H, CH₃'Bu), 1.27 (s, 18H, CH₃'Bu), 1.25 (s, 9H, CH₃'Bu). ¹³C{¹H} NMR (75.0 MHz, CDCl₃, 298 K) δ 153.7, 152.4, 141.9, 141.0, 136.2, 136.1, 125.3, 123.8, 123.8, 123.3, 121.6, 121.2 (Ar-C), 60.1, 59.6, 57.5, 55.9, 52.0, 50.9 (RNCH₂), 35.0, 34.9, 34.3, 34.3 (C 'Bu), 31.8, 31.8, 29.9, 29.7 (CH₃'Bu).

Preparation of Ti₂(L₃)₂, 9. L₃ (0.1 g, 0.132 mmol) was dissolved in toluene (3 ml) to which Ti(O'iPr)₄ (40 µl, 132 mmol) was added and stirred at 25 °C for 14 hours. The solvent was removed in vacuo and product was recrystallized from hexane, filtered and dried. Isolated yield = 43 %. Anal: Calc for C₄₉H₇₄N₂O₄Ti: C: 73.29 %, H: 9.29 %, N: 3.49 %. Found C: 72.75 %, H: 9.22 %, N: 3.72 %.

1H NMR (300.22 MHz, CDCl₃, 298 K) δ 7.23 (d, J = 2.3 Hz, 1H, Ar-H), 7.17 (d, J = 2.1 Hz, Ar-H), 7.14 (d, J = 2.3 Hz, 1H, Ar-H), 6.97 (d, J = 2.1 Hz, 1H, Ar-H), 6.85 (d, J = 2.2 Hz, 1H, Ar-H), 6.80 (d, J = 2.2 Hz, 1H, Ar-H), 5.19 (d, J = 12.8 Hz, 1H, RNCH₂), 4.48-4.35 (m, 1H, RNCH₂), 4.33 (d, J = 13.4 Hz, 1H, RNCH₂), 4.17-4.11 (m, 1H, RNCH₂), 4.08 (d, J = 13.8 Hz, 1H, RNCH₂), 3.64-3.54 (m, 2H, RCH₂O), 3.52 (d, J = 12.8 Hz, 1H, RNCH₂), 3.49 (d, J = 13.4 Hz, 1H, RNCH₂), 3.10 (d, J = 13.8 Hz, 1H, RNCH₂), 3.06 (d, J = 12.8 Hz, 1H, RNCH₂), 3.04-2.87 (m, 2H, RNCH₂), 2.53 (d, J = 13.5 Hz, 1H, RNCH₂), 1.57 (s, 9H, CH₃'Bu), 1.46 (s, 9H, CH₃'Bu), 1.27 (s, 9H, CH₃'Bu), 1.26 (s, 9H, CH₃'Bu), 1.24 (s, 9H, CH₃'Bu), 1.14 (s, 9H, CH₃'Bu). ¹³C{¹H} NMR (75.0 MHz, CDCl₃, 298 K) δ 141.7, 141.0, 139.5, 136.1, 135.8, 135.5, 126.0, 125.9, 124.2 (Ar-C), 124.1, 123.9, 123.9, 123.4, 123.4, 122.8 (Ar-CH), 70.4, 67.4, 65.4, 62.6, 61.7, 61.1, 59.2 (RNCH₂), 35.5, 35.4, 35.1, 34.4, 34.4, 34.3 (C 'Bu), 31.9, 31.9, 31.8, 30.3, 30.1, 29.8 (CH₃'Bu).

6.3.2 Synthesis of monomers

Preparation of methylethylglycolide (Et-LA): Prepared via a modified synthesis as previously described in the literature by Baker and co-workers (Chapter 4). Under inert conditions, 2-hydroxybutyric acid (4.16 g, 0.04 mol) and 2-bromopropionyl bromide (5.03 ml, 0.048 mol) were stirred in dry THF (10 ml) and cooled in an ice bath. A mixture of Et₃N (7.25 ml, 0.052 mol) in THF (25 ml) was added dropwise with stirring. The solution was cooled and stirred overnight. The solution was filtered to remove a white solid and the filtrate was evaporated to dryness. The resulting oil was dissolved in ethyl acetate, washed with 2M HCl (3 x 50 ml), sat. aq. NaCl, dried over MgSO₄, then concentrated to yield a crude linear acid ester. The viscous liquid was mixed with acetone (800 ml) and NaHCO₃ (13.5 g), and refluxed for two days. The solids were removed by filtration and the acetone was evaporated to dryness. The crude product was dissolved in ethyl acetate, dried over MgSO₄, filtered and the solvent removed by rotary
evaporator. The crude product was twice purified by vacuum distillation (50°C). 1H NMR (300 MHz, CDCl$_3$, 298 K) δ 5.00 (q, 1H, $J = 6.3$ Hz, CH), 4.88 - 4.08 (m, 1H, CH), 2.23 – 1.93 (m, 2H, CH_2), 1.67 (d, 3H, $J = 6.7$ Hz, CH_3), 1.12 (t, 3H, $J = 7.3$ Hz, CH_3). 13C{1H} NMR (75 MHz, CDCl$_3$, 298 K) δ 167.5 (RC=O), 72.3 (RCH), 23.5 (RCH_2), 15.9 (RCH_3), 8.8 (RCH_3).

Yield = 45 %. Anal: Calc for C$_{11}$H$_{10}$O$_4$C: 53.16 %; H: 6.37 %. Found C: 52.96 %, H: 6.35%.

Preparation of methylphenylglycolide (Ph-LA): Prepared as previously described in the literature (Chapter 4).16 Under inert conditions, rac-mandelic acid (2.0 g, 0.013mol) and 2-bromopropionyl bromide (1.38 ml, 0.013 mol) were heated at 80°C until HBr evolution ceased (1 hr). The solution was cooled and 400 ml of acetone was added followed by Et$_3$N (3.66 ml, 0.026 mol) and refluxed for 6 hrs. After removal of solvents, ethyl acetate was added (200 ml) and the suspension was washed with 2N HCl solution, saturated aqueous NaHCO$_3$, water and the organic layer was dried over MgSO$_4$. The monomer was recrystallized from toluene. Yield = 46 %. Anal: Calc for C$_7$H$_{10}$O$_4$C: 64.07 %; H: 4.89 %. Found C: 64.02 %, H: 5.00 %.

1H NMR (400 MHz, CDCl$_3$, 298 K) δ 7.45 – 7.31 (m, 5H, Ar-H), 5.22 (s, 1H, CH), 4.21 (q, $J = 6.7$ Hz, 1H, CH), 1.45 (d, $J = 6.7$ Hz, 3H, CH$_3$).

13C{1H} NMR (100 MHz, CDCl$_3$, 298 K) δ 167.1, 165.8 (RC=O), 131.5, 130.1, 129.1, 127.6 (Ar-CH), 77.9, 72.9 (RCH), 16.5 (RCH_3).

Preparation of methylbromophenylglycolide (BrPh-LA): Procedure used was modified from literature as described in Chapter 4. Under inert conditions, 4-bromo-DL-mandelic acid (5.0 g, 0.022 mol) and 2-bromopropionyl bromide (2.27 ml, 0.022 mol) were heated at 80°C until HBr evolution ceased (1 hr). The solution was cooled and 400 ml of acetone was added followed by Et$_3$N (6.03 ml, 0.043 mol) and refluxed for 6 hrs. After removal of solvents, ethyl acetate was added (200 ml) and the suspension was washed with 2N HCl solution, saturated aqueous NaHCO$_3$, water and the organic layer was dried over MgSO$_4$. The monomer was recrystallized from toluene. Yield = 52 %. Anal: Calc for C$_{11}$H$_9$BrO$_4$C: 46.34 %; H: 3.18 %. Found C: 46.18 %, H: 2.99 %. 1H NMR (500 MHz, CDCl$_3$, 298 K) δ 7.59 (d, $J = 8.4$ Hz, 2H, Ar-H), 5.89 (s, 1H, CH), 5.18 (q, $J = 6.8$ Hz, 1H, CH$_3$), 1.68 (d, $J = 6.8$ Hz, 3H, CH$_3$).

13C{1H} NMR (100 MHz, CDCl$_3$, 298 K) δ 167.1, 165.8 (RC=O), 131.5, 130.1, 129.1, 127.6 (Ar-CH), 77.9, 72.9 (RCH), 16.5 (RCH_3).

Preparation of methyldimethylglycolide (DiMe-LA): Procedure used was modified from literature as described in Chapter 4.17 Under inert conditions, hydroxyisobutyric acid (2.5 g, 24 mmol) and 2-bromopropionyl bromide (1.26 ml, 0.013 mol) were heated at 80°C until HBr evolution ceased (3 hrs). The solution was cooled and 150 ml acetone was added followed by Et$_3$N (50 mmol) and refluxed for 3 hrs. The suspension was cooled and triethylammonium salts were removed by filtration. The solvents were removed and the resulting mixture was dissolved in solvent system ethyl acetate:hexane 1:1 (200 ml). After filtration over silica gel, the solvents...
were removed in vacuo and the crude product was recrystallized from ethyl acetate:hexane mixture (1:10). Yield = 42 %. Anal: Calc for C₇H₁₀O₄ C: 53.16 %, H: 6.37 %. Found: C: 53.27 %, H: 6.27 %.

1H NMR (300 MHz, CDCl₃, 298 K) δ 5.09 (q, J = 6.8 Hz, 1H, CH₂), 1.71 (m, 6H, CH₃), 1.69 (s, 3H, CH₃).

13C{¹H} NMR (75 MHz, CDCl₃, 298 K) δ 168.8, 166.9 (RC=O), 80.8 (RC), 73.1 (RCH), 26.4, 25.5, 17.6 (RCH₃).

Preparation of vinyl-LA monomer:

a) Preparation of (3S, 6S)-3-bromo-3,6-dimethyl-1,4-dioxane-2,5-dione (BrMe-LA): Prepared as previously described in the literature (Chapter 4). Under inert conditions, L-lactide (20 g, 0.138 mol) and N-bromosuccimide (27.2g, 0.153 mol) were dissolved in benzene (100 ml) and brought to reflux. Dropwise addition of benzoyl peroxide (0.672 g, 2.77 mmol) in benzene (10 ml) over 20 minutes. The reaction was monitored by TLC. After monomer was consumed, the reaction was cooled and solid removed by filtration. The filtrate was evaporated to dryness and dissolved in dichloromethane, washed with saturated sodium bisulfite (3 times) and saturated aqueous NaCl. The organic layer was dried over MgSO₄ and recrystallized from ethyl acetate to give yellow crystals. Yield = 51 %. Anal: Calc for C₆H₇BrO₄ C: 32.31 %, H: 3.16 %. Found C: 32.15 %, H: 3.27 %.

1H NMR (300 MHz, CDCl₃, 298 K) δ 5.55 (q, J = 6.0 Hz, 1H, CH₂), 2.70 (s, 3H, CH₃), 1.75 (s, J = 6.0 Hz, 3H, CH₃).

13C{¹H} NMR (75 MHz, CDCl₃, 298 K) δ 164.2, 160.1 (RC=O), 80.1 (RC), 29.7, 18.2 (RCH₃).

b) Preparation of (6S)-3-methylene-6-methyl-1,4-dioxane-2,5-dione (vinyl-LA): Prepared as previously described in the literature (Chapter 4). Under inert conditions, (3R, 6S)-3-bromo-3,6-dimethyl-1,4-dioxane-2,5-dione (BrMe-LA, 9.36 g, 0.04 mol) was dissolved in dichloromethane (100 ml), cooled to 0 °C and stirred under argon. Triethylamine (6.45 g, 0.046 mol) were added dropwise via a dropping funnel over 1 hour. The reaction was stirred at 0 °C for 1 hour, warmed to room temperature and stirred for a further 1 hour. The reaction mixture was washed thrice with 1 M hydrochloric acid and once with sodium chloride solution. The organic layer was dried over MgSO₄ and evaporated to dryness. The pale yellow solid was recrystallized from ethyl acetate. Yield = 28 %. Anal: Calc for C₆H₆O₄ C: 50.71 %, H: 4.26 %. Found: C: 50.68 %, H: 4.25 %. **1H NMR** (300.22 MHz, CDCl₃, 298 K) δ 5.94 (d, J = 3.0 Hz, 1H, CH₂), 5.54 (d, J = 3.0 Hz, 1H, CH₂), 5.05 (q, J = 6.0 Hz, 1H, CH), 1.70 (d, J = 6.0 Hz, 3H, CH₃).

13C{¹H} NMR (75 MHz, CDCl₃, 298 K) δ 163.0, 157.8 (RC=O), 143.0 (RC), 110.6 (RCH₂), 72.5 (RCH), 17.5 (RCH₃). Mp = 100 – 102°C.
Preparation of hexyl-LA monomer;
a) Preparation of 2-hydroxyoctanoic acid: Prepared as previously described in the literature (Chapter 4). Heptaldehyde (11.40 g, 0.1 mol) was added to a solution of NaHSO₃ (15.6 g, 0.15 mol) in 200 ml water and stirred for 30 minutes. Addition of a solution of NaCN (6.4 g, 0.13 mol) in 50 ml water and stirred for a further 15 minutes. The upper layer upon separation of phases was poured directly into 40 v% sulphuric acid (30 ml) and heated to 130°C for 3 hrs, then poured into 100 ml 6N NaOH and stirred for 12 hrs. The alkaline solution was washed twice with Et₂O (30 ml), then acidified with 2M HCl, and extracted thrice with Et₂O (30 ml). The combined latter Et₂O phases were washed with brine, dried over MgSO₄ and solvents removed. Crude product was recrystallized from toluene. Yield = 42 %.

b) Preparation of 3-methyl-6-hexyl-1,4-dioxane-2,5-dione (hexyl-LA). Prepared as previously described in the literature (Chapter 4). Under inert conditions, 2-bromopropionyl bromide (1.36 ml, 13.0 mmol) was added dropwise to 2-hydroxyoctanoic acid (2.0 g, 12.4 mmol) and stirred at 85° for 12 hrs. The reaction was cooled, addition of acetone (300 ml) and Et₃N (3.5 ml, 2.5 mmol) and stirred at 60°C for 3 hrs. The reaction was cooled and triethylammonium bromide salts were removed by filtration and solvents were removed in vacuo. The resulting mixture was dissolved in 100 ml ethyl acetate:hexane (1:2) and filtered over silica gel. The solvents were removed and the crude product was recrystallized from hexane (-20°C). Yield = 14 %. ¹H NMR (500 MHz, CDCl₃, 298 K) δ 5.09-4.97 (m, 1H, RCH), 4.94-4.83 (m, 1H, RCH), 2.14-2.03 (m, 1H, RCH₂), 2.03-1.89 (m, 1H, RCH₂), 1.72-1.63 (m, 3H, RCH₃), 1.61-1.42 (m, 2H, RCH₂), 1.39-1.23 (m, 6H, RCH₂), 0.88 (t, J = 7.0 Hz, 3H, RCH₃).

6.4 Polymerisations

6.4.1 General considerations

L-lactide (Puralact L Polymer Grade, 99+ %, Purac) and D-lactide (Puralact D Polymer Grade, 99+ %, Purac) were recrystallized from toluene and sublimed twice before use unless stated otherwise. Rac-lactide was obtained by dissolving equal amounts of L- and D-lactide, recrystallized from toluene and sublimed twice. All metal complexes were synthesised as described previously in this chapter. Monomer conversion was derived from ¹H NMR.
spectroscopy and polymer microstructure determined by homonuclear decoupled 1H NMR as discussed in Chapter 1.

Gel Permeation Chromatography (GPC) analyses of polymers were performed on a Polymer Laboratories PL-GPC 50 integrated system using a PLgel 5 μm MIXED-D 300 x 7.5 mm column at 35 °C, THF eluent with a flow rate of 1.0 mL/min. The polydispersity index (PDI) was determined from M_w/M_n, where M_n is the number-average molecular weight and M_w the weight-average molecular weight. The polymers were referenced to 11 narrow molecular weight polystyrene standards with a range of M_w 615-5680000 Da.

Thermal analyses of polymers were performed using Differential Scanning Calorimetry (DSC, TA instruments, Q2000) with nitrogen as the purge gas and calibrated using Indium standards (T_m 156.6). Crystallisation temperatures (T_c) were obtained from the first cool, whilst glass transition temperatures (T_g) and melting temperatures (T_m) were obtained by linear extrapolation from the second heat. Polymers were heated at a rate of 10°C/min from -50°C to 220°C, whereas stereocomplexed polymers were heated at a rate of 10°C/min from -50°C to 250°C. MALDI-ToF analyses was carried out by the EPSRC National Mass Spectrometry Service Centre (NMSSC) at the University of Wales, Swansea.

For IR measurements a Bruker Matrix-MF FT-IR spectrometer equipped with a diamond ATR probe (IN350 T) suitable for Mid-IR in situ reaction monitoring was used. Reactions were performed under inert conditions in a specifically designed jacketed vessel fitted with a mechanical stirrer and connected to a Huber PETITE FLEUR-NR circulation thermostat (Figure 6.1.2).

6.4.2 Polymerisations – Typical Syntheses

Polymerisations – Typical syntheses from Chapter 2

Bulk polymerisation (300:1 monomer:initiator loading, 135°C or 165°C): Typically, under inert conditions rac-LA (1.0 g, 6.93 mMol) and the initiator (0.0231 mMol) were stirred together at either 135°C or 165°C in a thick walled Young’s vessel. If no isopropoxide groups were present in the initiator, 1 equivalent of benzyl alcohol was added (for initiators 5 and 6). The reaction was monitored by 1H NMR every hour for 4 h and at 24 h. At 24 h, the reaction was cooled and quenched with MeOH (0.5 ml). The resulting solid was dissolved in CH$_2$Cl$_2$ (5 ml) and the polymer was precipitated with MeOH to remove any unreacted monomer. The polymer was then dried in vacuo.
Polymerisations – Typical syntheses from Chapter 3

Sequential synthesis of unsymmetrical tri-block polymer (solution, 90°C) (PLLA-PCL-PDLA 1:1:1): Under inert conditions, sublimed L-LA (0.72 g, 5.0 mMol) was dissolved in toluene (5 ml) to which the initiator LBuZr(OiPr).HOiPr (44 mg, 0.05 mMol) was added and stirred in a Young’s ampoule at 90 °C for 36 h. An aliquot of 0.2 ml was removed from the reaction mixture with monomer conversion and M_w calculated using 1H NMR spectroscopy and GPC respectively. When the reaction reached near completion, addition of ε-caprolatone (0.55 ml, 5.0 mMol) via syringe and the reaction was stirred at 90°C for 5 h. After polymerisation of ε-CL was near completion, addition of D-LA (0.72 g, 5.0 mMol) and the reaction was stirred at 90°C for a further 36 h. An aliquot was taken from the reaction medium to determine monomer conversion. The reaction was quenched with 0.2 ml MeOH and solvent removed in vacuo. The resulting polymer was dissolved in CH\textsubscript{2}Cl\textsubscript{2} and any unreacted monomer removed by precipitated with MeOH. 1H NMR (250 MHz, CDCl\textsubscript{3}, 298 K) δ 5.16 (q, 4H, $J = 7.1$ Hz, CH, PLA), 4.06 (t, 2H, $J = 6.7$ Hz, R-O-CH\textsubscript{2}R, PCL), 2.31 (t, 2H, $J = 7.6$ Hz, RCH\textsubscript{2}=O, PCL), 1.73 – 1.26 (m, 6H, CH\textsubscript{2}, PCL), 1.58 (d, 12H, $J = 7.1$ Hz, CH\textsubscript{3}, PLA).

Sequential synthesis of unsymmetrical tri-block polymer (solution, 90°C) (PLLA-PVL-PDLA 1:1:1): Under inert conditions, sublimed L-LA (0.72 g, 5.0 mMol) was dissolved in toluene (5 ml) to which the initiator LBuZr(OiPr).HOiPr (44 mg, 0.05 mMol) was added and stirred in a Young’s ampoule at 90°C for 36 h. An aliquot of 0.2 ml was removed from the reaction mixture with monomer conversion and M_w calculated using 1H NMR spectroscopy and GPC respectively. When the reaction reached near completion, addition of δ-valerolatone (0.46 ml, 5.0 mMol) via syringe and the reaction was stirred at 90°C for 5 h. After polymerisation of δ-VL was near completion, addition of D-LA (0.72 g, 5.0 mMol) and the reaction was stirred at 90°C for a further 36 h. An aliquot was taken from the reaction medium to determine monomer conversion. The reaction was quenched with 0.2 ml MeOH and solvent removed in vacuo. The resulting polymer was dissolved in CH\textsubscript{2}Cl\textsubscript{2} and any unreacted monomer removed by precipitated with MeOH. 1H NMR (250 MHz, CDCl\textsubscript{3}, 298 K) δ 5.15 (q, 4H, $J = 7.1$ Hz, CH, PLA), 4.05 (t, 2H, $J = 6.6$ Hz, R-O-CH\textsubscript{2}R, PCL), 2.30 (t, 2H, $J = 7.4$ Hz, RCH\textsubscript{2}=O, PCL), 1.73 – 1.20 (m, 8H, CH\textsubscript{2}, PCL), 1.58 (d, 12H, $J = 7.1$ Hz, CH\textsubscript{3}, PLA).

Stereocomplex of unsymmetrical tri-block copolymers: A tri-block copolymer (100 mg) was dissolved in CH\textsubscript{2}Cl\textsubscript{2} and stirred for 30 minutes. The solvent was allowed to evaporate slowly through a needle punctured through a suba-seal over 1 week. The polymer was dried in vacuo to remove residual solvent.
Synthesis of unsymmetrical penta-block polymer (solution, 90°C) (PhetLA-PLLA-PrCap - PhetLA-PDLA 1:1:1): Under inert conditions, in a Young’s ampoule sublimed l-LA (0.432 g, 3.0 mMol) and d-LA (0.288 g, 2.0 mMol) were dissolved in toluene (5 ml) to which the initiator L^dLuZr(OiPr).HOiPr (44 mg, 0.05 mMol) was added and stirred at 90°C for 36 h. An aliquot of 0.2 ml was removed from the reaction mixture with monomer conversion and \(M_w\) calculated using \(^1\)H NMR spectroscopy and GPC respectively. When the reaction reached near completion, addition of \(\varepsilon\)-caprolatone (0.55 ml, 5.0 mMol) via syringe and reaction was stirred at 90°C for 4 h. After polymerisation of \(\varepsilon\)-CL was near completion, addition of L-LA (0.288 g, 2.0 mMol) and d-LA (0.432 g, 3.0 mMol) and the reaction was stirred at 90°C for a further 36 h. An aliquot was taken from the reaction medium to determine monomer conversion. The reaction was quenched with 0.2 ml MeOH and solvent removed \textit{in vacuo}. The resulting polymer was dissolved in CH\(_2\)Cl\(_2\) and any unreacted monomer removed by precipitated with MeOH.

Synthesis of unsymmetrical penta-block polymer (solution, 90°C) (PhetLA-PLLA-P\(\delta\)VL-PhetLA-PDLA 1:1:1): Under inert conditions, in a Young’s ampoule sublimed l-LA (0.432 g, 3.0 mMol) and d-LA (0.288 g, 2.0 mMol) were dissolved in toluene (5 ml) to which the initiator L^dLuZr(OiPr).HOiPr (44 mg, 0.05 mMol) was added and stirred at 90°C for 36 h. An aliquot of 0.2 ml was removed from the reaction mixture with monomer conversion and \(M_w\) calculated using \(^1\)H NMR spectroscopy and GPC respectively. When the reaction reached near completion, addition of \(\delta\)-valerolatone (0.46 ml, 5.0 mMol) via syringe and reaction was stirred at 90°C for 5 h. After polymerisation of \(\delta\)-VL was near completion, addition of l-LA (0.288 g, 2.0 mMol) and d-LA (0.432 g, 5.0 mMol) and the reaction was stirred at 90°C for a further 36 h. An aliquot was taken from the reaction medium to determine monomer conversion. The reaction was quenched with 0.2 ml MeOH and solvent removed \textit{in vacuo}. The resulting polymer was dissolved in CH\(_2\)Cl\(_2\) and any unreacted monomer removed by precipitated with MeOH. \(^1\)H NMR (250 MHz, CDCl\(_3\), 298 K) \(\delta\) 5.28-5.08 (m, 4H, \(J = 7.1\) Hz, CH, PLA), 4.08 (t, 2H, \(J = 6.1\) Hz, R-O-CH\(_2\)R, PVL), 2.33 (t, 2H, \(J = 7.2\) Hz, RCH\(_2\)=O, PCL), 1.73 – 1.50 (m, 4H, CH\(_2\), PVL), 1.58-1.55 (m, 12H, CH\(_3\), PLA).

Synthesis of stereocomplexed unsymmetrical penta-block copolymers: A penta-block copolymer (100 mg) was dissolved in CH\(_2\)Cl\(_2\) and stirred at 25°C for 30 minutes. The solvent was allowed to evaporate slowly over 1 week through a suba-seal punctured with a needle. The polymer was dried under high vacuum to remove residual solvent.

Synthesis of PPDL (tol, 90°C): Under inert conditions, in a Young’s ampoule, recrystallised \(\omega\)-PDL (0.25 g, 1.04 mMol) was dissolved in toluene (5 ml) to which (BDI-Pr)ZnN(SiMe\(_3\))\(_2\) (7 mg, 0.01 mMol) was added and stirred at 90°C for 24 h. An aliquot of 0.2 ml was removed from
the reaction mixture with monomer conversion and \(M_w \) calculated using \(^1\)H NMR spectroscopy and GPC respectively. The reaction was quenched with 0.2 ml MeOH and solvent removed \textit{in vacuo}. The resulting polymer was dissolved in CH\(_2\)Cl\(_2\) and any unreacted monomer removed by precipitated with MeOH. \(^1\)H NMR (250 MHz, CDCl\(_3\), 298 K) \(\delta \) 4.05 (t, 2H, \(J = 6.7 \text{ Hz}, \text{R-O-CH}_2\text{R} \)), 4.05 (t, 2H, \(J = 6.6 \text{ Hz}, \text{R-O-CH}_2\text{R, PCL} \)), 2.30 (t, 2H, \(J = 7.4 \text{ Hz}, \text{RCH}_2\text{=O} \)), 1.60 (t, 4H, \(J = 6.7 \text{ Hz}, \text{CH}_2 \)), 1.41-1.16 (m, \text{CH}_2).

Synthesis of di-block polymer PPDL-PLLA (tol, 90°C): Under inert conditions, in a Young’s ampoule, recrystallised \(\omega \)-PDL (0.25 g, 1.04 mMol) was dissolved in toluene (5 ml) to which (BDI-\(^1\)Pr)ZnN(SiMe\(_3\))\(_2\) (7 mg, 0.01 mMol) was added and stirred at 90°C for 24 h. When the reaction reached near completion, \(\text{L-LA} \) (0.15 g, 1.04 mMol) was added and the reaction stirred at 90°C for a further 18 h. An aliquot was taken from the reaction medium to determine monomer conversion. The reaction was quenched with 0.2 ml MeOH and solvent removed \textit{in vacuo}. The resulting polymer was dissolved in CH\(_2\)Cl\(_2\) and any unreacted monomer removed by precipitated with MeOH.

Synthesis of di-block polymer PPDL-PDLA (tol, 90°C): Under inert conditions, in a Young’s ampoule, recrystallised \(\omega \)-PDL (0.25 g, 1.04 mMol) was dissolved in toluene (5 ml) to which (BDI-\(^1\)Pr)ZnN(SiMe\(_3\))\(_2\) (7 mg, 0.01 mMol) was added and stirred at 90°C for 24 h. An aliquot of 0.2 ml was removed from the reaction mixture with monomer conversion and \(M_w \) calculated using \(^1\)H NMR spectroscopy and GPC respectively. When the reaction reached near completion, \(\text{D-LA} \) (0.15 g, 1.04 mMol) was added and the reaction stirred at 90°C for a further 18 h. An aliquot was taken from the reaction medium to determine monomer conversion. The reaction was quenched with 0.2 ml MeOH and solvent removed \textit{in vacuo}. The resulting polymer was dissolved in CH\(_2\)Cl\(_2\) and any unreacted monomer removed by precipitated with MeOH.

Synthesis of stereocomplexed di-block copolymer (PPDL-PLLA + PPDL-PDLA): Di-block copolymers PPDL-PLLA (50 mg) and PPDL-PDLA (50 mg) were dissolved in CH\(_2\)Cl\(_2\) and stirred at 25°C for 30 minutes. The solvent was allowed to evaporate slowly through a needle punctured through a suba-seal over 7 days. The polymer was dried under high vacuum to remove residual solvent.

Synthesis of unsymmetrical tri-block polymer PPDL-PCL-PLLA (tol, 90°C): Under inert conditions, in a Young’s ampoule, recrystallised \(\omega \)-PDL (0.25 g, 1.04 mMol) was dissolved in toluene (5 ml) to which (BDI-\(^1\)Pr)ZnN(SiMe\(_3\))\(_2\) (7 mg, 0.01 mMol) was added and stirred at 90°C for 24 h. An aliquot of 0.2 ml was removed from the reaction mixture with monomer conversion and \(M_w \) calculated using \(^1\)H NMR spectroscopy and GPC respectively. When the
reaction reached near completion (78%), addition of ε-CL (0.12 ml, 1.04 mMol) via syringe and reaction was stirred at 90°C for 6 h. After polymerisation of ε-CL was near completion (84%), L-LA (0.149 g, 1.04 mMol) was added and the reaction stirred at 90°C for a further 24 h. An aliquot was taken from the reaction medium to determine monomer conversion (55%). The reaction was quenched with 0.2 ml MeOH and solvent removed in vacuo. The resulting polymer was dissolved in CH₂Cl₂ and any unreacted monomer removed by precipitated with MeOH.

Synthesis of unsymmetrical tri-block polymer PPDL-PCL-PDLA (tol, 90°C): Under inert conditions, in a Young’s ampoule, recrystallised ω-PDL (0.25 g, 1.04 mMol) was dissolved in toluene (5 ml) to which (BDI-iPr)ZnN(SiMe₃)₂ (7 mg, 0.01 mMol) was added and stirred at 90°C for 24 h. An aliquot of 0.2 ml was removed from the reaction mixture with monomer conversion and \(M_w \) calculated using \(^1\)H NMR spectroscopy and GPC respectively. When the reaction reached near completion (75%), addition of ε-CL (0.12 ml, 1.04 mMol) via syringe and reaction was stirred at 90°C for 6 h. After polymerisation of ε-CL was near completion (85%), D-LA (0.149 g, 1.04 mMol) was added and the reaction stirred at 90°C for a further 24 h. An aliquot was taken from the reaction medium to determine monomer conversion (88%). The reaction was quenched with 0.2 ml MeOH and solvent removed in vacuo. The resulting polymer was dissolved in CH₂Cl₂ and any unreacted monomer removed by precipitated with MeOH.

Synthesis of stereocomplexed unsymmetrical tri-block copolymer (PPDL-PCL-PLLA + PPDL-PCL-PDLA): Tri-block copolymers PPDL-PCL-PLLA (50 mg) and PPDL-PCL-PDLA (50 mg) were dissolved in CH₂Cl₂ and stirred at 25°C for 30 minutes. The solvent was allowed to evaporate slowly through a needle punctured through a suba-seal over 7 days. The polymer was dried under high vacuum to remove residual solvent.

6.4.3 Kinetic Investigations

Polymerisations – Typical syntheses from Chapter 4

Synthesis of lactide co-polymer with 5% vinyl-LA: Under inert conditions, in a Young’s ampoule L-LA (1.0 g, 6.94 mMol) and vinyl-LA (49 mg, 0.347 mMol) were dissolved in CH₂Cl₂ with benzyl alcohol (7.2 µl). Addition of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, 0.9 mg) in CH₂Cl₂. The reaction was stirred for 5 minutes at 25°C. Benzoic acid was added to quench the reaction and solvent removed in vacuo.

Synthesis of lactide co-polymer with 10% vinyl-LA: Under inert conditions, in a Young’s ampoule L-LA (1.0 g, 6.94 mMol) and vinyl-LA (99 mg, 0.347 mMol) were dissolved in
CH$_2$Cl$_2$ with benzyl alcohol (7.2 µl). Addition of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, 0.9 mg) in CH$_2$Cl$_2$. The reaction was stirred for 5 minutes at 25°C. Benzoic acid was added to quench the reaction and solvent removed in vacuo.

Solution co-polymerisation (NMR scale, tol, 90°C): Typically, combined monomer (3.46 mMol) and the initiator L$^\text{tBu}$Zr(O$^\text{iPr}$)$_2$HOiPr (3 mg, 0.03 mMol) were dissolved in d8 toluene (0.6 ml) in a Young’s NMR tube, which was immediately placed on an NMR spectrometer programmed to run the sample every 15 minutes. Once the reaction had reacted near completion (>95%) the reaction was quenched with 0.2 ml MeOH, dissolved in CH$_2$Cl$_2$ and precipitated with MeOH to remove any unreacted monomer and dried in vacuo.
6.5 References

(16) BAKER L., 9600 Deer Trail, Haslett, MI 48840 (US), G.; SMITH R., III, 238 Oxford Road, East Lansing, MI 48823 (US), M. PROCESS FOR THE

APPENDIX – Single crystal X-ray data

Ti₈[dimer]₂(L₁)₄(O^Pr)₂₀, 1.

Identification code: **Ti₈[dimer]₂(L₁)₄(O^Pr)₂₀, 1**

Empirical formula: **C₉₆ H₂₀₀ O₄₂ Ti₈**

Formula weight: **2409.76**

Temperature: **150(2) K**

Wavelength: **0.71073 Å**

Crystal system, space group: **Monoclinic, P 2**

Unit cell dimensions:
- \(a = 12.3075(4) \text{ Å}\)
- \(b = 18.1587(7) \text{ Å}\)
- \(c = 30.3631(9) \text{ Å}\)
- \(\alpha = 90^\circ\)
- \(\beta = 90.077(2)^\circ\)
- \(\gamma = 90^\circ\)

Volume: **6785.8(4) Å³**

\(Z, \text{ Calculated density:}\) **2, 1.179 Mg/m³**

Absorption coefficient: **0.515 mm⁻¹**

\(F(000):\) **2576**

Crystal size: **0.35 x 0.35 x 0.18 mm**

Theta range for data collection: **3.01 to 25.35 deg.**

Limiting indices:
- \(-14\leq h\leq 14, -21\leq k\leq 21, -36\leq l\leq 36\)

Reflections collected / unique: **50710 / 20075 [R(int) = 0.0846]**

Completeness to theta = **25.35 91.3 %**

Absorption correction: **Semi-empirical from equivalents**

Max. and min. transmission: **0.9130 and 0.8403**

Refinement method: **Full-matrix least-squares on F²**

Data / restraints / parameters: **20075 / 31 / 1334**

Goodness-of-fit on F²: **1.123**

Final R indices [I>2sigma(I)]: **R1 = 0.0950, wR2 = 0.1736**

R indices (all data): **R1 = 0.1646, wR2 = 0.1999**

Absolute structure parameter: **0.04(4)**

Largest diff. peak and hole: **0.482 and -0.372 e.A⁻³**
Ti₄(L₂)₃(O²Pr)₄, 3

Identification code
Ti₄(L₂)₃(O²Pr)₄, 3

Empirical formula
C₄₄ H₉₂ Cl₄ N₆ O₁₆ Ti₄

Formula weight
1294.64

Temperature
150(2) K

Wavelength
0.71073 Å

Crystal system, space group
Triclinic, P ̅ 1

Unit cell dimensions
\[a = 9.5477(4) \text{ Å}, \alpha = 86.886(2) \text{ deg.}\]
\[b = 12.3817(5) \text{ Å}, \beta = 85.008(2) \text{ deg.}\]
\[c = 12.9853(7) \text{ Å}, \gamma = 78.112(3) \text{ deg.}\]

Volume
1495.42(12) Å³

Z, Calculated density
1, 1.438 Mg/m³

Absorption coefficient
0.759 mm⁻¹

F(000)
682

Crystal size
0.38 x 0.25 x 0.10 mm

Theta range for data collection
3.83 to 27.64 deg.

Limiting indices
\(-12 \leq h \leq 12, -16 \leq k \leq 16, -16 \leq l \leq 16\)

Reflections collected / unique
17013 / 17013 [R(int) = 0.0000]

Completeness to theta = 27.64
96.7 %

Absorption correction
Semi-empirical from equivalents

Max. and min. transmission
0.9279 and 0.7613

Refinement method
Full-matrix least-squares on \(F^2\)

Data / restraints / parameters
17013 / 0 / 340

Goodness-of-fit on \(F^2\)
1.112

Final R indices [I>2\(\sigma(I)\)]
R1 = 0.1104, wR2 = 0.2394

R indices (all data)
R1 = 0.1270, wR2 = 0.2495

Extinction coefficient
0.042(3)

Largest diff. peak and hole
1.434 and -2.150 e.A⁻³
<table>
<thead>
<tr>
<th>Identification code</th>
<th>Ti_4(L_2)(O^4Pr)_{12}, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C46 H104 N2 O16 Ti4</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1132.91</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.7827(3) Å, alpha = 87.910(2) deg.</td>
</tr>
<tr>
<td></td>
<td>b = 10.9231(3) Å, beta = 75.866(2) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 15.2538(5) Å, gamma = 79.555(2) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1554.39(8) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>1, 1.210 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.553 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>610</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.38 x 0.25 x 0.10 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>4.03 to 27.50 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-12≤h≤12, -14≤k≤14, -19≤l≤19</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>20206 / 6993 [R(int) = 0.0564]</td>
</tr>
<tr>
<td>Completeness to theta = 27.50</td>
<td>98.1 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9468 and 0.8174</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6993 / 0 / 339</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.045</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0446, wR2 = 0.1044</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0656, wR2 = 0.1161</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.355 and -0.411 e.A⁻³</td>
</tr>
</tbody>
</table>
Zr₂(L₂)₂, 5

Identification code
Zr₂(L₂)₂, 5

Empirical formula
C₄₀ H₈₀ N₈ O₁₆ Zr₄

Formula weight
1294.00

Temperature
150(2) K

Wavelength
0.71073 Å

Crystal system, space group
monoclinic, C 2/c

Unit cell dimensions
a = 14.7560(4) Å \(\alpha = 90 \) deg.
b = 9.6140(4) Å \(\beta = 101.494(2) \) deg.
c = 19.3510(5) Å \(\gamma = 90 \) deg.

Volume
2690.16(15) Å³

Z, Calculated density
2, 1.597 Mg/m³

Absorption coefficient
0.823 mm⁻¹

F(000)
1328

Crystal size
0.20 x 0.10 x 0.05 mm

Theta range for data collection
5.54 to 27.40 deg.

Limiting indices
-18≤h≤18, -12≤k≤12, -24≤l≤23

Reflections collected / unique
19738 / 3017 [R(int) = 0.1084]

Completeness to theta = 27.40
98.5 %

Max. and min. transmission
0.9600 and 0.8527

Refinement method
Full-matrix least-squares on F²

Data / restraints / parameters
3017 / 0 / 154

Goodness-of-fit on F²
1.195

Final R indices [I>2σ(I)]
R1 = 0.2542, wR2 = 0.5774

R indices (all data)
R1 = 0.2607, wR2 = 0.5798

Largest diff. peak and hole
9.150 and -7.911 e.Å⁻³
Identification code: Zr₃(L₂)(OᵢPr)₈, 7

Empirical formula: C₃₅ H₇₈ N₂ O₁₂ Zr₃

Formula weight: 992.65

Temperature: 150(2) K

Wavelength: 0.71073 Å

Crystal system, space group: triclinic, P-1

Unit cell dimensions:
- a = 15.2050(7) Å, alpha = 87.456(3) deg.
- b = 16.8120(8) Å, beta = 84.855(3) deg.
- c = 18.0700(10) Å, gamma = 87.529(3) deg.

Volume: 4592.5(4) Å³

Z, Calculated density: 4, 1.436 Mg/m³

Absorption coefficient: 0.722 mm⁻¹

F(000): 2072

Crystal size: 0.50 x 0.40 x 0.13 mm

Theta range for data collection: 2.98 to 25.10 deg.

Limiting indices:
- -17<=h<=17,
- -19<=k<=19,
- -21<=l<=21

Reflections collected / unique: 51740 / 15043 [R(int) = 0.1058]

Completeness to theta: 91.9 %

Max. and min. transmission: 0.9120 and 0.7141

Refinement method: Full-matrix least-squares on F²

Data / restraints / parameters: 15043 / 0 / 946

Goodness-of-fit on F²: 1.091

Final R indices [I>2sigma(I)]: R1 = 0.2378, wR2 = 0.5442

R indices (all data): R1 = 0.2734, wR2 = 0.5651

Largest diff. peak and hole: 3.766 and -2.672 eÅ⁻³
Hf₃(L₂) (O³)Pr₈, 8

Identification code
Hf₃(L₂) (O³)Pr₈, 8

Empirical formula
C₃₄ H₇₆ Hf₃ N₂ O₁₂

Formula weight
1240.44

Temperature
200(2) K

Wavelength
0.71073 Å

Crystal system, space group
Monoclinic, C 2/c

Unit cell dimensions
a = 23.6691(6) Å alpha = 90 deg.
b = 10.3738(2) Å beta = 97.2430(10) deg.
c = 19.0472(5) Å gamma = 90 deg.

Volume
4639.50(19) Å³

Z, Calculated density
4, 1.776 Mg/m³

Absorption coefficient
6.748 mm⁻¹

F(000)
2424

Crystal size
0.50 x 0.50 x 0.15 mm

Theta range for data collection
4.09 to 27.56 deg.

Limiting indices
-30<=h<=30, -13<=k<=13, -24<=l<=24

Reflections collected / unique
34294 / 5326 [R(int) = 0.1251]

Completeness to theta = 27.56
99.1 %

Absorption correction
Semi-empirical from equivalents

Max. and min. transmission
0.4309 and 0.1334

Refinement method
Full-matrix least-squares on F²

Data / restraints / parameters
5326 / 1 / 282

Goodness-of-fit on F²
1.034

Final R indices [I>2sigma(I)]
R1 = 0.0413, wR2 = 0.1026

R indices (all data)
R1 = 0.0539, wR2 = 0.1099

Largest diff. peak and hole
2.259 and -1.774 e Å⁻³