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ABSTRACT 

Architecture and dance, two apparently diverse subjects, are explored, analysed 

and interrelated in this research, through parametric modelling. The thesis is 

divided into five basic chapters. Firstly, the prior research regarding architecture 

and dance is examined, which also justifies the innovation of the current 

research. Secondly, the visualisation techniques that have been used so far are 

explored in order to record, file, compose, animate, transform or combine dance 

movements. Afterwards, how dance movement can be expressed and 

transformed within the frame of parametric modelling is explained. The tools 

created are then applied in two case-studies, and transformed according to the 

functional and spatial restrictions of each project. Finally, the outcomes of this 

research are summarised indicating the achievements and the difficulties of the 

whole process, while recommendations for further research are suggested. 

 

Keywords 

Architecture, dance visualisation, Labanotation, motion capture, parametric 

modelling, grasshopper, digital fabrication, playscape, skatepark. 
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1. INTRODUCTION | ARCHITECTURE AND DANCE 

Architecture  and dance , despite being two apparently diverse subjects, present 

a complementary relationship regarding space and movement. As Peponis 

(1997) has pointed out, dance performs patterns of movement and creates 

ephemeral forms in space, while architecture, by its material substance, restricts 

the possibilities of movement.  

Moreover, according to Mattingly (1999) both dance and architecture are forms 

of visual art that share a common ground, that of three-dimensional space. Thus, 

the vocabulary, the principles and the design processes used in both disciplines 

are closely related. For instance, both art forms are subject to expression, are 

restricted by gravity, and defined by an underlying structure. 

Despite the fact that dance has inspired a lot of architects and artists, when 

starting research on the relationship between dance and architecture, it 

becomes clear from the beginning that this subject has not been sufficiently 

explored (Spier 2005). The available sources mainly focus on traditional theories 

about body and space or research on performance facilities (Spier 2005). Others 

examine space syntax theories and matters of perception of dance by the viewer 

(Gavrilou 2003). Sufficient information can also be found about the relation of a 

moving person within the built environment, including issues of circulation inside a 

building or public space and the flow of people. 

The difficulty in relating movement with architecture in a direct way arose 

because movement is an action, and as such it is closely related to time and 

space. On the other hand architecture is traditionally opposed to temporality that 

is inherent into movement and dance.  

Yet the significant progress in computational technology brought increasingly into 

focus the conflict between static form and motion. The emerging design tools 

allowed architects to explore other aspects of motion and space. The 

representation of architecture through animation, dynamic geometries or the use 

of techniques such as keyframing (Fig.1) for the generation of form, are indicative 

examples (Schodek 2008). Another view to movement and architecture is the 

literal interpretation of this subject through kinetic architecture (Harris 2002). 
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Nevertheless, the connection with dance has not been indicated by any of the 

previously mentioned approaches. 

In terms of visualisation of dance there is also lack of theoretical research. The 

available sources involve methodologies to extract information about dance 

from pictures (paintings, sketches, crafts) (Seebass 1991) or visualising 

choreographical data with the use of animation and computational 

technologies (Calvert et al. 2005). There have been various creative approaches 

to visualise dance in disciplines such as painting, sculpture, photography, video 

art, etc. Therefore, architecture presents lack of sources regarding the generation 

of architectural forms from dance movement.  

In order to approach this subject a research methodology has been followed that 

starts with the analysis of dance movement to reach the association of it with 

geometry and architecture. More specifically, the first chapter of the thesis 

explores the means that have been used so far for the visualisation of dance. 

Starting with dance notation, and the analysis of movement, interest shifts to 

animation and inverse kinematics, video, William Forsythe’s mixed media and 

eventually to Motion Capture Data. The latter formed the basis for 

experimentation with movement. 

Firstly, the possibility of importing Motion Capture Data within design software 

(Rhino/Grasshopper) has been examined. After having achieved that, different 

kinds of motions were collected from a MoCap database for exploration and 

experimentation. The results were a series of diagrams, included as the 

appendices of the thesis, which demonstrate different ways of visualising 

movement.  

 

 

 

Fig. 1  Use of keyframing for the design entry for the World Trade Centre, 2002. (Architects: Ocean 
North) 
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The diagrams of dance movement indicate the necessity to create some 

transformation definitions in order to make the geometry applicable to the case-

study. The subject of the case-study is a playscape which includes climbers 

generated by dance movement and a skate-bowl formed as the negative space 

of dance. 

For the selection and classification of movements, as well as for the organisation 

of the parametric definitions, some of the principles of choreography and the 

analysis of movement have been taken into consideration, in order to provide a 

backbone for the creation of form through dance.  

 

  



        

Dimitra Stathopoulou | From Dance Movement to Architectural Form 4 

2. DANCE VISUALISATION 

Dance consists of two very basic qualities; its form and its temporality. The former 

is possible to visualise with the use of traditional means (painting, sculpture, 

photography, etc.), whilst the latter requires different approaches. Ice dancing in 

western culture and snake dances of the Manipuri (Northeast India) are two 

cases where dance has inherently a visual aspect and more precisely leaves its 

traces in space (Seebass 1991). However, this does not apply in live dance 

performances where the form and shape of dance is absolutely ephemeral.  

In the following chapter various techniques to record and visualise dance are 

presented, as well as the advantages and disadvantages of each one, and how 

some of those formed the basis upon which the parametric model was built. 

2.1  Dance Notation and Analysis of Movement 

Notation is used as a visualisation tool to communicate ideas in 

various disciplines. An example coming from everyday 

experience is writing. ‘Writing represents speech with a sequence 

of letters’  (Misi 2007). Accordingly, music is notated by using notes 

on a stave. Like music and speech, dance has also a system to be 

recorded on paper. As described by Yolande Harris, in her 

research about architecture, music and dance:  

‘Notation is an interface that lies between all forms of the 

realisation of ideas into objects - whether architectural, musical, 

visual or linguistic.’  (Harris 2002) 

The most commonly used systems, nowadays, for notating dance 

are the Benesh notation and Labanotation. The creators of the 

former were mainly involved with classical ballet; hence Benesh 

notation meets well the needs of a strictly structured and 

disciplined movement such as ballet movement. Labanotation 

was formed by one of the pioneers of contemporary dance 

(Rudolf Von Laban); therefore this system had to be flexible 

enough to respond to the experimental character of 

contemporary dance. Both systems though, analyse human movement in terms 

of spatiality, time and dynamics. The system chosen to study in this research is 

Fig. 2  Example of  
Labanotation 
stave. 
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Labanotation, because it is considered more extensive and precise than Benesh 

notation, although it is more difficult to use (Williams 2008).  

In 1928, Rudolf Von Laban developed a notational system with which one can 

record any body movement by capturing positional information for various body 

parts, presignifying keyframe animation systems (Wilke et al. 2005). The movement 

is recorded in a three-line stave that is read from the bottom to the top of the 

page and it is divided into measures (Fig. 2). The symbols that are placed on the 

same line on the stave represent movements that are occurring simultaneously. 

The symbols on the stave are organised at the left and the right side of the 

centreline, representing the left and right limbs accordingly, as well as the spine 

(Fig. 3). The basic symbols describe the direction, the turns, the level of 

movement, and its duration in time (Figs. 4 & 5). Ancillary symbols indicate the 

path of movement, the arrangements of dancers on the stage, the dynamics of 

movement and other details (Fig. 6). 

According to Laban, the different positions of the body are included within a 

virtual icosahedron, which he called kinesphere (Hutchinson 1970). Kinesphere is 

defined as the space surrounding a dancer’s body and that they can potentially 

reach (Figs. 7 & 8). More precisely, the kinesphere is defined by a stable, vertical 

axis around the centre of which 27 points are marked. Consequently, as the body 

moves, the axis tilts and rotates, moving the kinesphere with it.  

BASIC SYMBOLS OF LABANOTATION  

 
Fig. 3    The stave. 

 
Fig. 4    Direction symbols. 

 
Fig. 5    Direction and level (shading) symbols: (1) 
forward high, (2) place middle, (3) right side low. 

 
Fig. 6   Symbols indicating body parts: (1) head, 
(2) face, (3) hands, (4) front of left shoulder. 
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The movement can be analylised into various features (Fig. 9). These include the 

number of dancers, the parts of the body used, the space occupied by the body 

and the space around it, as well as the parameter of time , the dynamics  of 

movement and others spatial qualities . The parameter of time affects the speed 

and the duration of movement, and as a result the rhythm. The dynamics of 

movement is a term used by Laban to describe the result of energy used in time. 

Depending on the intensity of the energy and the relation of it with time, a 

movement could be strong, gentle or sudden, sharp, staccato and so on. Also, 

Laban defined a range of movement qualities that he called efforts, combining 

space, time and energy (examples of efforts: punch, float, flick, dab, press, glide, 

slash, wring, etc.) (Rickett 1996). Other spatial qualities refer to modifications of 

the direction, level, and size of movement, the way that transitions take place, 

the degree of distance or rotation and the kinds of movement paths (Hutchinson 

1970).  

Labanotation succeeds in describing movement in a very explicit way. Thus, it 

can be applied in different disciplines and for a wide variety of purposes. Mainly, 

it is used in dance as a means for the preservation of choreography for future 

reference (Hutchinson 1970). Yet, it can be used for research purposes in any field 

that needs to compare different movements; productivity research, medical 

research, sociological and anthropological research, robotics, and a lot more 

(Rickett 1996). 

 

 

Fig. 7   Kinesphere: the area where the body 
is moving within. 

 

Fig. 8   The icosahedron within which Laban defined 
the structure of movement. 
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Fig. 9  Elements of movement according to Rickett (1996) and Hutchinson (1970). 
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2.2  Dance Animation and Inverse Kinematics 

Visualising dance as animation has been approached in various ways and for 

different reasons. Firstly, it was necessary to represent dance scores in a friendly 

way for the choreographers and dancers. Moreover, choreographers needed a 

tool to explore different movement patterns for their performances and also be 

able to store them for later use.  

The difficulty to use and understand a dance score made it necessary to invent 

other easier and faster ways to represent dance, such as specialised animation 

software . The ‘LabanDancer’ for Labanotation offered such opportunity for 

dance scores that have been edited with ‘LabanWriter’ (Wilke et al. 2005). The 

‘LabanDancer’ is based on a deformable, polygonal mesh model, controlled by 

a hierarchical skeleton. Keyframe animation channels control the angles of the 

joints, while four inverse kinematic chains drive the individual limbs (legs, feet, 

arms, hands). The dance score is parsed into three streams; gestures with no 

weight-bearing, support changes and a generic stream that deals with the use of 

floor plans, repetition of a sequence, and so on (Wilke et al. 2005). Moreover, the 

algorithm used for human locomotion (Van de Panne’s algorithm) achieves a 

smooth transition from walking to running, jumping, falling, etc. 

The logic behind the inverse kinematics technologies is that inverse kinematics 

interpolates the angles of all the skeleton’s joints, given the desired positions of 

parts of the body. As opposed to forward kinematics, where the angles of all 

joints are known and the positions of the limbs have to be calculated (Wikipedia: 

Inverse Kinematics). 

Another animation software is ‘DanceForms’ that offers choreographers and 

dancers the chance to experiment with patterns of movements in animated 

human figures (Fig. 10-13). This tool gives them the chance to edit choreography 

before working with real dancers. The difference between ‘DanceForms’ and 

‘LabanDancer’ is that in the former, movement is not generated only by a dance 

score, but also by the use of readymade libraries of animated movements 

customised for dance (both classical ballet and contemporary dance). Again, a 

keyframe animation approach is used for the composition of the choreography, 

while a flexible set of controls is used to refine the different postures (Calvert et al. 

2005). Movement can also be seen as a dance score and modified through it 

(Fig. 13).  
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 Nevertheless, creating believable human motion from keyframing and symbolic 

representations requires a highly sophisticated model of human movement. 

According to Michael Girard, digital artist 

and software designer, ‘human figures 

have very strong emotional and 

psychological qualities’  (Kaiser 1988). Yet, 

how can animation software visualise the 

muscular experience and the expressive 

power of the moving body? How would 

the optimisation of movement that is 

controlled by our nervous system be 

incorporated in a simulation of human movement? 

In cartoon animations, a great number of animators fill the gaps between the 

different frames using their instinct about motion, instead of mathematical 

expressions and physically-based dynamics of movement (Kaiser 1988). Trying to 

produce the same results with computers and automated processes is far more 

THE INTERFACE OF ‘DANCE FORMS’ SOFTWARE 

Fig. 10  A stage window 
for composing multiple 
dancers. 

Fig. 11  A studio window 
for creating particular 
body positions. 

Fig. 12  A rendered performance window . 

Fig. 13  A score window to show how each dancer moves over time. 

 

Fig. 14  Biped’s motion created in ‘Character 
Studio’. 
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difficult to define. Human movement does not only have acceleration and 

gravity. It also has a very complex structure, since there are intricate 

dependencies between all the parts of the human body. Considering the 

obstacles and the disadvantages of inverse kinematics, interest gradually shifted 

towards Motion Capture Data, explained more thoroughly in 2.5. 

2.3  Video 

Video serves as fairly accurate medium to record and visualise dance. It is mainly 

used for making an archive of performances and dance rehearsals that can be 

later accessed by choreographers and dancers. It can also be used to monitor 

one’s progress in dance or to record random ideas in choreography.  

Except for the pure recording of dance there have been some creative 

approaches of the use of video in dance. The collaboration of the 

choreographer Merce Cunningham and the musician John Cage for the 

creation of ‘Field Dances’ can be regarded as such (Rickett 1996). The final result 

was a collage of dance presented from different perspectives and distances, 

fragments of interviews and shots of Cage playing the piano.  

‘Pas de deux’, a 1968 film by Scottish-Canadian director Norman McLaren, is 

another inspired example of visualisation of dance (Fig. 15). It was filmed on high 

contrast film stock with very strong side lighting. This was intensified by step-and-

repeat printing on an optical printer, letting the movement leave its traces behind 

after its completion (Wikipedia: ‘Pas de deux’). 

Although video is a medium easy and fast to use, it presents some disadvantages 

in terms of visualising dance. When recording dance to look back at it in the 

future, if there are mistakes during a performance, those are later archived and 

erroneously considered parts of the original dance conception. Moreover, a 

  
Fig. 15  Snapshots from the fi lm ‘Pas de deux’, Canada, 1968 
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camera can record a single, specific point of view at a time, excluding others. 

This can become ineffective in the case of performances with multiple dancers, 

when some dancers may obstruct the dance movements of others. Even with 

long shots and multiple cameras, a camera still cannot see what the eyes can 

see and cannot record the dynamics of dance (Rickett 1996). 

 

2.4  William Forsythe’s ‘Danc e Geometry’ and mixed media 

William Forsythe is a renowned choreographer, based in Germany, whose 

interpretation of dance and choreographical approach has captured the 

attention of a great deal of architects, media specialists and educators. What 

makes his work worth examining is how intertwined the acts of drawing and 

dancing are for him. To that his inspiration derived from today’s digital technology 

and algorithmic processes should also be added (Kaiser 1999a). In the following 

chapter his analysis principles, the improvisation techniques used for his 

performances and the outcome of his collaboration with architects and digital 

artists for the visualisation of dance in ‘Synchronous Objects’ are explained. 

Basic elements of Forsythe’s technique are isolation  and decentering. As Boenisch 

points out in his article about William Forsythe and the ‘equations of bodies’ :  

‘Any symmetry and rectilinearity are ignored, as were even the most basic 

sensomotoric and somatic logics and hierarchies . The muscles and joints of these 

moving bodies indulged in what appeared as an uncontrolled flow  of disfigured 

mimics, gestural deformation , a dislocating  bending of the joints and the 

extremities  in physiognomically impossible manners’ (Boenisch 2007). 

The aesthetic principles  followed in such a new way of dancing differ much from 

the values of classical ballet, despite the fact that the dancers of his company 

come from such a background. More precisely, the simple, smooth movements of 

classical ballet, which involve formalised transitions, are replaced by unstable, 

complicated movements, which no longer focus on the result, but on the process 

of it.  

For Mattingly (1999) the choreography of William Forsythe shares a lot of common 

features with the architecture of Frank Gehry (Figs. 16& 17). In fact, both use 

‘tilted’ and ‘distorted’ forms, making their work to be labelled as ‘post-modern’ 

and ‘deconstructivist’. Interestingly, the architect Robert Maxwell describes 
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deconstructivism in a way that can be referred to the work of both Gehry and 

Forsythe. 

 

 ‘It is unusual, often disquieting. It experiments with the limits of the ugly and the 

beautiful, and rejoices in intrusions, collisions, rotations and displacements’.   

(Maxwell 1993) 

 

Forsythe borrows some of the processes and the vocabulary of computational 

technology and reinterprets them from the scope of choreographer. His analysis 

seems to be useful for both choreographers and architects. For the former his 

method encourages new ways for the composition of dance movement, beyond 

the formalistic restrictions of precedent dance styles.  

On the other hand, for the architects it suggests an interesting and creative way 

to explore space, by learning from the body’s potential, within the frame of 

design and computational technology. More precisely, computational design 

can use these resultant interpretations to create spaces emerging from dance. 

This exchange appears to be very promising in both fields as choreographers 

could consider algorithmic processes as a generator for their dances (Kent and 

Kaiser 2000) and architects can generate forms from dance.  

  

 
Fig. 16  William Forsythe's ‘Eidos’. 

 
Fig. 17  Frank Gehry’s Wa lt Disney Concert Hall. 
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 2.4.1 ‘Improvisation Technologies’ 

After working with ballet dancers for more than 15 years, Forsythe realised that 

ballet dancers are trained to understand chorographical movement by matching 

lines and shapes in space. So, he analysed dance movement into points, lines, 

planes, volumes  and started composing choreographies by using processes such 

as rotation, extrusion, inscription, folding, unfolding , etc. Clarifying that there is an 

infinite number of possible movement combinations, restricted only by the 

physical structure of the human body. 

 

Fig. 18  Parallel Shear. 

 

Fig. 19  Extruding Planes. 

 

Fig. 20  ‘Collapsing’ points. 

 

Fig. 21  Rotating lines. 

 

Fig. 22  Curves. 

 

Fig. 23  Volumes. 

 

Fig. 24  Laban’s orientation of 
limbs 

 

Fig. 25  Forsythe’s orientation of 
limbs 

 

Fig. 26  Forsythe’s writing (‘U-
ing’) 
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His choreographies are not prescribed. Instead, they derive from improvisation 

techniques. More specifically, the dancers are given directives called ‘U-lines’ 

from which they will generate movement phrases. These may consist of short 

phrases  to interpret (e.g. I’m not talking to you, You meet yourself, Cheers you up, 

To spite you), mathematical terms  (e.g. divides, delineates, functions, planes), 

verbs  and adjectives  (e.g. deviate, follow, reject, implode, partial), and 

computational operations  (e.g. distortion operations, recursive algorithms) or 

almost nonsensical phrases (e.g. U invert difference, U arc indivisibly, U project 

solids, U solidify angles, U extend impulse) (Spier 1998). 

In order to teach all the previously mentioned principles and ideas in Frankfurt 

Ballet dancers, Forsythe needed a system to visualise them. His interest in 

computational technologies lead him to the development of a training tool for 

dance called ‘Improvisation Technologies’ (published in 2000), where lines, curves 

and volumes are superimposed on recorded educational videos to reveal the 

geometrical structure hidden behind the dancing movement. The CD-ROM is 

divided into 60 video chapters, consisting of lecture demonstrations in which 

Forsythe shows the essential principles of his improvisation techniques (Birringer 

2002). 

Forsythe trains his dancers to imagine trails in space (Figs. 18-26), which are 

implied either by the currently occurring movement or by the one left behind. 

They also learn how to manipulate and transform this imaginary geometry, thus 

emphasising on the space created by the moving body, rather than the space 

occupied by the body itself (Kaiser 1999b). This idea of the space created by 

movement is explored later in this research, within the frame of parametric 

modelling.  

2.4.2  ‘Synchronous Objects – For One Flat Thing Reproduced’ 

It is also worth mentioning the collaboration between William Forsythe and The 

Ohio State University’s Advanced Computing Center for the Arts and Design 

(ACAD), for the creation of an interactive, screen based project called 

‘Synchronous Objects for One Flat Thing, reproduced’ . This project has become a 

point of reference for the development of this research, in terms of the visual 

representation of dance.  
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The aim of ‘Synchronous Objects’ was to investigate and reveal the deep 

structures of the choreographic thinking of William Forsythe in his work ‘One Flat 

Thing, reproduced’ [OFTr]. In order to achieve this, more than thirty researchers 

from different backgrounds (architecture, design, dance, cognitive science, 

computer science, philosophy, geography, statistics, etc.) collaborated with 

dancers and presented the outcome of their research by using 3D animation, 

annotation, and interactive graphics (Palazzi et al. 2009). 

The choreography was performed by seventeen dancers among a grid of twenty 

tables (Fig. 28). The collected data was divided in two sub-categories; the spatial 

data  (coordinates of points for each dancer) and the attribute data . The latter 

were organised by the researchers into three analysis systems for the 

interpretation of OFTr; the movement material , the cueing , and the alignments . 

The movement material includes the sets of choreographic sequences that the 

dancers used when they performed, while the cues between them affected the 

course of the dance. Finally, the alignments refer to Forsythe’s analysis of 

movement, and the geometries involved in OFTr. 

After processing the previous data, through the different perspectives of this 

multidisciplinary group of researchers, ‘Synchronous Objects’ was created. This 

was the name given to the twenty different visualisation techniques and tools that 

have been invented. There are ‘objects’ that visualise cues (such as cue 

annotations, cue visualiser, counterpoint tool, statistical counterpoint, cue score), 

others that represent alignment in 2D and 3D space (alignment annotations, 3D 

alignment forms), video related tools (video abstraction tool, difference forms, 

noise void, center sketch), 2D interactive graphics (generative drawing tool), and 

also 3D representation techniques (movement density, furniture system, motion 

volumes) (Fig. 27-34). 

To conclude, ‘Synchronous Objects’ demonstrated ways to quantify complex 

dance-spatial data and visualise them in either concrete or abstract ways with 

the use of transformations, derivations and interactive tools (Palazzi et al. 2009). 

Moreover, these tools have set a graphical vocabulary for dance that can be 

read and interpreted in an interdisciplinary framework or even been used as a 

source for inspiration and creativity. 
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Various visualisation techniques used in ‘Synchronous Objects’. 

 

Fig. 27  Front view of the performance. 

 

Fig. 28  Top view of the performance. 

 

Fig. 29  Alignment annotations. 

 

Fig. 30  3D Alignment forms. 

 

Fig. 31  Cue annotations. 

 

Fig. 32  Motion Volumes. 

 

Fig. 33  Movement density. 

 

Fig. 34 Difference Forms. 
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2.5 Motion Capture 

2.5.1 Chronophotography – origin of the motion capture  

The distant origins of Motion Capture derive from the experiments of Jules-Etienne 

Marey at the end the 19th century. His scientific interests were quite broad, 

including anatomy, physiology, physics, etc. and with this multi-disciplinary 

background he managed to create a series of precise instruments for a variety of 

purposes; from measuring the pulse to producing animated photography.  

As far as photography is concerned, he achieved visualising movement in two 

different ways. Firstly, he invented the ‘chronophotograph’ (1870), a device 

which could record multiple frames of movement on a single photographic plate 

(Fig. 35). Since, the latter created confusing effects when the movement took 

place in the same position, he created a 'photographic gun' (1882), which 

carried a glass plate instead of the bullets. The result was a plate with twelve 

different images set around the edge, showing the different frames of a subject’s 

movement (Fig. 36) (Higton 2002). 

In order to capture the essence of movement, and study it disengaged from the 

physical characteristics of the body and the confusing effect it had on 

overlapping images, he asked his subjects to wear black suits with metal strips or 

white lines as they passed in front of a black backdrop (Fig. 37-39). This technique 

allowed him to produce records of the movements of the limbs of people walking 

or running past the camera. A similar suit is used nowadays too, in order to record 

the Motion Capture Data. His inventions and techniques allowed a photographic 

capture of movement over time, laying the foundations of motion pictures, and 

eventually motion capture. 

 

Fig. 35  Several frames of the movement of a flying pelican 
captured by Marey in a single photo. 

 

Fig. 36  The photographic gun’s 
plate. 
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Fig. 37  Marey's 
'Motion Capture' 
suit. 

Fig. 38  Overexposed photograph 
showing both the body and the 
markers. 

Fig. 39  Photograph showing only the 
markers. 

 

2.5.2 What is a Motion Capture? 

 

Motion Capture systems provide a method of recording movement from a 

physical person, in order to translate it onto a digital model. There are three ways 

for capturing motion; the mechanical, the magnetic and the optical motion 

capture (Ebenreuter 2005). The mechanical and magnetic motion capture uses 

an exoskeleton suit with metallic parts that contribute to locating the positions of 

 

Fig. 40  The labels of the markers positioned on the different 
parts of the body. 

 

Fig. 41  The 3D markers compared 
with the equivalent animated 
motion. 
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the limbs and the angles of the joints. The optical motion capture is the most 

commonly used system, and uses spherical targets, placed on the performer’s 

body.  

In optical motion capture, the 

position of the markers is recorded by 

several cameras and triangulated to 

provide the 3D coordinates of each 

marker. This method is very precise 

and allows recording of very 

complex movements in detail. 

However, the original data should be 

submitted to a lengthy and time-

consuming editing before being 

ready to use as an animation 

(Ebenreuter 2005).  

2.5.3 Applications of Motion Capture  

The technology of Motion Capture data has acquired a quite broad use. Mostly it 

is used for the creation of naturally looking animation in film industry, since it was 

possible to extract complex movements accurately, which are hard to analyse 

and reproduce with inverse kinematics. They have also been used to create real-

time performances with interactive media, or even to study the human 

movement in medical and sport science (Brown et al. 2005).  

 
Fig. 42  A dancer wearing a suit used in optical 
Motion Capture Systems. 

 

Fig. 43  Bill T. Jones 
improvising. 

 

Fig. 44  Motion-
capture markers. 

 

Fig . 45  Optical 
c onversion to 3D. 

 

Fig. 46  Motion files 
on 3D skeleton. 

Fig. 47  Final 
drawn body. 
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A dance-related application of MoCap is ‘Ghostcatching ’, by the OpenEnded 

Group. ‘Ghostcatching ’ is a digital art installation, which is based on capturing 

dance phrases performed by the choreographer Bill T. Jones, which are 

afterwards edited, re-choreographed and presented as animated ‘hand-

drawings’ (Kaiser 1999b) (Figs. 43-47).  

MoCap data have also found application in design industry. The Swedish design 

group FRONT has developed a technique to translate free hand sketches of 

furniture into real objects. This achievement has been met by combining MoCap 

with Rapid Prototyping. By recording pen strokes with MoCap systems it became 

possible to create 3D digital files (Fig. 48). Afterwards, these were materialised 

through Rapid Prototyping into real pieces of furniture, made of plastic (Fig. 49). 

To conclude, Motion Capture Systems present a powerful potential for studying 

movement. According to Michael Girard, digital artist and software designer for 

animation characters, motion captured movement can be isolated and 

examined without been influenced by the characteristics of the human body 

(Kaiser 1998). Thus, Motion Capture Data could allow a more objective view of 

the form of dance movement, as explored in the following chapter.  

  

Fig. 48  Recording pen strokes with Motion Capture. 

 
Fig. 49 Furniture made by Rapid 
prototyping  
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3. METHODOLOGY 

The wide variety of applications of the Motion Capture Data drew interest and 

became the starting point for the development of this research. In the following 

chapter the processing method of the Motion Capture Data, the translation of 

them into various geometrical forms and the applied transformation techniques 

are presented. All the previously mentioned steps build-up the framework that will 

be used later for the development of two case studies. The processing of the 

case studies resulted in the enhancement of the basic parametric model with 

parametric construction details, safety checks and fabrication solutions, 

explained in detail on chapter 4. The program used for the creation of the 

parametric model is ‘Grasshopper’, which is a graphical algorithm editor, 

integrated with ‘Rhinoceros’ modelling software. 

3.1 Translating Dance Movement into Geometrical Form 

The Motion Capture Data used for the purpose of this research was retrieved from 

the database of the Carnegie Mellon University (Carnegie Mellon University 2010). 

The recording area of motion occupies a rectangular space of approximately 3m 

x 8m . Around this area 12 Vicon infrared cameras are placed, which record the 

movement of 41 markers  located on basic positions on the human body. The 

cameras are capable of recording 120 frames per second with images of 4 

Megapixel resolution. The information that each camera collects is afterwards 

triangulated in order to get the 3D data. The units used to measure the 3D 

coordinates are usually in millimetres. 

The 3D data is stored in different formats. The files that have been used in this 

thesis are the *.c3d files, which contain the positions of the 3D markers in space, 

as opposed to the *.vsk/.v and *.asf/.amc which contain information about the 

skeleton and the relation of it with the movement data respectively.  

The *.c3d files contain various information about the Motion Capture, such as the 

frame rate, the correspondence between the number of each marker with the 

parts of the body, the 3D coordinates of the marker during the time and so on. 

These data needed to be transformed into a format that would later be used for 

the construction of a static 3D structure deriving from dance movement. Thus, a 

method should have been developed in order to extend the motion in space 

rather than time. 
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Technically, this required the isolation of the 3D coordinates of the markers 

placed on the human body. For that purpose two external programs have been 

used. The first translated the data into *.txt file that contained the 3D coordinates 

of the positions of the markers in time (Fig. 50). The second made it possible to 

view the structure of the *.c3d file and extract the correspondence between the 

markers’ numbers and their labels (Appendix A) (Fig. 51).  

After the previously mentioned processes, the motion data had to be submitted 

into further editing. More precisely, all the *.txt files that contained the 3D 

coordinates of the markers had to be purged from all the virtual markers, which 

were added by the Vicon Bodybuilder Software, during the conversion process to 

ASF/AMC and they had not been deleted before saving to *c3d (Carnegie 

Mellon University 2010). The markers sometimes exceeded the 200, when we only 

need to keep the 41 of the original recording. Afterwards, markers had to be 

renamed so that all followed a consistent labelling (Stathopoulos 2010a). Since 

the frame rate of the recording resulted an amount of data (most files exceeded 

the 1000 frames) that was not necessary for the 3D model, frames have been 

reduced to one fourth of the original, in order to make their use within the 

parametric model more efficient (Stathopoulos 2010b). These processes made 

possible the compatibility of MoCap with parametric modelling, allowing the 

visualisation and later transformation of the motion’s geometry. 

Although, there is the possibility to use 41 markers at the same time, for 

representation clarity of the diagrams presented further down, 14 have been 

 

Fig. 50  *.txt example of 
MoCap Data. 

 

Fig. 51  The interface of the *.c3d viewer. 
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chosen that correspond to the basic joints and parts of the body (heels, knees, 

pelvis, shoulders, elbows, wrists, and two points placed on the forehead). 

Nevertheless, the coordinates of the rest are still stored in the data files and can 

be recalled anytime inside the parametric model. 

3.1.1 The Library of movements 

 

The following step was to collect MoCap Data and explore them in a systematic 

way. So, the movements that have been selected to be experimented with have 

been classified into five categories, following the classification used for the 

‘action components’  of dance movement (Rickett 1996). The first group includes 

some locomotion  actions, such as walking and running. The second one 

comprises various motions related with turning  in different directions and planes. 

The different kinds of jumps  (e.g. take off from 1foot & land on the same foot, 

take off from 1foot & land on the other foot, take off from 2 feet & land on the 2 

feet) constitute the third category, as opposed to the fourth that consists of falling  

actions. Finally, the fifth group is related to gestures or ‘isolation’ , as it is called in 

dance terms, which refers to movements that take place without any 

transference of weight or movement of the feet (Appendix B). The previously 

Fig. 52  The selection of movements and markers in the Grasshopper interface. 
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mentioned actions and the markers that correspond to particular parts of the 

body can be selected in the Grasshopper interface as shown in Fig. 52. 

3.1.2 Positive Space 

The positive space refers to the space occupied by the moving body. The 

mediums used for the visualisation of the positive space are points, lines, surfaces 

and volumes . The methods used for their design, the subcategories of some of 

them and the difficulties that arose during the process, are described below. 

The points  represent the positions of the markers in space during a time period 

(Fig. 53). The frame rate of the Mocap indicates how many coordinates of the 

same marker are recorded per second. This means that if the body or a part of it 

moves faster than another, then the distance between the coordinates will 

increase. Similarly, if the body stays still, points are clustered at the same place.  

The points are afterwards used for the drawing of the lines  (Fig. 54). Those are 

actually curves created from control points arranged according to the order of 

the points in time. Although, it would have been slightly more precise to create an 

interpolated curve through a set of points, the program presented a difficulty to 

draw the curves with that method. However, the dense spacing of the points 

 

Fig. 53  Points cloud. 

 

   Fig. 54  Lines. 

 

Fig. 55  Surfaces by symmetrical 
limbs. 

 

Fig. 56  Surfaces by adjacent 
joints. 

    Fig. 57  Grids. 

 

Fig. 58  Volume by draping. 
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contributes to minimize the deviation of the final curve from the interpolated one. 

The surfaces  are geometries deriving from lofting the curves of the movements in 

various combinations. Thus, they are divided in three subcategories. The first one 

refers to the surfaces occurring by joining symmetrical parts of the body, such as 

the right wrist with the left wrist and so on (Fig. 55). Since, the distance between 

those points may change as the body moves (except for the symmetrical parts 

that are connected with the same bone, such as the pelvis); those surfaces have 

variable width. The second category of surfaces is created by lofting the curves 

of adjacent joints, such as the elbow with the shoulder, the knee with the pelvis 

and so on (Fig. 56). Thus, those surfaces have constant width. If we apply a grid of 

horizontal and vertical elements along any of the previously mentioned surfaces 

the third group of surfaces is created (Fig. 57). 

Although, one would expect that lofting all the edge curves of the movement 

and capping them afterwards would produce the volume of the motion, this 

proved fruitless because of the non-planar facets of the surface (Fig. 59). The 

result of this process is a single surface with very interesting sculptural qualities, but 

also plenty of self-intersections and non-planar edges.  

The design of the volumes  of the motion became possible with draping a 

rectangular grid over the lofted surface of movement with the use of ‘Rhino’ 

commands (Fig. 58,60,61). The intersection of the object and the points projected 

towards the construction plane of the object, in the current viewport, define a 

new surface that resembles an elastic cloth attached firmly onto the object, 

forming the volume of the movement. The lowest point of the lofted surface 

defines the base level of the draped surface. Also, the final result depends on the 

Fig. 59  Lofted movement. Fig. 60  Draped surface with 
loose grid. 

Fig. 61  Draped surface with 
dense grid. 
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density of the grid. A looser grid forms a more abstract volume of the movement, 

in contrast to a dense grid which gives more accurate results (Fig. 60 & 61). 

3.1.3 Negative Space 

The negative space refers to the space around the moving body. The negative 

space has been approached in two ways. Firstly, a surface was deformed as a 

result of a repulsion caused by the movement (Fig. 62). In the second approach, 

reverse draping has been performed underneath the lofted surface of the 

movement (Fig. 63). Generally, in negative space the dancer’s movement is used 

to hollow-out a larger mass of material, like the cutter on a milling machine.  

In the first case a flat grid of points was drawn underneath the curves of 

movement (Fig. 65). Then the algorithm calculated the points on the curves that 

were closest to the points of the grid (Fig. 66). The distance between them was 

compared with a ‘Deformation Width’ factor and the points of the grid that were 

within that limit were moved downwards as much as the user defined, through a 

 

Fig. 62  Surfaces by repulsion. 

 

Fig. 63  Volume by reverse draping. 

 
Fig. 64  Grasshopper definition of the surface by repulsion. 



        

Dimitra Stathopoulou | From Dance Movement to Architectural Form 27 

slider (Fig. 67). Finally, the moved points were fed as input to generate a nurbs 

surface from a grid of points (Fig. 68).  

The parameters that can be modified in this definition vary. Firstly, the size and the 

density of the grid can be changed, and therefore affect the area of influence 

and the detail of the deformation accordingly. Then, the deformation width, the 

deformation depth and the level of the original grid are also controlled by sliders.  

The process followed by inverse draping is the opposite of the one described for 

the formation of a draped volume. In this case the grid is draped from the bottom 

of the geometry towards the top, resulting in a void that is shaped as an imprint of 

the movement on the ground (Fig. 70 & 71).  

 3.1.4 Discussion 

All the previously mentioned visualisation techniques have been applied to a 

series of movements that have been classified as described in section 3.1.1 and 

then placed in a catalogue found in Appendix B.  

The observation of the results made it clear that one factor that affects the form 

of dance movement is the location of the markers on the body. In cases when 

the markers were not placed in accurately symmetrical positions or they had 

 

Fig. 65  The grid of points 
and the movement 
curves. 

Fig. 66  Closest 
points. 

 

Fig. 67  Move of grid’s 
points. 

Fig. 68  Final surface. 

 

Fig. 69  Lofted surface of 
motion. 

 

Fig. 70  Reverse draping. 

 

Fig. 71  Negative space. 
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moved during the recording, the final geometry reflected these defects. Also, 

since the dance movements were not performed by professional dancers, every 

loss of balance or doubt in movement resulted in inaccuracies that created jerky 

or wavy lines.  

Moreover, dance movement does not always consist of motion, but also stillness. 

In this case, the representation of it with the current medium resulted in point 

concentrations in the same place, which can be considered a problem when 

later these points are connected with lines and these lines are lofted into surfaces. 

The same idea applies to the gestures, which are movements occurring at the 

same place. In this case the geometry is formed by the moving parts, while the 

rest create point clusters (Fig. 72).  

Another feature of the geometrical representation of movement is the self-

intersections (Fig. 73). For a dancer, every part of the stage is a possible field of 

action, and they can cross or perform at the same place as many times as they 

wish. On the other hand, in the geometrical representation of dance, the space is 

occupied by the previous position of the body. This implies that a whole 

performance or choreography that is developed in a small area on stage will be 

‘read’ with difficulty in drawings. 

To sum up, all the techniques used above for the translation of dance movement 

into three-dimensional form offer the opportunity to understand better the 

structure of movement, trace some difficulties that occur when an action 

becomes form, spot some weaknesses of the Motion Capture Data when forming 

the geometry, and provide a vital basis for the creation of the next section, which 

 

Fig. 72  Twists of arms; Example of movement 
isolation.  

 

Fig. 73  Back flip; Case of lots of self-intersections. 
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refers to the transformations that can be applied on the forms generated by 

dance. 

3.2 Transformation Techniques 

 

 

Transformations can be applied to the geometries mentioned in the previous 

section, to adapt themselves to applications with different demands. In the 

following section the different kinds of transformations and deformations will be 

explained, and those used for the current project will be highlighted. 

The term transformation refers to operations that modify the original geometry by 

altering various properties. There are plenty of transformation categories, however 

the most basic ones are congruence and affine transformations. The congruence 

transformations  maintain the lengths and the angles of the geometry and in those 

are included the translation, rotation and reflection (Fig. 74-75). In the affine 

transformations  (e.g. Fig. 76) the original shape is modified, but straight 

lines/planes are mapped into straight lines/planes, parallel lines/planes are 

transformed into parallel lines/planes and the ratio of the lengths of two line 

segments on parallel lines is preserved during the transformation (Pottmann 2007).  

The affine transformations include the similarity transformations  which preserve 

the angles of the geometry, but multiply the all lengths with the same factor, such 

as uniform scale operation. There should also be added the shear transformations  

(Fig. 77) where one face of the geometry is fixed on the plane where it lies, while 

 

 

 

Fig. 74  Translation defined 
by a translation vector t. 

 

Fig. 75  3D rotation. 

 

 

Fig. 76  Independent scaling. 

 

Fig. 77  Shear transformation.                                     (Pottmann 2007) 



        

Dimitra Stathopoulou | From Dance Movement to Architectural Form 30 

two of the coordinates of its corresponding points change, retaining only the 

value of the third coordinate, thus deforming the geometry’s shape (Pottmann 

2007).  

3.2.1 Description of the process 

Considering the use of dance movement as 

a generative force in design processes, it 

becomes evident that the geometrical 

forms described in 3.1 may need to be 

edited in order to adapt to the 

requirements of the project. Consequently, 

some of the previously mentioned 

transformations should be used, either 

independently or combined.  

The most crucial transformation for the 

current project is the orientation of 

movement along a new path defined by 

the designer. Also, a strategy is needed to 

combine more movements into a ‘choreo-

graphy’. Afterwards, supplementary 

modifications may need to be performed, 

such as scaling of the geometry in order to be used in a larger project and 

reflection to get symmetrical movement. Finally, the curves of the movement 

need to be simplified to give smoother results and also resolve some of the self-

intersections.  

 

Orienting a Movement along a Path 

One possible way to orient a movement along a path is to maintain the 

relationship between the parts of the geometry by only translating the frames 

onto the new path (Fig. 78). Another is to orient every frame of it and 

consequently deform the original dance. Each method may be more 

appropriate depending on the intentions of the designer. 

In the first case, translation vectors equal to the number of frames need to be 

applied to the frames. To achieve this, the original path of the movement, which 

 

Fig. 78  Different approaches in orienting 
dance movement. 
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is defined by the movement of C7 vertebra projected on the horizontal plane, is 

divided by the number of frames (Fig. 79). The same applies to the new path. 

Afterwards, the points of the original path are connected with the points of the 

new path through vectors (Fig. 80). These are used later for the translation of the 

frames (Figs. 81 & 82). Surfaces can also be designed by joining the symmetrical 

limbs and be simplified if needed (Figs. 83 & 84).  

In the second method, the markers of the pelvis are projected on the horizontal 

plane and with a constant vertical direction they define planes that follow the 

orientation of the body (Fig. 85). Afterwards, the new path is divided by 

perpendicular planes, equal to the number of frames. Then the planes of the 

former are used as references to map the movement’s frames on the new path’s 

perpendicular planes (Figs. 86 & 87).  

 
Fig. 79   The movement of the 
spineprojected on a horizontal 
plane. 

 
Fig. 80   The translation vectors 
of movement. 

 
Fig. 81   The points of 
movement of left and right 
limbs. 

 
Fig. 82   Translation applied to 
the movement of left and right 
limbs. 

 
Fig. 83   Lofted surfaces of 
symmetrical limbs without 
simplification. 

 
Fig. 84   Lofted surfaces of 
symmetrical limbs simplified. 

 
Fig. 85  Planes defining the 
direction of the body. 

 
Fig. 86  Mapping of the frames 
onto the new path.  

 
Fig. 87   Lofted surfaces of 
symmetrical limbs without 
simplification. 



        

Dimitra Stathopoulou | From Dance Movement to Architectural Form 32 

Yet, since the orientation of the body may change, the relation between the 

frames gets distorted when mapped onto the new path. Hence, the oriented 

movement does not maintain its original qualities the same way the translated 

movement does. 

 

Combining Movements into a ‘Choreography’ 

 

  

Composing choreography from different elements of movement is also a process 

that may need to be performed when manipulating dance. The suggested 

method is the division of the new path into segments equal to the number of 

movements that need to be combined. However, the connection of the different 

movements requires an approach that will produce smooth transitions from one 

movement to another.  

One possible solution is the following. The path can be divided into equal 

segments, with gaps in between (Fig. 88). Then, each individual movement 

(which consists of sets of points) can be mapped onto each segment. If curves 

are drawn through all these points, the gaps offer the space needed for smooth 

transitions.  

Since the order of the movement’s 3D points agree with the sequence of the 

performed movement, when it gets mapped onto the path, the beginning of the 

movement is mapped on the start point of the path, and the end at the endpoint 

accordingly. Therefore, the correct sequence of movements is inherently 

reassured. Nevertheless, if the new path is much longer or much smaller than the 

 

Fig. 88  The logic behind the division of the path and the relation of its elements. 



        

Dimitra Stathopoulou | From Dance Movement to Architectural Form 33 

length of the original movement, then the form of the oriented movement gets 

distorted and loses its original spatial qualities.  

 

3.2.2 Discussion 

Transformation techniques offer a wide range of opportunities to edit and 

combine movements. Particularly interesting is the similarities of transformation 

and compositional techniques in design with the compositional devices used by 

choreographers in dance. When performing, dancers may use different parts of 

the body, change the level, the direction (translation), the plane or the size 

(scale) of the movement, repeat a movement (copy), reflect other dancer’s 

movement (reflection) and so on (Rickett 1996).  

Some of those compositional devices have a direct equivalent in computational 

design, while others are indirect and notional. The aim of the transformation 

techniques presented in the previous section was to offer some basic tools to 

explore and combine movements, with the minimum possible distortion of the 

original data. The results in some cases are quite satisfactory, especially when the 

original movement unfolds in a large area of space. In the opposite case, that is 

when a movement is performed in the same position, the movement artificially 

unfolds in space, losing its qualities (Fig. 89). 

 
Fig. 89  Twisting of arms translated onto a path. 
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Crucial in the orientation of movement along a new path, is the way that the 

original path is defined. In the previous methods the spine projected on a 

horizontal plane has been chosen. However, originally the movement of C7 in 

space (instead the projection of it) had been selected, yet this proved fruitless 

since the translation vectors deformed the oriented movement in the z-axis, which 

needs to remain unaltered.  

Using translation to orient a movement along a new path demonstrates no 

problems with the orientation of the current material, since the beginning and the 

end of each movement usually is not the same. Also the movement paths of the 

original motions are usually linear, so translating them on a curved path works 

effectively (Fig. 90). On the other hand, the orientation of movement on the 

circular path deforms the motion significantly (Fig. 91). Yet, if the original motion 

followed a closed path, the effectiveness of both approaches would be 

questioned. 

 

 

  

 

Fig. 90   Translation of movement along a 
circular path. 

 

Fig. 91  Orientation of movement along a 
circular path. 
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4. APPLICATION OF THE PARAMETRIC MODEL TO A 

PLAYSCAPE 

4.1 Description of the brief 

The case study, where the parametric definition is applied, involves the design of 

a playscape at Sue Godfrey Park , Deptford, in the London Borough of Lewisham. 

The Sue Godfrey Nature Reserve was reclaimed from industrial wasteland in 1984 

after lengthy campaigning by local residents. Afterwards, it was used as a 

Temporary Open Space, until it was recognised as a space with environmental 

importance in 1996 (Lewisham Council 2010). 

The park has a remarkably rich flora and fauna (200 species of wild flowers, shrubs 

and trees), but the lack of resources results its decay and poor usage of it by the 

residents of the area (The Deptford Dame 2007).  

 

 

Fig. 92  The Sue Godfrey Park from a bird’s eye view satellite picture. 

 

Sue Godfrey Park 

Laban Dance Centre 

Ferranti Park 
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4.1.1 The Site 

The Sue Godfrey Park is located in a residential area and it is placed adjacent to 

Ferranti Park, opposite to Laban Dance Centre (Fig. 95). It can be accessed by 

five entrances around its perimeter and one entrance that connects it with the 

playground of the Ferranti Park (Fig. 94). 

 The park measures 5,800 m2 within which there is an area, of approximately 3,580 

m2, free of plantation. A seating area is placed in the middle of the southern side 

of the park. Also, remains of a pottery wall can be found along the centreline of 

the eastern half of the site, as shown in the Fig. 93. The pathways seem to be result 

of people’s everyday use, rather than outcome of a design process, whilst the 

material with which they are formed is soil with gravel spread on it locally (Fig. 97-

99).  

 

  

 

Fig. 93  Diagrammatic representation of the current circulation and points of interest at Sue Godfrey 
Park. 
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Fig. 94  The playground of the Ferranti Park. 
 

 
Fig. 95  The Laban Dance Centre. 

 
Fig. 96  Passage leading from Ferranti Park to Sue 
Godfrey Park. 

 

 
Fig. 97  The south-western entrance of the park. 

 
Fig. 98  The western half of the site. 
 

 
Fig. 99  The south-eastern corner of the site 
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4.1.2 The Suggested Functions 

The park is currently used as a passage for the local residents, in contrast to the 

playground of the Ferranti Park which, thanks to its infrastructure, seems to attract 

more users, mainly school-aged children. Therefore, the suggestion of 

infrastructure in the current site would be beneficial for the development of the 

area. The proposal involves the design of a playscape  for children from 6 to 12 

years old, and a skate park  for older children. 

According to the landscape architect Aase Eriksen, a playscape can be defined 

as ‘an outdoor learning environment designed to support and suggest activities 

that are an essential part of the child’s learning and development (social, 

emotional, cognitive and physical) ’ (Heseltine and Holborn 1987, p.15). 

There is much scope for discussion and design experimentations around the 

playscape. Yet, since the case-study is an indicative application of the 

parametric model on a site-specific project, the proposal focuses on two objects. 

The first one is a play structure of climbers generated by the experiments on the 

positive space of dance movement, while the second one is skate-bowl that 

derives a surface by repulsion of the negative space of motion. 

This kind of architecture doesn’t prescribe precise patterns of occupation. It 

encourages the user to participate in the formation of programmatic uses for the 

structure, and lets the imagination of children choose how such an object could 

be used.  

 

Fig. 100  Site plan – proposal. 

THE SKATE-BOWL THE CLIMBERS 
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4.2 The playscape  

The playground is important for the development of children’s social, physical 

and cognitive skills. Moreover, the danger involved in some of the games, 

contributes to the growth of risk assessment skills. The playscape is a type of 

playground that is designed to provide a safe environment for play in a natural 

setting (Playground. In: Wikipedia). In order to create a stimulating playscape, 

creative design solutions are required. According to Cole-Hamilton (2002) 

children need both simple and complex environments to play in.  

‘Designing for play should be seen as an art form – like composing music, writing 

a new stage play or creating a new painting’. This kind of art though must touch 

the children through playfulness and imagination, which is the message that 

children can perceive and appreciate in design (Hendricks 2001). 

In the current case-study, dance movement, which has been explored spatially in 

section 3.1, is combined with parameters such as the children’s age and 

functional requirements. The aim of this project is to use frozen dance movement 

in order to create a tactile experience of dance and also to encourage children 

to familiarise themselves with unconventional geometry through playing. 

4.2.1 Design Parameters – Restrictions 

The design parameters that have determined the final design derive from the 

existing Safety Standards for Playgrounds . More precisely the handbooks used for 

this project are those of the Consumer Product Safety Commission of the United 

States (ASTM F1487-07) and also the British Standards for playground equipment 

and surfacing (BS EN 1176-(1-11):2008, BS EN 1177:2008).  

The design limitations are connected with the age  of the users and also the 

avoidance or elimination of injuries . According to data collected from the US 

Fig. 101  Examples of climbing equipment. 
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hospital emergency rooms by US Consumer Product Safety Commission, the vast 

majority (79%) of injuries were related to falls from playground equipment to the 

ground (Handbook for Public Playground Safety, p.3). Other accidents involved 

entanglement of clothing or other items on equipment such as slides, 

entanglement in ropes tied to or caught on equipment, head entrapment in 

openings, impact from structural failure of equipment, and also impact by 

moving swings. Some of those accidents can be prevented with careful planning, 

while others depend purely on adult supervision.  

To sum up, special attention should be given to the scale  of each object, the 

design of the playground surface , the openings  of the equipment, the layout  of 

the playground, the materials  used and the detailing  of the objects. Generally, 

protrusions, pinch points, sharp edges and hot surfaces should be avoided.  

The Playground Surface 

A playground surface is whatever material lies underneath and around the 

playground equipment. Hard surfacing materials such as asphalt or concrete are 

unsuitable for a playground. The acceptable materials for protective surfaces are 

divided in two general categories, unitary  and loose-fill . Unitary materials are the 

rubber-like, whilst loose-fill include materials such as sand, gravel, shredded wood 

products, shredded tires, etc. The protective surface should extend a minimum of 

1.83 meters  beyond the perimeter of playground equipment.  

Detailing 

There should be no sharp points, corners, or edges on any components of 

playground equipment that could cut or puncture children’s skin. Consequently, 

the exposed open ends of all tubing should be covered by caps or plugs, while all 

corners should be rounded.  

Head Entrapment 

A component or a group of components should not form openings that could 

trap a child’s head. To avoid this, the distance between any interior opposing 

surfaces should be either less than 9 cm  or greater than 23cm . Moreover, the 

angles formed by the various elements should be greater than 55û, unless the 

lower leg is horizontal or projects downwards (Fig. 102 & 103). An exception to this 

recommendation can be made if a rigid shield is attached to the vertex between 

adjacent components and the shield is of sufficient size to prevent a 23cm 
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diameter circular template from simultaneously touching components on either 

side of the vertex. 

Hand gripping Components 

Hand gripping components, such as the bars of climbers are generally round in 

cross section and their diameter should be between 2.4 cm  and 3.9 cm . Yet, a 

diameter of 3.2 cm  is considered more appropriate to satisfy the needs of the 

weakest children of each age group.  

Handrails follow the dimensioning of all hand gripping components, and they are 

placed in different heights depending on the age group that they address to. 

More specifically, the height for preschool-age  children should be between 56 

cm  and 66 cm , while for school-age  children it should be between 56 cm and 97 

cm.   

 

 

 

Fig. 102  Dimensions for access elements 
(Source:  Handbook for Playground Safety, 
p.17) 

Fig. 103  Recommendations for the an g les of  
the various elements (Source:  Handbook for 
Playground Safety, p.15) 
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4.2.2 Design Methodology 

The restrictions described in the previous section 

form the guidelines for the parametric definitions 

needed for the project. Those restrictions appear in 

the project in different ways; either they are 

incorporated into the sliders as minimum and 

maximum values for the different structural 

elements, or they appear as additional definitions of 

new design elements or definitions of analysis tools.  

Critical issue for the design of the climbers is the way 

that the different parts are connected (Fig. 103). In 

order to address to this problem, 14 markers  have 

been chosen, which correspond to basic joints of 

the body. The symmetrical markers of the heels, 

knees, pelvis, shoulders and head are then 

connected with surfaces . Laterally, the joints are connected with two kinds of 

grids  and vertical supports . The first grid is formed by joining the right heel, knee, 

waist and shoulder. The second is created by joining the left wrist, elbow, shoulder 

and forehead. The left lower body and the right upper body are only connected 

with vertical supports loosely spaced in order to create open and permeable 

sides that would add variety to the whole visual impression, and also make the 

elements coming from the different parts of the body more recognisable. 

Regarding the grids, parametric modelling allows a relatively easy generation of 

different kinds of grids from two edges. For instance, an orthogonal, diagonal, 

triangular, hexagonal, or circular grid could be used (Fig. 105-109). However, the 

complexity of the geometry and also the functionality of the structure as a 

 

 

 

 

 

 

 

 

 

 

 

Fig. 105  Squares 

 

Fig. 106 Rhombus 

 

Fig. 107  Triangles 

 

Fig. 108 Hexagons 

 

Fig. 109  Circles 

Fig. 104  Scheme showing the 
connections between the various
parts of the body. 
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climber for children required a more simple solution. Thus, the orthogonal grid has 

been considered most appropriate.  

4.2.3 Materiality 

The structure of the climbers consists of six basic elements which are described in 

the parametric definitions below. Those elements are the protective surface 

underneath the structure, the footings, the primary structural tubes, the vertical 

supports, the climbing grids, and the climbing surfaces. Finally, in order to check 

the head entrapment hazard, a definition that checks the distances that are 

within the limits of danger has been created.  

The suggested materials for the climbers, which also affected the methodologies 

chosen for the elements below, are steel tubes (Fig. 110) for the basic structure, 

rope for parts of the grids (Fig. 112), recycled plastic sheets for the surfaces of the 

climbers (Fig. 111) and Engineered Wood Fibre (EWF) for the protective surface 

(Fig. 113). 

 

The choice of those materials was influenced by both the design parameters 

described in the previous section (4.2.1) and also by the natural context of the 

playscape. The steel tubes and the plastic sheets have been chosen for their 

property to be bent and shaped in complex geometries. On the other hand, the 

ropes would lighten the structure in terms of loads and also optical effect. Finally, 

the EWF would be more appropriate than a rubber surface for a playscape 

located in a natural reserve.  

 

 

Fig. 110  Steel tubes. 

 

Fig. 111  Recycled 
plastic. 

 

Fig. 112  
‘Unmanila’ fibre 
rope. 

 

Fig. 113   Engineered 
Wood Fibre. 
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The protective surface definition 

The protective surface should extend at least 1.83m from the perimeter of the 

play equipment. It should also be noted that the dance movement is oriented 

along a path defined in Rhino by the user. Consequently, this path forms the spine 

for the solution of this two-dimensional geometrical problem. In order to achieve 

the desired result, the parametric definition is divided into 4 parts; finding the 

maximum distance between the curves of the dance movement and the 

movement’s path (Fig. 114 & 115), offset the path curve in both sides (Fig. 116), 

joining their endpoints with arcs (Fig. 117 & 118), and make a planar surface out 

of those curves (Fig. 119).  

 

 

The maximum distance between the projected dance curves and the path is 

needed because this forms the outer limit of the play equipment. So, the 

minimum offset of 1.83m is then added to that length and the surface agrees with 

the safety standards.  

 

Fig. 114  Projection of the 
dance curves on a horizontal 
plane and division into points. 

 

Fig. 115  The closest points of 
the division points onto the 
dance path.  

 

Fig. 116  Offset of the path in 
both directions. 

 

Fig. 117   Finding a third point 
on the arc. 

 

Fig. 118  Making an arc from 
three points. 

 

Fig. 119  The final planar 
surface. 



        

Dimitra Stathopoulou | From Dance Movement to Architectural Form 45 

For the design of the arc three points are needed; the 

start and end point of the arc as well as any interior point. 

The start and end point of the offset curves are used as 

start and end points for the arc. The same points are used 

for the creation of vectors from points. The cross product of 

those vectors with the world z-axis, multiplied by the width 

of the offset, indicates the direction and distance that the centre of the arc 

should move to form the third point (Fig. 120). Finally, by joining all the previous 

edges, a planar surface is produced, which can later be used as a basis for the 

construction details of the protective surface, depending on the materials used.  

 

In this case the suggested material is ‘Engineered Wood Fibre’ (EWF), which is 

wood, mechanically shredded into sizes and aspect ratios determined by a series 

of specified sieves, through which the final product must pass. In use, the wood 

fibres knit together to form a mat that is springy enough to meet ASTM F1292 for 

impact attenuation, yet firm enough to meet ASTM F1951 for wheelchair access. 

 

 

Fig. 121  Finding the closest points on line to points and the maximum distance between them. 

Layer 5   |  Loose Fill Material for Surfacing 

Layer 4   |  Rubber Mat (under slides) 

Layer 3   |  Geotextile Fabric 

Layer 2   |  8-15 cm of Loose Fill (gravel for drainage) 

Layer 1   |  Hard Surface (asphalt, concrete, etc.) 

 
Fig. 122  Installation layers undern eath a loose-fill protective surface.  

Fig. 120  Finding an 
interior point for the arc. 
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Underneath this layer there is a geotextile fabric to separate the soil from the 

wood fibres and also a roll-out drainage system that assures a playable surface, 

even after rain. In areas, where the wood fibres can be scuffed away, an 

additional layer of rubber mats is placed to reassure the safety of the users 

(Fig.122).  

 

The Footings 

The human body, from which all these points are derived, is already a highly 

sophisticated structure which generally establishes contact with the ground 

through the feet. However, when people perform, they do not necessarily stand 

on their feet. They may roll on the floor using their back or even use their hands as 

supports. Thus the points that can be used as supports for the structure can vary. 

For the solution of this problem, the curves of all used markers are divided into a 

sufficient number of points, controlled by a slider. The z coordinate of all those 

points is sorted from the lowest to the highest, sorting the list of points accordingly. 

The user can define the number of lowest points that will be used as supports (Fig. 

123). Yet the result is not satisfactory and requires further sorting. The problem is 

actually that at the places where the body comes in touch with the ground, all 

adjacent points belong to the range of lowest points defined beforehand. In 

order to get one from each group of points, the movement’s path is divided by 

the desirable number of supports. Then, the closest points to the divisions are 

selected from the group of lowest points (Fig. 124). At these points it is possible to 

connect the parametric structure to supports.  

An example of such support could be the following. Firstly, it is needed to project 

those points onto the plane of the protective surface. Within the distance 

between the original points and the projected, the structure is created. A 

 

Fig. 123  200 points of lowest z 
value. 

 

Fig. 124  Three pairs of supports, 
after the 2 nd  sorting. 

 

Fig. 125  The detail of the 
parametric footings.  
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cylindrical metallic plate is placed at the bottom. At the top a thinner cylinder 

continues upwards until it reaches the edge of the steel tube of the structure. A 

metallic ring, coming from the subtraction of a sphere with the tubes of the 

edges, forms the top part of the joint (Fig. 125). The footings get updated after 

any change made on the model. 

 

The Steel Structure 

 

The forming of the steel structure (Fig. 126) is based mostly on the correct 

arrangements and combinations of lists and data trees. Depending on the 

number of motions used to form the choreography, these motions should be 

connected so that the points of the same marker of each motion are merged on 

the same branch. 

Then, it is possible to start elaborating the different parts of the structure. Firstly, the 

edge curves of the structure are simplified to produce smoother curves, more 

appropriate for fabrication than the originals. Afterwards, the vertical supports of 

the structure are arranged as described in the design methodology. Yet, the 

definition of the grids needs some additional processes. 

The edge curves are divided into equal segments and then the points are 

connected with lines. The division of these lines defines new rows of points that 

need to be rearranged in a new list, so that the first division of the first line would 

be connected with the first division of the second one and so on. The final lists of 

data are fairly complicated, since all the points of the three grids of the right side 

are combined, in order to form a tree with three levels of branches. 

  

Fig. 126  Front view of the basic steel structure (black) and the secondary structure in gray. 
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Surfaces 

 

 

The surfaces of the structure are produced by lofting some of the symmetrical 

joints of the body (heels, knees, pelvis, shoulders, and two points on the forehead) 

(Fig. 127). For the creation of them two lists of curves are needed that contain the 

curves of the left and the right side respectively. These kinds of surfaces are ruled 

surfaces that are generated by joining the points of the two parameterized 

curves (Pottmann 2007). So they get twisted and bent according to the geometry 

of their edges. It should also be mentioned that by performing a Gaussian 

Curvature Analysis on the surfaces of the model, the minimum and maximum 

values of them were almost zero. Consequently, these surfaces could be 

unfolded into the plane without any distortions, and they could be constructed 

by flat sheets of plastic. More details about the unfolding and the fabrication of 

the surfaces are presented at the following section. 

 

Indication of unsafe areas for head entrapment 

This analysis is performed on the grids 

of the structure and is divided into two 

parts; analysis of the distance 

between the horizontal elements of 

the grid and analysis of the distances 

of the vertical elements. The condition 

that should be maintained in both 

cases is 9 cm �• acceptable distance �• 

23 cm.  

In order to measure those distances, 

the closest point on a curve is used. In fact, the distance between the points of 

Fig. 127  Surfaces by lofting symmetrical parts of the body.  

 
Fig. 128  Horizontal distances between the 
elements of the climbing grid that are within the 
permitted limits (cyan) or exceeding them 
(magenta). 
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the first row/column and their closest points on the curve of the second 

row/column is measured, and the same process is repeated for all elements. The 

distances that are within the acceptable limit, and those that exceed it, are 

coloured with cyan and magenta colours respectively (Fig. 128). 

 

 

 

 

 

  

Fig. 129  The climber with all its elements combined. 
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4.2.4 Digital Fabrication 

The complexity of the geometry makes its fabrication difficult to resolve. However, 

there has been a significant effort to locate or design elements that can be 

repeated or elements that could be constructed using the same profile. Some 

indicative techniques that can be used for the construction of the structure 

involve NC Controlled Pipe Bending (Fig. 130), welding, drilling, laser cutting (Fig. 

131), and thermoforming. 

 
Fig. 130   NC Controlled Pipe Bending. 

 
Fig. 131  1.5m x 3m laser cutter. 

Footing 

The elements used as supports are described in detail in 

section 4.2.3. Providing that the final dimensions of the main 

structure is decided, those elements can be fabricated and 

be repeated thanks to their telescopic axis (Fig. 132). 

Therefore, they can be easily adjusted to the various heights 

of the support points without customisation. 

 

Steel structure 

The steel structure consists of pipes with some variations in their radii. As far as 

fabrication is concerned, the pipes of the edges could be bent with a NC 

Controlled Hydraulic Tubing Bender. All the rest of the steel structure is straight 

pipes that are welded on the main structure.  

Once the radius of the pipes that form the edges is decided, the radii of the rest 

of the elements are proportional to this value. The details of the relations between 

the various elements are described in the table below. All the radiuses are 

expresses as fractions of the widths of the edges. 

Fig. 132  Telescopic 
footing.  
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PART OF STRUCTURE RADIUS NOTES 

Upper Body Edges ½  Edge Radius Metallic fins are welded on the 

edges of the forehead surface 

Lower Body Edges 1  Edge Radius Metallic fins are welded on all the 

edges to support the surfaces 

Upper Body Vertical Bars ¼  Edge Radius -------------------------- 

Lower Body Vertical Bars ¾  Edge Radius -------------------------- 

Upper Body Grid ¼  Edge Radius Drilled at n points (n=the number of 

horizontal subdivisions for the grids) 

Lower Body Grid ½  Edge Radius Drilled at n points (n=the number of 

horizontal subdivisions for the grids) 

 

 

The metallic parts of the structure are 

welded. The parts where the joints are 

differentiated are the grids where the 

horizontal elements consist of ropes 

and they are connected through 

metallic rings to the vertical bars, and 

also the joints between the edges 

and the plastic surfaces that connect 

the symmetrical limbs.  

In terms of detailing, all open pipes should be capped in order to comply with the 

regulations for the playground safety. There is only one kind of pipe that needs to 

be capped, which is the pipe of the edges. So again, a repeated element can 

be used for all openings, which is going to be double the number of curves (to 

cap the holes of their two edges) and its radius will adjust to the radius of the 

pipe.  

Surfaces 

The surfaces need to be processed in three stages. Firstly, flat sheets of plastic 

should be laser-cut. Then they should be drilled at the points where they will be 

connected to the steel structure. At the end some of them may need to be bent 

Fig. 133  The basic steel structure (black) with the 
secondary steel elements (g ray ) and the ropes 
(yellow). 
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with thermoforming equipment, depending on the bending ability of the plastic 

sheet and the radius of bending of the structure.  

In order to arrive to the previous results from the three-dimensional parametric 

model the following course should be performed. Firstly, each surface is unrolled 

in grasshopper with the use of a VB.NET Scriptable Component (Chalmers & De 

Leon 2009). The input for this component is the edge curves of the surface and a 

resolution factor defining the accuracy of the unfolding. Then, the output is a 

planar surface that corresponds to the bent one (Fig. 134 & 135).  

The remaining fabrication processing of the surface is performed on the unrolled 

parametric surface. Firstly the surface is divided into sub-surfaces. At the {u} 

direction it is always 1. At the {v} direction there are used half of the vertical 

subdivisions of the grids (the slider of the ‘Vertical Subdivisions’ is set to allow only 

even numbers) so that the subdivisions of the horizontal surfaces are aligned with 

every second subdivisions of the grids. 

By decomposing each sub-surface into its component parts, it is possible to 

manipulate the edges. In fact, since the surfaces are lofted from the axes of the 

pipes, a width equal to the radius of the pipes should be subtracted from the 

edges of each surface, by offsetting the corresponding edges of each sub-

surface. The elaboration of the other side of the surfaces is subject to the chosen 

detailing. In this case the surface is offset and drilled (Fig. 136). 

By establishing all the previously mentioned relations, information about the 

lengths, radiuses and number of elements of the structure in Grasshopper panels 

can easily be extracted, as well as the edges of the laser-cut surfaces. If any of 

the parameters of the model change the data on the panels get automatically 

updated. 

 

Fig. 134  Perspective of the 
original surface. 

 

Fig. 135  Top view of the 
unrolled surface. 

 

Fig. 136  Schematic diagram of 
the surfaces connections. 
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4.2.5 Discussion 

Adding restrictions to a parametric model to meet the functional requirements of 

the project revealed some interesting qualities regarding the geometrical 

representation of dance. In some aspects it met the requirements successfully, in 

others there was nothing else to be done except for choosing a different 

movement. 

Since the climbers are a game which is inherently risky, the complex geometry of 

dance succeeded in generating forms that are challenging enough to climb on. 

Yet, the rigid restrictions of playground safety could not be followed in all cases. 

Some of the dance movements were inappropriate for this kind of usage, as well 

as for the creation of a spatial structure from dance in general. Such examples 

are the gestures which are performed at the same place. Since altering the 

movement a lot would distort the qualities of movement, transformations in some 

cases have been considered inappropriate. For that purpose the analysis tools 

have been created, which allow whether the geometry meets the functional 

requirements or not to be checked.  

The most important operation in the parametric definition is the management of 

lists of data. In order to make the various parts of the definition work, the sets of 

points or curves or any other geometry used should be arranged in the 

appropriate sequence to give the desired results. Unfotunately, Grasshopper fails 

to maintain the dimensions of the arrays and increases them without increasing 

the data inside. This results the inability of the program to further edit this data 

unless it is flattened. However the new list no longer has the attributes of the 

original list, therefore it needs to be rearranged again into branches. This fact 

made the progress of the project harder and restricted the possibilities of the 

parametric model. For example, instead of choosing multiple movements from 

one definition, this needs to be multiplied as many times as the number of the 

used movements. 

A commonly seen feature of dance forms is self-intersection. This adds difficulty to 

the fabrication of such a structure. Yet, at this stage of processing, this problem 

has not been resolved parametrically and is suggested as a subject for future 

research. 

To conclude, the case study offered the chance to develop a technique to deal 

with a particular problem. But in the parametric model some general principles 
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can be identified, such as the notion of structure and support, that could be 

followed in other cases as well. By using the transformation techniques or some of 

the definitions differently, for example scaling the dance movement excessively, 

the dance movement could generate forms for other facilities or functions and 

be used as a generator of form in various contexts.  
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4.3 The skatepark  

Skateboarding has become popular in Europe since the 1970s, when it arrived 

from the United States. Originally it took place in public spaces (streets, squares, 

public stairs etc.), but from the mid-seventies the first skatepark was built (in 

Albany, Western Australia) and championships have started to be organised 

since then (Wikipedia: Skatepark). This activity usually addresses to persons 14 and 

over.  

Quarter pipe Half pipe Full pipe 

Funbox Pyramid bank Flat Bank 

Bowl Quarter Pool Vert Wall 

Rail 
Curb Ramp Spine ramp 

Fig. 137  Some of the basic obstacles used in skateboarding.  (Source of renderings: 
www.urbanramps.co.uk). 
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4.3.1 Design Parameters 

 
Fig. 138  Skateboarder performing tricks at the coping of a skate-bowl. 

 

Skateboarding is classified as an extreme sport; hence facilities for users of roller 

sports equipment have to be challenging enough to attract the skateboarders. 

The dimensions of the elements used are rather flexible and varying, while only a 

few dimensions and requirements have to be met. For this design element the 

Safety Standards that have been followed are included in the British Standards for 

‘Facilities for users of roller sports equipment — Safety requirements and test 

methods’ (BS  EN 14974:2006), although there is no information focusing on skate-

bowls in particular. 

Some general principles are that all external accessible edges  should be 

chamfered with a radius of at least 3 mm . Also, the free fall height of the riding, 

grinding and rolling surface should not exceed 1.5m 3. The free-fall height is to be 

measured 1 m horizontally from the perimeter line of the supporting surface to the 

adjoining surface located at a lower level.  

                                                 
3 For exceptions, see relevant sub-clauses under the chapter 5.2 of BS EN 14974:2006. 
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Later, some individual elements of the skate-boarding facilities are described. 

Due to the lack of technical information about skate-bowls, some data about 

variations of ramps has been collected, in order to understand the limitations of 

similar structures. 

Coping 

The coping is a metallic tube placed at the edge of a bowl or skateboard ramp 

for performing skateboarding tricks (Fig. 138). The diameter  of copings shall be at 

least 40 mm , while their ends should be sealed. The coping shall present a 

minimum projection of 3 mm forward and upward, a maximum projection of 12 

mm forward and 30 mm upward (Fig. 139). 

 

Rail 

The rail is also used for acrobatics. The 

distance between the lower edge of 

the rail and the rolling surface shall be 

at least 20 cm  and the height of the rail 

shall not be greater than 100 cm . 

Finally, the ends of rails shall reach to 

the ground, while the outside radius or 

chamfer of 45° should be at least 2 cm  (Fig. 140). 

Half-pipe 

The half-pipe is a structure that consists of two opposite transitions, connected by 

a horizontal surface (Fig. 141). Despite the fact that it is defined geometrically in a 

very rigid way, the minimum and maximum values of these structures can also be 

applied in the case of the bowl. The difference between the bowl and the half 

pipe is that the former has a curved surface which runs along its curved edges.  

  

Fig. 139  Example of coping at the edge of a bowl (Left) and dimensions of copings arranged in 
parallel (Right - Source:  BS EN 14974:2006, p.12). 

 

Fig. 140   Schematic drawing showing the outer 
radius or chamfer of 45 û of a rail (Source:  BS EN 
14974:2006, p.15). 
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Wall ramp 

The wall ramp looks like a quarter pipe, but it has a vertical extension on the top. It 

has been included here because it is one of the tallest elements used in 

skateboarding, hence its limits can be used as a guideline for the vertical limit 

(Fig. 142).  

4.3.2 Design Methodology 

The basis for the design of the skate bowl is the parametric definition of the 

surface by repulsion of the negative space. Yet, since the scale of this project is 

much larger than the size of a person, the motion data has been enlarged before 

applying it to the motion path. Also, the surface by repulsion results in a surface 

with very smooth transitions (Fig. 143), while in the case of the bowl, the top edge 

should have a very clear and sharp boundary to adjust the coping.  

In order to agree with the previously mentioned parameters, the negative space 

is modified. The process followed is to cut the surface by repulsion with a 

horizontal plane, slightly lower than the highest z value. This results in the creation 

of a border, which is a closed curve geometrically (Fig. 143). This curve needs to 

Fig. 141  Dimensions of a half-pipe from British Standards (BS EN 14974:2006, p.20)  

Fig. 142  Dimensions of a wall ramp (BS EN 14974:2006, p.18)  
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be rebuilt with less control points for smoother results (Fig. 144). That forms the 

spine for the reconstruction of the negative space.  

 

 

Afterwards, an arc is created to form the profile of the bowl. In order to specify 

the centre of the arc, a frame perpendicular to the curve is designed and a 

length, equal to the radius of the arc, is defined along the x axis of the frame. The 

radius of it reaches up to 2.5 m (maximum height limit of the wall ramp) and the 

angle interval is set to 90 degrees. 

If the parametric curve is divided into equal segments, with perpendicular planes 

at the division points, then the arc can be repeated along the curve (Fig. 145). By 

lofting these arcs it is possible to produce the curved surface of the bowl (Fig. 

146). Also, the bottom of the bowl is capped by a planar surface (Fig. 148).  

For the design of the final bowl (Fig. 149) the previous definition with some 

transformation techniques are combined. The main idea is to compose a form 

deriving from the motion of two dancers. Thus, two paths are used along which 

motions are translated. The first path consists of two motions and the other of one. 

Since the scale of the project is rather extensive, the MoCap data is enlarged 

before being oriented. 

 

Fig. 143  The deformed surface 
sliced by a horizontal plane.  

 

Fig. 144  The rebuilt intersection 
curve. 

 

Fig. 145  Drawing multiple arcs 
around the perimetric curve. 

 

Fig. 146  Lofting the arcs to 
create a closed surface. 

 

Fig. 147  The coping of the 
skate-bowl. 

 

Fig. 148  The planar surfaces of 
the skate-bowl. 



        

Dimitra Stathopoulou | From Dance Movement to Architectural Form 60 

Minimum distance analysis for the transitional surface 

One of the few restrictions of the 

skate-bowl derives from the 

limitations of the half-pipe, where the 

length of the transitional flat surface 

should be greater than or equal to 

the radius of the structure. In the 

case of the skate-bowl the 

transitional surface is the planar 

surface at the bottom. A reasonable 

question though is which distances 

should be measured and be compared with the radius of the arc.  

 One possible approach is to use the path of the movement projected on the 

transitional surface as a reference. Afterwards the perimeter’s curve can be 

divided by a sufficient number of points and find their closest points on the path 

curve. Then, the distances between them can be compared with half of the 

radius of the arc and be coloured accordingly (Fig. 150). Thus, the user can have 

a direct visual feedback about the results of the chosen parameters and whether 

 
Fig. 149   The final skate-bowl as formed by combining two paths. 

 
Fig. 150  Diagram indicating the invalid distances 
(pink) between the points of the perimeter and 
their closest points on the curve of the spine (C7). 
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they need to be modified. However, since the points around the path are not 

distributed symmetrically, there is a chance that the invalid distances may not be 

a problem, because the distances at the opposite side may be sufficiently long, 

as in the middle of the shape in Fig. 150. Developing this check would be a 

subject for further exploration. 

4.3.3 Materiality 

Skateparks can be built either by concrete or wood. The former are usually 

outdoors because of the durability of the concrete, while the latter is preferred for 

indoor facilities. In both cases, there can be secondary elements made of wood 

and metal, such as ramps or rails.  

The current skate-bowl is designed as a concrete bowl with a metallic pipe 

forming the coping of the perimeter. The position of the coping in relation to the 

horizontal and inclined surface is indicated in Figure 151. The slider that defines 

the radius of the pipe is set within the allowed limits. Finally, a planar surface 

made of concrete is placed around the coping and its width can be also 

modified by sliders. 

4.3.4 Digital Fabrication 

Since there are no specifications about concrete bowls in British or European 

Standards, constructed examples of skate-bowls have been investigated, to 

provide information about their fabrication techniques. Digital fabrication can be 

partly used for the construction of a concrete bowl, combined with traditional 

techniques.  

 

 

 

3 mm �” X �” 12 mm 

3 mm �” Y �” 30 mm 

Fig. 151  Projection of the coping (Source:  BS EN 
14974:2006, p.12). 
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 Firstly, the coping forms the backbone of the structure (Fig. 152). Its fabrication 

can be achieved with a NC controlled pipe bending machine. The information 

needed can be easily extracted from Rhino by transforming the spline of the 

coping into arcs, which is the geometry that the machine can recognise.  

For the construction of the concrete bowl, a wooden frame could be 

constructed, that would afterwards be covered with a layer of concrete (Fig. 

153). The wooden frame may consist of the profiles of the arcs and horizontal 

connections that can be extracted from the parametric model, laser-cut and be 

assembled on site (Fig. 155). Power floated concrete is usually preferred for the 

coverage of the surface. Moreover, the area of the concrete surfaces can also 

derive from the parametric model, in order to estimate the quantity of concrete 

needed (Fig. 154). 

 

 
Fig. 154  Calculation of the area of all concrete elements. 

 

 

Fig. 152   Concrete bowl built in Flensburg, 
Germany. 

 

Fig. 153   Construction  of the ‘Venice Beach 
Skatepark’. 
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Fig. 155  Wooden frame for the construction of the concrete bowl. 

4.3.5 Discussion 

The parametric definition of the skate-bowl offered the chance to explore the 

negative space of movement. Moreover, the case of producing ‘choreographic’ 

space from two performers (two individual paths) has been examined, and this 

space has been modified according to the requirements of this particular case-

study. Fabrication techniques have been also incorporated in the parametric 

definition, demonstrating the considerable possibilities of parametric modelling in 

design.  

Generally, producing the parametric model for the skate-bowl has been a 

straightforward process with some rather precise geometrical parameters, but 

also adequate freedom regarding its shape. Yet, the functional requirements led 

inevitably to modifications of the surface by repulsion, which partially altered the 

original geometry. 

Subjects that could be further explored regarding the negative space is the 

deformation of the surface on variable heights, as the current definition translates 

a group of points to the same height. This would add a supplementary sculptural 

quality to the form of negative space and would reflect more effectively the 

result of movement to its surrounding space.  
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5. CONCLUSIONS 

5.1 Results 

The current dissertation has provided a research with various points of view 

regarding the analysis and visualisation of dance, and also the connection of it 

with architecture through parametric modelling. Despite the popularity of the 

subject, none of the previously existing research explores the subject from the 

perspective of motion’s elements and spatial qualities and their equivalents in 

architecture. Yet through this research the connection between architecture and 

dance is no longer notional, but also practical.  

In terms of visualisation, dance can be represented in a symbolic way (dance 

notation), video recorded, animated (inverse kinematics and motion capture) or 

in a combination of these. ‘Synchronous Objects’ suggests approaches and 

techniques that take visualisation of dance one step further, indicating the 

connection of dance with other disciplines. This analysis paved the way for 

developing a connection between architecture and dance. Motion Capture 

Data constituted the raw material for this attempt. 

The creation of a ‘library’ of movements from MoCap offered the chance to 

understand some of the features of movement that led to classification of them 

into five ‘actions’. The visualisation of ‘actions’ indicated the similarities, 

differences and spatial characteristics of movement, as well as the frozen 

presence of time. Time is incorporated into the parametric model as a hidden 

and underlying attribute that defines the sequence of shapes. Thus, stillness and 

movements occurring at the same place result in clusters of points that need to 

be treated differently to a movement developing in space. These kinds of 

movements are unsuitable to be translated along a path and can only be 

treated as fixed entities, unless their excessive deformation is the intention of the 

designer.  

Understanding and forming transformation tools for the frozen dance forms has 

been the key for the application of them to the design project. However, the 

generic nature of transformations renders their possibility to be applied in other 

cases as well. Translation, orientation, scale, simplifying and merging of dance 

motions have been the techniques explored so far. Experimenting with other 
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affine transformations and deformation processes could be an objective for 

future research. 

The case-studies are based on examples coming one from positive space and a 

second from the negative space of dance movement. Although both comprise 

of abstract forms, the positive space structure has been simplified less, compared 

to the negative’s space structure. So the result of the former maintains more of 

the qualities of dance, while the latter, after continuous elaboration, has lost its 

dance origin. Thus, the positive space’s geometry is ‘read’ better as dance form 

than the negative space, which is rather abstract. 

Dealing with parameters of functionality generated methods for elaborating 

dance forms to respond to the requirements of a specific project. The 

specifications of the project led to major or minor alterations of the original 

geometry. Also, restrictions have been included into the model as minimum and 

maximum values in the sliders. Supplementary design elements (protective 

surface, footing, etc.) have been incorporated to the general parametric model 

and related to the geometry of dance. Finally, another group of definitions 

performed analysis that indicated invalid parts of the structure that needed to be 

changed. 

The suggested construction details have been more indicative, rather than the 

optimal solutions for the construction of such structures. However, they present 

very clearly the significant contribution of parametric modelling into the 

fabrication processes. The interconnected data offer the opportunity to change 

their parameters and automatically update all the linked objects. This possibility 

constitutes a radical development in the design process, compared with the 

traditional practices of the past. Instead of a linear sequence of actions, a 

parametric model can be modified easily, without losing the interrelations of its 

elements, optimising significantly the duration of design the variations of solutions. 

In short, this research managed to span the disciplines of architecture and dance 

regarding space, time and form, through parametric modelling. The grammar 

and the principles of dance formed the basis for the development of innovative 

design methods and new forms of expression, but mostly it enriched our 

understanding of space through motion and dance.  
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5.2 Recommendations for further research 

Dance has a very broad and sophisticated vocabulary of movements. This 

vocabulary could not be explored sufficiently in this research in the desired detail, 

because of lack of Motion Capture representing dance movements in a 

systematic way. Moreover, the performers of the MoCap used were non-

professional dancers or not dancers at all. Therefore, they could not push the 

limits of the body’s potential in the same way dancers do, nor execute dance 

movement with professional precision. Consequently, expanding the ‘library’ of 

movements with MoCaps recorded by professional dancers would broaden the 

design possibilities of dance and offer more sophisticated results regarding form. 

Another aspect of dance that would be interesting to be explored is the 

possibilities of three-dimensional forms produced by multiple dancers and 

configurations of movements. Exploring the patterns of those configurations in a 

more precise and systematic way is worth examining. 

The structure of the body has already been interpreted as a constructive 

structure. An interesting question would be whether the dance form could use 

modular elements, the same way the body uses modular joints. How could a 

hinge joint or a socket joint acquire an equivalent joint at the frozen dance 

forms? To what extent could this be possible? Finally is there a way to represent 

the dynamics of movement and find qualities in architectural forms that could be 

equivalent to the qualities of movement? All these issues constitute challenges 

that could be explored and analysed as a sequence of this research. 

  

 

Fig. 156  Hinge 
joints. 

Fig. 157  Saddle joints. Fig. 158  Ball & socket 
joints. 

Fig. 159  Gliding joints. 
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APPENDICES 

APPENDIX_A | Correspondence between the markers and the parts of the body 
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APPENDIX_B | Movements Catalogue 

1. Individual Movements 

1.1 Travelling  

1.1_ walking 

1.2_ running 

1.2 Turning 

2.1_ cartwheel 1 

2.2_ cartwheel 2 

2.3_ twist on the floor 

2.4_ back flip 

2.5_ wide leg roll 

2.6_ front hand flip 

1.3 Elevation  

3.1_ hop (take off from 1foot, land on the same foot) 

3.2_ grand jete (take off from 1foot, land on the other foot) 

3.3_ run, leap (take off from 1foot, land on the other foot) 

3.4_ forward jump (take off from 2 feet, land on the 2 feet) 

1.4 Falling  

4.1_ backward summersault 

4.2_ rug pull fall 

4.3_ falling and rolling 

4.4_ get up from ground, laying on right side 

4.5_ get up from ground, laying on left side 

1.5 Isolation  

5.1_ twist around the spine 

5.2_ twist arms 

5.3_ side twists 

5.4_ bend over 

5.5_ bend diagonally 

2. Sequences of Movements 

Seq.1_ small jetes, attitude/arabesque, shifted-axis pirouette, turn 

Seq.2_ cartwheels 

Seq.3_ twists lying on the back 

Seq.4_ forward jumps (take off from 2 feet, land on the 2 feet) 

Seq.5_ alternating jumping jacks (take off from 2 feet, land on the 2 feet) 
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APPENDIX_C | Parametric Definitions and Motion Data  (CD) 

 

 

 

 

 

 

 

CD 

 

CD CONTENTS: 

 

01. Motions’ Library 

02. Parametric Models’ Appendix  

03. Rhino & Grasshopper Files  

04. Thesis 

 


