PHD

A Comparative study of the antiproliferative activity of iron chelators PIH, SIH and their light-activated caged derivatives in skin cells

Aroun, Asma

Award date:
2010

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
To my family...
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>VIII</td>
</tr>
<tr>
<td>Abstract</td>
<td>IX</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>XI</td>
</tr>
<tr>
<td>Chapter one- Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Human Skin</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Epidermis</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Dermis</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Hypodermis</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Ultraviolet (UV) Radiation</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 General information</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Biological effects of solar UV radiation</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Biological effects of solar UVA radiation</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Oxidative Stress and Reactive Oxygen Species (ROS)</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1 Oxidative Stress</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2 UVA and ROS</td>
<td>18</td>
</tr>
<tr>
<td>1.4 Skin Antioxidant defence against UVA</td>
<td>20</td>
</tr>
<tr>
<td>1.4.1 Non-enzymatic antioxidants</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1.1 Glutathione</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1.2 Vitamins</td>
<td>22</td>
</tr>
<tr>
<td>1.4.2 Enzymatic antioxidants</td>
<td>23</td>
</tr>
<tr>
<td>1.4.2.1 Glutathione peroxidase (GPx) / Glutathione reductase (GR)</td>
<td>23</td>
</tr>
<tr>
<td>1.4.2.2 Superoxide dismutase (SOD)</td>
<td>24</td>
</tr>
<tr>
<td>1.4.2.3 Catalase</td>
<td>25</td>
</tr>
<tr>
<td>1.4.2.4 Thioredoxin (TRx)</td>
<td>25</td>
</tr>
<tr>
<td>1.4.3 The inducible cellular defence</td>
<td>26</td>
</tr>
<tr>
<td>1.4.3.1 The heme oxygenase (HO)</td>
<td>26</td>
</tr>
<tr>
<td>1.4.3.2 Ferritin</td>
<td>28</td>
</tr>
<tr>
<td>1.5 Iron</td>
<td>30</td>
</tr>
<tr>
<td>1.5.1 General aspects</td>
<td>30</td>
</tr>
<tr>
<td>1.5.2 Iron and oxidative stress</td>
<td>33</td>
</tr>
<tr>
<td>1.5.3 Overview of Iron homeostasis</td>
<td>34</td>
</tr>
</tbody>
</table>
1.5.3.1 Systemic iron absorption, recycling and storage 34
1.5.3.2 Cellular iron uptake and storage 37
1.5.3.3 Iron homeostasis 39
1.5.4 Cancer cell iron metabolism 47
1.5.4.1 Transferrin and cancer 47
1.5.4.2 Oestrogen-inducible transferrin-receptor-like protein 48
1.5.4.3 Transferrin receptor 1 and cancer 48
1.5.4.4 The Transferrin receptor 2 and cancer 49
1.5.4.5 Iron uptake mechanisms from low molecular weight iron complexes 50
1.5.4.6 Melanotransferrin and cancer 50
1.5.4.7 Ferritin and cancer 51
1.6 Cell Cycle 52
1.6.1 General definitions 52
1.6.2 Cell Cycle regulation 56
1.6.2.1 Cyclins and Cyclin-dependent kinases (Cdks) 56
1.6.2.2 Cdk inhibitors (CKIs) 60
1.6.2.3 The p53 tumour suppressor protein 60
1.6.3 Ribonucleotide reductase 63
1.6.3.1 Ribonucleotide Reductase regulation 64
1.6.3.2 Ribonucleotide Reductase and iron 64
1.6.4 Cell Growth Regulation in cancer 67
1.6.4.1 Disturbance of cell-cycle control in oncogenesis 67
1.7 Role of iron in cell cycle and related molecules 73
1.7.1 Cyclins and Cdks 73
1.7.2 p53 74
1.7.3 Cdk inhibitors 75
1.7.4 The growth arrest and DNA-damage-inducible genes (GADD) family 75
1.7.5 p38 MAPK 76
1.7.6 Hypoxia inducible factor-1 (HIF-1) 77
1.7.7 N-myc downstream regulated gene 1 (Ndrg-1) 78
1.7.8 CDC14A 79
1.7.9 Iron-depletion and Apoptosis 79
1.8 Skin Hyper-proliferative Disease 80
1.8.1 Skin cancer 80
1.8.2 Psoriasis

1.9 Iron Chelation Therapy for Hyperproliferative Diseases

1.9.1 Iron Chelators and Cancer

1.9.1.1 Desferrioxamine (DFO)

1.9.1.2 Thiosemicarbazones

1.9.1.3 Aroylhydrazones

1.9.1.4 Di-2-pyridylketone isonicotinoyl hydrazone analogs

1.9.1.5 Di-2-pyridylketone thiosemicarbazone (DpT) series

1.9.1.6 Tachypyridine

1.10 Caged Iron Chelators

1.11 Aims and objectives of the study

Chapter two – Materials and Methods

2.1 Chemicals and Reagents

2.2 Cell culture

2.2.1 FEK4

2.2.2 HaCaT

2.2.3 Swiss 3T3

2.2.4 KCP7 and KCP8

2.2.5 PM1 and Met 2

2.2.6 MKPS

2.3 Chemical treatments

2.4 Iron saturation assay

2.5 UVA irradiation

2.5.1 Irradiation of cells in plates

2.5.2 Irradiation of 2-NPE-PIH and 2-NPE-SIH

2.6 HPLC analysis of UVA-induced decaging of 2NPE-PIH and 2NPE-SIH

2.7 Cell Growth Curve

2.8 BrdU assay

2.8.1 Principle of the assay

2.8.2 BrdU Pulsing

2.8.3 BrdU Staining

2.9 MTT Assay

2.9.1 Principle of the assay

2.9.2 Procedure
2.10 Clonogenic Assay
 2.10.1 Principle of the assay 120
 2.10.2 Procedure 121
2.11 Annexin V/Propidium dual staining Assay
 2.11.1 Principle of the assay 120
 2.11.2 Procedure 121
2.12 Organotypic 3D raft culture using de-epidermalised dermis (DED) 120
2.13 LIP determination in 96 well-plates 124
 2.13.1 Principle of the assay 124
 2.13.2 Procedure 124
2.14 Statistical analysis 124
2.15 Synthesis of Caged –iron chelators and analogues 128
 2.15.1 Solvents, reagents, equipments 128
 2.15.2 General procedure for phenol alkylation (2NPE-SIH precursor a & 2-NPE-PIH precursor b) 128
 2.15.3 General procedure for hydrazide formation (to synthesise 2NPE-SIH and 2-NPE-PIH, BIH, SIH, PIH) 129

Chapter Three - Results and Discussion
3.1 The Choice of Cell Lines 130
 3.1.1 Comparison of the Growth Rate of skin cells 131
 3.1.1.1 Cell Count Assay 131
 3.1.1.2 BrdU Assay 131
 3.1.1.3 Growth rate of primary keratinocytes 132
 3.1.2 Comparison of the Basal LIP Level in Skin Cells 132
3.2 The Antiproliferative Effect of Parental Iron Chelators 137
 3.2.1 Comparison of the Growth Inhibitory Effect of Equimolar Concentration of PIH, SIH, DFO and BIH in skin cells 137
 3.2.1.1 MTT Assay 137
 3.2.1.2 Cell Count Assay 140
 3.2.1.3 Light Microscopy 142
 3.2.2 Effect of PIH, SIH and DFO on Skin Cell Survival Using Colony Forming Ability Assay 145
 3.2.3 Effect of PIH, SIH and DFO on HaCaT Cell Proliferation as Measured by BrdU Incorporation Assay 148
3.2.4 Effect of PIH, SIH and DFO on HaCaT Cell Death as Measured by Annexin V/PI Dual Staining Assay 150

3.2.5 Effect of PIH and DFO on HaCaT Epidermal Cells in 3D De-epidermalised Dermis Raft Organotypic Culture 152

3.2.6 Determination of IC50 for PIH, SIH and DFO 155

3.2.7 Effect of Fe Chelators-Fe3+ Complexes on Cellular Proliferation 157

3.3 Antiproliferative Effect of Caged Iron Chelators 162

3.3.1 In vitro Characterisation of 2NPE-PIH and 2NPE-SIH (+/- UVA) by Reverse Phase HPLC 162

3.3.2 Comparative IC50 Values for Parental PIH, SIH and their UVA-irradiated Caged Derivatives 166

3.3.3 Effect of PIH/SIH, 2-NPE-PIH/SIH and Subsequent UVA irradiation on the proliferation of Skin cells 170

3.4 Concluding Remarks 172

3.5 Future work 173

References
ACKNOWLEDGEMENTS

I am extremely grateful to Dr Charareh Pourzand for giving me the opportunity to work under her supervision. I would like to thank her for the endless support, encouragement, and guidance. I am also very grateful to Dr Olivier Reelfs for his training, supervision and constant advice.

I am very thankful and appreciative to Professor Rex Tyrrell for giving me access to his laboratory facilities as well as his highly valued support and advice. I am particularly grateful to Dr Abdullah Al-Qenaei for his advice and training input.

I am very grateful to Dr James Dowden from the department of Chemistry (University of Nottingham) and all his laboratory members especially Dr Sara Rossi for their help to prepare the chemical compounds.

I would like to thank Dr Ian Eggleston and Dr Amit Nathubhai for their advice and practical help.

I am also very thankful to Professor Irene Leigh (University of Dundee) for providing cancer and psoriatic cell lines and her advice on organo-otypic cultures.

I am also very thankful to Dr Nick Hall and Dr Michael Rowan for their highly valued support and advice during my PhD work.

I would like to thank Professor Susan Wannacott from the Department of Biology and Biochemistry (University of Bath) for giving me access to her laboratory facilities.

I would also like to thank Dr. Adrian Rogers from the Bioimaging suite for his help and advice as well as Mr Kevin Smith for practical help.

Many thanks to all members of laboratories 5W 2.20 and 5W 2.14, both past and present, particularly to Tina Radka for their support and friendly chats. I am also very thankful to Benjamin Young for his help during viva preparation.

I am also very grateful and appreciative to my dear parents: Ghania and Taïb and my lovely sister Nassima, and brothers Redha, Hakim and Abderrahmane for their constant prayers, love and support. I am also thankful to my dear friends Dr Nassima Abdelouahab-Ouitas and Nour Alhusein.

I am extremely grateful to the Algerian Government for sponsoring me during my studies.
ABSTRACT

In the present study, we investigated the long term antiproliferative potential of iron chelators Salicylaldehyde Isonicotinoyl Hydrazone (SIH), Pyridoxal Isonicotinoyl Hydrazone (PIH) and their caged-derivatives 2-Nitrophenyl Ethyl-SIH and –PIH (2NPE-SIH and 2NPE-PIH) using human primary fibroblast cell line FEK4 and the spontaneously immortalised human keratinocyte cell line, HaCaT as models.

We then extended the study to additional hyperproliferative skin keratinocyte cell lines notably MKPS (immortalised psoriatic cell line) as well as PM1 and MET2 that represent two cancerous skin cell lines isolated at different stages of malignant transformation of squamous cell carcinoma (SCC) from a single adult individual. Iron depletion with SIH and its UVA-activated caged-derivative (i.e. 2NPE-SIH) led to significant cell death in all cell models presumably as a result of inhibition of G1/S progression in cell cycle. PIH and 2NPE-PIH on the other hand only caused transient growth retardation in cells due to delayed S Phase but with no apparent toxicity. The growth inhibitory/retardation effects of SIH/PIH or UVA-activated caged-SIH/PIH were related to their iron-chelating properties, as their saturation with iron could reverse their antiproliferative activity in the analysed skin cells. Taken together the results suggested that 2NPE-PIH which possesses very high iron chelating potential, but low antiproliferative activity (i.e. upon uncaging by UVA) is more suitable for skin photoprotection. In contrast, 2NPE-SIH which remains inactive inside the cells until its strong iron binding activity and high antiproliferative properties are activated by UVA, may offer a highly selective and dose-controlled alternative for treatment of hyperproliferative skin disorders such as skin cancer.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone</td>
</tr>
<tr>
<td>BNIP3</td>
<td>BCL2/adenovirus E1B 19 kDa protein-interacting protein 3</td>
</tr>
<tr>
<td>BrdU</td>
<td>5-Bromo-2’-deoxy-uridine</td>
</tr>
<tr>
<td>2-NPE-PIH</td>
<td>2-Nitrophenyl Ethyl Pyridoxal Isonicotinoyl Hydrazone</td>
</tr>
<tr>
<td>2-NPE-SIH</td>
<td>2-Nitrophenyl Ethyl Salicylaldehyde Isonicotinoyl Hydrazone</td>
</tr>
<tr>
<td>3-AP</td>
<td>3-aminopyridine-2-carboxyaldehyde thiosemicarbazone</td>
</tr>
<tr>
<td>4Fe–4S</td>
<td>Iron-sulphur centre</td>
</tr>
<tr>
<td>8-OHdG</td>
<td>8-hydroxydeoxyguanosine</td>
</tr>
<tr>
<td>AK</td>
<td>Actinic Keratoses</td>
</tr>
<tr>
<td>5-ALA</td>
<td>5-aminolevulinic acid</td>
</tr>
<tr>
<td>ALA S</td>
<td>Aminolevulinate synathse</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen presenting cells</td>
</tr>
<tr>
<td>apoTf</td>
<td>Apo Transferrin</td>
</tr>
<tr>
<td>ARE</td>
<td>Antioxidant-responsive element</td>
</tr>
<tr>
<td>ATM</td>
<td>Ataxia telangiectasia mutated protein</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine 5’-triphosphate</td>
</tr>
<tr>
<td>ATR</td>
<td>Ataxia telangiectasia-related phosphokinase</td>
</tr>
<tr>
<td>BIH</td>
<td>Isonicotinic acid benzylidene-hydrazone</td>
</tr>
<tr>
<td>CA</td>
<td>Calcein</td>
</tr>
<tr>
<td>CA-AM</td>
<td>Calcein-acetoxymethyl ester</td>
</tr>
<tr>
<td>CA-assay</td>
<td>Fluorescence calcein assay</td>
</tr>
<tr>
<td>CFA</td>
<td>Colony forming ability</td>
</tr>
<tr>
<td>CA-Fe</td>
<td>Calcein-bound iron</td>
</tr>
<tr>
<td>CIC</td>
<td>Caged iron chelator</td>
</tr>
<tr>
<td>CICs</td>
<td>Caged iron chelators</td>
</tr>
<tr>
<td>CAKs</td>
<td>cyclin-activating kinases</td>
</tr>
<tr>
<td>CHK2</td>
<td>check-point kinase 2</td>
</tr>
<tr>
<td>CKI</td>
<td>Cdk inhibitors</td>
</tr>
<tr>
<td>CM</td>
<td>Condition media</td>
</tr>
</tbody>
</table>
CO Carbon monoxide
DMF Dimethylformamide
Cs₂CO₃ Caesium carbonate
Cu²⁺ Cupric Copper
D₂O Deuterium oxide
DCM Dichloromethane
DISC Death-inducing signaling complex
DED De-epidermalized dermis
dNTP Deoxyribonucleotide
DFO Desferrioxamine or desferrioxamine mesylate or Desferal
PK3BBH Di-2-pyridylketone 3-bromobenzoyl hydrazone
PKIH Di-2-pyridylketone isonicotinoyl hydrazone
DMEM Dulbecco's Modified Eagle's Medium
DMSO Dimethyl sulphoxide
DMT1 Divalent metal transporter 1
DNA Deoxyribonucleic acid
DpT Di-2-pyridylketone thiosemicarbazone
DTPA Diethylenetriamine pentaacetic acid
Dcytb Duodenal cytochrome b
EDTA Ethylenediaminetetraacetic acid
EMEM Earle’s modified minimal essential medium
ER Endoplasmic reticulum
EtOH Ethanol
Et₂O Diethyl ether
EtOAc Ethyl acetate
ERK Extracellular signal regulated kinase
JNK c Jun N terminal protein kinase
SAPK Stress activated protein kinase
FAS Ferrous ammonium sulphate
FCS Foetal calf serum
Fe Iron
Fe²⁺ Ferrous iron
Fe³⁺ Ferric iron
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP1</td>
<td>Ferroportin (1)</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>Ft</td>
<td>Ferritin</td>
</tr>
<tr>
<td>M phase</td>
<td>Mitotic phase</td>
</tr>
<tr>
<td>G1</td>
<td>Gap1</td>
</tr>
<tr>
<td>S</td>
<td>Synthesis</td>
</tr>
<tr>
<td>G2</td>
<td>Gap2</td>
</tr>
<tr>
<td>GADD45</td>
<td>Growth arrest and DNA damage 45α</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione (L-gamma-glutamyl-L-cysteinyl glycine)</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycans</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione (reduced)</td>
</tr>
<tr>
<td>GSSG</td>
<td>Glutathione disulphide (oxidised glutathione)</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>h</td>
<td>hour / hours</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCP-1</td>
<td>Heme carrier protein-1</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]</td>
</tr>
<tr>
<td>H-Ft</td>
<td>H-chain of Ferritin</td>
</tr>
<tr>
<td>HO-1</td>
<td>Haem oxygenase 1</td>
</tr>
<tr>
<td>HO-2</td>
<td>Haem oxygenase 2</td>
</tr>
<tr>
<td>HO-3</td>
<td>Haem oxygenase 3</td>
</tr>
<tr>
<td>Hp</td>
<td>Hephaestin</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>HU</td>
<td>Hydroxyurea</td>
</tr>
<tr>
<td>IC</td>
<td>Iron Chelator</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular adhesion molecule –1</td>
</tr>
<tr>
<td>ICT</td>
<td>Iron chelation therapy</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IRE</td>
<td>Iron response element</td>
</tr>
<tr>
<td>IRP</td>
<td>Iron-regulatory protein</td>
</tr>
<tr>
<td>K$_2$CO$_3$</td>
<td>Potassium carbonate</td>
</tr>
</tbody>
</table>
kDa Kilo Dalton
KC Keratinocyte
KCs Keratinocytes
kJ/m² KiloJoules per metre square
L’ Fatty acid radical
L-Ft L-chain of Ferritin
LI Labile iron
LIP Labile iron pool
LMW Low molecular weight
MW Molecular weight
LO’ (Lipid) alkoxy radical
LOO’ Fatty acid peroxyl radical
LOOH Lipid hydroperoxide
MAPK Mitogen-activated protein kinases
BCC Basal cell carcinoma
mBCC Morphoeiform basal cell carcinoma
MeOH Methanol
MT Metallothionein
mALA Methyl ester of ALA
MAPK Mitogen-activated protein kinases
MMP1 Matrix metalloprotenase-1
Mn-SOD Manganese–superoxide dismutase
mRNA Messenger RNA
Mt-Ft Mitochondrial ferritin
MTT 3-(4,5-dimethylthiazol-2-ye)-2,5-diphenyterrazolium bromide
mdm-2 Murine double minute-2
Tachpyridine N,N’,N’’-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane
NAC N-acetyl cysteine
NADH Nicotine adenine dinucleotide
NADP Nicotine adeninedinucleotide phosphate
nBCC Nodular basal cell carcinoma
NBTI Non-transferrin bound iron
Ndrg1 N-myc downstream regulated gene-1
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR1</td>
<td>Necrosis factor receptor-1</td>
</tr>
<tr>
<td>NB</td>
<td>Neuroblastoma</td>
</tr>
<tr>
<td>NF-kappaB</td>
<td>Nuclear Factor kappa B</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NMSC</td>
<td>Non-melanoma skin cancer</td>
</tr>
<tr>
<td>NP-40</td>
<td>(octylphenoxy)-polyethoxiethanol or Nonidet P-40</td>
</tr>
<tr>
<td>MTT</td>
<td>(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)</td>
</tr>
<tr>
<td>O$_2$(^{-})</td>
<td>Superoxide anion</td>
</tr>
<tr>
<td>OES</td>
<td>17β-oestradiol</td>
</tr>
<tr>
<td>OH(^{-})</td>
<td>Hydroxyl radical</td>
</tr>
<tr>
<td>O$_3$</td>
<td>Ozone</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PPIX</td>
<td>Protoporphyrin IX</td>
</tr>
<tr>
<td>P/S</td>
<td>Penicillin/ streptomycin.</td>
</tr>
<tr>
<td>PDT</td>
<td>Photodynamic therapy</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>PIH</td>
<td>Pyridoxal Isonicotinoyl Hydrazone</td>
</tr>
<tr>
<td>PLAGL2</td>
<td>Pleomorphic adenoma gene like 2</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptosis inducing factor</td>
</tr>
<tr>
<td>PPIX</td>
<td>Protoporphyrin IX</td>
</tr>
<tr>
<td>pRb</td>
<td>Retinoblastoma protein</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>PUVA</td>
<td>Psolaren UVA</td>
</tr>
<tr>
<td>RME</td>
<td>Receptor-mediated endocytosis</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Reversed phase High-performance liquid chromatography</td>
</tr>
<tr>
<td>RR</td>
<td>Ribonucleotide reductase</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>sBCC</td>
<td>Superficial basal cell carcinoma</td>
</tr>
<tr>
<td>SC</td>
<td>Stratum Corneum</td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
</tr>
<tr>
<td>SFM</td>
<td>Serum-free medium</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SIH</td>
<td>Salicylaldehyde Isonicotinoyl Hydrazone</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>Tf</td>
<td>Transferrin</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TfR</td>
<td>Transferrin receptor</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factors</td>
</tr>
<tr>
<td>TNFa</td>
<td>Tumor necrosis factor alpha</td>
</tr>
<tr>
<td>Triapine®</td>
<td>3-aminopyridine-2-carboxyaldehyde thiosemicarbazone</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris[hydroxymethyl]-aminomethane</td>
</tr>
<tr>
<td>TRx</td>
<td>Thioredoxin</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVA(B, C)</td>
<td>Ultraviolet A(B, C)</td>
</tr>
<tr>
<td>UVR</td>
<td>Ultraviolet radiation</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>VHL</td>
<td>Von Hippel Lindau</td>
</tr>
<tr>
<td>W/V</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>XLSA</td>
<td>X-linked sideroblastic anemia</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>Zinc</td>
</tr>
<tr>
<td>CuZnSOD</td>
<td>Copper-zinc-containing superoxide dismutase</td>
</tr>
<tr>
<td>MnSOD</td>
<td>Manganese-containing superoxide dismutase</td>
</tr>
<tr>
<td>Cu/Zn SOD</td>
<td>Copper-zinc superoxide dismutase</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1 Human Skin

Skin is the largest organ in the body weighing approximately six pounds and providing around 10% of the body mass of an average person (Williams, 2003). Because it interfaces with the environment, skin plays a key role in protecting the body against pathogens (Proksch et al., 2008) and excessive water loss (Madison, 2003). Skin also provides other functions such as insulation, temperature regulation, sensation and synthesis of vitamin D. The skin is composed of multiple layers, epidermis, dermis and hypodermis (Fig. 1.1).

1.1.1 Epidermis

Epidermis is the outermost layer of the skin. It forms the waterproof, protective wrap over the body's surface and is made up of stratified squamous epithelium with an underlying basal lamina. In humans, epidermis is thinnest on the eyelids at 0.1 mm and thickest on the palms and soles at 1.5 mm (Madison, 2003). Keratinocytes are the major epidermal cell types, constituting 95% of the epidermis (McGrath et al., 2004). The epidermis is continuously renewed by the mitotic activity of the stem cells in the basal layer, which provides new keratinocytes. Upon withdrawal from the cell cycle, basal keratinocytes detach from the basement membrane and undergo a terminal differentiation program to become corneocytes in the outer layers of the epidermis. At the final stage of differentiation, the keratinocytes lose their nuclei, die, dehydrate and flatten out to form a cornified external layer i.e. Stratum corneum (SC) (Lippens et al., 2009). Dead cells are constantly being shed, while new cells are continuously being produced in the basal layer. Turnover of the epidermis allows the organ to maintain its barrier function, repair injured skin in wound healing, and receive the signals that stimulate or inhibit cell proliferation (Lippens et al., 2009). However hyperproliferation may represent a risk factor for skin cancer and occurs in some physiologic conditions such as wound healing and altered permeability
barrier function as well as pathologic conditions such as psoriasis (Lippens et al., 2009). Thus, cell cycle and keratinocyte turnover have significant roles in pathogenesis of skin diseases and response to therapy (Lippens et al., 2009). It has been estimated that a cell from the basal layer takes at least 14 days to reach the SC whereas in the rapidly proliferating epidermis of psoriasis, it only takes 2 days. Similarly, the turnover time in the SC is some 13 or 14 days in normal skin with the residence time in psoriatic SC shortening to 2 days (Barry, 1983). In addition to the keratinocytes, other specialized cells are present in the basal layer are melanocytes, Langerhans cells and Merkel cells. Melanocytes secrete melanosomes containing melanin (the black eumelanin or the reddish phaeomelanin) that protects the skin from ultraviolet radiations and free radicals (Benjamin et al., 2008). The melanogenesis activity of these cell lines defines the skin color (Biro et al., 2009). Langerhans cells are derived from bone-marrow and as part of the immune system function as antigen presenting cells (APC) of the skin (Benjamin et al., 2008). Merkel cells function as mechanoreceptors for the sensation of touch and pressure (Biro et al., 2009). Additionally, sensory nerve endings which are responsible for cutaneous sensation such as touch, pressure, temperature as well as pain and itch, might also reach the lower layers of the epidermis (Biro et al., 2009).

The epidermis can be further subdivided into the following strata (beginning with the innermost layer): basale, spinosum, granulosum, corneum.

Stratum basale (or basal layer) is often described as one cell thick, though it may in fact be two to three cells thick in glabrous (hairless) skin and hyperproliferative epidermis (from a skin disease) (McGrath et al., 2004). The basal cells of the stratum basale can be considered the stem cells of the epidermis and is the only layer that is capable of cell division (Benjamin et al., 2008). The keratinocytes in this layer are connected with the basement membrane (or dermo-epidermal membrane) by proteinaceous structures called hemidesmosomes and with cells of stratum spinosum layer by desmosomes (Benjamin et al., 2008).

Stratum spinosum (or spinous layer) is 1–3 cell layers thick, and contains enzymes that have the potential to degrade vital cell organelles such as nuclei (Benjamin et al., 2008).
By synthesizing keratin and degrading cell organelles, the keratinocytes (which are known as granular cells) gradually differentiate into the corneocytes of SC. The granular cells also synthesize membrane coating granules that carry the precursors for intercellular lipid lamellae of the stratum corneum (Benjamin et al., 2008).

Stratum corneum (SC., horny layer) is a nonviable epidermal layer of 10 – 15 cell layers thick, with anucleated keratinocytes (corneocytes) oriented like bricks in the surrounding lipid (that serve as a mortar) and forms the prime barrier to the transdermal delivery of drugs. The SC has a thickness of ~ 10 μm. Corneocytes which have migrated up from the *stratum granulosum* (Marks et al., 2006) slough off on the surface in the thin air-filled *stratum disjunctum*, they are continuously replaced by new cells from the *stratum basale*. Corneocytes contain keratin, a protein that helps keep the skin hydrated by preventing water evaporation.

1.1.2 Dermis

The dermis (or corium) is a connective tissue matrix that is between the epidermis and the hypodermis. The dermis is 3 – 5 mm thick and consists essentially of a matrix of connective tissue woven by fibrous proteins (collagen, 75%; elastin, 4%; and reticulin, 0.4%) (Barry, 1983). It is supplied with a reticulate network of blood vessels, lymphatic vessels, nerve endings and numerous appendages (Benjamin et al., 2008). Fibroblasts are the major cells in the dermis. They synthesise collagen, elastin and glycosaminoglycans (GAG). Collagen fibres provide strength and resilience while elastin fibres provide elasticity to the skin. GAG provides viscosity, hydration and allows the dermis limited movement. Other cells embedded in the reticular layer include fat cells and dermal dendrocytes, mast cells, macrophages and lymphocytes.
1.1.3 Hypodermis

The hypodermis (or subcutaneous layer) spreads all over the body as a fibro-fatty layer, with the exception of the eyelids and the male genital region (Barry, 1983). It connects the dermis with the underlying organs. Hypodermis is made of adipocytes, fibroblasts and macrophages and is well supplied by vessels and nerve fibres (Biro et al., 2009). Hypodermis provides a thermal barrier and a mechanical cushion; it is a site of synthesis and a depot of readily available high-energy chemicals (Barry, 1983).
Figure 1.1: Representative section of skin epidermal and dermal layers
(Source: 3 dimensional de-epidermalised dermis (DED)-raft culture performed in Pourzand's laboratory by Dr Reelfs, with permission)
1.2 Ultraviolet (UV) Radiation

1.2.1 General information

Ultraviolet (UV) radiation is part of the non-ionising electromagnetic radiation and it spans between 100 nm and 400 nm. Exposure to UV occurs from both natural and artificial sources. The sun is the major source of natural radiation, and it emits radiation with wavelengths ranging from infrared (760-3000 nm) and visible (400-760 nm) to UV (190-400 nm) (Fig. 1.2) (Pastila, 2006).

Ultraviolet radiation (UVR) is located in the electromagnetic spectrum between the ionizing x-rays and the non-ionizing visible light. The UV component of sunlight is subdivided to long-wave UVA (320-400 nm), mid-wave UVB (290-320 nm) and shortwave UVC (190-290 nm) wavelengths.

The quality (spectrum) and quantity (intensity) of sunlight are modified during its passage through the atmosphere where ozone, clouds, and pollutants scatter and absorb UV rays (Fig. 1.3) (Diffey, 2002).

Solar UV radiation at ground level represents about 5% of the total solar energy; the radiation spectrum is between 290 and 400 nm, and comprises approximately 95% UVA and 5% UVB; UVC is completely filtered out by the stratospheric ozone (Frederick and Alberts, 1992). The spectrum of solar UV radiation to which an individual may be exposed varies with latitude, altitude, ground reflectance, season, time of day, weather, stratospheric ozone and other atmospheric components such as air pollution (Secretan, 2009). For most individuals, solar radiation is the major source of exposure to UV radiation (Secretan, 2009). However, several UV lamps have been developed for use in tanning devices, for germicidal purposes and for the therapeutic use (phototherapy). Depending on the lamp type and filters used, UV sources can provide very different UV spectra from the broadband solar simulated radiation spectrum to specific narrow-band applications (Pastila, 2006).

The effects of solar UV radiation on biological systems concern only UVA and UVB wavelengths, since UVC does not reach the earth’s surface.
Figure 1.2: Diagrammatic representation of the ranges of UV and visible radiation on the surface of the earth (modified from Tyrrell, 1994).

Figure 1.3: Representation of solar UV components and stratospheric ozone layer. UVC component of sunlight is completely absorbed by Oxygen and stratospheric Ozone, and can not reach the surface of the earth. UVB is partially absorbed by the ozone layer, whereas UVA is not absorbed by the ozone layer. The solar UV components reaching the earth’s surface are composed of UVA and UVB only.
1.2.2 Biological effects of solar UV radiation

The major targets for UV in humans are the skin and the eyes. The transmission of UV through these tissues and cells increases with increase in wavelength (see Fig. 1.4). Thus the longer wavelengths can penetrate deeper causing effects on targets that differ sharply from those of short wavelengths. While UVA readily reaches the dermis, including its deeper portions, most of the UVB is absorbed in the epidermis, and only a small proportion reaches the upper dermis. UVC, if it reached the earth’s surface, would be absorbed or reflected predominantly in the SC and in upper layers of the epidermis (Secretan, 2009). It has been shown that 35-50% of the overall UVA component of sunlight can reach the dermis of Caucasian skin (Bruls et al., 1984). However only a small amount of UVA can reach below the surface of the skin and penetrate blood vessels (see Fig. 1.4).

Therefore the amount of radiation received by the two major skin cells, the epidermal keratinocytes and dermal fibroblast are different. The epidermal keratinocytes are exposed to both UVA and UVB radiation while the dermal fibroblasts are protected from UV radiation to a considerable extent by the overlying epidermis and will mostly receive UVA radiation (see Fig. 1.4).

Both acute and chronic exposures to sunlight are associated with various physiological and pathological states. The acute response involves immediate effects including erythema, heat, swelling, sunburn, pigmentation, hyperplasia, immune suppression and vitamin D synthesis (Gasparro et al., 1998). The chronic response involves delayed effects such as cataract and skin ageing (also called photo-ageing), which is the result of morphological changes such as wrinkling, elasticity loss, uneven pigmentation due to general alteration of all the epidermal and dermal components of skin. Chronic exposures of skin to UV radiation may lead to skin cancer (reviewed by Tyrrell, 1994; Reelfs et al., 2010). An individual’s tendency to develop sunburn and tanning after sun exposure correlates with the individual’s susceptibility to long-term effects as well. Therefore, those individuals with higher acute sun sensitivity are generally also more at risk for developing skin cancers after chronic UV exposure (Rünger, 2009). In the recent decades, there has been a substantial decrease in the ozone layer and as a consequence the earth is exposed to more UV radiation. This phenomenon has had an impact on human health in the form of increased incidence of sun-related skin disorders notably actinic keratoses (AK) and skin cancer. Nevertheless sunlight has several beneficial effects. The sun rays provide heat, light and the general feeling of wellbeing. The sunlight also
stimulates blood circulation and the production of Vitamin D that is required for maintaining blood calcium levels in individuals.

At the cellular level, the interaction of UV with biological material changes as a function of wavelength and requires the absorption of the radiation by biomolecules. The UVB region overlaps with the DNA absorption spectrum and as a result the direct absorption of UVB by cellular DNA causes DNA photodamage and mutagenesis (Freeman, 1975; Tyrrell, 1994). In contrast, UVA is weakly absorbed by most biomolecules but is oxidative in nature, generating reactive oxygen species (ROS) such as singlet oxygen (${\text{^1O}_2}$) via photochemical interactions with intracellular chromophores (Tyrrell, 1991; Tyrrell, 1996a, b).

1.2.3 Biological effects of solar UVA radiation

UVA is about 10^3-10^4 fold less efficient than UVB to initiate the short and long term responses of UVR, as underlined by their action spectra (Parrish et al., 1982). These ratios of efficiency also apply to other responses like mutagenicity or lethality in cell cultures (Keyse et al., 1983; Tyrrell and Pidoux, 1987). Most of the biological effects of UVA are oxygen-dependent, either in cultured cells (Danpure and Tyrrell, 1976) or in skin (Auletta et al., 1986). The UVA component of sunlight contributes up to 80% of the cytotoxic action of sunlight at the basal layer of epidermis (Tyrrell and Pidoux, 1987). Indeed the greater histological effect of UVA is relatively observed on the dermis than on the epidermis. Human skin showed decreased permeability on the barrier of the SC when exposed to UVA (McAuliffe and Blank, 1991). UVA also depletes epidermal Langerhans cells, and recruits neutrophils into irradiated skin (Gilchrest et al., 1983).

At the cellular level, at biologically relevant doses, UVA has been shown to cause lipid peroxidation in the membrane of human cultured fibroblasts (Vile and Tyrrell, 1995). UVA-induced lipid peroxidation was found to be dependent on the “chemical” composition of membranes, as polyunsaturated fatty acid enrichment of human keratinocytes increases the peroxidation process (Quiec et al., 1995). Keratinocytes’ peroxidised membranes tend to lose their fluidity following UVA irradiation. This suggested that loss of membrane integrity and selective permeability might result in alteration of transport systems, as well as the leakage of essential components or influx of extracellular molecules such as calcium and toxins. This was confirmed by the findings that UVA radiation inhibited both receptor-mediated and non-specific uptake of exogenous molecules in a dose-dependent manner (Djavaheri-Mergny et al., 1993).
Internal lipid membranes of eukaryotic cells (e.g. lysosomal, mitochondrial and nuclear) have also been shown to be damaged following UVA irradiation. UVA-induced damage to lysosomes is an early event that leads to temporary intracellular leakage of lysosomal proteases into the cytosol which in turn causes the degradation of cytosolic proteins notably the iron storage protein, ferritin (Ft) (Pourzand et al., 1999b). The UVA-induced proteolytic degradation of Ft leads to an immediate measurable increase in the level of the potentially harmful redox active free transit iron pool, known as labile iron pool (LIP). The UVA-mediated increase in LIP has been shown to further exacerbate the peroxidative damage in cultured skin fibroblasts (Zhong et al., 2004) that may lead to the loss of cell membrane integrity.

UVA also damages the mitochondrial membrane leading to immediate depletion of intracellular Adenosine triphosphate (ATP). The depletion of cellular ATP, along with loss of membrane integrity, leads to necrotic cell death in irradiated skin cells (Zhong et al., 2004). Furthermore it was found that the slow kinetics of the induction of the nuclear transcription factor kappa B (NF-kappaB) by UVA relative to other oxidants is due to a transient increase in the permeability of the nuclear membrane to proteins and occurs as a result of iron-mediated damage to the nuclear membrane (Reelfs et al., 2004). The apparent slow response of NF-kappaB to UVA radiation is likely to have consequences on the kinetics of activation of NF-kappaB target genes in the nucleus notably pro-inflammatory cytokines and proto-oncogenes (Tyrrell, 1996a; Soriani et al., 1998; Reelfs et al., 2010).

Lipid peroxidation products may also induce damage to DNA (Vaca et al., 1988) as illustrated by the finding that lipid hydroperoxide decomposition products induced DNA adducts in vivo in liver and kidney (Wang and Liehr, 1995a, b). Therefore, mutations may arise and alter gene expression (Wang and Liehr, 1995a, b).

Photodermatological studies have shown that the morphology of “sunburn” keratinocytes is associated with characteristic features such as pyknotic nucleus and eosinophilic cytoplasm. The “sunburn” cells were first discovered in the epidermis of mammalian cells exposed to UVB radiation and later on regarded as an example of programmed cell death pathway now referred to as “apoptosis” (Weedon et al., 1979; Ley and Applegate, 1985; Young, 1987; Vaca et al., 1988). This self-destructive programme can eliminate pre-cancerous cells (Ziegler et al., 1994), and it was necessary to understand the phenomenon in order to develop therapeutic strategies for control of the carcinogenesis process (Barber et al., 1998). Interest in the link between UV and apoptosis has increased since Godar et al. (1994) investigated cell death mechanisms in different waveband regions of UV (UVC, UVB and UVA) on
murine lymphoma cells (Godar et al., 1994). They found that UVA induced immediate (0-4h) and delayed apoptosis, whereas UVB or UVC induced delayed apoptosis (>20h). In contrast, studies from this laboratory have shown that unlike murine cultured cells, human skin fibroblasts and keratinocytes are quite resistant to UVA-induced apoptosis and upon severe UVA insult, they die mainly by necrotic cell death (Pourzand et al., 1997; Pourzand and Tyrrell, 1999; Zhong et al., 2004; Reelfs et al., 2010).

DNA may be a target to UVA radiation, since it absorbs, although very weakly, in the UVA region up to 360 nm (Sutherland and Griffin, 1981). However, in contrast to UVB, UVA genotoxicity is most likely induced by indirect mechanisms involving absorption of photons by unidentified endogenous photosensitisers and generation of ROS. This is suggested by (i) the oxygen-dependence of induction of most DNA lesions by UVA (Peak et al., 1987) and (ii) the fact that the frequency of lesions induced by UVA does not follow the absorption spectrum of DNA, either in vivo (Freeman et al., 1989) or in vitro (Peak and Peak, 1995). Lesions include mainly DNA strand breaks and protein cross-links (covalent links between a protein and DNA). However, the formation of 8-hydroxydeoxyguanosine (8-OHdG), seems to be the most important type of lesion occurring in the UVA range, as has been shown in different mammalian cell types (Kielbassa et al., 1997; Zhang et al., 1997). Most importantly the damage has been shown to depend on 1O$_2$ generation (Kvam and Tyrrell, 1997). This is the major interest since UVA radiation of sunlight produces biologically relevant levels of 1O$_2$ and also other ROS (Tyrrell, 1991) and the effects of UVA, including cell inactivation, are completely dependent on the presence of molecular oxygen (Danpure and Tyrrell, 1976). Another type of damage, pyrimidine dimerisation, has been shown to occur in human skin following UVA irradiation (Burren et al., 1998).

Direct damage to proteins can happen at much longer wavelengths than direct damage to DNA. Although proteins absorb most strongly in the UVC range, as the wavelength is increased through the environmentally relevant UVB and UVA regions, damage to proteins becomes increasingly important relative to DNA damage because of the absorption properties of the aromatic amino acids (Tyrosine, tryptophan) which exhibit absorption that tail into the UVA range (Vile and Tyrrell, 1995). Protein and amino acid hydroperoxides then produce various radicals via Fenton-like reactions catalysed by metal ions, particularly ferrous iron (Fe$^{2+}$) (Dean et al., 1993; Neuzil et al., 1993). Heme-containing proteins, including cytochromes, the antioxidant enzymes catalase and peroxidases are potential targets for damage by UVA.
Repair enzymes have also been shown to be sensitive to UVA radiation and there is evidence that UV-induced repair disruption plays a role in cell death and mutagenesis (Webb, 1977; Menezes and Tyrrell, 1982). Oxidative modifications of, for example collagen and transcription factors, appear to mark them for degradation in some systems (Helm and Gunn, 1986; Vince and Dean, 1987; Pacifici and Davies, 1990), but in others inefficient catabolism of oxidised proteins contributes to their accumulation (Davies, 1986; Wolff and Dean, 1986; Grant et al., 1992; Jessup et al., 1992; Stadtman, 1992). Artificial sources of UV, including UVA radiation, has been used for treatment of a number of diseases notably rickets, psoriasis, eczema and jaundice. In view of the potentially harmful effects of UV radiation, the treatments take place only when their benefits outweigh the risks.
Figure 1.4: Penetration of solar UV radiation into the skin. UVA (320-400nm) has a deeper penetration potential through the skin layers than UVB (290-320 nm). (Source: 3-dimensional DED-raft culture performed in Pourzand's laboratory by Dr Reelfs, with permission. (%) of UV penetration obtained from Tyrrell, 1994).
1.3 Oxidative Stress and Reactive Oxygen Species (ROS)

1.3.1 Oxidative Stress

Oxygen is a diatomic molecule, O₂, which is referred to as dioxygen. It exists in the atmosphere at the percentage of 21%, and except from certain anaerobic and aero-tolerant unicellular organisms, O₂ plays a pivotal role in all animals, plants, and bacteria, since it is essential for the production of energy by the use of O₂-dependent electron transport chains. However, when O₂ is supplied at concentrations higher than normal, it can be toxic to all living organisms (Martinez-Cayuela, 1995).

“Oxidative stress” is a term introduced to illustrate the imbalance within cells between the mechanisms triggering oxidative conditions (pro-oxidants) and the cellular antioxidant defences in favour of the former (Halliwell and Gutteridge, 1999; Morel and Barouki, 1999).

Free Radicals

A free radical is defined as “atom or molecule with one or more unpaired electron(s) in an orbital in the outermost electron shell” (Cadogan, 1973). Free radicals are capable of independent existence and are able to donate or take an electron from an unpaired electron to another molecule, generating another radical by a chain reaction, which enhances the initial damage. The primary target of free radicals is the lipid bilayer of the membrane. However, free radicals can also oxidize protein, lipid and carbohydrate.

Free radicals can be formed by three independent methods:

(a) Addition of a single electron: \[A + e^- \rightarrow A^- \]

(b) Loss of a single electron: \[A^- \rightarrow A^+ + e^- \]

(c) Homolytic fission of a covalent bond where each component possesses one of the unpaired electron: \[A: B \rightarrow A^- + B^+ \]

The primary source of the production of free radicals within the cells is the leakage of electrons, in the mitochondria and the endoplasmic reticulum (ER), from the electron transport chain. Free radicals are also produced by activated phagocytes (i.e. macrophages, monocytes, and lymphocytes) during inflammation (Cheeseman and Slater, 1993). In addition to these endogenous sources, there are also exogenous sources such as ultraviolet light, ionizing radiation, tobacco smoking, ozone and pollutants (Martinez-Cayuela, 1995).
Reactive oxygen species (ROS)

Reactive oxygen species (ROS) is a term used to include not only the oxygen radicals (i.e. superoxide (O_2^-) and hydroxyl (OH')) but also some non-radical derivatives such as singlet oxygen (1O_2), hydrogen peroxide (H_2O_2) and ozone (O_3), which are capable of forming radicals.

Molecular O_2 has two unpaired electrons in a parallel spin and it can easily absorb electrons from surrounding molecules, therefore it can be a powerful oxidizing agent. Reduction of O_2 to water (H_2O) requires a series of four one-electron-uptake steps, which involves a series of ROS, as shown in equation below. This process makes O_2 reaction with biomolecules poor, unless a transition metal such as iron is present as a catalyst.

\[
\begin{align*}
O_2 & \quad e^- \quad O_2^- \\
& + 2H^+ \quad H_2O_2 \\
& \quad e^- \quad OH^- \\
& \quad e^- \quad H_2O
\end{align*}
\]

The first product of an electron reduction of O_2 molecule yields the O_2^- via the NADPH oxidase enzymatic system. This reaction seems to occur in the ER within all aerobic cells during respiration (by electron transfer in the mitochondrial electron transfer chain).

At physiological O_2 levels, it has been suggested that about 1-3% of the O_2 reduced in mitochondria may form O_2^-, depending on intra-mitochondrial O_2 concentrations. O_2^- has a very short life (milliseconds) and is relatively unreactive towards most biomolecules, including lipids and nucleic acids (Fridovich, 1978). However, it may react with certain proteins and inactivate those, especially proteins in the presence of transition metals prosthetic groups such as heme moieties or iron-sulphur (4Fe–4S) clusters (Gardner et al., 1995). As a consequence, O_2^- toxicity is highly dependent on the availability of iron in the system.

The most important reaction of O_2^- is the dismutation reaction which produces H_2O_2 which is an oxidant without an unpaired electron that has a longer life (minutes) than 1O_2.

This reaction can occur either spontaneously or via the catalysis by a group of enzymes, the superoxide dismutases (SOD). H_2O_2 on its own is a weak oxidizing and reducing agent and is generally poorly reactive. Only in the presence of transition metals, is it capable of inactivating proteins via oxidation of essential thiol (-SH) groups or proteins containing (4Fe–4S) clusters, reduced heme moieties or copper prosthetic groups. Most of the damaging effects of H_2O_2 are thought to be the result of the formation of the highly toxic OH^-. The
biological importance of H$_2$O$_2$ also arises from its ability to readily permeate across membranes and therefore migrate within the cell and extend cellular damage. H$_2$O$_2$ has also been found to be generated after UVA radiation (see section 1.3.2). OH$^\cdot$ is the most reactive of all oxygen radicals possessing a short half-life, and will readily oxidize lipids, proteins, carbohydrates and nucleic acids (Martinez-Cayuela, 1995). The importance of OH$^\cdot$ as oxidant in biological systems was first suggested during generation by X-ray irradiation. The OH$^\cdot$ is the product of Fenton reaction involving H$_2$O$_2$ and reduced iron (see also section 1.5.2).

ROS form as natural by-products of the normal metabolism of oxygen and have important roles in the normal cellular signalling, including the delivery of electrons across membranes, heme oxidation and oxidative modification of proteins and DNA. ROS also play a role in the defence against infectious pathogens. However, under environmental stress or certain pathological conditions such as hypoxia, intracellular ROS levels can increase dramatically, leading to the formation of oxidative stress (Wang et al., 2008). Oxidative stress exerts significant harmful effects on cell structures by inducing structural changes in lipids, membranes, proteins or nucleic acids (Wang et al., 2008). Potentially dangerous oxygen-linked damaging processes are thought to form the basis of a number of physiological and patho-physiological events such as inflammation, ageing, carcinogenesis, drug action, drug toxicity and more recently programmed cell death.

Nowadays, it is known that both beneficial and damaging effects of O$_2$ are caused by the same types of ROS. OH$^\cdot$ generated via Fenton chemistry is able to initiate lipid peroxidation.

The cell membrane and the membrane of cell organelles (e.g. mitochondria, lysosomes, and peroxisomes) are rich in polyunsaturated fatty acids (PUFAs). Polyunsaturated fatty acids contain two or more carbon-carbon double bonds. The oxidative damage of PUFAs will result in lipid peroxidation; a free radical chain reaction that will generate a fatty acid radical (L$^\cdot$) and consequently a fatty acid peroxyl radical (LOO$^\cdot$), and aldehydes (Cheeseman and Slater, 1993). In addition to rupturing the membrane and causing cell death, lipid peroxidation products can inhibit protein synthesis and block macrophage action (Winrow et al, 1993). This deleterious process of the peroxidation of lipids is apparent in cancer, inflammation and arteriosclerosis (Wang et al., 2008). Furthermore ROS can cause disturbances in proteins since they could react with amino acids such as histidine and cysteine. ROS can also cause a cellular ion imbalance by attacking the proteins responsible for the maintenance of such balance (Halliwell and Gutteridge, 1999).
Additionally, DNA strand breakage has been demonstrated in the nucleus and mitochondria when cells were exposed to ROS, since OH’ can damage sugars, purines, and pyrimidines. DNA damage may result in the arrest of transcription, replication errors and genomic instability, all of which are linked with carcinogenesis (Wang et al., 2008). Carbohydrate damage has also been noticed in view of the fact that OH’ in the presence of iron is responsible for the depolymerization of hyaluronic acid in in vitro studies (Wong et al., 1981).

Moreover, oxidative stress plays an important role in the regulation of cell growth because the cell cycle is regulated by intracellular concentrations of GSH. ROS can activate cell growth transcription factors, including MAP-kinase/AP-1, NF-kappaB and p53 pathways, that have a direct effect on cell proliferation and apoptosis. ROS also regulate protein kinase or tyrosine kinase activities (Wang et al., 2008).
1.3.2 UVA and ROS

The biological effects of UVA radiation on cells are dependent on the presence of oxygen (Danpure and Tyrrell, 1976; Tyrrell and Pidoux, 1989), implying the involvement of ROS in UVA-mediated cytotoxicity. UVA is the oxidizing component of sunlight as it triggers the generation of ROS in exposed cells/tissues via interactions with a variety of photosensitisers known as ‘chromophores’. UVA must be absorbed in order to produce a chemical change. Absorption of UVA radiation by a biomolecule leads to an excited state in which one electron of the absorbing molecule is raised to a higher energy level. UVA absorption by the biomolecule may either lead to the generation of reactive species in a metastable excited state, or to free radical production. Both outcomes are formed extremely fast, since chemical reactions often occur within microseconds, but may last for hours. These relatively fast processes are eventually translated into photobiological responses which could occur in seconds but can take years to become apparent (e.g. cancer). In vitro, UVA irradiation of macromolecules has been shown to generate H_2O_2, O_2^- and OH^- (see Tyrrell, 1991). The highly reactive OH’ can be generated via iron-catalyzed reduction of H_2O_2 by O_2^- (Beauchamp and Fridovich, 1970). In vivo, UVA irradiation may also generate ROS (Tyrrell, 1991; Beauchamp and Fridovich, 1970) via interaction with intracellular chromophores notably quinones, flavins, steroids and porphyrins, although the exact species remain to be defined (Tyrrell, 1994). UVA effects also involve H_2O_2 formation and iron-catalysed generation of OH^- (Tyrrell, 1991; Pourzand et al., 1999b; Zhong et al., 2004; Reelfs et al., 2010). Based on these findings the UVA irradiation is now considered as a generator of intracellular oxidative stress. Anderson and Parrish in 1981 confirmed that melanin (a complex polymeric protein produced by melanocytes and confined to the epidermis and the SC) is another important UVA absorbing chromophore in human skin (Anderson and Parrish, 1981). Melanocytes are stimulated upon UVA irradiation and divide and synthesize melanin. Both forms of melanin, phaeomelanin and eumelanin, take part in the screening effect of the whole epidermis. Human melanoma cells with high melanin content have been shown to accumulate twice as much oxidative damage upon UVA radiation than cells with low melanin content (Kvam and Tyrrell, 1997). Additionally, in vitro studies have suggested that the epidermal urocanic acid (a deamination product of histidine), is another important chromophore that may initiate chemical processes that could lead to the photoaging of the skin (Hanson and Simon, 1998). Furthermore, the amino acids tyrosine and tryptophan as well as NADH and NADPH, also exhibit absorption within the UVA range (Tyrrell, 1991).
1O$_2$ and H$_2$O$_2$ are thought to be the most important ROS generated intracellularly by UVA, promoting biological damage in exposed tissues via iron-catalysed oxidative reactions (Vile and Tyrrell, 1995). It has been shown that physiologically relevant doses of UVA induce lipid peroxidation leading to production of alkoxy radical (LO’), peroxyl radical (LOO’) and lipid peroxide (LOOH) in membranes of human primary fibroblasts and keratinocytes, via pathways involving iron and 1O$_2$ (Morliere et al., 1991; Punnonen et al., 1991; Vile and Tyrrell, 1995). Indeed, iron ‘at’ or ‘near’ strategic targets such as cell membranes, can undergo redox cycling by reacting sequentially with one electron reductants and oxidants, thereby generating toxic oxidants such as OH’ and lipid-derived alkoxy and peroxyl radicals and can elicit biological damage (Aust et al., 1985; Halliwell and Gutteridge, 1999). However, in relation to UVA, current data from the literature suggest that O$_2$•− is not involved in any of the cellular effects mediated by UVA observed so far, including lipid peroxidation and protein oxidation (Vile and Tyrrell, 1995; Giordani et al., 1997). It is now well known that UVA is a strong membrane-damaging agent. UVA-induced lipid peroxidation was also found to be dependent on the chemical composition of membranes, as polyunsaturated fatty acid enrichment of human keratinocytes increased the peroxidation process (Quiec et al., 1995). UVA-induced membrane damage has also been directly correlated with cell death in human skin fibroblasts (Applegate et al., 1994). Internal lipid membranes in eukaryotic cells, such as those of lysosomes, mitochondria and the nucleus, have also been shown to be damaged following UVA radiation.

Immediate cellular effects of physiologically relevant doses of UVA include depletion of cellular glutathione (GSH) content, membrane lipid peroxidation and alteration in nuclear transcription factor activity and gene expression (Vile and Tyrrell, 1995; Djavaheri-Mergny et al., 1996; Tyrrell, 1996a; Klotz et al., 1997; Wlaschek et al., 1997). The potentiation of UVA photokilling by GSH depletion provides further evidence for ROS involvement in UVA effects (Tyrrell and Pidoux, 1988).

The UVA-induced generation of 1O$_2$ has been shown to play a crucial role in UVA-induced peroxidation of membrane lipids of cultured human skin fibroblasts as well as activation of nuclear transcription factors such as NF-kappaB (Gaboriau et al., 1995; Reelfs et al., 2004). Studies with iron chelators have demonstrated that iron-catalyzed ROS are also certainly involved in UVA-induced NF-kappaB activation, membrane damage and cell death (Reelfs et al., 2004; Zhong et al., 2004; Yiakouvaki et al., 2006; Reelfs et al., 2010).
The gene whose expression is most enhanced by UVA, encodes the mammalian stress protein and heme degrading enzyme, heme-oxygenase-1 (HO-1) (Keyse and Tyrrell, 1989). The transcriptional activation of HO-1 is now used as a marker of oxidative stress in mammalian cells (Keyse and Tyrrell, 1989; Tyrrell, 1994). Studies with deuterium oxide (D₂O, that enhances the lifetime of \(^1\text{O}_2\)) and sodium azide and L-histidine (two quenchers of \(^1\text{O}_2\)) have shown that \(^1\text{O}_2\) may be the primary effector in the transcriptional activation of HO-1 by UVA in cultured skin fibroblasts (Basu-Modak and Tyrrell, 1993).

A major consequence of UVA irradiation of human skin cells is the immediate release of chelatable ‘labile’ iron (LI) in the cytosol that appears to exacerbate the oxidative damage exerted by ROS generated by UVA. The UVA-mediated increase in LI in human skin fibroblasts plays a key role in activation of NF-kappa B and UVA-induced necrotic cell death (Pourzand and Tyrrell, 1999; Pourzand et al., 1999b; Reelfs et al., 2004; Zhong et al., 2004; Reelfs et al., 2010).

1.4 Skin Antioxidant Defence against UVA

As mentioned above, skin is the first interface with the external environment. As such it is extremely exposed to oxidative stress which generates ROS directly or indirectly derived from the presence of oxygen. Due to the susceptibility of cellular components to potentially harmful oxidation, cell survival could only happen by the existence of a large range of antioxidants defences, which are composed of free radical scavengers, either enzymatic or non-enzymatic, which sometimes act in synergy. In vivo measurements in mouse and human skin have demonstrated that both enzymatic (catalase, glutathione peroxidase, glutathione reductase, and hemeoxygenase-2) and non-enzymatic (GSH, urate, ascorbate) antioxidant capacities of the epidermis is higher than that of the dermis (Shindo et al., 1993; Applegate et al., 1995; Applegate et al., 1996). However, UV radiation (UVB and UVA) reduces both enzymatic and non-enzymatic antioxidant defences in cultured skin cells. Possible mechanisms involved in defence against UVA-mediated oxidative stress in the skin are presented in this section.
1.4.1 Non-enzymatic antioxidants

1.4.1.1 Glutathione

Glutathione (L-gamma-glutamyl-L-cysteinyl glycine, GSH) is a tripeptide antioxidant that is present in most mammalian cells in high concentrations (i.e. 3-5 mM) and it is the major cellular antioxidant (Meister and Anderson, 1983). It is synthesised by two steps (Halliwell and Gutteridge, 1999) as detailed below:

First, the dipeptide formation is catalysed by γ-glutamylcysteine synthetase:

$$\text{L-glutamate + L-cysteine + ATP} \rightarrow \text{L-γ-glutamyl-L-cysteine + ADP + Pi}$$

Then GSH is produced by glutathione synthetase:

$$\text{L-γ-glutamyl-L-cysteine + glycine + ATP} \rightarrow \text{GSH + ADP + Pi}$$

Glutathione is present in two forms, the reduced form (GSH) and the oxidized form (GSSG) where it redox-cycles between them, but the vast majority (95-99%) is in the reduced form (Dethmers and Meister, 1981; Meister and Anderson, 1983)

In human skin cells in culture, there is a direct correlation between the levels of endogenous GSH and sensitivity for cell killing by UVA (Tyrrell and Pidoux, 1986, 1988)

GSH levels modulate the levels of pre-mutagenic damage arising as a result of normal metabolism in cultured human cells and following UVA radiation (Applegate et al., 1992). It has been shown that in murine skin, GSH in both dermis and epidermis is depleted by UVA treatment (Connor and Wheeler, 1987).

The protection mechanism of GSH is unknown. However, as the most important intracellular thiol, it may act directly by scavenging radicals by hydrogen donation, competing with protein thiols for oxidising species, or indirectly as a cofactor for a number of protective enzymes including glutathione peroxidases (GPxs involved in detoxification of H$_2$O$_2$ or organic peroxides) (Ursini et al., 1982; Tyrrell and Pidoux, 1988; Lautier et al., 1992; Jornot and Junod, 1993). Many of the radical or non-radical reactions in cells involving GSH may lead to thiol oxidation to the disulphide, i.e., the oxidation of GSH to form GSSG. Therefore the regeneration of GSH (catalysed by GSSG reductase), as well as the provision of essential reducing equivalents (NADPH) to this enzyme, are important in antioxidant defense.
1.4.1.2 Vitamins

Antioxidant protection can also be achieved by vitamins that are available in our diet. Vitamin E, that is found mainly in green vegetables and cereal grains, is a major lipophilic antioxidant, that comprises at least eight isomers of tocopherol, from which α-tocopherol is the best characterized. As well as inhibiting lipid peroxidation, α-tocopherol also acts as a scavenger of lipid peroxyl radicals (Cheeseman and Slater, 1993). It has also been demonstrated that α-tocopherol can inhibit the UVA-mediated lipid membrane damage (Morliere et al., 1991; Vile and Tyrrell, 1995). In vitro studies have demonstrated that α-tocopherol is capable of reacting and quenching $^{1}\text{O}_2$ (Grams and Eskins, 1972; Foote et al., 1974), however the importance of this phenomenon in biological membranes remains to be established. In addition to the role of α-tocopherol in preventing lipid peroxidation in vivo, there is also weak evidence for the photoprotective effects of vitamin E in animal cells and tissues (Bissett et al., 1990; Record et al., 1991; Fryer, 1993). Some protective effects have been reported in rodent cells in culture against UVB-induced cytotoxicity (Sugiyama et al., 1992), but not against DNA damage. Topical application of α-tocopherol acetate on the skin of mice prevented UVB-induced erythema and sunburn (Trevithick et al., 1992). UVA-induced cytotoxicity could be inhibited only in the case of a photosensitivity disease i.e solar dermatitis (sun burn) by a water soluble vitamin E analog, Trolox C (Kralli and Moss, 1987). Nevertheless, in Pourzand’s laboratory, it has been demonstrated that pre-treatment of cultured human primary fibroblasts with α-tocopherol-acetate could partially protect the cells against UVA-induced lysosomal damage and necrotic cell death (Zhong et al., 2004). Additionally, there is evidence that vitamin E, at least when applied topically to the skin, is able to protect partially against ozone-mediated lipid peroxidation (Thiele et al., 1997). α-tocopherol is closely coupled to both vitamin C and thiol cycle for the generation and maintenance of sufficient levels of cellular reducing power.

Vitamin C (ascorbic acid) is a hydrophilic antioxidant that exerts its effect by scavenging ROS i.e. O_2^- and OH^-. Furthermore, vitamin C may have a role in preventing oxidative damage by acting synergistically with vitamin E. The GSH-dependent free radical reductase may also generate oxidised vitamin E. A dietary antioxidant mixture (vitamin E, vitamin C and GSH) clearly reduced the UVB-induced tumour multiplicity and increased the tumour latent period in mouse studies (Black et al., 1985), demonstrating the importance of the concept of interaction between different antioxidants. Ascorbate is able to react with a variety
of active oxygen species (Halliwell and Gutteridge, 1999). It is for example able to quench $^1\text{O}_2$ (Chou and Khan, 1983), which is potentially an important way of protection in biological systems where $^1\text{O}_2$ is produced in aqueous phase. However, in vitro studies have shown that ascorbate has prooxidant properties as it acts as an iron reductant to produce OH^\cdot. For example, ascorbate stimulates iron-dependent peroxidation of membrane lipids in certain circumstances (Muakkassah-Kelly et al., 1982; Basu-Modak et al., 1996). However, this has no major physiological relevance as any excess is excreted from the body (Halliwell and Gutteridge, 1999). The levels of vitamin C in human plasma were found to be around 10-100 µM (Halliwell and Gutteridge, 1999). Good sources of vitamin C in our diet are vegetables and fresh fruits, especially tomatoes.

Carotenoid pigments such as vitamin A (β-carotene) are lipid-soluble compounds which can protect cells against photosensitised reactions in different ways (Krinsky and Deneke, 1982), including quenching of triplet sensitisers, quenching of $^1\text{O}_2$. This property is particularly important in the skin, since $^1\text{O}_2$ is probably the primary species generated by the interaction of UV/visible radiation with the photosensitizer PPIX present close to the skin surface. Studies have also shown that β-carotene inhibits UV-induced epidermal damage and tumour formation in mouse models (Epstein, 1977; Mathews-Roth and Krinsky, 1987). The role of the antioxidant in protecting cells against UV-induced oxidative stress requires further clarification.

1.4.2 Enzymatic antioxidants

The enzymatic system of the skin acts by catalysing the decomposition of oxidants and free radicals into less reactive species. Mammalian detoxifying enzymes include glutathione peroxidases/reductases, superoxide dismutase, catalase and thioredoxin reductase.

1.4.2.1 Glutathione peroxidase (GPx) / Glutathione reductase (GR)

Glutathione peroxidases (GPxs) and associated enzymes form a family of selenium-dependent hemoproteins which not only detoxify H_2O_2, but also reduce harmful hydroperoxides such as those resulting from lipid peroxidation (Ursini et al., 1995). Glutathione peroxidase (GPx) and Glutathione reductase (GR) are present at high concentrations in some parts of the human body i.e. liver, kidney, and whole blood. GPx, first
discovered in 1957, can be found in the cytoplasm and the mitochondria. It has four selenium atoms (Se), on its four protein subunits, which are responsible for its activity. GPx catalyses the reduction of H_2O_2 yielding oxidised glutathione (GSSG):

$$\text{H}_2\text{O}_2 + 2\text{GSH} \xrightarrow{\text{GPx}} \text{GSSG} + 2\text{H}_2\text{O}$$

It also catalyses the reduction of lipid hydroperoxides (Martinez-Cayuela, 1995):

$$\text{LOOH} + 2\text{GSH} \xrightarrow{\text{GPx}} \text{GSSG} + \text{H}_2\text{O} + \text{LOH}$$

On the other hand GR, which is a cytosolic protein, contains flavin adenine dinucleotide (FAD), as its active site, on its two protein subunits. Whilst the conversion of GSH to GSSG is high in normal cells (Halliwell and Gutteridge, 1999), GR acts by reducing oxidised glutathione to GSH.

$$\text{GSSG} + \text{NADPH} + \text{H}^+ \xrightarrow{\text{GR}} 2\text{GSH} + \text{NADP}^+$$

GPx, according to studies by Leccia et al. (1993), can also significantly decrease the level of UVA-induced oxidative membrane damage (Leccia et al., 1993). Recently it has been shown that low doses of UVA radiation lead to an up-regulation of GPx activity, protecting cells against a subsequent challenge of higher doses of UVA (Meewes et al., 2001). In cultured human cells, GPx and SOD are not affected by UVA radiation; however catalase is very sensitive to UVA and could be inactivated as a result of the radiation insult (Tyrrell and Pidoux, 1989; Moysan et al., 1993). Enhancing GPx activity of cultured human cells by supplementing them with selenium provided protection against UVA-mediated damage (Leccia et al., 1993). Conversely, selenium deprivation of cells sensitized them to UVA- and H_2O_2-mediated cytotoxicity and lipid peroxidation (Bertling et al., 1996).

1.4.2.2 Superoxide dismutase (SOD)

SOD exerts its activity by catalysing the reduction of O_2^{-} to less reactive H_2O_2 (Martinez-Cayuela, 1995).

$$\text{O}_2^{-} + \text{O}_2^{-} + 2\text{H}^+ \xrightarrow{\text{SOD}} \text{H}_2\text{O}_2 + \text{O}_2$$

In mammalian cells three SODs are present: SOD1, SOD2 and SOD3 (Raha and Robinson, 2000). SOD1 is the cytosolic copper-zinc (CuZn)-containing superoxide dismutase (CuZnSOD), SOD2 is the intramitochondrial manganese (Mn) superoxide dismutase (MnSOD), and SOD3 is the extracellular CuZn superoxide dismutase (Halliwell and Gutteridge, 1999). The activity of SOD varies among the tissues and its activity is regulated through biosynthesis, which is sensitive to tissue oxygenation (Yu, 1994). Since SOD reduces...
O₂⁻ to H₂O₂, the increase in SOD activity has been shown to be accompanied by an increase in catalase and/or GPx to prevent H₂O₂ formation (Amstad et al., 1991; Yohn et al., 1991).

1.4.2.3 Catalase

Catalase is composed of four protein subunits, each of which has a ferric (Fe³⁺) heme group bound to its active site (Halliwell and Gutteridge, 1999). It is present in all major body organs and at high concentrations in the liver. Catalase is mainly located in the peroxisome, a cellular organelle found in the cytoplasm bound by a single membrane.

As mentioned in the previous section, H₂O₂ is the product of the dismutation of O₂⁻. Catalase acts by catalysing the direct decomposition of H₂O₂ to ground state oxygen and water reaction (Martinez-Cayuela, 1995):

\[2 \text{H}_2\text{O}_2 \xrightarrow{\text{catalase}} 2 \text{H}_2\text{O} + \text{O}_2 \]

Also, there is evidence showing that catalase activity is strongly inhibited after UVA exposure, in cultured human fibroblasts and keratinocytes (Punnonen et al., 1991; Moysan et al., 1993; Shindo and Hashimoto, 1997). However, compared to GSH, catalase is less important for the protection of cells to oxidative damage, since it has been shown that when cells are deficient in catalase there is no decrease in cell survival after UVA radiation (Tyrrell and Pidoux, 1989; Peak and Peak, 1990).

1.4.2.4 Thioredoxin (TRx)

Thioredoxin is a small protein which, in its reduced form, has a general protein disulphide reductase activity via its two reactive thiol groups (Holmgren, 1985). It is generally concentrated in the ER and also can be found on the cell surface. TRx is also a major carrier of redox potential within cells (Kontou et al., 2004). Together with glutathione, they both maintain signaling components in a reduced state and are counter-balanced in signaling by oxidative stress, typically ROS (Jones et al., 2004).

TRx has two reduced –SH groups, and is converted to an oxidised TRx with a disulphide (-S-S-) in the presence of proteins (Halliwell and Gutteridge, 1999):

\[\text{TRx—(SH)}_2 + \text{protein—S}_2 \rightleftharpoons \text{TRx—S}_2 + \text{protein—(SH)}_2 \]

Thioredoxin exerts its antioxidant activity by different pathways; it has been shown to possess a radical-scavenging activity (Schenk et al., 1994). It has been also involved in DNA repair, since it acts as a hydrogen donor for ribonucleotide reductase. It is also implicated in
protein repair since it provides electrons to methionine sulfoxide reductase, which repairs oxidative damage to methionine residues (Halliwell and Gutteridge, 1999). The thioredoxin/thioredoxin reductase (Trx/TR) system may also have a role in the cellular defence of skin against oxidative stress including UV radiation. Thioredoxin reduces free radicals in human keratinocytes in vivo (Schallreuter et al., 1986). Thioredoxin expression is induced by oxidative stress, including H$_2$O$_2$ and UV (Spector et al., 1988; Nakamura et al., 1994) in a variety of cell types in culture including keratinocytes. Also, a prognostic value for Trx has been described in malignant melanoma (Schallreuter et al., 1991).

Owing to its metal-binding capacity, metallothionein (MT) could contribute to skin protection against phototoxicity injury. In fact, MT has been shown to be induced in vitro by UVC and UVB radiation (Stein et al., 1989; Hansen et al., 1997). Rodent cells with elevated levels of MT have been shown to have increased resistance to UVA radiation (Dudek et al., 1993). The induction of expression of this gene also seems to correlate with a resistance to killing by several mutagenic agents. However, basal MT levels may also function to regulate intracellular redox status in mammalian cells, since rodent MT-null cells showed enhanced sensitivity to oxidative stress (i.e. tert-butylhydroperoxide) as compared to normal cells (Lazo et al., 1995).

Finally the copper-containing protein caeruloplasmin may represent an additional and distinct type of antioxidant behaviour, by oxidizing Fe$^{2+}$ to Fe$^{3+}$ (ferroxidase activity), thus preventing the iron from entering into a reversible redox system (Omoto and Tavassoli, 1990). This may facilitate iron incorporation by iron-binding proteins (Boyer and Schori, 1983; Samokyszyn et al., 1989).

1.4.3 The inducible cellular defence

1.4.3.1 Heme oxygenase (HO)

Different forms of oxidative stress, including UVA radiation and H$_2$O$_2$, are capable of inducing gene expression in mammalian cells. Among these genes, heme-oxygenase (HO) has been shown to become highly activated under conditions of oxidative stress (Keyse and Tyrrell, 1990).
Heme oxygenase (HO) is a microsomal isozyme that is the rate-limiting enzyme that catalyzes the degradation of heme (prooxidant) to biliverdin and carbon monoxide (CO), and the release of ferrous iron ions (Halliwell and Gutteridge, 1999):

\[
\text{Heam} \xrightarrow{\text{HO}} \text{Biliverdin} + \text{CO} + \text{Fe}^{2+}
\]

Biliverdin is then reduced, by biliverdin reductase, to bilirubin (an antioxidant) in the cytosol. Bilirubin has been discovered to account for the majority of the antioxidant activity of human serum (Gopinathan et al., 1994). With a decrease in the pH, the potency of bilirubin as a free radical scavenger is increased (Winrow et al., 1993).

The active site of HO is located on the cytoplasmic site of the ER (Hino et al., 1979). To date three isoforms of mammalian HO have been identified: HO-1, an inducible enzyme that is most highly concentrated in tissues that are heavily involved in the catabolism of heme proteins; HO-2, a non-inducible (in general; the constitutive) isoform that is thought to be particularly involved in signalling pathways; and HO-3 which has low catalytic activity and uncertain physiological role (Maines et al., 1986; McCoubrey et al., 1997). While HO-2 is believed to be the constitutive form of HO, HO-1 is a stress-induced enzyme (Keyse and Tyrrell, 1989).

In 1989, Tyrrell and colleagues identified HO-1 as the 32kD protein which is highly expressed following UVA and H\(_2\)O\(_2\) treatments in human skin fibroblasts (Keyse and Tyrrell, 1989, 1990). Both UVA and H\(_2\)O\(_2\) release heme, the substrate of the HO-1 reaction, from microsomal heme-containing proteins and this correlates with UVA-mediated HO-1 activation (Kvam et al., 1999). Further to this, Basu-Modak and Tyrrell (1993) have shown that UVA-mediated generation of \(^1\)O\(_2\) species plays a central role in activation of the heme oxygenase ‘decycling’ 1 \textit{hmox-1}, the gene that encodes HO-1. Furthermore, UVA irradiation in presence of D\(_2\)O (an \(^1\)O\(_2\) enhancer), further increases accumulation of HO-1 mRNA, while UVA irradiation in the presence of sodium azide or histidine (\(^1\)O\(_2\) quenchers) decreases HO-1 expression (Basu-Modak and Tyrrell, 1993). Additionally, UVA treatment with beta carotene, the natural \(^1\)O\(_2\) quencher, suppresses UVA mediated HO-1 activation in human skin fibroblasts (Trekli et al., 2003). Taken together, these observations are consistent with the concept that both the substrate heme and UVA-mediated release of \(^1\)O\(_2\) play a major role in UVA mediated HO-1 activation (Raval, 2008). Moreover, studies by Ferris et al. (1999) showed that HO-1 absence leads to iron accumulation, whereas HO-1 overexpression decreases cellular iron levels (Ferris et al., 1999). Thus the protective effect of HO-1 following oxidative stress can be mimicked by iron chelation. Interestingly, the enhanced
protective role of HO-1 is central to the development of an adaptive response that involves Ft. The overall effect of HO is to remove the pro-oxidant heme while generating the anti-oxidant, bilirubin, and another pro-oxidant, iron that will be taken up by Ft. Vile et al. in 1994 clearly demonstrated that when human skin fibroblasts were treated with HO-1 anti-sense oligonucleotides, the UVA-induced increase in Ft levels was prevented as well as the adaptive response that leads to protection against oxidative damage (Vile et al., 1994). An additional study by Rothfuss et al. (2001) in human lymphocytes also demonstrated the functional involvement of HO-1 against the induction of oxidative DNA damage, but the exact mechanism remains to be elucidated (Rothfuss et al., 2001).

In addition to HO-1, the other two constitutive isoforms, HO-2 (36 kDa) and HO-3 (33 kDa) have also been extensively studied although their exact function has yet to be elucidated. So far, studies by Rotenberg and Maines (1991) and McCoubrey et al. (1992, 1993) have revealed that the amino acid sequences of HO-1 and HO-2 are around 40% similar and both isoforms display the same enzymatic activity and hence the molecular mechanism of the enzyme action should be analogous (Rotenberg and Maines, 1991; McCoubrey et al., 1997). Ishikawa et al. (1995), who expressed the human HO-2 protein in a bacterial expression system, suggested that the HO-2 catalytic mechanism of heme degradation is very similar to HO-1 (Ishikawa et al., 1995). Finally, in an HO-2 gene-deletion mouse model, HO-1 induction increased oxidative damage during hyperoxia by mechanisms that appeared to involve a two-fold increase in lung GSH and accumulation of redox active iron (Dennery et al., 1998), suggesting an indirect role for HO-2 in induction of oxidative damage. The function of the third isoform of heme oxygenase (HO-3) still remains unknown. The only proposed mechanism regarding its function is that since it contains a heme regulatory motif, it might be a heme sensing/binding protein (reviewed by McCoubrey et al., 1997).

1.4.3.2 Ferritin (Ft)

Cairo et al. (1995) have suggested that liver Ft can act as a pro- or an anti-oxidant in a time-dependent manner. Treating Wistar rats with phorone, a glutathione-depleting drug that amplifies the effects of ROS, led to an early decrease in Ft. Interestingly, a 6-fold increase of Ft synthesis was shown as a late response (Cairo et al., 1995). Treatment of skin fibroblasts with UVA led to a total degradation of Ft (Pourzand et al., 1999b). However, Ft levels returned to normal six hours following UVA treatment. Then Ft levels increased up to 3-fold 24-48h following UVA treatment (Vile and Tyrrell, 1993). Furthermore, it seems from
studies with different cell types: in the early stages of oxidative challenge including H$_2$O$_2$ treatment, Ft might act as a pro-oxidant molecule since its degradation could be a potential source of iron involved in exacerbating the oxidative damage occurred in cells as a result of oxidative insult (Balla et al., 1992; Balla et al., 1993; Lin and Girotti, 1997; Garner et al., 1998). The evidence for Ft acting as an antioxidant molecule is also overwhelming (reviewed in Arosio and Levi, 2002). Various studies have reported that different forms of oxidative challenge have demonstrated an increase in Ft levels, conferring resistance to the subsequent insult. It was demonstrated that the ferroxidase sites in H-Ft significantly reduces the production of OH$^\cdot$ from the Fenton reaction (Zhao et al., 2006). UV radiation has also been shown to increase Ft levels in both the epidermal and dermal tissue allowing increased protection against oxidative stress (Applegate et al., 1998). Further in vivo and in vitro studies demonstrated that acute UVA exposure increased in the long term the Ft levels in basal epidermal cells (Seite et al., 2004). Also, an increase in H- and L-Ft synthesis was observed after exposing Hela cells to H$_2$O$_2$ treatment and this overexpression in turn reduced the accumulation of ROS (Orino et al., 2001). It was suggested that Ft has an active role in regulating LIP levels and reducing ROS generation in human erythroleukemia cells (Kakhlon et al., 2001). Interestingly, L-Ft has been suggested to have an important role in the protection against oxidative damage due to the presence of an antioxidant-responsive element (ARE) in the human L-Ft gene, which was positively regulated by hemin (Hintze and Theil, 2005). The ARE increases the expression of a diverse set of proteins involved in redox homeostasis such as TRx, HO and glutathione.

Levi et al., (2001) have described a gene that encodes a mitochondrial ferritin (MtF) located inside the matrix of human mitochondria. MtF has been suggested to be responsible for the detoxification and the trafficking of iron in the mitochondria (reviewed in Arosio and Levi, 2002).

Since iron has an important role as a catalyst in oxidative reactions, iron transport- and storage-proteins may play an important part as constitutive and/or inducible antioxidant defense by keeping “circulating iron” low and in a non-toxic form. The intracellular storage protein Ft appears to play a critical role in this respect (see section 1.4.3.2).
1.5 Iron

1.5.1 General aspects

Iron is a transition metal that can exist in two stable configurations: electron donor ferrous (Fe$^{2+}$) and electron acceptor ferric (Fe$^{3+}$). The easy access to two oxidation states allows iron to act as a catalyst in mammalian cellular pathways that involve redox mechanisms (Richardson and Ponka, 1997; Hentze et al., 2004).

Iron plays a key role in cell growth, respiration and replication. Many iron-containing proteins catalyze key reactions involved in energy metabolism (cytochromes, mitochondrial aconitase, iron-sulfur proteins of the electron transport chain), respiration (hemoglobin and myoglobin), and DNA synthesis (ribonucleotide reductase). And it is well known that iron depletion leads to G1/S cell cycle arrest and apoptosis (Le and Richardson, 2002). Additionally, iron-containing proteins are required for the metabolism of collagen, tyrosine and catecholamines (Richardson and Ponka, 1997).

The total amount of iron in an average human body is about 4-5g (Trenam et al., 1992), the majority of which is incorporated into the heme complex which is present in proteins such as haemoglobin, myoglobin and cytochromes (Fig. 1.5). The other type of iron is non-heme iron that is found in (4Fe–4S) cluster proteins such as iron regulatory proteins (IRPs), transferrin (Tf), ferritin (Ft) and hemosiderin (Cairo et al., 2006). In addition, there is now a strong evidence for the existence of a pool of “free” transit ionic iron known as the labile iron pool “LIP”. The cellular LIP in quiescent conditions comprises only minor fractions of the total cellular iron (i.e. less than 5%) (Kakhlon and Cabantchik, 2002; Kruszewski, 2003).

Labile iron pool (LIP):

The intracellular LIP which exists at concentrations of 0.1-1µM, is defined as a pool of redox-active iron complexes and it was first suggested by Jacobs (1977) as an intermediate or transitory pool between extracellular iron and cellular iron associated with proteins (Jacobs, 1977). Iron belonging to this intracellular pool is considered to be in steady-state equilibrium, loosely bound to low-molecular-weight compounds, accessible to permeant chelators and metabolically and catalytically reactive (Breuer et al., 1996; Epsztejn et al., 1997; Cairo and Pietrangelo, 2000; Petrat et al., 2001). Cabantchik and coworkers have
defined LIP operationally as a cell chelatable pool that comprises both ionic forms of iron (Fe$^{2+}$ and Fe$^{3+}$) associated with a diverse population of ligands such as organic anions (phosphates and carboxylates), polypeptides, and surface components of membranes (e.g. phospholipid head groups) (see Kakhlon and Cabantchik, 2002; Kruszewski, 2003). This definition implies that LIP can not only potentially participate in redox cycling but also be scavenged by permeant chelators. The latter properties form the basis for the quantification of the cellular LIP (Kakhlon and Cabantchik, 2002; Kruszewski, 2003).

Labile iron pool is associated with important functions: (a) physiologically, as readily available sources of iron for incorporation into proteins; (b) pharmacologically, as targets for chelators or metal scavengers; and (c) toxicologically, as vehicles for promoting the formation of free radicals.

However, labile iron in excess can be highly toxic due to its ability to react with ROS such as O$_2^-$ and H$_2$O$_2$ giving rise to OH$^-$ via Haber-Weiss and Fenton reactions (Halliwell and Gutteridge, 1999). Such highly ROS are capable of interacting with most biomolecules that results in damage in cells, tissues and organs (Shinar and Rachmilewitz, 1990; Wong et al., 1999). In contrast to the intracellular LIP, there is also the presence of the extracellular LIP, which is often associated with pathological conditions. This form of LIP has been originally observed in iron-over-load β-thalassemia patients whose plasma Tf iron-binding capacity was surpassed (Hershko et al., 1978). Further to β-thalassemia, other conditions of iron imbalance have been defined (i.e. hemochromatosis), in which the LIP has been found to be bound to ligands other than Tf as non-Tf bound iron. Finally there is evidence for age-related accumulation of LIP associated with rheumatoid arthritis (Guillen et al., 1998).

Therefore, the pool of reactive iron in cells is strictly regulated by specialised proteins which transport and store iron in a soluble and non-toxic form (Richardson and Ponka, 1997).
Figure 1.5: Diagrammatic representation of iron distribution in the body. Reproduced with the permission of Dr Pourzand.
1.5.2 Iron and oxidative stress

The LIP is able to induce oxidative stress through its ability to increase the rate of reactions to produce ROS, giving rise to a highly reactive OH⁻ via the Fenton reaction (2) or the Haber-Weiss reaction (3)

\[\text{O}_2^- + \text{Fe}^{3+} \rightarrow \text{Fe}^{2+} + \text{O}_2 \] (1)

\[\text{H}_2\text{O}_2 + \text{Fe}^{2+} \rightarrow \text{OH}^- + \text{OH}^- + \text{Fe}^{3+} \] (2) (Fenton reaction)

Net:

\[\text{O}_2^- + \text{H}_2\text{O}_2 \xrightarrow{\text{Inn}} \text{OH}^- + \text{OH}^- + \text{O}_2 \] (3) (Haber-Weiss reaction)

(Halliwell and Gutterridge, 1999)

And, vice versa, Oxidative stress in the form of UV light has been shown to accumulate iron. UVB radiation was shown to increase the skin level of non-heme iron (Bissett et al., 1991) and UVA radiation caused an immediate increase in 'free' iron in fibroblast (Pourzand et al., 1999b). Such highly ROS are capable of interacting with most biomolecules, depending on the site of bound iron, including sugars, lipids, proteins, and nucleic acids. These interactions that promote various harmful processes in cells such as lipid peroxidation, protein oxidation, DNA/RNA oxidation and DNA lesions, ultimately overwhelm the cellular antioxidant defense mechanisms and lead to cell damage and death. As a consequence of these reactions, high levels of iron have been identified as a risk factor for the development of cancer (Toyokuni, 1996). Numerous studies across a variety of populations have found a positive correlation between iron stores in the body and risk of the development of a range of cancers including colorectal, liver, kidney, lung and stomach cancers (Richardson et al., 2009).

Furthermore, the pathological consequences of iron-catalyzed oxidative damage are recognised in diseases such as hepatitis, hemochromatosis, liver cirrhosis, cancer and neurodegenerative disease (Bacon and Britton, 1990; Kowdley, 2004; Gaeta and Hider, 2005; Kalinowski and Richardson, 2005; Valko et al., 2006; Valko et al., 2007; Molina-Holgado et al., 2008). Excess iron may also aggravate diabetes, cancer, cardiovascular disease and alcoholic and non-alcoholic steatohepatitis (Swanson, 2003; Kohgo et al., 2005; Petersen, 2005; Brewer, 2007; Imeryuz et al., 2007). The presence of excess iron has also been demonstrated in a variety of skin disorders such as psoriasis (Molin and Wester, 1973), venous ulceration (Ackerman et al., 1988) and atopic eczema (David et al., 1990), indicating the involvement of iron in the pathology of skin.
To minimise damage caused by labile iron, cellular iron levels are tightly regulated in order to maintain an adequate substrate for vital cell functions, while also minimising the pool of potentially toxic LIP.

1.5.3 Overview of iron homeostasis

1.5.3.1 Systemic iron absorption, recycling and storage

Due to the dual role of iron, there are strict control mechanisms that maintain appropriate iron levels by means of a complex network of transporters, storage molecules and regulators that coordinately govern iron absorption, iron recycling, and the mobilisation of stored iron. Any disruption in these processes causes a variety of disorders associated with iron deficiency or overload (Camaschella, 2005; Piccinelli and Samuelsson, 2007; Andrews, 2008; De Domenico et al., 2008; MacKenzie et al., 2008).

Iron is absorbed by enterocytes in the small intestine (Yu et al., 2007). In the diet iron exists as either heme or non-heme (inorganic) iron (Yu et al., 2007). There are two separate pathways that facilitate the absorption of these two forms of dietary iron (Recalcati et al., 2010) (Fig. 1.6). The majority of the non-heme iron is in the Fe$^{3+}$ form, which needs to be reduced in the duodenal lumen by the postulated ferrireductase, Duodenal cytochrome b (Dcytb) (Recalcati et al., 2010) which catalyses the conversion of Fe$^{3+}$ to Fe$^{2+}$(Richardson et al., 2009). Although studies in Dcytb-knockout mice have found that the activity of this enzyme is not critical for the uptake of dietary iron (Frazer et al., 2005; Gunshin et al., 2005) suggesting the presence of an alternative ferrireductase (Richardson et al., 2009). Once iron is in the Fe$^{2+}$ form, it is able to be transported into enterocytes via the divalent metal ion transporter (DMT1) that is expressed on the apical pole of enterocytes in the proximal duodenum (Mims and Prchal, 2005). Uptake of iron through DMT1 is regulated at the mRNA level, in part, by the iron-regulatory proteins 1 and 2 (IRP1 and IRP2). On the other hand, heme iron is thought to be transported to the cell by heme carrier protein 1 (HCP1) that was recently identified in the apical membrane of duodenal enterocytes (Shayeghi et al., 2005; Latunde-Dada et al., 2006). However, while this protein appears to transport heme, there is no strong evidence as yet that it is a physiologically-relevant mechanism. In addition, a latter study demonstrated that HCP1 was a folate transporter (Qiu et al., 2006), questioning its role in heme metabolism (Andrews, 2007), or suggesting that it transports both heme and folate (Richardson et al., 2009). Once internalized, heme is metabolized by HO to release iron,
carbon monoxide (CO) and bilirubin (section 1.4.3.1) (Yu et al., 2007). After transport into the enterocyte, these forms of iron are consolidated to form the intracellular LIP consisting of \(\text{Fe}^{2+} \) and \(\text{Fe}^{3+} \) in redox equilibrium (St Pierre et al., 1992). Iron is either stored in Ft or transported out of the enterocyte into the blood via the basolateral iron export protein, ferroportin-1 (FP1) (Hugman, 2006). The intracellular ferrooxidase, hephaestin, also appears to be involved in this process, although its exact contribution remains unclear (Vulpe et al., 1999; Han and Kim, 2007). Once at the surface of the enterocyte, \(\text{Fe}^{2+} \) is converted back to \(\text{Fe}^{3+} \) by means of multicopper oxidases (ceruloplasmin in the circulation and hephaestin on the basolateral membrane of enterocytes) (Recalcati et al., 2010). To keep to a minimum the level of unbound iron, and its consequent redox activity, body iron is either incorporated to Tf or recycled for heme synthesis as found in hemoproteins and myoglobin, haemoglobin being the major protein, or stored in the safe form in Ft in liver.
Heme enters the cells via the Heme Carrier Protein 1 (HCP1) which is expressed in the apical membrane of duodenal epithelial cells, and is degraded by Heme Oxygenase (HO) to yield ferrous iron inside the cell. Iron enters the LIP where it may be then stored in Ferritin (Ft) or transferred to the plasma and tissues via Ferroportin 1 (FP1) aided by Hephaestin (Hp) which exhibits ferroxidase activity. The enterocytes of the luminal brush border contain an enzymatic ferric reductase activity, apparently the cytochrome b-like protein Dcytb, to ensure that non-heme iron is reduced when it is in the ferric state. Divalent Metal Transporter (DMT1) is the apical major ferrous transporter, which is responsible for transporting iron into cells.

HCP1: heme carrier protein 1; Dcytb: duodenal cytochrome b; FP1: ferroportin 1 (=Ireg1); Hp: hephaestin; Tf: transferrin; Ft: Ferritin; DMT1: divalent metal transporter 1
1.5.3.2 Cellular iron uptake and storage

Cells which require iron express the transferrin receptor-1 (TfR1) on their surface, which binds two molecules of Tf (Yu et al., 2007). Tf has a high affinity for Fe\(^{3+}\) (Kd= 10\(^{-23}\) mol/L) and its primary function is to accept iron from plasma (and become the diferric form) and to transport iron into various cells and tissues, by binding to TfR1. The Tf-TfR1 complex is then internalized by receptor-mediated endocytosis, where the diferric Tf-TfR1 complex is taken into the cell (Klausner et al., 1983a; Klausner et al., 1983b; Kalinowski and Richardson, 2005). Once in the endosome, the pH decreases via a proton pump present on the endosomal membrane allowing the Fe\(^{3+}\) to dissociate from the Tf-TfR1 complex. The endosomal ferrireductase, six-transmembrane epithelial antigen of the prostate-3 (Steap3) (Ohgami et al., 2005), is thought to convert Fe\(^{3+}\) to Fe\(^{2+}\) in the endosome, allowing Fe\(^{2+}\) to be transported out of the endosome by DMT1 (Gunshin et al., 1997). Once in the cell, Fe\(^{2+}\) can either be directly stored in iron storage protein Ft or it can first enter the intracellular LIP and then be subsequently stored in Ft (Harrison and Arosio, 1996). Alternatively the newly entered ferrous iron can be used in the synthesis of various proteins and enzymes such as ribonucleotide reductase (RR) (Yu et al., 2006). The endosome containing the Tf–TfR1 complex then undergoes exocytosis to recycle TfR1 and return the apo-Tf to the bloodstream where it is able to bind more iron from the liver (Eisenstein, 2000) (see Fig. 1.7).
Figure 1.7: Schematic diagram illustrating the mechanisms involved in iron uptake. (Adapted from Kalinowski and Richardson, 2005)

1- Transferrin (Tf) binds two atoms of Fe$^{3+}$ with high affinity. 2- Two molecules of diferric Tf bind to the Transferrin Receptor 1 (TfR1) on the cell surface. 3- The Tf-TfR1 complex formed is internalized into an endosome. 4- Within the endosome, iron is released from Tf following the decrease in intravesicular pH. 5- Iron transfers from Tf to Divalent Metal ion Transporter (DMT1) and is released in the Fe$^{2+}$ form. 6- DMT1 transports Fe$^{2+}$ across the endosomal membrane into the cytosol. 7- Apo-Tf is released into the plasma via exocytosis, whereby TfR1 returns to the cell surface.
1.5.3.3 Iron homeostasis

Mammalian cells maintain steady levels of metabolically active iron through the regulation of iron uptake and storage. The pathway of iron uptake via TfR and the iron storage in Ft are co-ordinately regulated at the post-transcriptional level by cytoplasmic factors known as iron regulatory proteins (IRPs). These regulatory mechanisms operate in order to prevent the expansion of the intracellular LIP, but still secure adequate supply of iron for the synthesis of iron-dependent proteins.

Transferrin (Tf)

Tf belongs to a family of related-binding proteins that includes: (a) serum Tf which binds iron in the circulation (b) lactoferrin, which is found both intracellularly and in secretions such as milk, tears and semen; (c) ovotransferrin, which is present in egg white and (d) melanotransferrin, which is formally known as tumour antigen p97. These proteins share a high degree of sequence homology.

Serum Tf is the plasma iron-binding glycoprotein, it is synthesised in hepatocytes and functions as the major vehicle for transfer of iron in the body between sites of absorption, storage and use. It is normally the only source of iron for hemoglobin synthesis.

Human serum Tf is a monomeric glycoprotein with a molecular weight of 80 kDa of which 6% is carbohydrate (MacGillivray et al., 1983). It is encoded by gene on chromosome 3 (Yang et al., 1984; Schaeffer et al., 1987). Tf is a bilobal molecule and only one Fe$^{3+}$ attaches to one of the two globular domains with high affinity at physiological pH ($K_d=10^{-23}$ M) at sites located in the N and C lobes of the protein (Morgan, 1983; Richardson and Ponka, 1997). Transferrin exists as a mixture of iron-free (apoTf), one iron (monoTf) and two iron (difericTf) forms of the molecule. The binding of Fe$^{3+}$ to Tf is a pH-dependent process (Chasteen, 1983).

In defined chemical systems iron can be released from Tf by three mechanisms i.e. (i) reduction of pH with resultant protonation of the iron-ligand bonds, (ii) reduction of Fe$^{3+}$ to Fe$^{2+}$, and (iii) direct chelation by a stronger Fe-binding ligand (Aisen and Listowsky, 1980). There is strong evidence to indicate that Fe$^{3+}$ is released from Tf via a decrease in pH in the endosome, leaving only apoTf (Huebers et al., 1978).

Tf has three major functions: (1) it allows ferric iron to remain soluble i.e. in an aqueous and pH neutral plasma environment, (2) it allows iron to circulate in the safe form, and (3) it facilitates the cellular import of iron (Heeney and Andrews, 2004). The primary function of
Tf is to accept iron from plasma and to transport iron into various cells and tissues, by binding to membrane receptors (TfRs, see below).

There are several processes of iron uptake from Tf which have been identified in normal and neoplastic cells. The main process was consistent with saturable binding of Tf to the TfR1 and subsequent internalization of the protein via receptor mediated endocytosis (RME). However, a second process of iron uptake from Tf has also been identified which increases after saturation of the TfR1 (Page et al., 1984; Trinder et al., 1986; Richardson and Baker, 1990, 1994). It was suggested that this mechanism was consistent with adsorptive pinocytosis of Tf (Richardson and Baker, 1994). The control of iron uptake by the TfR1 is determined by the number of TfRs on the plasma membrane and the affinity of the TfR1 for Tf may play a role in controlling iron uptake in some cell types (Kwok and Richardson, 2002). It has been suggested that Tf may protect against oxidative damage by binding to iron and preventing oxidative reactions catalysed by iron (Klausner et al., 1993; Kuhn, 1994).

Transferrin receptor (TfR)

Transferrin receptors (TfRs) provide controlled access of Tf to the cells. There are two forms of TfR, TfR1 and TfR2 (Kawabata et al., 1999; Fleming et al., 2000; Kawabata et al., 2000) that have a distinct cell- and tissue-specific pattern. However, TfR2 was only described in 1999 in liver, liver-derived and human erythroleukemia K562 cell lines and is much less abundant than TfR1. So TfR1 has been the most studied one and was simply designated the TfR.

TfR is ubiquitously expressed in all cell types apart from mature erythrocytes and other terminally differentiated cells. It comprises two transmembrane glycoprotein subunits, covalently linked by S-S bonds. Each subunit has a MW of 90 kDa and binds one molecule of Tf (Enns and Sussman, 1981). The TfR subunits are encoded by genes on chromosome 3. Tf binds to the TfR at the cell surface and is internalised through clathrin-coated pits into endosomes.
Ferritin (Ft)

Most of the iron that is not metabolised is stored in Ft in order to prevent the formation of toxic free radical species (Kwok and Richardson, 2002). Therefore Ft plays a dual role in LIP homeostasis, acting on one hand as an iron-sequestering protein and on the other hand as a potential source of LIP. Ft is the major iron storage protein, ubiquitous in mammalian cells and is tightly regulated by IRPs and it is found in the cytoplasm, mitochondria and nucleus of cells (Arosio et al., 2009).

Ft is composed of a protein shell (MW between 430 and 460 kDa) that can accommodate up to 4500 atoms of iron in the ferric form in its internal cavity as ferric-oxyhydroxide phosphate. Ft is made up of 24 subunits of two types, a light L-subunit (MW 19 kDa) and a heavy H-subunit (MW 21 kDa) (Munro and Linder, 1978; Theil, 1987; Drysdale, 1988). The Ft molecule has an internal diameter of 70–80 Å and an external diameter of 120–130 Å. The entry and exit of iron may occur via channels in the protein shell, and these are found on the three-fold and four-fold symmetry axes. There are six four-fold channels which are hydrophobic in nature plus eight three-fold channels that are hydrophilic, and all of these channels are approximately 3–4 Å in diameter (Richardson and Ponka, 1997).

Mammals have three functional Ft genes: *FTH* on human chromosome 11 encodes the cytosolic heavy chain (H-chain) of 183 amino acids, *FTL* on chromosome 19 encodes the cytosolic light chain (L-chain) of 175 amino acids, and the intronless *MtF* gene on chromosome 5 encodes the precursor of the mitochondrial ferritin (MtF) of 242 residues (the latter to be discussed below) (Richardson and Ponka, 1997).

Cytosolic Ft is composed of 2 subunits; H and L, which have approximately 50% sequence identity. The H-subunit has a high affinity for Fe$^{3+}$ ($K_d = 10^{-25}$ mol/L), and has the catalytic site with ferroxidase activity that converts Fe$^{2+}$ to Fe$^{3+}$ (Lawson et al., 1989). In contrast, the L-subunit has no ferroxidase activity but has a nucleation site that is involved in the formation of the iron core (Levi et al., 1992) and has more iron storage capacity. The H- and L-chains co-assemble in different proportions generating a large number of isoferritins, probably formed by subunit homodimers, (H24L0, H22L2, H0L24) with tissue-specific distributions. Modification of the proportion of H- and L-subunits in the Ft shell may allow the cell to adjust to changes in iron requirement (Drysdale, 1988). An increase in the proportion of the L-subunit is associated with iron storage and is found mainly in spleen and liver, whereas the H-subunit is more abundant when iron is required for cellular metabolism and is found mainly in heart and brain (Jones et al., 1978; Wagstaff et al., 1978; Drysdale, 1988; McClarty et al., 1990).
The process of iron release from Ft may involve iron reduction and/or chelation, and it has been suggested that the degradation of Ft is necessary for iron to be released (Raja et al., 1986). Ft mRNA molecules are subjected to translational or “post-transcriptional” control by iron (Zahringer et al., 1976; Aziz and Munro, 1986). Studies on cytosolic Ft overexpression have revealed that H-Ft could regulate cell growth based on its potential to modulate the intracellular LIP levels (Epsztejn et al., 1999; Cozzi et al., 2000; Kakhlon et al., 2001). Marked overexpression of H-Ft in HeLa cells attenuated cell growth in a manner that is dependent on its ferroxidase activity to incorporate iron (Cozzi et al., 2000), whereas moderate overexpression of H-Ft, as well as partial repression of H- and L-Ft, produced no significant effect on cell growth (Epsztejn et al., 1999; Cozzi et al., 2000; Kakhlon et al., 2001).

While Ft is mainly an intracellular protein, small amounts exist in the serum, and this is usually proportional to the quantity of iron in stores (Jacobs and Worwood, 1975). Serum Ft is increased in cases of iron overload and inflammation, but its function is obscure although it may play a role in regulating blood vessel formation (Coffman et al., 2009). It is controversial whether serum Ft represents a different gene product or a glycosylated form of the intracellular protein that is routed along a secretory pathway (Linder et al., 1996; Tran et al., 1997).

In addition to Ft, iron overloaded cells, in conditions such as hereditary hemochromatosis, may contain another storage form of iron called hemosiderin. Hemosiderin is a degradation product of Ft under conditions of iron excess; Ft is taken-up by lysosomes where it undergoes a partial dissolution of the core resulting in the formation of insoluble hemosiderin (Hoffman et al., 1991; Harrison and Arosio, 1996).

In 2001, Levi et al. reported a new Ft gene for mitochondrial Ft (MtF) (Levi et al., 2001). It is known that the mitochondrion is vital for heme synthesis and for playing a critical role in the genesis of (Fe-S) clusters. The recently discovered MtF may store iron in ring sideroblasts and have a role to regulate the level of iron needed for these functions. MtF is encoded by an intronless gene on chromosome 5q23.1, and shows 79% identity with H-Ft and 63% identity with L-Ft (Levi and Arosio, 2004). Its 3D structure is very similar to that of H-Ft with some differences in localization and presence of metal-binding sites (Langlois d'Estaintot et al., 2004). The protein is synthesised as a 30 kDa precursor that is targeted to mitochondria by a leader sequence of 60 amino acids where it is processed into a
typical Ft shells. The leader sequence is cleaved in the mitochondrion to produce 22kDa subunits that have a ferroxidase center and form homopolymeric Ft shells that bind Fe like Ft H-chain (Corsi et al., 2002). Unlike cytoplasmic Ft, MtF mRNA lacks an iron responsive element (IRE) and may be transcriptionally regulated by iron (Corsi et al., 2002; Drysdale et al., 2002).

MtFt expression is correlated with tissues that have high numbers of mitochondria (e.g. testis) rather than with tissues involved in iron storage (e.g. the liver and the spleen) (Napier et al., 2005) which suggests that MtFt may play a protective role against iron-mediated oxidative damage (Santambrogio et al., 2007). Interestingly, MtF was shown to be highly expressed in sideroblasts of patients with X-linked sideroblastic anemia (XLSA) but not in normal erythroblasts (Levi et al., 2001; Cazzola et al., 2003).

MtFt overexpression resulted in decreased cytoplasmic Ft, increased TfR1 expression, decreased heme synthesis, and increased iron-loading of MtFt. This effect not only alters mitochondrial iron metabolism, but also the whole-cell iron metabolism (Nie et al., 2005), leading to a cytosolic iron-deficiency and reduced proliferation in neoplastic cells overexpressing MtFt in vivo (Nie et al., 2006).

Iron Regulatory Proteins (IRPs)

As iron is required for a variety of cellular processes, a balance between iron uptake, usage, and storage must be maintained. Therefore alterations in LIP are normally sensed by the cytosolic iron regulatory proteins 1 and 2 (IRPs) which function as post-transcriptional regulators of both iron uptake via the TfR and iron sequestration by the iron-storage protein Ft (Klausner et al., 1993; Kuhn, 1994; Guo et al., 1995). IRP1 is a monomeric cytoplasmic protein (MW=90–95 kDa) (Leibold and Munro, 1988; Walden et al., 1989; Barton et al., 1990) that resembles mitochondrial aconitase in sequence (Hentze and Argos, 1991; Kaptain et al., 1991; Rouault et al., 1991; Haile et al., 1992a; Haile et al., 1992b), and has been found in all cells and tissues so far tested (Rothenberger et al., 1990; Mullner et al., 1992). IRP-1 can assemble an (4Fe–4S) cluster and is enzymatically active (Kaptain et al., 1991). Depending on its iron content, IRP1 can act either as an RNA-binding protein or as a cytoplasmic aconitase (Kuhn, 1994). Whereas IRP2 that has a MW of 105 kDa (Henderson et al., 1994) does not show any aconitase activity and does not accumulate an (4Fe–4S) cluster. Human IRP2 is 57% identical and 79% similar to IRP1 in amino acid sequence (Rouault et al., 1992).
Both IRP1 and IRP2 regulate the expression of crucial proteins involved in iron homeostasis. This is attained by the binding of the IRPs to hairpin-loop structures known as iron-responsive elements (IREs) located in the 5’ or 3’ untranslated regions (UTRs) of several mRNAs including those encoding the Fth and Ftl subunits and Tfr1 (Hentze et al., 2004). The binding of IRP1 and IRP2 to the IRE is controlled by intracellular iron levels. This iron-mediated regulatory feedback mechanism allows cells to achieve and maintain a desired intracellular iron level (Hentze et al., 2004). Under high intracellular iron levels, IRP1 assemble a (4Fe–4S) cluster, which results in the loss of IRE-binding ability, imparting aconitase activity (Hentze et al., 2004). In contrast, IRP1 of iron-depleted cells does not contain this (4Fe–4S) cluster and hence is able to bind to IREs (Fig. 1.8). The binding affinity of IRP2 to IREs is similar to that of IRP1, although this protein does not have a (4Fe–4S) cluster. IRP2 protein is rapidly degraded in iron-depleted cells via the proteasomes (Hentze et al., 2004).

As mentioned previously, IRPs are able to bind to IREs located at the 3’ or 5’ end of mRNA, either increasing mRNA stability or inhibiting translation and consequently regulate protein expression (Richardson and Ponka, 1997; Hentze et al., 2004). Under conditions of iron deficiency, IRPs are able to bind to IREs located at the 3’ end of mRNA-encoding iron-uptake proteins, protecting the molecule from exonuclease activity and hence improving mRNA stability (Richardson and Ponka, 1997; Hentze et al., 2004). This increases the expression of Tfr1 and other proteins involved in iron uptake, thus elevating intracellular iron levels. In iron-replete cells, IRPs bind to IRE within the 5’ untranslated region of Fmrn, sterically hindering translation, which allows the cell to use the iron that is present (Hentze et al., 2004). On the other hand, when iron is abundant, IRPs cannot bind to IREs located at the 3’ end of mRNA of iron-uptake proteins, allowing for mRNA degradation and subsequently a decrease in intracellular iron levels (Hentze et al., 2004). Simultaneously, under high iron levels, IRPs can no longer bind to the 5’ end of Ft mRNA, increasing Fth expression and levels of iron in storage (Kalinowski and Richardson, 2005).

Other proteins that process stem-loop structures either on the 5’ or 3’ untranslated portion of their mRNA include erythroid 5-aminolevulinic acid synthase (ALA-synthase, involved in heme biosynthesis; Cox et al., 1991), mitochondrial aconitase (Dandekar et al., 1991) and DMT-1 (reviewed by Sheth and Brittenham, 2000). Additional IRE sequences have also been identified in ferroportin1 (FP1, also known as IREG1 and MTP1) (Donovan et al., 2000; McKie et al., 2000) which plays a role in iron efflux across membranes to plasma but their function in IRP binding has not yet been determined. An important finding correlating IRP
and 5-ALA was also observed by (Pourzand et al., 1999a). They demonstrated that there is a
strict dependence on enhancement on LIP levels by photoporphyrin IX (PPIX) and the level
of IRP activation. They proposed that the level of IRP activation could serve as a better
marker for iron deficiencies than TfR expression since it is directly correlated with the level
of intracellular LIP.
Relative ratios of IRP1/IRP2 differ between tissues, with IRP1 being the most abundant in
liver, kidney, intestine and brain, and the least abundant in pituitary and pro-B-lymphocytic
cell lines (Thomson et al., 1999).
Figure 1.8: The schematic presentation of regulation of Ferritin and Transferrin receptor mRNAs translation during high and low intracellular labile iron conditions (Adapted from Kwok and Richardson, 2002).

An increase in iron supply will cause inactivation of IRP-1 (and degradation of IRP-2, not shown), leading to the induction of Ferritin (Ft) mRNA translation and degradation of Transferrin receptor (TfR) mRNA, resulting in decreased levels of intracellular labile iron pool (LIP). Conversely, under conditions of iron deprivation, IRPs bind to IREs, leading to inhibition of Ft mRNA translation and induction of TfR protein synthesis.
1.5.4 Cancer cell iron metabolism

Compared to normal cells, neoplastic cells require a greater amount of iron because generally they proliferate at a greater rate than their normal counterparts (Le and Richardson 2002; Kalinowski and Richardson, 2005). Therefore there are a significant number of alterations in the metabolism of iron in tumour cells (reviewed by Kwok and Richardson, 2002).

1.5.4.1 Transferrin and cancer

Transferrin (Tf) which is the major iron transport protein in the plasma, is a growth factor required for all proliferating cells due to its high iron binding properties (Aisen and Listowsky, 1980; Richardson and Ponka, 1997). For this reason, Tf is a vital requirement in defined medium for the growth of cultured cells (Barnes and Sato, 1980). Furthermore, extra-hepatic tissues such as T4 lymphocytes and Sertoli cells synthesize Tf, which may permit specialised proliferation and differentiation (Skinner and Griswold, 1980; Lum et al., 1986).

The human basal cell carcinoma (BCC) line MCF-7 secretes a factor which is immunologically identical to Tf, and its secretion is enhanced by 17β-oestradiol (OES) and reduced by the anti-oestrogen 4-hydroxy-tamoxifen (Vandewalle et al., 1989). It has been suggested that Tf secreted by BCC may act as an autocrine growth factor by conferring a selective advantage to rapidly proliferating BCC and permitting tumour growth in poorly vascularised areas (Vandewalle et al., 1989). Similarly, other cancer cell types, including small cell carcinoma (Vostrejs et al., 1988) and T-lymphoma cells (Morrone et al., 1988), also secrete Tf and an autocrine function was proposed. In small cell carcinoma, Tf secretion increased more than 10-fold when the cells entered the active phase of the cell cycle (Vostrejs et al., 1988). However more studies are needed to determine whether Tf plays an important role in proliferation as an autocrine growth factor, or whether it represents a general up-regulation of gene expression related to neoplastic transformation (Kwok and Richardson, 2002).

1.5.4.2 Oestrogen-inducible transferrin-receptor-like protein

Poola and colleagues (Poola and Lucas, 1988; Poola et al., 1990; Poola and Kiang, 1994; Poola, 1997) identified an OES-inducible Tf-binding protein that had limited homology (10%) to the TfR1 in chick oviduct cells and BCC. This protein acts like TfR1 during RME (Poola et al., 1990) (i.e. in terms of binding to diferric Tf and releasing apoTf) which may
suggest a possible role in iron uptake. The TfR-like protein in chick oviduct cells is present in two forms with molecular weights of 104- and 116-kDa (Poola et al., 1990), and like the TfR1, it appears to form a dimer (Poola and Lucas 1988). Immunoprecipitation studies have shown that the 104kDa form was present in the OES-sensitive human BCC lines, MCF-7 and T-47D (Poola et al., 1990).

Since BCC cells secrete Tf (Vandewalle et al., 1989) and increase the expression of a TfR-like protein that can bind Tf in response to OES, it has been suggested that this autocrine-loop mechanism may enhance iron uptake (Kwok and Richardson, 2002). Nevertheless, more studies are required to determine its exact mechanism.

1.5.4.3 Transferrin receptor 1 and cancer

Several studies have demonstrated an increased TfR1 expression in cells with a high proliferation rate including tumour cells (Sutherland et al., 1981; Trowbridge and Lopez, 1982; Taetle and Honeysett, 1987). As discussed above, TfR1 expression is regulated by intracellular iron levels by the IRP–IRE mechanism (Daniels et al., 2006). However, regulation of the expression of TfR1 at the transcriptional level seems to be important indicating that this molecule is a downstream target of the c-myc proto-oncogene (O'Donnell et al., 2006). Interestingly, microarray analysis also revealed that c-myc regulates the expression of other molecules involved in iron homeostasis, including the iron transporter DMT1 and frataxin (O'Donnell et al., 2006) that is thought to be involved in mitochondrial iron metabolism (Napier et al., 2005). Recent studies have also shown that colorectal cancer progression is accompanied with increased expression of iron import proteins (Dcytb, DMT1, and TfR1) and reduced expression of proteins involved in iron export (namely FP1 and hephaestin) (Brookes et al., 2006). Studies have also demonstrated that forced expression of TfR1 enhances cancer cells proliferation, while its down-regulation reduces cellular growth and alters expression of genes involved in cell cycle control e.g., growth arrest and DNA damage 45α (GADD45α) (O'Donnell et al., 2006). Interestingly, it has also been demonstrated that c-myc up-regulates the expression of IRP2 that is involved in regulating TfR1 (Wu et al., 1999). In addition, c-myc also represses the expression of the H-Ft. Collectively, these findings demonstrate that c-myc, which is regulated in a wide range of human cancers (Vita and Henriksson, 2006), coordinately regulates molecules involved in iron metabolism (Habel and Jung, 2006). This is important for understanding the alterations in iron metabolism in cancer cells that facilitate tumourigenesis.
1.5.4.4 The Transferrin receptor 2 and cancer

Recently, Kawabata and colleagues have cloned and functionally characterised another TfR-like molecule known as the TfR2 (Kawabata et al., 1999; Kawabata et al., 2000). This molecule has some structural and functional similarity to the TfR1, and its TfR2 gene has been located on chromosome 7 (7q22) (Kawabata et al., 2000). Two transcripts have been identified in cells, α and β, neither of which contains an IRE, and both are expressed in normal and cancer cells (Fleming et al., 2000; Kawabata et al., 2000). In normal tissues, studies have shown that the β-form was found in all human tissues tested. Whereas the expression of the α-form was limited to the liver, spleen, lung, muscle, prostate and peripheral blood mononuclear cells (Kawabata et al., 2000). However, in contrast to the TfR2-α transcript, the TfR2-β transcript does not contain the amino terminal portion or the putative transmembrane domain. The role of the TfR2-α in iron metabolism remains largely unknown, although its transfection into cells lacking the TfR1 results in iron uptake from Tf (Kawabata et al., 2000).

In contrast to TfR1 that is regulated by intracellular iron concentration, the TfR2 does not appear to be regulated in the same manner (Klausner et al., 1983a; Fleming et al., 2000). It has been suggested that TfR2-α expression may be regulated in accordance with the cell cycle (Fleming et al., 2000).

Interestingly, it has been demonstrated that desferrioxamine (DFO) reduces cell proliferation and DNA synthesis in CHO control cells, while it has little effect on cells expressing transfected TfR2-α (Fleming et al., 2000) suggesting that it may act as an additional source of iron (Kawabata et al., 2000).

Surprisingly, despite the fact that TfR2-α has a lower affinity for Tf than the TfR1, cells expressing TfR2-α grew into larger tumours than those expressing the TfR1 (Fleming et al., 2000). Further studies on the function of the TfR2 are needed to be performed in order to understand the function of this molecule, and its possible role in the growth of normal and neoplastic cells (Kwok and Richardson, 2002).

1.5.4.5 Iron uptake mechanisms from low-molecular-weight iron complexes

In addition to the uptake of Tf-bound iron, cancer and normal cells can also efficiently take up iron from a variety of low MW iron complexes (Page et al., 1984; Fuchs et al., 1988; Richardson and Baker, 1990; Sturrock et al., 1990; Kaplan et al., 1991). This may represent a mechanism to bind and transport low MW iron complexes released from normal cells damaged by the invading tumour. Possible transport molecules involved in the uptake of low
MW iron complexes include DMT1 (Fleming et al., 1998) and the stimulator of iron transport (SFT) (Gutierrez et al., 1997; Yu and Wessling-Resnick, 1998). However, the physiological significance of iron uptake from low MW iron complexes in vivo remains an important research question (Kwok and Richardson, 2002).

1.5.4.6 Melanotransferrin and cancer

Some malignant melanoma cells express a membrane-bound Tf homologue known as melanotransferrin (MTf) or p97 (Brown et al., 1981a; Brown et al., 1981b; Brown et al., 1982; Rose et al., 1986). MTf shares a number of critical characteristics with serum Tf (reviewed by Kwok and Richardson, 2002), including: (i) MTf has a 37–39% sequence homology with human serum Tf, (ii) the MTf gene is on chromosome 3, as are those for Tf and the TfR1; (iii) many of the disulfide bonds present in serum Tf are also present in MTf; (iv) MTf has an N-terminal Fe-binding site that is very similar to that found in serum Tf; and (v) isolated and purified MTf can bind iron from iron citrate complexes (Brown et al., 1981a; Plowman et al., 1983; Rose et al., 1986; Baker et al., 1992).

However, a variety of in vitro (Richardson and Baker, 1990; Richardson and Baker, 1991a; Richardson and Baker, 1991b) and in vivo investigations (Dunn et al., 2006; Sekyere et al., 2006) have demonstrated that MTf plays little role in Fe metabolism (Dunn et al., 2007; Suryo Rahmanto et al., 2007). In fact, MTf has been shown to be involved in the proliferation, migration and invasion of melanoma cells in vitro and their growth in vivo (Dunn et al., 2006; Bertrand et al., 2007; Suryo Rahmanto et al., 2007). Further studies using gene knockout technology are essential to clearly determine the biological role of MTf.

1.5.4.7 Ferritin and cancer

Several studies have suggested that some relationship may exist between Ft and cancer. It has been demonstrated that serum Ft is increased in patients suffering a number of neoplasms, despite no increase in Fe stores (Marcus and Zinberg, 1975; Kew et al., 1978; Hann et al., 1980). Tumour cells, when compared to their normal counterparts, usually contain low quantities of Ft, poor in iron (Munro and Linder, 1978). This fact is somewhat of a paradox considering the high rate of iron uptake by tumours via the TfR1. However, it has been reported that cells from the childhood tumour neuroblastoma (NB) contain Fe-rich Ft and hemosiderin (Iancu et al., 1988; Iancu, 1989). This finding, together with the fact that
NB appears sensitive to iron depletion with DFO (Richardson, 2002) may indicate that the Fe metabolism of this tumour is altered compared to other cell types.

Serum Ft is markedly increased in NB at stages III and IV, but not in stages I or II (Hann et al., 1980; Hann et al., 1981; Hann et al., 1985). It has been suggested that the neoplasm is the source of increased serum Ft levels as: (A) NB cells contain Fe-rich Ft and patients with advanced NB have increased amounts of Ft within the tumour (Hann et al., 1980; Iancu et al., 1988; Iancu, 1989); (B) human Ft has been detected in the sera of nude mice bearing NB xenografts (Hann, 1984); (C) serum Ft levels become normal with remission (Hann et al., 1980), and (D) most Ft released from NB is glycosylated, indicating active secretion (Hann et al., 1984).

The H-type Fts may suppress immunological responses (Broxmeyer et al., 1981; Broxmeyer et al., 1991), that may aid cancer cell proliferation. However, other properties may be important as most Ft secreted by NB cells is of the L-type (Hann et al., 1988).

Ft may act as an autocrine growth factor, since Ft secreted by NB cells is rich in iron (Iancu et al., 1988; Iancu, 1989), which suggests that it could possibly be used as an iron source by other NB cells. However, addition of Ft to serum-free medium only slightly stimulated NB growth and DNA synthesis. In addition, specific Ft-binding sites were not identified on these cells (Blatt and Wharton, 1992). It has been suggested that Ft has mitogenic activity for NB cells (Kwok and Richardson, 2002).

Also it is of interest that an autocrine growth factor released from leukaemic cells has immunological identity with Ft. Interestingly, Ft antibody inhibited the proliferation of these cells, suggesting a role for Ft in stimulating cellular growth (Kikyo et al., 1994a; Kikyo et al., 1994b). Moreover, binding sites for Ft (Covell et al., 1987; Covell and Cook, 1988; Konijn et al., 1990; Fargion et al., 1991) and the endocytosis of Ft (Bretscher and Thomson, 1983) have been identified in cancer cells, suggesting that Ft iron uptake could occur by receptor-mediated endocytosis. However, more studies are required to determine the role of secreted Ft as a mitogenic factor for cancer cells (Richardson et al., 2009).

On the other hand, studies have demonstrated that neoplastic transformation can result in changes in the expression of Ft and other molecules involved in cellular Fe metabolism. For example, E1A oncogene has been found to modulate the expression of H-Ft at the transcriptional level (Tsuji et al., 1993). In growing cells the transcription factor encoded by c-myc, a proto-oncogene, represses the expression of H-Ft and increases the expression IRP2 (Wu et al., 1999). Additionally, H-Ft down-regulation was necessary for transformation via c-myc. The increase in the expression of IRP2 may enhance its RNA-binding activity that
could cause an elevation in the expression of TfR1 and Fe uptake from Tf that is essential for tumour proliferation (Wu et al., 1999).

In contrast, Modjtahedi et al. (Modjtahedi et al., 1992) demonstrated that cells’ transfection with c-myc gene copies lead to H-Ft over-expression due to an increase in the transcription rate. This latter study revealed that the H-Ft and cytokerin expressions were increased in tumourigenic compared to non-tumourigenic clones of the SW 613-S human carcinoma cell line (Modjtahedi et al., 1992).

Interestingly, N-myc amplification and secretion of Ft co-exist in patients with advanced NB (Brodeur et al., 1984; Hann et al., 1985). A study examining Ft secretion and synthesis in three NB cell lines demonstrated that the cell line secreting the highest concentration of Ft, also had the highest number of N-myc copies (Selig et al., 1993).

1.6 Cell Cycle

1.6.1 General definitions

The cell cycle is the series of events that take place in a cell leading to its division and duplication (replication). The cell-division cycle is a vital process by which hair, skin, blood cells, and some internal organs are renewed. This process consists of five distinct phases: G0; G1 phase, S phase (synthesis), G2 phase (collectively known as interphase) and M phase (mitotic phase) (Fig. 1.9).

G0 phase (also known as post-mitotic)
The term "post-mitotic" is sometimes used to refer to both ‘quiescent’ and ‘senescent’ cells. ‘Quiescent’ cells: non-proliferative cells in multicellular eukaryotes generally enter the quiescent G0 state from G1 and may remain quiescent for long periods of time, possibly indefinitely (as is often the case for neurons).

‘Scenescent’ cells: Cellular senescence is a state that occurs in response to DNA damage or degradation that would make a cell's progeny non-viable; it is often a biochemical alternative to the self-destruction of a damaged cell by apoptosis.
Interphase

Before a cell can enter cell division, it needs to prepare itself by replicating its genetic information and all of the organelles. All of the preparations are done during the interphase. Interphase proceeds in three stages, i.e. G1 (Gap1), S (Synthesis), and G2 (Gap2). Cell division operates in a cycle; therefore, interphase is preceded by the previous cycle of mitosis and cytokinesis - the process in which the cytoplasm of a single eukaryotic cell is divided to form two daughter cells.

G1 phase (~12h) is the first phase within interphase, from the end of the previous M phase until the beginning of DNA synthesis (is called G1). During this phase – which is also called ‘growth phase’- the biosynthetic activities of the cell, which had been considerably slowed down during M phase, resume at a high rate. This phase is marked by synthesis of various enzymes that are required in S phase, mainly those needed for DNA replication. Duration of G1 is highly variable, even among different cells of the same species (Lodish, 2008).

S phase (~6h) starts when DNA synthesis commences; when it is complete, all of the chromosomes have been replicated, i.e. each chromosome has two (sister) chromatids. Thus, during this phase, the amount of DNA in the cell has effectively doubled, although the number of single sets of chromosomes in a cell (the ploidy) remains the same. Rates of RNA transcription and protein synthesis are very low during this phase. An exception to this is histone production, most of which occurs during the S phase (Lodish, 2008).

G2 phase (~6h): the cell then enters the G2 phase, which lasts until the cell enters mitosis. Significant protein synthesis occurs during this phase, mainly involving the production of microtubules, which are required during the process of mitosis. Inhibition of protein synthesis during G2 phase prevents the cell from undergoing mitosis (Lodish, 2008).

M (Mitotic) phase is the brief process (~30min) by which a eukaryotic cell separates the chromosomes in its cell nucleus into two identical sets in two nuclei. The process of mitosis is complex and highly regulated. The sequence of events is divided into prophase, prometaphase, metaphase, anaphase and telophase. During the process of mitosis the pairs of chromosomes condense and attach to fibres that pull the sister chromatids to opposite sides of the cell. It is generally followed immediately by cytokinesis (in conjunction with telophase), which divides the nuclei, cytoplasm, organelles and cell membrane into two genetically identical daughter cells (Cordon-Cardo, 1995).
It is known that errors in cell cycle can either kill a cell through apoptosis or cause mutations that may lead to cancer. Therefore the cell cycle is tightly controlled by many regulatory mechanisms that either permit or restrain its progression.
Figure 1.9: The cell cycle (Adapted from Cerqueira et al., 2007).

Cell division operates in a cycle and consists of four distinct phases: G₁ phase, S phase (synthesis), G₂ phase (collectively known as interphase) and M phase (mitosis). G₁ phase (Growth phase): is marked by synthesis of various enzymes that are required in S phase for DNA replication. S phase (Synthesis phase): involves DNA synthesis; when it is complete, all of the chromosomes have been replicated, i.e. each chromosome has two (sister) chromatids. the amount of DNA in the cell has effectively doubled. G₂ phase: Protein synthesis involving the production of microtubules, which are required during the process of mitosis. M (Mitotic) phase: a cell separates the chromosomes in its cell nucleus into two identical sets in two nuclei. The pairs of chromosomes condense and attach to fibres that pull the sister chromatids to opposite sides of the cell. It is followed by which divides the nuclei, cytoplasm, organelles and cell membrane into two genetically identical daughter cells.
1.6.2 Cell Cycle regulation

The cell cycle is a very complex and tightly regulated process that can result in cell division, differentiation, or growth, or contribute to programmed cell death through apoptosis (Elsayed and Sausville, 2001).

The main families of regulatory proteins that play key roles in controlling cell-cycle progression are the cyclins, the cyclin-dependent kinases (Cdks), the Cdk inhibitors (CKI) and tumour suppressor genes such as p53 and the retinoblastoma susceptibility gene product (pRb) (Fig. 1.10). These families comprise the basic regulatory machinery responsible for catalysing cell cycle transition and checkpoint traversal (Elsayed and Sausville, 2001).

1.6.2.1 Cyclins and Cyclin-dependent kinases (Cdks)

Cell cycle transitions depend on the activity of the Cyclin-dependent kinases (Cdks). The active forms of these kinases occur as heterodimers that are composed of a regulatory subunit called a cyclin, and its catalytic counterpart, the Cdk (Sherr, 2000). It is the up-regulation and degradation of the cyclins and their subsequent interaction with Cdks that mediate progression through the cell cycle (Zetterberg et al., 1995; Reed, 1997) (Fig. 1.10).

Cyclins are a family of proteins that are structurally identified by conserved ‘cyclin box’ regions (Joyce et al., 2001). They are 56 kDa proteins and are implicated in the mitosis of all eukaryotes (Elsayed and Sausville, 2001).

Cyclins activate specific Cdks through a 1:1 non-covalent binding and trigger and coordinate the transition between the different phases of the cell cycle.

To date, nine Cdks (Cdk1-9) and at least 15 preferentially binding cyclins have been identified (see Table 1.1) (Draetta, 1990; Sherr and Roberts, 1999; Sausville et al., 2000). Cdks are typically small proteins of 300 amino acids in length and molecular weight of 33-40 kDa.

The Cyclin–Cdk complexes are activated by phosphorylation via cyclin-activating kinases (CAKs) (Vidal and Koff, 2000) that activates or inactivates target proteins to orchestrate coordinated entry into the next phase of the cell cycle.

Different cyclin-Cdk combinations determine the downstream proteins targeted. Cdks are constitutively expressed in cells whereas cyclins are synthesised at specific stages of the cell cycle, in response to various molecular signals (Prather et al., 1999).

An important regulatory mechanism performed by Cdk molecules involves the phosphorylation of the retinoblastoma protein (pRb) (Sherr, 2000). This molecule mediates
progression of cells from G₁ to the S phase of the cell cycle. In its hypophosphorylated form, pRb suppresses cellular growth by binding to E2Fs. In addition to that, the mechanism of pRb-mediated inhibition involves recruitment of proteins that are repressive for transcription, such as histone deacetylases. Following Cyclin D/Cdk4 or Cdk6–mediated phosphorylation, however, pRb releases E2Fs that subsequently activate downstream transcriptional targets involved in S phase, including DNA polymerase- alpha, Cyclin A, Cyclin E and Cdk1. CyclinE/Cdk2 complexes further phosphorylate pRb at the G1-to-S transition, enabling cells to pass through a “restriction point” from which the cell proceeds through the remainder of the cycle irrespective of mitogenic stimuli. CyclinA/Cdk2 and CyclinB/Cdk1 activities are required for S-to-G2 and G2-to-M transitions, respectively (Corn and El-Deiry, 2002).
The cell cycle consists of four main phases: G1, S, G2 and M phases. Under normal conditions, the progression of the cell cycle controlled mainly by cyclins A, B, D and E, and the cyclin-dependent kinases (cdks). Cyclin D1 forms a complex with cdk4, while cyclin E binds with cdk2. These complexes are then involved in hyper-phosphorylation of the retinoblastoma susceptibility gene product (pRb), which allows it to release the transcription factor, E2F1. Once free, E2F1 is able to translocate to the nucleus where it mediates the transcription of a range of genes vital for S-phase progression. One of the most important mediators of this G1/S checkpoint is p53, which is able to cause G1/S arrest under conditions of cell stress or DNA damage. One function of p53 is to transactivate the expression of the cdk inhibitor, p21CIP1/WAF1, which then inhibits the activity of cyclin D1/cdk4- and cyclin E/cdk2 complexes, thereby preventing entry into S-phase. However, the activity of p21CIP1/WAF1 can be paradoxical and under some conditions can aid in cell cycle progression (see section on p21CIP1/WAF1). In addition, p53 is also able to inhibit cyclins A and B leading to G2/M arrest.
Table 1.1 Mammalian cyclin-dependent kinase complexes (Carnero, 2002)

<table>
<thead>
<tr>
<th>Kinase</th>
<th>Regulatory subunit</th>
<th>Substrate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC2</td>
<td>cyclin A & B</td>
<td>pRb, NF, histone H1</td>
<td>G2/M</td>
</tr>
<tr>
<td>Cdk2</td>
<td>cyclin A, E</td>
<td>pRb, p27</td>
<td>G1/S, S</td>
</tr>
<tr>
<td>Cdk3</td>
<td>cyclin E</td>
<td>E2F1/DP1</td>
<td>G1/S</td>
</tr>
<tr>
<td>Cdk4</td>
<td>cyclin D1, D2 & D3</td>
<td>pRb</td>
<td>G1/S</td>
</tr>
<tr>
<td>Cdk5</td>
<td>p35, cyclin D1 & D3</td>
<td>NF, Tau</td>
<td>Neuronal differentiation</td>
</tr>
<tr>
<td>Cdk6</td>
<td>cyclin D1, D2 & D3</td>
<td>pRb</td>
<td>G1/S</td>
</tr>
<tr>
<td>Cdk7</td>
<td>cyclin H</td>
<td>CDC2, Cdk2/4/6</td>
<td>CAK</td>
</tr>
<tr>
<td>Cdk8</td>
<td>cyclin C</td>
<td>RNA pol II</td>
<td>Transcript. Regulation</td>
</tr>
<tr>
<td>Cdk9</td>
<td>cyclin T</td>
<td>pRb, MBP</td>
<td>G1/S</td>
</tr>
</tbody>
</table>
1.6.2.2 Cdk Inhibitors (CKIs)

The activity of cyclin-Cdk complexes are negatively regulated by Cdk inhibitors (CKI), which in turn act in response to growth inhibitory signals. Based on structural and functional homologies (Corn and El-Deiry, 2002), CKIs are classed into two families, the inhibitors of Cdk4 (INK4) or the kinase inhibitor proteins (CIP/KIP) (Vidal and Koff, 2000).

The CIP/KIP family consists of three proteins: namely p21WAF1/CIP1, p27KIP1 and p57KIP2. These molecules prevent cell cycle progression and exert their influence during most periods of the cell cycle by binding directly to the Cdk/cyclin complex to inhibit their activity (Vidal and Koff, 2000). While the CIP/KIP CKIs bind all Cdk, their affinity is much lower for Cyclin B/Cdk1.

More recent studies have demonstrated that CIP/KIP proteins are required for the assembly of active CyclinD/Cdk enzyme complexes. Thus, although they were initially recognized as inhibitors, the CIP/KIP proteins actually appear to have both positive and negative regulatory effects on G1 cell-cycle progression. This is in part influenced by their stoichiometry with the kinase complexes and the regulation of their expression by cell-cycle checkpoints or cell-cycle position (Corn and El-Deiry, 2002).

In contrast to the CIP/KIP family of CKIs, the inhibitory activities of INK4 are restricted to Cdk4 and Cdk6 (Ruas and Peters, 1998). As a consequence, the INK4 family is thought to play a major role in G1/S arrest. This family of CKI includes p15INK4B, p16INK4A, p18INK4C and p19INK4D (Ruas and Peters, 1998).

1.6.2.3 The p53 tumour suppressor protein

The p53 tumour suppressor protein plays a pivotal role in preventing cancer development by acting as a critical transcription factor to induce cellular cycle arrest to initiate repair mechanism and when damage is irreparable it will activate apoptosis (Le and Richardson, 2002).

Many stress factors can initiate the stabilization, accumulation and activation of p53. These include DNA damage, decreased dNTP levels, hypoxia, loss of a cell survival signal, oncogene activation, abnormal cell growth and, more recently, iron chelation (Fuchs et al., 1988; Linke et al., 1996; An et al., 1998; Vousden and Woude, 2000).

Once activated, p53 can initiate the transcription and subsequent expression of various downstream genes that commit the cell to differentiation, senescence, DNA repair, cellular
arrest and/or apoptosis (Table 1.2) (Vousden and Woude, 2000). Consequently, p53 transcription, translation, protein stabilization, subcellular localization and activation are tightly regulated.

Murine double minute-2 (mdm-2) protein acts as an ubiquitin ligase to mediate p53 degradation (Honda et al., 1997). And any increase in p53 results in increased mdm-2 expression (Honda et al., 1997) to form an auto-regulatory feedback loop.

Several pathways can activate and stabilize p53:
- For instance DNA damage caused by cells exposure to ionising radiation leads to the expression of the ataxia telangiectasia mutated (ATM) protein and check-point kinase 2 (CHK2) phosphokinase which stabilize p53 by phosphorylation (Carr, 2000).
- Other forms of DNA damage (e.g. chemotherapeutic drugs, ultraviolet light or protein kinase inhibitors) can stabilize p53 by phosphorylation via the ataxia telangiectasia-related (ATR) phosphokinase (Tibbetts et al., 1999).
- On the other hand, oncogenes such as c-myc and ras, can increase the levels of p53 via the expression of the alternative reading frame of the INK4A locus (ARF) protein (Sherr, 2000; Elliott et al., 2001; Lin and Lowe, 2001).

As a result of cellular damage, either p53 or mdm-2 can be post-translationally modified to stabilize p53 for nuclear accumulation (Le and Richardson, 2002).
Table 1.2 p53-inducible proteins involved in apoptosis, cell arrest and DNA repair (Le and Richardson, 2002).

<table>
<thead>
<tr>
<th>p53-inducible molecule</th>
<th>Comments</th>
</tr>
</thead>
</table>
| BAX | Well Characterised pro-apoptotic protein.
| | BAX is inactivated by bcl-2
| | Overexpression of BAX induces mitochondrial apoptosis. |
| NOXA (for damage) | Member of the bcl family of pro- and anti-apoptotic proteins.
| | Cells exposed to X-ray irradiation express NOXA to induce mitochondrial apoptosis. |
| PUMA (p53 up-regulated modulator of apoptosis) | Consists of an alpha and beta form with similar apoptosis functions.
| | Localizes to mitochondria to induce apoptosis. |
| p53AIPI (p53 mediated apoptosis inducing protein 1) | Pro-apoptotic protein.
| | Localizes to mitochondria to induce apoptosis.
| | Requires p53 to be phosphorylated at serine 46. |
| p53 DINPI (p53-dependent damage-inducible nuclear protein 1) | Apoptosis induced after double-stranded DNA breaks via p53AIPI expression.
| | This protein is associated with the phosphorylation of p53 at serine 46 to initiate apoptosis |
| p21 WAF1/CIP1 | Cell cycle inhibitor of the CIP//KIP family.
| | Can arrest cell during all stages of the cell cycle. |
| GADD45 | Protein causes cellular arrest and DNA excision repair |
| p53R2 (p53-inducible R2) | Shares 80% homology to R2.
| | This protein is probably required for RR activity during DNA repair |
| MDM-2 | Involved in the targeting of p53 via ubiquitination for proteasomal degradation. |
1.6.3 Ribonucleotide Reductase

Ribonucleotide reductase (RR) is a ubiquitous radical-containing enzyme, which belongs to a family of enzymes that are involved in the conversion of both purine and pyrimidine ribonucleotide diphosphates into their corresponding deoxyribonucleotide (dNTPs) by replacing the C2'-hydroxyl group on the ribose moiety by a hydrogen atom. After phosphorylation, the resulting molecules are the precursors needed for DNA replication, cell cycle progression and cellular repair (Fig. 1.11) (Cerqueira et al., 2007).

The discovery of this enzyme was reported in 1961 by Peter Reichard. The first RR enzyme was discovered in *E. coli* but later on it was found in all growing cells of every living organism and even several species of viruses carry their own copy of RR (Jordan and Reichard, 1998).

All RR enzymes contain two components; an R1 subunit i.e. the reductase component that is involved in the binding of ribonucleotides and allosteric effectors, and an R2 subunit i.e. the radical generator, that contains a tyrosyl radical that is stabilised by iron (Fig. 1.11) (Thelander and Reichard, 1979; Thelander et al., 1983; Guittet et al., 2001; Shao et al., 2004). The R1 subunit is somewhat similar between all RR classes, whereas the R2 subunit is not the same within all the RR enzymes and is deeply buried inside the protein, in order to be protected from the environment (Cerqueira et al., 2007).

The RR enzyme is classified into three classes (Yu et al., 2009):

- **Class I RRs** are found in all eukaryotic organisms and in some prokaryotic and viruses (Yu et al., 2009). They are characterized by a tyrosyl radical that is stabilized by an oxo-bridged binuclear Fe$^{+3}$ complex and requires oxygen for its generation. This class is further divided into three subclasses (Ia, Ib and Ic) based on polypeptide sequence homology and allosteric behaviour (Jordan et al., 1994). Human RR is a tetramer that belongs to class Ia (Yu et al., 2007).

- **Class II RRs** are restricted to prokaryotes (both aerobic and anaerobic) whereas class III RRs, only function in anaerobic conditions. (Cerqueira et al., 2007).

For the purpose of my thesis, RR is referred to as human RR i.e. Class Ia.
1.6.3.1 Ribonucleotide Reductase regulation
The levels and activity of RR are highly regulated by the cell cycle and DNA checkpoints which maintain optimal dNTP pools required for genetic fidelity. The enzyme can be regulated by two factors: by transcription of the genes or by allosteric control of RR by triphosphate effectors. The genes of each subunit are located on separate chromosomes and the corresponding mRNAs are similarly expressed during the S-Phase of the cell cycle.

During the normal cell cycle the levels of the R1 protein do not change substantially and can be detected throughout the whole cycle. In contrast, protein R2 can only be truly detected between the S phases, where it slowly accumulates, up to late mitosis, where it is rapidly degraded. This mechanism ensures an adequate supply of dNTPs for replication and/or repair during the S and G2 phase of the cell cycle.

Recently, Guittet et al (2001) found that when DNA damage occurs, a transcriptional induction of a new protein called p53R2 is observed in a p53-dependant manner (Thelander and Reichard, 1979; Thelander et al., 1983; Guittet et al., 2001; Shao et al., 2004). It has been reported that there is also an additional p53-independent induction of p53R2, because cells with mutated p53 still express this molecule in response to DNA-damaging agents. In fact, p53R2 can be a transcriptional target of the p53 family member, p73 (Nakano et al., 2000). Furthermore, it has been demonstrated that protein R1 can form a functional complex either with protein R2 or protein p53R2. Therefore, R2 protein appears to be responsible for the maintenance of dNTPs levels for replication in S/G2 phase, whereas p53R2 is responsible for production of dNTPs in response to DNA damage (Cerqueira et al., 2007) in G0/G1 phase (Renton and Jeitner, 1996).

1.6.3.2 Ribonucleotide Reductase and iron
A series of reactions between the di-iron centre and tyrosyl radicals of the R2 subunit and conserved cysteine residues of the R1 subunit are required before effective catalysis takes place (Ke and Costa, 2006).

The mechanism by which the substrate-binding site of the R1 subunit is activated involves the generation of radicals at the tyrosine residues of the R2 subunit (Kolberg et al., 2004). These radicals are subsequently transferred to the cysteine residues in the active site of the R1 subunit (Kolberg et al., 2004). The role of iron in this process is the generation of tyrosyl radicals in the R2 subunit through reactions with molecular oxygen (Kolberg et al., 2004). Once the radicals have been formed, iron is also involved in the radical transfer chain formed between the R1 and R2 subunit (Levy et al., 1995).
In the absence of a constant supply of iron to R2, the R1 subunit is inactive and thus, RR cannot function (Thelander and Reichard, 1979; Thelander et al., 1983), therefore the activity of RR is iron-dependent (Le and Richardson, 2002). Both the R2 and p53R2 subunits possess an iron-binding site that is important for their enzymatic function (Shao et al., 2004), and hence are susceptible to the action of iron chelators (Nyholm et al., 1993; Cooper et al., 1996).

In comparison to several key enzymes, RR shows the greatest increase in activity in tumours compared to normal cells (Witt et al., 1978; Takeda and Weber, 1981). This means that this Fe-containing enzyme is an important target for anti-tumour drugs.

The potential of RR as a therapeutic target for the treatment of cancer is illustrated by the cytotoxic drug hydroxyurea (HU) that acts to scavenge the tyrosyl radical of this enzyme (Nyholm et al., 1993). However, HU has limited potency due to its short half-life, low affinity for RR, and the development if HU resistance (Beckloff et al., 1965; Gwilt and Tracewell, 1998).

Therefore, iron chelation may provide an alternative mechanism to inhibit RR activity in HU-resistant tumours. In fact, in vitro studies have shown that some chelators that are RR inhibitors can overcome HU-resistance via their ability to bind iron (Green et al., 2001). Indeed, several iron chelators such as pyridoxal isonicotinoyl hydrazone (PIH), deferoxamine, and thiosemicarbazone derivatives inhibit enzymatic activity, either by chelation of the cofactors, which precludes the incorporation of the cofactor in the enzyme or directly at the enzyme-bound metallic center. The success of these iron chelators, particularly DFO (Deferrioxamine mesylate; Desferal®, Novartis, Switzerland), Triapine (3-aminopyridine-2-carboxaldehydethiosemicarbazone) and 2-hydroxy-1-naphthyl-aldehyde-isonicotinoyl hydrazone (van Reyk et al., 2000) in in vitro, in vivo and in some clinical trials, together with their selective antitumour activity, confirms their potential as anti-cancer drugs (Cerqueira et al., 2007). This is discussed in more detail below.
Figure 1.1: The Structure of protein R1 and R2 of Ribonucleotide reductases (RR) and the reaction that provides the building blocks for DNA in all living cells. (Adapted from Cerqueira et al., 2007).
1.6.4 Cell Growth Regulation in cancer

Human neoplasms develop following the progressive accumulation of genetic and epigenetic alterations to oncogenes and tumour suppressor genes. These alterations confer a growth advantage to the cancer cell. Genes that are altered in neoplasia affect three major biologic pathways that normally regulate cell growth and tissue homeostasis, i.e. the cell cycle, apoptosis, and differentiation (Corn and El-Deiry, 2002).

1.6.4.1 Disturbance of cell-cycle control in oncogenesis

As mentioned above, the fundamental task of the cell cycle is to ensure that DNA is faithfully replicated once during S phase and that identical chromosomal copies are distributed equally to two daughter cells during M phase (Heichman and Roberts, 1994; Wuarin and Nurse, 1996). However, defects in cell cycle control may lead to abnormal proliferation of cancer cells. Indeed, two regulatory pathways of the cell cycle that are disrupted in virtually all human tumours are the p53- and Rb-dependent pathways (Corn and El-Deiry, 2002).

Oncogenic alterations of the components of pRB-dependent pathway such as cyclins, Cdns and CKIs, have been reported in more than 90% of human neoplasms and are summarized in Table 1.3 (Elsayed and Sausville, 2001).

- The cyclin D1 gene is induced by various oncogenic signals including activating mutations in ras, src, and mitogen-activated protein kinases (MAPK) (Albanese et al., 1995; Lee et al., 1999). Cyclin D1 promotes transformation and malignancy (Daksis, Lu et al., 1994; Lovec, Grzeschiczek et al., 1994), and in transgenic mice it facilitates development of breast adenocarcinoma (Wang et al., 1994) and lymphoma (Bodrug et al., 1994). It is also associated with higher incidence of recurrence in head and neck cancers (Michalides et al., 1995).

- Cyclin E dysregulation is associated with hyperproliferation and malignant transformation (Keyomarsi and Herliczek, 1997). Overexpression of cyclin E correlated well with breast tumour aggressiveness and independently predicted the risk of distant visceral relapse (Kim et al., 2000).

- Inactivation of the CKIs p16 or p21 by mutation, deletion, or p53-mediated inactivation might result in aberrant activity of Cdns, and in turn phosphorylation within activation of pRB. The loss of p16^{INKA}, p27^{KIP1}, and p21^{WAF1} was a predictor of poor outcome in several
tumour types (Tsihlias et al., 1999). Similarly, mutations in the p53 gene are found in more than half of all human cancers, and the ‘p53 pathway’ appears to be disrupted in the vast majority of the remaining tumours. Loss of p53 function has consequences on pathways of cell-cycle control (p21^{Cip/Waf1}, 14-3-3 sigma), DNA repair (Gadd45, p53R2) and apoptosis (Bax, KILLER/DR5, p53AIP1) (Vogelstein et al., 2000).
Table 13. Abnormalities of cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in various human cancers (Elsayed and Sausville, 2001)

<table>
<thead>
<tr>
<th>Cyclin/Cdk/CKI</th>
<th>Phase/activity</th>
<th>Tumour types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclin D1</td>
<td>G1</td>
<td>Lymphoma, mantle cell lymphoma 95%, breast 35%-81%, esophagus 40%, lung 10%-20%, parathyroid, myeloma, head and neck 40%, sarcoma 33%, hepatocellular 10%, bladder 15%</td>
</tr>
<tr>
<td>Cyclin D2</td>
<td>G1</td>
<td>Colorectal, testicular, CLL</td>
</tr>
<tr>
<td>Cyclin D3</td>
<td>G1</td>
<td>Lymphoma 50%, ALL 50%, retinoblastoma</td>
</tr>
<tr>
<td>Cyclin K (D-like)</td>
<td>G1</td>
<td>Kaposi sarcoma</td>
</tr>
<tr>
<td>Cyclin E</td>
<td>late G1, early S</td>
<td>Colorectal, breast, prostate, ovarian, gastric, lung, CLL, renal, pancreatic</td>
</tr>
<tr>
<td>Cyclin E2</td>
<td>G1/S</td>
<td>Breast, small cell lung, cervical</td>
</tr>
<tr>
<td>Cyclin B1</td>
<td>G2/M</td>
<td>Colorectal, breast</td>
</tr>
<tr>
<td>Cyclin A</td>
<td>mid S/G2</td>
<td>Hepatocellular, breast</td>
</tr>
<tr>
<td>Cdk2</td>
<td>G1/S</td>
<td>Colorectal</td>
</tr>
<tr>
<td>Cdk4</td>
<td>G1/S</td>
<td>Sarcoma 8%-36%, glioma 10%, melanoma, Colorectal, breast</td>
</tr>
<tr>
<td>Cdk6</td>
<td>G1/S</td>
<td>Glioma</td>
</tr>
<tr>
<td>p16<sup>INK4</sup></td>
<td>inhibits Cdk4/6</td>
<td>Melanoma, ALL 30%, bladder 30%, head and neck 10%, lung 30%, breast, ovary 20%, esophagus 30%, pancreas 40%, glioma 50%, mesothelioma 50%, nasopharyngeal 40%, sarcoma 10%, biliary tract 50%</td>
</tr>
<tr>
<td>p15<sup>INK4</sup></td>
<td>inhibits Cdk4/6</td>
<td>Melanoma, T-cell ALL, lung, head and neck</td>
</tr>
<tr>
<td>p21<sup>WAF1/CIP1</sup></td>
<td>inhibits all Cdk</td>
<td>Brain, colorectal, leukemia, melanoma</td>
</tr>
<tr>
<td>p27<sup>kip</sup></td>
<td>inhibits all Cdk</td>
<td>Breast, colon, melanoma</td>
</tr>
</tbody>
</table>
1.6.4.1.1 Disturbance of apoptotic pathway in oncogenesis

In normal tissues, there is a tightly regulated balance between cellular proliferation and cellular death. If this balance is disturbed, tumours may develop.

While increased cellular proliferation has long been regarded as the predominant cause of neoplasia, in more recent years a growing body of evidence supports the alternative hypothesis that cancer cells survive because they fail to undergo normal apoptosis, or programmed cell death (Corn and El-Deiry, 2002).

Apoptosis involves an orchestrated series of biochemical events leading to cell death (Lawen, 2003). There are two principal molecular pathways that signal apoptosis by cleaving the initiator caspases; the intrinsic mitochondrial pathway and the extrinsic death receptor pathway:

- The mitochondrial pathway is triggered by a number of stimuli, such as DNA damage, ischemia and oxidative stress (Lawen, 2003). This pathway is initialized with the permeabilisation of the mitochondrial outer membrane leading to protein release, such as cytochrome c and apoptosis-inducing factor (AIF) (Lawen, 2003). The release of cytochrome c leads to the induction of Apaf-1 that activates caspase-9 by the formation of the apoptosome. Caspase-9 then proceeds to activate caspases-3 and -7 resulting in the induction of apoptosis (Lawen, 2003). Permeability of the mitochondrial membrane is regulated by the Bcl-2 family of proteins that consist of pro-apoptotic molecules (Bax, Bid, Bad, Puma and Bim) and anti-apoptotic molecules (Bcl-2 and Bcl-xL). Apoptosis induced by p53 is mediated through the mitochondrial pathway and is linked to pro-apoptotic signals directed from certain Bcl-2 members. For example, Bax is a p53-induced pro-apoptotic molecule and the loss of p53, which is common in human tumours, results in decreased Bax activity (Amundson et al., 1998; LaCasse et al., 1998).

- The second major apoptosis pathway is the death-receptor pathway (Hengartner, 2000). Examples of cell-surface death receptors are Fas/APO1/CD95, tumour necrosis factor receptor-1 (TNFR1), and KILLER/DR5, and their natural ligands are FasL, TNF, and TRAIL respectively. When these receptors are engaged by their ligands, they aggregate to form a potent death-inducing signaling complex (DISC) that uses an adaptor protein (e.g., FADD) to recruit and activate caspase-8, which in turn activates caspase-3 to carry out the remainder of the death program.
There is cross talk between the death-receptor and mitochondrial pathways through Bid, a proapoptotic Bcl-2 member that is cleaved by caspase-8 and translocates to the mitochondria to enhance cytochrome c release. The death-receptor pathway is subject to regulation by Fas (DcR3), TRAIL (TRID and TRUNDD), c-FLIP, and IAPs (inhibitors of apoptosis) (for review see Corn and El-Deiry, 2002).

1.6.4.1.2 Disturbance of apoptotic pathway in skin hyperproliferative diseases

Skin cancer and hyperproliferative disease such as psoriasis are the most notable examples of that involve decreased keratinocytes’ (KC) apoptosis. A common feature of these diseases is expression of Survivin (Bowen et al., 2004). Survivin is generally not expressed in normal skin. Interestingly, in psoriasis survivin expression is localized to the upper third of the epidermis, whereas in actinic keratoses (AK), basal-cell carcinoma (BCC), and squamous-cell carcinoma (SCC) reveal staining in all epidermal layers (Bowen et al., 2004).

In psoriasis, there is decreased spontaneous KC apoptosis in lesional skin (Laporte et al., 2000), which correlates with decreased levels of caspase-14 (Lippens et al., 2000). KCs in psoriatic plaques exhibit a phenotype reminiscent of that of senescent KCs, characterized by resistance to apoptosis compared with normal KCs and lack of p53 activation (Wrone-Smith et al., 1997; Qin et al., 2002). In addition to Survivin, multiple studies consistently demonstrated increased levels of Bcl-xL in psoriasis (Fukuya et al., 2002).

Non-melanoma skin cancers (e.g. SCC and BCC) demonstrate multiple examples of apoptotic dysregulation in which proapoptotic regulatory molecules are reduced or antiapoptotic molecules are overexpressed. Mutation or deletion of p53 occurs in many skin cancers. Moreover, in BCC there is a concomitant decrease in Bax expression (Tomkova et al., 1998) that coincides with increased Bcl-2 expression (Morales-Ducret et al., 1995). In addition, Bcl-xL is overexpressed in SCC (Wrone-Smith et al., 1999). The presence of Survivin in pre-malignant lesions (Bowen et al., 2004) suggests that its expression represents an early step in KC transformation. In SCC, expression of Bcl-2 (Hantschmann and Kurzl, 2000; Matsumoto et al., 2001), Bcl-xL (Matsumoto et al., 2001), and Survivin (Lo Muzio et al., 2001) is associated with metastasis or poor prognosis (Raj et al., 2006). These dysregulations have important implications for cancer therapies. Since it has been shown that cells with inactivated p53 or Bax could be resistant to chemotherapy (Bunz et al., 1999; Zhang et al., 2000).
1.6.4.1.3 Disturbance of cell differentiation in oncogenesis

Cellular differentiation as a biologic process appears to be quite distinct from the cell cycle or apoptosis. However it is closely linked to both processes. Differentiation entails a definitive withdrawal from the cell cycle, thus cells that cannot arrest will not be able to differentiate. The two cell-cycle proteins that have been closely linked to differentiation are pRb and p21Cip/Waf1 (Corn and El-Deiry, 2002). Additionally, there is an important relationship between dysregulated apoptosis and abnormal differentiation (Corn and El-Deiry, 2002). Indeed using the small intestine as a model, differentiation and apoptosis have been linked as integral pathways for normal cellular homeostasis. The antiapoptotic protein Bcl-2 has been proposed to be a candidate protein that inhibits differentiation (Von Wangenheim and Peterson, 2001). Cancer cells that overexpress Bcl-2 often retain their clonogenic potential when exposed to a variety of differentiating agents. This has important implications for the use of differentiation agents in cancer therapy, since many tumours overexpress Bcl-2.

Skin cancer and some pathologic disorders such as psoriasis are characterised by incomplete differentiation of the stratum granulosum and SC (Lippens et al., 2009).
1.7 Role of iron in cell cycle and related molecules

Iron depletion may alter the expression and/or function of molecules that are critical in regulating progression of the cell cycle. Some of these include: RR, cyclins, Cdk's p53, p21_{CIP1/WAF1}, p27_{Kip1}, GADD45α, hypoxia inducible factor-1α (HIF-1α), N-myc downstream regulatory gene-1 (Ndrg-1), and pRb. By altering the expression and/or function of the above molecules, iron-depletion is able to effectively inhibit the growth of tumour cells (reviewed by Yu <i>et al.</i>, 2007). Therefore iron chelation has been proposed as an alternative therapy for cancer (see section 1.9).

1.7.1 Cyclins and Cdk

As previously described, it is the regulated alterations in the availability and activity of cyclins and Cdk's that allows the transition between the cell cycle phases (Sherr, 1994).

Studies have demonstrated that iron-chelation in SK-N-MC neuroblastoma (NB) cells can markedly decrease the expression of cyclins D1, D2 and D3, while having a lesser effect on reducing the levels of cyclin A and B (Gao and Richardson, 2001). It has also been shown that there was a reduction in cyclin A protein and its kinase activity in normal T lymphocytes after incubation with DFO (Lucas <i>et al.</i>, 1995).

A more recent study has confirmed that the mechanism of the iron-depletion-mediated reduction in cyclin D1 protein expression is due to its proteasomal degradation, there being no decrease in cyclin D1 mRNA levels (Nurtjahja-Tjendraputra <i>et al.</i>, 2007).

Iron-chelation has also been shown to reduce the expression of Cdk2 (Gao and Richardson, 2001; Chaston <i>et al.</i>, 2003) or Cdk4 (Kulp <i>et al.</i>, 1996) protein depending on the cell type. Furthermore, DFO was found to decrease the protein levels and kinase activity of p34_{cdc2} in NB cells (Brodie <i>et al.</i>, 1993). This is important, as p34_{cdc2} functions in the G2/M and potentially G1/S phase transitions, by forming complexes with cyclin A, B and E (Aleem <i>et al.</i>, 2005; Kaldis and Aleem, 2005). This may explain the G1/S and G2/M arrest seen after iron depletion under some experimental conditions. In contrast to other cyclins, cyclin E protein expression was found to be elevated in response to iron-depletion in NB cells (Gao and Richardson, 2001).

Several studies have shown that following iron-depletion, pRb becomes hypo-phosphorylated leading to G1/S arrest (Hollstein <i>et al.</i>, 1991; Terada <i>et al.</i>, 1991). Indeed, as mentioned above, iron-depletion reduces cyclin D1 and Cdk2 expression (Gao and Richardson, 2001; Chaston <i>et al.</i>, 2003; Nurtjahja-Tjendraputra <i>et al.</i>, 2007) which prevents...
cyclin-Cdk complexes formation leading to pRb hypophosphorylation that will contribute to cell G1/S arrest (Gao and Richardson, 2001). This observation was further confirmed by studies on NB cells (Gao and Richardson, 2001), human breast cancer cells (Kulp et al., 1996) and T lymphocytes (Terada et al., 1991), where iron chelation resulted in the pRb hypo-phosphorylation (Gao and Richardson, 2001; Terada et al., 1991). Hypo-phosphorylation of pRb during mid to late G1 phase by Cdk4- or Cdk6-cyclin D complexes prevents the release of transcription factor E2F1 from pRb that is necessary for cell cycle arrest (Hatakeyama and Weinberg, 1995; Weinberg, 1995).

1.7.2 p53

Iron-depletion was found to elevate the level of p53 protein expression (Fukuchi et al., 1995; Sun et al., 1997; Liang and Richardson, 2003) at the post-transcriptional level but there is no change in p53 mRNA (Fukuchi et al., 1995; Gao and Richardson, 2001). In cellular studies, it has been shown that iron-chelation induced the transactivational activity of p53 and its sequence-specific DNA binding in a dose- and time-dependent manner (Sun et al., 1997; Liang and Richardson, 2003). Many mechanisms may be involved in the p53 activation by iron depletion (Yu et al., 2007). These include: (i) an increase in the expression of p53 protein (Liang and Richardson, 2003); (ii) an increase in the conversion of latent p53 to its active DNA-binding form (Ashcroft et al., 2000); (iii) p53 phosphorylation at serine-15 which increases p53 stability and prevents mdm-2-mediated proteasomal degradation (Ashcroft et al., 2000). The elevated phosphorylation of p53 at serine-15 may indicate up-regulation of ataxia telangiectasia mutated (ATM) and/or ATM-Rad3 related (ATR) genes or proteins after iron-chelation (Ashcroft et al., 2000); (iv) other target-molecules of iron-chelation that can also increase the expression of p53, such as the transcription factor hypoxia inducible factor-1α (HIF-1α) (Golias et al., 2004). However, it is unclear which of the p53 molecular targets that are affected by iron-depletion. The expression of both \(p21^{CIP1/WAF1} \) and \(GADD45 \) mRNA are increased after iron depletion, but this occurs in both p53-dependant and independent pathways (Darnell and Richardson, 1999).
1.7.3 Cdk inhibitors

Investigations in this field have focussed on the effects of iron chelators on the more well-characterised Cdk inhibitors (e.g, p21WAF1/CIP1, p27KIP1) (Darnell and Richardson, 1999; Ashcroft \textit{et al.}, 2000; Gao and Richardson, 2001). Iron-depletion mediated by DFO and 311 markedly upregulates p21WAF1/CIP1 mRNA by a p53-independent pathway (Darnell and Richardson, 1999; Le and Richardson, 2004). This effect has been observed in a variety of cell types (Fukuchi \textit{et al.}, 1995; Darnell and Richardson, 1999; Gao and Richardson, 2001; Becker \textit{et al.}, 2003; Le and Richardson, 2003) and is relevant to the pharmacological effects of chelators as anti-tumour agents (Yu \textit{et al.}, 2007). However, p21WAF1/CIP1 protein expression decreased after iron-depletion (Fu and Richardson, 2007). This downregulation of p21WAF1/CIP1 is important, as apart from being a Cdk inhibitor and positive regulator of the cell cycle, this protein has also anti-apoptotic activity.

On the other hand, iron-depletion mediated by the iron chelator ‘mimosine’ upregulates p27KIP1 at both mRNA and protein levels (Wang \textit{et al.}, 2000; Yoon \textit{et al.}, 2002; Dong and Zhang, 2003; Wang \textit{et al.}, 2004). It was suggested that iron-depletion also increased the expression of transforming growth factor β1 (TGF- β1) (Yoon \textit{et al.}, 2002). Interestingly, the upregulation of p27KIP1 was prevented when TGF- β1 was neutralized using a TGF- β1 antibody (Yoon \textit{et al.}, 2002).

1.7.4 The growth arrest and DNA-damage-inducible genes(GADD) family

The GADD group of genes are stress response molecules comprising of GADD34, GADD45 and GADD153. Their expression is increased when cells are subjected to a stress such as nutrient deprivation (e.g., glucose, glutamine, zinc) (Carlson \textit{et al.}, 1993; Abcouwer \textit{et al.}, 1999; Fanzo \textit{et al.}, 2001) or exposed to DNA-damaging agents (e.g., peroxynitrite) (Oh-Hashi, Maruyama \textit{et al.}, 2001) leading to cell cycle arrest and/or apoptosis.

The GADD45 group of genes encodes three proteins, GADD45α, GADD45β and GADD45γ. Although these proteins are structurally-related, only GADD45α has been demonstrated to cause p53-dependent G2/M arrest and inhibit cdc2 kinase (Zerbini and Libermann, 2005). GADD45α has also been shown to interact with cell cycle regulatory molecules, such as p21CIP1/WAF1 (Kearsey \textit{et al.}, 1995), cdc2/cyclin B1 (Vairapandi \textit{et al.}, 2002) and p38 mitogen-activated protein kinase (MAPK; see section 1.7.5) (Bulavin \textit{et al.}, 2003). The GADD45α cellular activity also depends on its interacting partner. For instance,
interaction between GADD45α and p38 MAPK has been shown to regulate p53 which prevent, in part, oncogene-induced growth (Bulavin et al., 2003).

It has been suggested that GADD34 and GADD153 may directly initiate apoptosis rather than inducing cell cycle arrest (Hollander et al., 2001; Maytin et al., 2001). Overexpression of each GADD gene leads to the inhibition of growth and/or apoptosis, whereas combined overexpression of the three GADD genes causes synergistic or cooperative effects on antiproliferative activity (Zhan et al., 1994).

Interestingly, studies have demonstrated that DFO or 311-mediated iron chelation has caused a marked increase in the GADD45 mRNA expression in BE-2 neuroblastoma, SK-N-MC neuroepithelioma and K562 erythroleukemia cell lines, in a concentration- and time-dependent manners (Darnell and Richardson, 1999). Iron-depletion has also been found to increase GADD153 mRNA (Yu et al., 2007). Further studies are required to assess the GADD45 protein level in cells after iron-depletion since one study has shown there was no appreciable increase in the GADD45 protein level in cells after iron-depletion (Gao and Richardson, 2001).

Similarly, both GADD45 and GADD153 mRNAs have been found to be up-regulated during hypoxia (Price and Calderwood, 1992). This suggests that the transcription factor HIF-1α plays a role in the up-regulation of these genes that may be activated by both hypoxia and iron-chelation via prolyl hydroxylases (see section 1.7.5).

It has been suggested that GADD45 may cause growth arrest by inhibiting the activity of cyclin B and Cdk2 (Vairapandi et al., 2002) and studies have demonstrated that iron-chelation causes a reduction in the expression of these regulatory molecules (Gao and Richardson, 2001).

1.7.5 p38 MAPK

The p38 MAPK signalling molecule is a member of the MAPK family which also includes extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase/stress-activated protein kinase (JNK/SAPK). These proteins affect processes such as cell differentiation and apoptosis and are activated by many environmental stresses and inflammatory cytokines (Bulavin et al., 2003).

It has been shown that iron-chelation with DFO strongly activated p38 MAPK and ERK, but did not activate JNK (Lee et al., 2006).
Interestingly, growth inhibition mediated by p38 has been suggested to involve p53 activation (Bulavin et al., 1999) and reduce cyclin D1 expression (Lavoie et al., 1996), both of which also occur upon iron-chelation (Fukuchi et al., 1995; Kulp et al., 1996; Gao and Richardson, 2001; Nurtjahja-Tjendraputra et al., 2007).

1.7.6 Hypoxia inducible factor-1 (HIF-1)

HIF-1 is a transcription factor that is activated under hypoxic conditions and acts to initiate a signalling pathway leading to cell survival (Semenza, 1999; Greijer et al., 2005). This protein is a heterodimer composed of an “α” subunit which is regulated by the hypoxic state, and a “β” subunit which is constitutively expressed (Wang et al., 1995). Under normal conditions, HIF-1α is regulated by prolyl hydroxylase enzymes (Ivan et al., 2001; Stockmann and Fandrey, 2006) which mediates its degradation (Semenza, 1999; Ivan et al., 2001; Greijer et al., 2005). However, under conditions of oxygen-deprivation and/or iron-depletion, prolyl hydroxylases does not function, causing HIF-1α accumulation in the cell (Ivan et al., 2001; Stockmann and Fandrey, 2006). HIF-1α then translocates to the nucleus where it binds to HIF-1β to form the HIF-1 complex (Wang et al., 1995; Caro, 2001).

Once formed, HIF-1 can upregulate TfR1 transcriptionally (Bianchi et al., 1999; Tacchini et al., 1999) leading to an increase in intracellular iron levels. HIF-1 can also target Ndrg-1 (see section 1.7.7) (Kovacevic and Richardson, 2006). Moreover, under conditions of severe hypoxia, HIF-1α can stabilise p53 expression (An et al., 1998) and upregulate proapoptotic factors such as BNIP3 (Bruick, 2000; Guo et al., 2001) that may lead to apoptosis.

Iron-depletion results in the activation of HIF-1α and its down-stream targets, ultimately leading to cell cycle arrest, apoptosis, metastasis suppression and inhibition of growth (Le and Richardson, 2004). Although HIF-1α up-regulation may lead to growth and angiogenesis (e.g., through vascular endothelial factor-1 VEGF1), potent iron chelators have been shown to override this and activate apoptotic pathways (Gao and Richardson, 2001; Le and Richardson, 2004).

1.7.7 N-myc downstream regulated gene 1 (Ndrg-1)

Ndrg-1 is a metastasis suppressor gene that is involved in cell differentiation and proliferation (Bandyopadhyay et al., 2004; Kovacevic and Richardson, 2006; Maruyama et
Iron-chelation markedly upregulates Ndrg-1 mRNA and the expression of the protein in a number of cancer cell types. It has been found that in prostate cancer patients, high expression of Ndrg-1 is associated with greater survival and less aggressive tumours (Bandyopadhyay et al., 2003). Additionally, in pancreatic adenocarcinoma patients, there is a significant inverse correlation of Ndrg-1 expression with depth of invasion (Maruyama et al., 2006). Moreover, in breast and prostate cancer patients with lymph node or bone metastasis, Ndrg-1 expression was significantly reduced when compared to those with localized disease (Bandyopadhyay et al., 2003; Bandyopadhyay et al., 2004). Furthermore, studies in vivo and in vitro have demonstrated that over-expression of Ndrg-1 protein results in smaller tumours that are less aggressive (Kurdistani et al., 1998; Bandyopadhyay et al., 2003; Maruyama et al., 2006). Hence, the up-regulation of Ndrg-1 after iron depletion may, in part, play an important role in inhibiting the proliferation observed after treatment with these agents.

The Ndrg-1 expression in normal breast epithelial cells was found to be high during G1 and G2/M phases and low during the S-phase, suggesting a potential role in regulating the cell cycle. In contrast, in breast cancer cells, Ndrg-1 levels remains constant throughout the cell cycle (Kurdistani et al., 1998).

It has been suggested that Ndrg-1 plays a role in cell cycle regulation. Analysis of the nucleotide sequence of the Ndrg-1 promoter has revealed a motif for the transcription factor E2F1 (Kovacevic and Richardson, 2006), which plays a pivotal role in the G1 to S-phase transition. Furthermore, it has been found that Ndrg-1 was induced by p53 following DNA damage, which suggests that Ndrg-1 is necessary for p53-dependent apoptosis (Stein et al., 2004).

Recently, it has been found that DFO, 311 and Dp44mT up-regulate the Ndrg-1 level in a range of cancer cell types in an iron-dependent but p53-independent manner (Le and Richardson, 2004). Interestingly the degree of Ndrg-1 up-regulation was proportional to the efficacy of the anti-proliferative activity of the chelator assessed. Furthermore the up-regulation of Ndrg-1 following iron-chelation was found to be due to both HIF-1α-dependent and -independent mechanisms (Le and Richardson, 2004).

Since Ndrg-1 potentially plays a pivotal role in cell cycle regulation, its up-regulation following iron-chelation may be one mechanism by which iron chelators cause cell cycle arrest and apoptosis (Yu et al., 2007).
1.7.8 CDC14A

Sanchez et al. (2006) have identified a novel IRE in the 3' UTR of CDC14A mRNA that binds IRPs. Iron-chelation using DFO lead to an increase in the expression of the CDC14A transcript that contains the IRE (Sanchez et al., 2006). Interestingly, it has been demonstrated that CDC14A de-phosphorylates p27\(^{kip1}\) and cyclin E, which are critical for the G1 to S transition (Kaiser et al., 2002). Therefore, it was suggested that CDC14A may play a role in the cell cycle arrest seen after iron-chelation. However, the effect of iron-chelation on CDC14A expression was only reported at the mRNA level. Further studies are necessary to determine whether iron-depletion affects the protein expression of CDC14A.

1.7.9 Iron-depletion and apoptosis

Many studies have demonstrated the ability of iron chelators to induce apoptosis (Hileti et al., 1995). For example, DFO induced apoptosis in a number of cancer cells including ovarian cancer (Brard et al., 2006), NB (Fan et al., 2001), Kaposi’s sarcoma (Simonart et al., 2000) malignant oral KC (Lee et al., 2006) and cervical carcinomas (Simonart et al., 2002). Similarly, iron chelators such as Triapine (Alvero et al., 2006), Tachpyridine (Greene et al., 2002; Zhao et al., 2004), O-Trensox (Rakba et al., 1998) and Dp44mT (Yuan et al., 2004) have also been shown to induce apoptosis in a variety of neoplastic cell types both in vitro and in vivo.

Furthermore, it has been shown that DFO increased the activity of caspase-3, -8 and -9 (Brard et al., 2006; Lee et al., 2006; Wang et al., 2006), while Dp44mT markedly increased the activity of caspase-3 (Yuan et al., 2004). Numerous studies have demonstrated that iron chelators induce apoptosis through the mitochondrial pathway. For instance, Triapine-induced apoptosis was mediated by Bid activation (Alvero et al., 2006). Moreover, apoptosis caused by Tachpyridine was not inhibited by blocking the CD95 death receptor pathway with a Fas-associated death domain protein dominant-negative mutant (Greene et al., 2002). Furthermore, apoptosis induction by Dp44mT and DFO was associated with a reduction in Bcl-2 expression, an increase in Bax and efflux of cytochrome c from the mitochondrion (Yuan et al., 2004; Lee et al., 2006). Additionally, DFO has been found to cause the nuclear accumulation of pleomorphic adenoma gene like 2 (PLAGL2) which results in the expression of the proapoptotic factor, BNIP3 (Mizutani et al., 2002). The BNIP3 overexpression increases Bax and Bak levels which leads to the release of cytochrome c and apoptosis (Kubli et al., 2007).
It still remains unclear whether p53 accumulation upon iron-deprivation is necessary for apoptosis. For instance, incubation of cells with Tachpyridine led to rapid accumulation of p53 and death but this did not require p53 activation (Abeysinghe et al., 2001). In contrast, other mechanisms have been suggested where iron-depletion activates p38 and ERK MAPK to transduce signals for induction of the apoptotic cascade (Lee et al., 2006).

1.8 Skin Hyper-proliferative Disease

1.8.1 Skin cancer

In the United Kingdom, the incidence of skin cancer is greater than that of all other cancers. According to Cancer Research UK, it is estimated that at least 100,000 new cases are diagnosed each year (Cancer Research UK, 2008).

The common skin cancers, which are also named after the type of skin cell they arise from, are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), known together as Non-Melanoma Skin Cancer (NMSC) which is the most common cancer in UK with official figures reporting over 72400 cases diagnosed only in 2004. In addition to malignant melanoma which is substantially less common but often fatal, BCC comprises 75% of all NMSC cases. BCC may be categorized into three major growth patterns: nodular (nBCC), superficial (sBCC) and morphoeiform (or sclerotic; mBCC). Nodular BCC is the most frequent form of BCC. It usually presents as a waxy, pearly or translucent papule/nodule with overlying fine telangiectasias, with frequent ulceration or erosion of the surface. Tumours may occasionally be pigmented to varying degrees. Superficial BCC most commonly arise on the trunk and extremities, but may be seen anywhere on the body. The tumours are characterized by an erythematous macule or patch, which may be variably pigmented. There may also be an overlying fine scale, a superficial erosion or hemorrhagic scale crust. mBCC is frequently seen in chronic arsenism and as late sequelae of radiation therapy. Morpheaform or sclerosing
has a scar-like appearance. It consists of a dermal plaque with overlying epidermal atrophy in a sun-exposed distribution (Toro et al., 2009).

Squamous cell carcinoma (SCC) is the second most common type of skin cancer in this country after BCC, accounting for 20% of all skin cancers. It commonly presents as a red, scaling, thickened patch on sun-exposed skin. Some are firm hard nodules and dome shaped like keratoacanthomas. Ulceration and bleeding may occur. When SCC is not treated, it may develop into a large mass. SCC metastasis rate is quite low, with the exception of SCCs of the lip, ear, and in immunosuppressed patients.

Melanoma is the least frequent of the 3 common skin cancers. However it frequently metastasises, and is deadly once spread. Most skin cancer deaths (i.e. more than 1800 each year), are from malignant melanoma. The mortality related to melanoma has quadrupled since the 1970s and its rate has risen faster than any other cancer in the UK in the last 25 years. Melanoma is also the most common cancer in young adults aged 15-34 (Bruce and Brodland, 2000). Most melanomas are brown to black-looking lesions. Unfortunately, a few melanomas are pink, red or fleshy in colour. These are called amelanotic melanomas and tend to be more aggressive. Warning signs of malignant melanoma include change in the size, shape, colour or elevation of a mole. Other signs are the appearance of a new mole during adulthood or new pain, itching, ulceration or bleeding.

The rising incidence rates of NMSC and melanoma is probably due to a combination of increased exposure to UV light primarily from sunlight (Rigel, 2008) and from the recreational use of sunbeds, increased outdoor activities, changes in clothing style, increased longevity and ozone depletion (Bruce and Brodland, 2000).

1.8.1.1 Current therapies for skin cancer

Surgery is the most common approach with the Mohs micrographic surgery being the best treatment so far, but owing to the time and expenses involved with this procedure, it is indicated only in patients with aggressive tumours. In addition to the potential for disfigurement and the inherent risks associated with any surgical procedure (Martinez and Otley, 2001). Radiation therapy (external beam radiotherapy or brachytherapy) is also effective. However this treatment requires several sessions and is the most expensive. It is not considered for patients under 55 years because it predisposes the treated area to radiation-induced skin cancer and cosmesis can worsen over time (Neville et al., 2007).
Further non-invasive options for NMSC include topical chemotherapeutics (imiquimod or 5-fluorouracil), cryotherapy (freezing the tumour off), biological immune response modifiers (e.g. imiquimod), retinoids and photodynamic therapy (PDT), using photosensitizing porphyrin 5-ALA or the methyl ester of ALA (mALA) together with a light source in the 450–750 nm wavelength range (Neville et al., 2007).

Several regimens of chemotherapy have been clinically applied for the treatment of NMSC but have turned out to be insufficient at improving the prognosis (Cassileth and Chapman, 1996; McCann, 1997).

Treatments so far are tailored to tumour type, location, size and histological pattern but with increasing incidence of NMSC, there is a clear need to design new non-invasive treatments to target cancer cells more generally at all stages of tumourigenesis.

As mentioned previously, iron is essential for cell proliferation due to its important role in the active sites of a wide range of proteins involved in energy metabolism, respiration and DNA synthesis; and neoplastic cells, in particular, have a high iron requirement due to their rapid proliferation (Richardson and Baker, 1990; Richardson and Ponka, 1994; Le and Richardson, 2002). Moreover, in both animals and humans, primary neoplasms develop at body sites of excessive iron deposits such as skin, which is potentially the target of significant oxidative damage due to its constant exposure to high oxygen tensions, and frequent exposure to UV light. These observations, in addition to the critical roles of iron and iron proteins in cell proliferation, highlight the importance of iron chelation as a suitable therapeutic strategy for cancer treatment.

1.8.2 Psoriasis

Psoriasis is a well-recognised, chronic skin condition affecting approximately 3% of the population in the UK, commonly presenting before the age of 35 years. It is a chronic life-long condition which has significant effects on the patient’s quality of life as well as detrimentally affecting their physical and emotional well-being. Several clinical phenotypes of psoriasis are recognised, of which chronic plaque psoriasis (psoriasis vulgaris) is the most common, presenting in approximately 90% of cases. The rest of phenotypes include chronic plaque psoriasis, guttate psoriasis, pustular psoriasis, flexural psoriasis, erythrodermic psoriasis (Myers et al., 2006).
Chronic plaque psoriasis presents as slightly raised, reddish and well demarcated papulo-squamous lesions of varying dimensions, covered with silvery white scales. Peeling of the scales reveals characteristic pin-point bleeding in the underlying dermis. The lesions are usually distributed symmetrically over the body, especially presenting on the extensor aspects of elbows and knees, the scalp, genitals and soles and palms. Up to 15% of sufferers may develop a potentially destructive and disabling arthritis called psoriatic arthritis that can attack the joints, mainly the distal inter-phalangeal joints of the hands and feet.

Psoriasis is characterized by hyperproliferation of epidermal keratinocytes and hyperkeratosis (Champion, 1981; Stevenson and Zaki, 2002). The normal turnover of epidermis is between 3-4 weeks and in psoriasis this is reduced to 2-5 weeks (Champion, 1981; Stevenson and Zaki, 2002). The hyperproliferation of epidermis in psoriatic lesion leads to thickening of the superficial layers of the skin.

Psoriasis is also known to involve lymphocytic infiltration that consists mainly of T lymphocytes (Stevenson and Zaki, 2002). Activation of T lymphocytes, migration of T lymphocytes to the skin, and T lymphocyte mediated production of cytokines such as interferon gamma, interleukin-2, and tumour necrosis factor alpha is important in the pathogenesis. Interferon gamma inhibits apoptosis of keratinocytes, interleukin-2 stimulates growth of T lymphocytes and tumour necrosis factor alpha increases proliferation of pro-inflammatory cytokines and adhesion molecules. The adhesion molecules further stimulate T lymphocytes to produce cytokines.

Angiogenic factors produced by epidermal keratinocytes may also play a role in causing abnormal dermal vascular proliferation and angiogenesis, with levels of VEGF (vascular endothelial growth factor) being found to be significantly raised in psoriasis plaques. This is therefore a potential area for future research to investigate the role of angiogenic factors further.

There is a great body of evidence indicating that oxidative stress and antioxidant imbalance could play a pivotal role in the pathogenesis of psoriasis (Briganti and Picardo, 2003; Wojas-Pelc and Marcinkiewicz, 2007). It has been shown that in psoriatic lesions ROS are generated by both keratinocytes and activated inflammatory cells (mostly neutrophiles) (Pelle et al., 2005). Under such conditions the natural antioxidant defense system is overwhelmed by a prolonged production of ROS, and the resulting free radicals cause damage to proteins, lipids and DNA (Kohen, 1999). Furthermore, it has been reported that in
psoriatic skin there is a decreased level of natural antioxidants namely SOD, GPx and ascorbic acid (Trenam et al., 1992).

Interestingly, elevated iron levels have been detected in psoriatic epidermis (Trenam et al., 1992; Morris et al., 1995) and dermis (Leveque et al., 2004) that act almost certainly to exacerbate both proliferation and inflammatory sides of the disease.

Psoriasis is a relapsing remitting condition that can flare up at any time. Predisposing factors include the use of chloroquine, withdrawal of corticosteroid in a susceptible individual, emotional stress, alcohol or tobacco consumption, trauma (Köebner phenomenon), hypocalcaemia, and sunburn. Streptococcal infection can precipitate guttate psoriasis via a mechanism that involves activation of CD4+ T cells by a superantigen (Clark, 2004).

At present there is no satisfactory method to cure psoriasis. The common methods available at present to control this disease are topical therapies aided by natural sunlight or UVB in mild and moderate cases (Clark, 2004). In severe cases, the combination of photosensitizing drugs known as psoralens and UVA (PUVA) has been used, as well as systemic therapy. However since chronic plaque psoriasis is a lifelong condition, long-term therapy is indicated which limits the use of many of these therapies due to unacceptable side-effects.

Bath solutions and moisturizers, mineral oil, and petroleum jelly may help soothe affected skin and reduce the dryness which accompanies the build-up of skin on psoriatic plaques. Ointment and creams containing coal tar, dithranol (anthralin), corticosteroids like desoximetasone (Topicort), fluocinonide, vitamin D3 analogues, calcipotriol, and retinoids are routinely used. The mechanism of action of each is probably different but they all help to normalise skin cell production and reduce inflammation. Corticosteroids are most commonly prescribed agents due to their anti-inflammatory effects. However their accompanying adverse side effects such as skin thinning, iatrogenic Cushing’s disease, etc, limit their use to short term only. Vitamin D analogues, Calcitriol (the active vitamin D metabolite) and its synthetic analogues Talcacitriol and Calcipotriol, are thought to exert their effect by inhibiting KC proliferation and inducing terminal differentiation of psoriatic cell (Menter, 2009). They are used often in combination with corticosteroids as first line treatment for psoriasis. With a better long term safety profile they are much more amenable for maintenance therapy than the corticosteroids. Calcineurin inhibitors (Tacrolimus and
Pimecrolimus) are also used topically. However due to inefficient skin penetration, they are used only under occlusion or on thinner skin such as the face and genitals (Menter, 2009). Topical Retinoids such as Tazarotene are available for therapy of psoriasis, however they are only moderately effective (Menter, 2009) and cause local irritation and so are usually only used in combination with other topical therapy such as vitamin D analogues and topical corticosteroids. Tazarotenene's potential for teratogenicity precludes its use in pregnancy.

Some topical agents are used in conjunction with other therapies, especially phototherapy. PUVA photo-chemotherapy which consists of ingested psoralen (P) photosensitiser and UVA light has been shown to facilitate clearance of psoriatic plaques (James et al., 2006). PUVA is thought to modulate the expression of cellular adhesion molecules and induce T cell apoptosis (Clark, 2005). However its use is limited by its associated adverse gastro-intestinal side effects and headaches. It was also found to cause structural damage to DNA and can generate ROS such as O$_2^-$ that are clastogenic. This may contribute to the increased risk for developing SCC and melanoma in the skin of PUVA-treated patients (Bickers and Athar, 2006).

Psoriasis that is resistant to topical treatment and phototherapy is treated by systemic medications. Patients undergoing systemic treatment are required to have regular blood and liver function tests because of the toxicity of the medication. Methotrexate is the mainstay of systemic treatment for psoriasis at present. It is a folic acid antagonist and therefore works by inhibiting DNA synthesis and cell replication. Thus KC hyper-proliferation is halted. It also suppresses T-cell. However severe adverse effects of methotrexate including nephrotoxicity, bone marrow suppression and teratogenicity, limits its use long term (Clark, 2005). Cyclosporine is a calcineurin inhibitor inhibiting the synthesis and release of TH-1 and TH-2 type cytokines in T cells which play a pivotal role in the inflammatory response mechanism leading to the formation of psoriatic plaques. However as with methotrexate, severe nephrotoxicity associated with systemic cyclosporin therapy precludes its use long term, with the FDA administration recommending that cyclosporine should not be given for duration of longer than 1 year of continuous treatment (Clark, 2005). Oral Retinoids such as acitretin are vitamin A derivatives which bind to nuclear retinoid receptors altering gene transcription and returning keratinocyte proliferation and differentiation to normal. However its use is limited by its adverse effects on liver and kidney function and teratogenicity especially to women of child bearing age (Clark, 2005). One approach may be to use anti-proliferative agents either
systematically or topically but such drugs have extremely potent side-effects and their use must be strictly controlled.

In principle, RR could provide a suitable target to prevent proliferation, and topical use could minimize systemic exposure to potentially toxic molecules. Furthermore elevated iron levels have been detected in psoriatic skin that almost certainly act to exacerbate both proliferation and inflammatory side of the disease. As a result iron chelators that inhibit both RR and residual excess of iron in psoriatic skin should have great potential for the treatment of psoriasis.

1.9 Iron Chelation Therapy for Hyperproliferative Diseases

Iron chelators are ligating drugs that avidly bind iron depriving cells from essential nutrient iron (Kalinowski and Richardson, 2005). Selective iron chelators can play an important role in treating situations where a local increase in iron concentration causes an unfavourable pathology:
- For example elevated iron levels detected in psoriatic skin will almost certainly act to exacerbate both proliferation and inflammation. As a result, iron chelators that inhibit both RR and residual excess of iron in psoriatic skin should have great potential for its treatment (Singh et al., 1995; Finch et al., 2000; Chaston et al., 2003). Systemic application of iron chelators such as ICRF-159 (razoxane) was found to be remarkably successful for the treatment of psoriasis. Unfortunately, prolonged exposure of patients to such chelators was associated with high incidence of epithelioamas and leukemia (Horton et al., 1983; Horton et al., 1984).
- The higher utilization of iron by cancer cells compared to their normal counterparts provides also a rationale for the selective anti-tumour activity of iron chelator molecules. Because of the crucial role of iron in hyperproliferative diseases, ‘iron chelation therapy’ (ICT) which uses iron-trapping drugs (i.e. iron chelators) to reduce harmful levels of iron in cells, has been recognized as an attractive alternative to the existing drug-based approaches. Indeed iron chelators are powerful tools in the context of cancer and psoriasis, to prevent cell division by depleting essential nutrient iron and by inhibiting RR the key enzyme involved in DNA synthesis.
ICT should also have distinct advantages over conventional cancer chemotherapy as problems associated with resistance and unresponsive of cancer cells to such agents may be avoided (Whitnall et al., 2006).

1.9.1 Iron chelators and cancer

The selectivity of the iron chelators in the context of cancer is based upon the fact that rapidly growing tumour cells have a higher iron requirement than normal cells (Le and Richardson, 2004). Therefore these agents theoretically have little effect on normal cells while inhibiting neoplastic cell growth. Numerous studies have demonstrated that tumour cells are responsive to iron deprivation by chelation treatment (Gao and Richardson, 2001; Becker et al., 2003).

Iron chelators consist of bi-dentate, tri-dentate or hexadentate ligands in which two, three, or six atoms respectively, bind with iron (Richardson and Kalinowski, 2005). In addition to leukaemia and NB (Chaston et al., 2004; Chaston et al., 2003; Donfrancesco et al., 1990; Donfrancesco et al., 1995; Estrov et al., 1987) ICT has been shown to inhibit the growth and/or induce the apoptosis of malignant cell lines from patients with melanoma, hepatoma, Kaposi’s sarcoma and cervical cancer (Hann et al., 1990; Richardson et al., 1994; Simonart et al., 2000; Simonart et al., 2002).

1.9.1.1 Desferrioxamine (DFO)

DFO (Fig. 1.12), a hexadentate siderophore isolated from Streptomyces pilosus, is the current clinical chelator of choice for the treatment of iron overload diseases such as β-thalassemia (Kalinowski and Richardson, 2005). Interestingly, various studies have shown that DFO possess anti-proliferative activity against a wide variety of tumour cells (Buss et al., 2003; Kalinowski and Richardson, 2005; Pahl and Horwitz, 2005; Richardson, 2005). Some examples are outlined below:
- Upon DFO treatment, NB cells displayed a 10-fold higher sensitivity to iron-depletion than normal bone-marrow cells (Becton and Bryles, 1988).
- An in vitro study found 90% cell death in two NB cell lines (CHP 126 and CHP 100) and minimal effects in non-NB cells treated with DFO (Blatt and Stitely, 1987). Importantly the anti-proliferative activity of DFO was found to be due to iron deprivation (Blatt and Stitely 1987).
- A clinical trial study showed a 50% decrease in bone-marrow infiltration in 7 out of 9 NB patients, while one patient experienced a 48% reduction in tumour size (Donfrancesco et al., 1990).

- Another trial with 57 NB patients treated with DFO in combination with a series of other anti-cancer agents, including cyclophosphamide, etoposide, carboplatin and thio-TEPA, resulted in complete responses in 24 patients, 26 partial responses, 3 minor responses and 4 showing no response (Donfrancesco et al., 1995).

- A case study of an infant patient with acute leukaemia (Estrov et al., 1987) showed no rise in peripheral blood blast cell numbers after DFO administration, while an increase in the growth of normal haematopoietic progenitor cells was observed (Estrov et al., 1987).

- Animal studies demonstrated the efficacy of DFO at inhibiting the growth of tumours. For example, DFO inhibited or caused total regression of hepatocellular carcinoma xenografts (Hann et al., 1992), it inhibited the growth of mammary carcinoma transplanted in Fischer rats (Wang et al., 1999), and it prolonged the life of mice with L1210 leukemia (Yu et al., 2006).

- In addition, there are much in vitro cell culture-based studies demonstrating that DFO can inhibit tumour cell growth (for reviews see Donfrancesco et al., 1996; Richardson, 1997).

Figure 1.12: Chemical structures of free (DFO) and its complex with iron.
The anti-proliferative activity caused by iron depletion mediated by DFO is thought to be related to its effect on RR, the rate-limiting enzyme in the formation of deoxyribonucleotides for DNA synthesis. Nevertheless DFO has also a significant effect on cellular energy metabolism which was evident in a study done by Oexle and colleagues (Oexle et al., 1999) in which DFO decreased the expression of mitochondrial aconitase, citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase (Oexle et al., 1999). This resulted in decreased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation and an increase in glycolysis (Oexle et al., 1999). Other targets of DFO include proteins involved in cell cycle control which are discussed in the Aroyl Hydrazone section (section 1.9.1.3).

Despite the preclinical in vivo and in vitro studies, as well as clinical trials that gave evidence of the potential of DFO in cancer therapy; in other studies the anti-proliferative activity of DFO has not been so marked. For instance, DFO treatment failed to produce a response in 10 children with recurrent NB (Blatt, 1994). It also failed to inhibit the growth of human tumour xenografts in mice (Selig et al., 1998). The lack of an effect of DFO in these studies is probably due to its short plasma half-life and its low efficiency at permeating biological membranes (Frazer et al., 2005; Mims and Prchal, 2005; Dunn et al., 2006). Such studies highlight the fact that DFO was never designed for cancer treatment but rather for the therapy of iron overload diseases. Moreover DFO is expensive to produce and not suitable for topical application, since it is hydrophilic in nature (the calculated n-Octanol-Water partition coefficient \(\log P_{\text{calc}} = -0.14 \)) and therefore suffers from poor plasma membrane permeability.

In cellular studies, it has been shown that DFO takes several hours to enter the cells via the slow process of endocytosis. Then it is transported into the lysosomal compartment where it remains intact (i.e. undegraded) and acts as a sink for iron, decreasing rapidly the cytosolic LIP (Lloyd et al., 1991; Glickstein et al., 2005; Kurz et al., 2006; Kurz et al., 2008). Furthermore prolonged exposure to DFO provokes severe iron starvation in cells, resulting in removal of essential iron from various sites including iron-containing enzymes leading to clinical complications (Porter and Huehns, 1989). At the cellular level, prolonged DFO treatment results in cell cycle arrest and cell death (Doulias et al., 2003; Yu et al., 2006). As a result of DFO limitations, there is a great need to develop more effective iron chelators for cancer therapy.
1.9.1.2 Thiosemicarbazones

The thiosemicarbazone class of chelators were one of the first groups of ligands to be characterised for potent anti-tumour activity (Sartorelli and Booth, 1967; Sartorelli et al., 1971; Antholine et al., 1977; Agrawal and Sartorelli, 1978). The best characterised member of this family of chelators is the 3-aminopyridine-2-carboxyaldehyde thiosemicarbazone (Triapine®, Fig. 1.13; Vion Pharmaceuticals Inc, New Haven, CT).

Triapine®; is a tridentate chelator that ligates iron via a sulfur and two nitrogen donor atoms. It is the one of the most potent RR inhibitors (Wadler et al., 2004). Unlike the clinically used RR inhibitor, hydroxyurea, that inhibits R2 only, Triapine can equally inhibit both R2 and p53R2 (Shao et al., 2004) preventing DNA repair and synthesis (Shao et al., 2006) both in vivo and in vitro (Finch et al., 2000; Chaston et al., 2003; Shao et al., 2006). Triapine exerts its antiproliferative activity mainly by forming a complex with iron. The Triapine-iron complex is redox active (Chaston et al., 2003), and has been shown to be more active at inhibiting RR than free Triapine. Indeed Triapine forms a complex with Fe$^{3+}$, which is then reduced to Fe$^{2+}$ that acts as a catalyst to form ROS. The generated ROS quench the RR tyrosyl radical and cause its inactivation (Shao et al., 2006).

Over the last few years, Triapine® has been developed as an anti-cancer agent and is currently undergoing Phase I and II clinical trials (Gojo et al., 2007; Knox et al., 2007; Mackenzie et al., 2007).

In a Phase I clinical trial conducted in 21 patients, a decrease in tumour markers associated with stable disease was observed in four patients (Wadler et al., 2004) (Table 1.4). Triapine® administered at a dose of 120 mg/m2/day once per fortnight was well-tolerated, but at 160 mg/m2/day, 3 out of 6 patients suffered from toxic effects including anaemia, thrombocytopenia, leucopenia and met-haemoglobinemia (Wadler et al., 2004). One trial reported that patients with deficiencies in glucose-6-phosphate dehydrogenase (G6PD) experienced severe met-haemoglobinemia and hemolysis after Triapine® treatment (Foltz et al., 2006). Another Phase I clinical trial demonstrated that Triapine® administered by infusion had anti-leukaemia activity (Gojo et al., 2007). Although no patients were observed to have complete or partial remission, 76% of patients were found to have a > 50% decrease in white blood cell counts (Gojo et al., 2007).

A Triapine® dose of 96 mg/m2 administered using daily 2 h infusions for 5 days every other week was found to be well-tolerated. However one patient developed met-
haemoglobinemia, diarrhoea, dyspnoea and hypoxia when triapine was administered at a dose of 85 mg/m2 twice daily by the same schedule, (Gojo et al., 2007).

A Phase II clinical trial of Triapine® in patients with metastatic renal cell carcinoma demonstrated that when patients were administered with 2 h infusions of 96 mg/m2 Triapine® every 2 weeks, adverse effects were observed including fatigue, nausea and vomiting in 74%, 68% and 58% of patients, respectively (Knox et al., 2007). Adverse events of greater severity, such as neutropenia, hypoxia, hypotension and met-haemoglobinemia were also noted. Consequently, only 47% of patients received at least 90% of the planned Triapine® dose (Knox et al., 2007). The study was early terminated due to a failure to meet minimal efficacy criteria (Knox et al., 2007).

Another recent two-step Phase II clinical trial examined the anti-tumour activity of Triapine® in combination with gemcitabine in patients with advanced pancreatic adenocarcinoma (Mackenzie et al., 2007). Patients were treated with Triapine® at 105 mg/m2 over a 2 h infusion. Gemcitabine was subsequently administered 4 h after the Triapine® infusion at 1000 mg/m2 and this treatment schedule was given on days 1, 8 and 15 of a 28-day cycle (Mackenzie et al., 2007). Of the 25 patients assessed, 4 discontinued treatment due to adverse effects including myocardial infarction, hypertension, vomiting and hypoxia. While no objective responses were observed, 11 patients had stable disease. However, this two-stage trial was stopped after stage 1 due to the lack of anti-tumour activity (Mackenzie et al., 2007).

Triapine® continues to be examined in clinical trials, particularly in combination with standard chemotherapy drugs. However, the deleterious effects associated with it must be considered when designing future studies with compounds of this class.

![Figure 1.13 Chemical structures of 3-aminopyridine-2-carboxaldehyde (3-AP or Triapine) (Yu et al., 2006).](image-url)
Table 1.4: Summary of clinical trials with DFO and Triapine (Yu et al., 2006).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of patients</th>
<th>Outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFO</td>
<td>9 patients with NB</td>
<td>7 patients showed decrease in bone marrow infiltration; 1 patient showed a 50% reduction in tumour mass</td>
<td>Donfrancesco et al., 1995</td>
</tr>
<tr>
<td>DFO</td>
<td>10 children with recurrent NB</td>
<td>No partial or complete responses, although decreased serum ferritin were noted in 4 patients</td>
<td>Blatt, 1994</td>
</tr>
<tr>
<td>DFO</td>
<td>14 patients with advanced hormone-refractory prostate cancer</td>
<td>13 patients had disease progression, although 9 had stable measurable or evaluable disease</td>
<td>Dreicer et al., 1997</td>
</tr>
<tr>
<td>DFO</td>
<td>23 patients with advanced NB and 2 patients with PNET</td>
<td>In previously untreated patients, there were 15 complete responses and 2 partial responses. In patients who had a different drug regimen previously, there were 2 very good partial responses and 4 partial responses. Median survival for most patients was 22 mo</td>
<td>Donfrancesco et al., 1995</td>
</tr>
<tr>
<td>D-CECaT</td>
<td>57 patients with advanced NB</td>
<td>Following four treatment courses, almost all patients underwent surgery. After surgery there were 24 complete responses, 26 partial responses, 3 minor responses and 4 with disease progression</td>
<td>Donfrancesco et al., 1995</td>
</tr>
<tr>
<td>DFO</td>
<td>7 patients with inoperable hepatocellular carcinoma</td>
<td>Compared with 5 untreated patients, the treated patients had a longer survival rate, increased tumour regression and less progressive disease</td>
<td>Kountouras et al., 1995</td>
</tr>
<tr>
<td>DFO</td>
<td>9 patients with refractory malignant disease</td>
<td>Partial responses were observed in 2 of 4 patients with refractory non-Hodgkin's lymphoma</td>
<td>Voest et al., 1993</td>
</tr>
<tr>
<td>Triapine</td>
<td>27 patients with advanced cancer</td>
<td>8 patients experienced stabilization of disease for 2-4 mo, the remaining patients experienced progression. No objective tumour responses were observed</td>
<td>Feun et al., 2002</td>
</tr>
<tr>
<td>Triapine</td>
<td>24 patients with refractory leukemia</td>
<td>No patient had an objective response. Over 70% of patients had >50% reduction of WBC count</td>
<td>Giles et al., 2003</td>
</tr>
<tr>
<td>Triapine</td>
<td>32 patients with different tumour types</td>
<td>No partial or complete responses were observed; 5 patients showed a positive antitumour effect, in which 2 achieved disease stabilization; 4 of the 5 patients had metastatic disease</td>
<td>Murten et al., 2003</td>
</tr>
<tr>
<td>Triapine gemcitabine</td>
<td>26 patients with progressive metastatic or locally advanced cancer</td>
<td>3 patients had objective responses; 2 other patients achieved a partial response; another patient achieved tumour size reduction without meeting the criteria for a partial response</td>
<td>Yen et al., 2004</td>
</tr>
<tr>
<td>Triapine</td>
<td>21 patients with advanced or metastatic cancer</td>
<td>No partial or complete responses of tumour size reduction were observed; 2 patients remained progression-free for 6 and 10 mo, whereas 4 others achieved stable disease for 3-4 mo</td>
<td>Wadler et al., 2004</td>
</tr>
<tr>
<td>Triapine Cytarabine (ara-C)</td>
<td>31 patients with refractory acute leukemia and high-risk MDS</td>
<td>4 patients achieved a complete response after the first cycle of therapy</td>
<td>Yee et al., 2006</td>
</tr>
</tbody>
</table>
1.9.1.3 Aroylhydrazones

Novel aroylhydrazone chelators such as pyridoxal isonicotinoyl hydrazone (PIH) and salicaldehyde isonicotinoyl hydrazone (SIH) have shown promise as effective iron chelators for cancer therapy (Richardson and Ponka, 1994; Richardson et al., 1995) and skin photoprotection (Yiakouvaki et al., 2006).

PIH and SIH (Fig 1.14) are tridentate iron chelators which binds iron octahedrally in a ligand/iron ratio of 2:1(Ponka et al., 1979a) through the carbonyl oxygen, imine nitrogen, and phenolic oxygen (Kalinowski and Richardson, 2005). Both SIH and PIH have high affinity and selectivity for Fe³⁺ that is comparable to that of DFO (Richardson et al., 1995). They also bind Fe²⁺ but with a lower affinity (Kalinowski and Richardson, 2005). The efficiency of both PIH and SIH in preventing iron uptake and mobilization is superior to DFO (Richardson et al., 1995).

An acid dissociation constant study of PIH and SIH revealed that at physiological pH, the majority (~80%) of PIH and (~86%) of SIH are present in a neutral state, with a small proportion being found as a singly charged anionic species (Kalinowski and Richardson, 2005). These results, in combination with the lipophilicity of these ligands (Baker et al., 1985) (Clog P= 0.69 for PIH and 2.04 for SIH), indicate that both iron chelators are able to readily permeate cell membranes and tissues (Ponka et al., 1979b; Huang and Ponka, 1983; Richardson and Baker, 1990; Epsztejn et al., 1997). The chelator SIH is sufficiently lipophilic to readily cross the cell membrane and even transport iron to the extracellular media (Yiakouvaki et al., 2006).

Importantly the high lipophilicity of PIH and SIH make these iron chelators ideal candidates for topical therapy of iron-related hyperproliferative skin disorders, notably skin cancer and psoriasis. Furthermore these chelators have already shown promising protection against UVA-induced iron damage in skin (Yiakouvaki et al., 2006), as they readily enter cells and firmly chelate the redox-active LIP and block the production of iron-catalysed ROS formation.

Indeed numerous studies with PIH and SIH used under conditions of limited exposure time have shown the protective effect of these compounds in a series of iron-related oxidative stress conditions and pathologies (Richardson et al., 1995; Horackova et al., 2000; Simunek
et al., 2005; Kurz et al., 2006). However, prolonged exposure of cells to these strong iron chelators induces cell death due to severe iron starvation (Gao and Richardson, 2001; Buss et al., 2004). This property of PIH, SIH and their derivatives has been exploited in iron chelation therapy of cancer (Yu et al., 2006).

Figure 1.14: Chemical Structures of PIH, PIH-Fe Complex, SIH and 311.
Well before any of these aroylhydrazones were demonstrated to be highly efficient iron chelators in cellular or whole animal systems, Sah (Sah and Peoples, 1954) noted that PIH has distinct activity against mammary tumours and certain leukemias in mice.

In an *in vitro* study involving human melanoma, bladder, and lung epithelial carcinoma cell lines, Johnson and colleagues (Johnson 1982) demonstrated that both SIH and its derivative ligand 201 possess higher iron chelation-dependent anti-tumour activity than their corresponding 100 series analogs, PIH and 101 (Johnson et al., 1982). The study also demonstrated that the Cu$^{2+}$ complexes of these ligands, in particular that of analog 201, contain higher anti-tumour activity than the chelators alone (Johnson et al., 1982).

Considering the high activity of PIH and its analogues and the ability of DFO to inhibit the proliferation of tumour cells, studies were initiated to determine the iron chelation efficacy of DFO, PIH, and 5 of their analogues in SK-N-MC NB cells (Richardson and Ponka, 1994). This study demonstrated that PIH was more effective than DFO at mobilizing 59Fe from the SK-N-MC NB cells and preventing 59Fe uptake from Fe-Tf. However PIH was equally or far less effective than DFO at preventing $[^3]$H-thymidine incorporation (Richardson and Ponka, 1994).

Interestingly, 3 analogues of PIH, namely, pyridoxal benzoyl hydrazone (101), pyridoxal p-methoxybenzoyl hydrazone (107), and pyridoxal m-fluorobenzoyl hydrazone (109), had chelation activities comparable to PIH but were more effective than either DFO or PIH at inhibiting $[^3]$H-thymidine incorporation (Richardson and Ponka, 1994). These results suggested that these iron chelators target different iron pools (Richardson and Ponka, 1994; Richardson et al., 1995).

Considering the high activity of these latter analogues it was deemed worthwhile to investigate the effect of a wide range of the aroyl hydrazone class of chelators on the growth of NB cells *in vitro*.

Richardson and colleagues examined a range of PIH analogues with systematic substitutions to examine the structure–activity relationships of the aroylhydrazone ligands. These chelators were synthesised from various acid hydrazides and three parent aromatic aldehydes, namely: pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthaldehyde and were termed the 100, 200 and 300 series, respectively (*Fig. 1.15* (Richardson et al., 1995;
Richardson and Milnes, 1997), (for IC 50 values see Table 1.5). The study demonstrated that out of 15 members of the 100 series examined, only 3 exhibited higher antiproliferative effects than DFO, and this highlights the suitability of the 100 series for the treatment of iron overload disease (Richardson et al., 1995). The ligand (106) (p-tert-butyl-substituted), the most lipophilic derivative of the 100 series, demonstrated increased antiproliferative effect over other more hydrophilic members, such as the p-hydroxy substituted chelator (102) (Richardson et al., 1995)The antiproliferative effect of these ligands was shown to be caused by their ability to bind iron as the addition of ferric ammonium citrate was found to prevent their cytotoxic effects (Richardson et al., 1995). Interestingly, the analysis of the relationship between the lipophilicity of the PIH analogs and their antitumour effects illustrated a weak linear relationship (Richardson et al., 1995; Johnson et al., 1982). The same study illustrated the increased cytotoxic effects of the (200) series in comparison to the (100) series of ligands (Richardson et al., 1995). Out of the (11) of (200) series analogs examined, SIH and (9) other derivative possessed higher antiproliferative activity than their 100 series counterparts (Richardson et al., 1995). This study also demonstrated a clear linear relationship between antiproliferative activity and the ability of the chelator to either prevent iron uptake from Tf or induce iron mobilization from pre-labeled cells (Richardson et al., 1995).

Another range of PIH analogs developed, namely the 300 series, showed even higher lipophilicity than that of the 100 and 200 series by incorporating a 2-hydroxy-1-naphthaldehyde group (Richardson et al., 1995). The analysis of the cytotoxic effects demonstrated that from all of the 100, 200, and 300 series of analogs, the latter group of chelators had the highest lipophilicity and greatest antiproliferative activity (Richardson et al., 1995). All members of the 300 series were found to have antiproliferative activity markedly higher than that DFO (Table 1.5) (Richardson et al., 1995). This study also highlighted the 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, also known as 311 (Fig. 1.14) as one of the most active chelators (Richardson et al., 1995; Richardson and Milnes, 1997).

Complexation of 311 with iron resulted in the inhibition of its cytotoxic effects, indicating that its antitumour activity relies on its ability to bind iron (Richardson and Bernhardt, 1999). The effects of 311 were also studied in CCRF-CEM, breast, bladder, and head and neck cancer cell lines, and the chelator again showed strong growth inhibitory effect (Green et al., 2001). Studies from the Richardson laboratory have also illustrated that 311 is
able to increase the RNA-binding activity of the IRPs far more effectively than DFO (Darnell and Richardson, 1999). This in turn results in a marked increase of TfR1 mRNA and protein levels (Chaston et al., 2003).

From the screening study described above (Richardson et al., 1995), 5 of the most effective, PIH analogues: (206), (308), (309), (311) and (315), were examined further for their mechanism of action (Richardson and Milnes, 1997). These studies demonstrated that all these analogues were far more effective than DFO at inhibiting cellular proliferation and $[^3]$H]thymidine, $[^3]$H]leucine and $[^3]$H]uridine incorporation and the marked inhibition of DNA, RNA, and protein synthesis (Richardson and Milnes, 1997). Compared to other types of cytotoxic drugs, these PIH analogues also showed comparable activity to cisplatin, bleomycin, although they were less effective than doxorubicin (Richardson and Milnes, 1997).

In the above study on SK-N-MC NB cells, Richardson and colleagues clearly demonstrated that chelators that were derived from pyridoxal had high iron chelation activity but poor anti-proliferative effects, suggesting that these compounds may be more suitable as effective agents to treat iron overload disease (Richardson et al., 1995; Richardson and Milnes, 1997). In contrast, the more lipophilic ligands derived from salicylaldehyde or 2-hydroxy-1-naphthylaldehyde that had both high iron chelation activity and marked antiproliferative efficacy may be more suitable for the treatment of cancer. These latter compounds also showed much greater iron chelation-dependent anti-tumour activity than DFO (Richardson et al., 1995; Richardson and Milnes, 1997).

To better understand the effects of PIH analogs on molecular targets involved in proliferation, the effects of 311 on the expression of molecules necessary for cell cycle progression have also been assessed. Treatment of different cell lines with 311 has been shown to increase WAF1 and GADD45 mRNA expression, but not mdm2. The increase in GADD45 and WAF1 mRNA was seen only after a 20h exposure to the ligands and was reversible upon removal of the chelators and re-incubation with iron (Darnell and Richardson, 1999). These effects were observed not only in cells with native p53 but also in those that lack p53 expression. Interestingly, much higher levels of DFO were required to increase WAF1 and GADD45 mRNA levels (Darnell and Richardson 1999).
However, despite the marked increase in WAF1 mRNA after iron chelation with 311 (Darnell and Richardson, 1999; Gao and Richardson, 2001), the nuclear levels of its protein product, p21^{CIP1/WAF1}, were found to decrease (Le and Richardson, 2003; Liang and Richardson, 2003), illustrating the inhibition of its translation or its increased degradation after iron chelation. Incubation with ferric ammonium citrate was observed to reverse the effects of this chelator, indicating that p21^{CIP1/WAF1} protein levels are dependent upon the intracellular iron concentration (Le and Richardson, 2003).

The mechanism by which 311 mediates its anti-proliferative activity was found to be related to the ability of the chelator to deplete iron pools required for the activity of RR and other processes (Green et al., 2001; Chaston and Richardson, 2003). This resulted in a decrease in the RR tyrosyl radical, leading to enzyme inhibition and subsequent apoptotic cell death (Green et al., 2001; Chaston and Richardson, 2003).

Apart from the activity of chelators at inhibiting RR, several studies have shown that their effect on the expression of molecules involved in cell cycle control could be a factor in their antitumour activity. For instance, DFO and 311 decreased levels of the cell cycle regulators cyclins D1, D2, and D3 (Gao and Richardson, 2001). Additionally, 311 reduced expression of CDK2 and the cyclins A and B1 (Gao and Richardson, 2001). Inhibition of expression of these molecules would be effective in inducing cell cycle arrest. This activity was not observed after incubation of cells with the iron complexes of DFO or 311, or the RR inhibitor hydroxyurea (Gao and Richardson, 2001).

Interestingly the level of cyclin E was found to increase after treatment with 311 or DFO, although the effect of 311 was more marked. The latter observation may reflect the cell-cycle dysregulation induced by chelators. Alternatively, the ligands may inhibit progression through G1 at approximately the G1/S transition, when cyclin E proteins are at their maximum and Cyclin D levels have fallen (Gao and Richardson, 2001).

Recently, a gene array study demonstrated that iron chelation up-regulated the expression of Ndrg-1, which has been characterised as a metastasis suppressor protein (Wadler et al., 2004). Although the exact function of this gene remains unclear, it is thought that Ndrg-1 acts as a potent metastasis suppressor as the incubation of cells with 311 resulted in an increase in both mRNA and protein levels, a result not induced by incubation with the iron complex (Le and Richardson, 2004). Based on these observations, Richardson and
coworkers suggest that Ndrg1 may act as a novel link between the effect of iron chelation therapy by 311 and the inhibition of cellular proliferation (Le and Richardson, 2004).

Collectively, the above results clearly demonstrate the many molecular targets of iron chelators. These effects were absent upon treatment with the 311-Fe complex, indicating that changes induced by 311 were a direct result of the ability of 311 to chelate cellular iron (Gao and Richardson, 2001; Shao et al., 2004).

The significantly greater antitumour activity of 311 and the success of Triapine led to studies assessing the structure-activity relationships of several new series of aroylhydrazone/thiosemicarbazone hybrid ligands. These included the di-2-pyridylketone isonicotinoyl hydrazone series (Becker et al., 2003), and the di-2-pyridylketonethiosemicarbazone series (Yuan et al., 2004).
Table 1.5: the Effects of PIH Analogues on Cellular Proliferation of SK-N-MC NB Cells

<table>
<thead>
<tr>
<th></th>
<th>IC50 (µM)</th>
<th></th>
<th>IC50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pyridoxal (100 series)</td>
<td>Isonicotinoyl (200 series)</td>
<td>2-Hydroxy-1-Naphthylaldehyde (300 series)</td>
</tr>
<tr>
<td>Benzyol (1)</td>
<td>35</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>p-Hydroxybenzoyl (2)</td>
<td>>80</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>p-Methylbenzoyl (3)</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Nitrobenzoyl (4)</td>
<td>>80</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>p-Aminobenzoyl (5)</td>
<td>>80</td>
<td>76</td>
<td>8</td>
</tr>
<tr>
<td>p-Butylbenzoyl (6)</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>p-Methoxybenzoyl (7)</td>
<td>52</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>m-Chlorobenzoyl (8)</td>
<td>24</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>m-Fluorobenzoyl (9)</td>
<td>17</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>m-Bromobenzoyl (10)</td>
<td>41</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Isonicotinoyl (11)</td>
<td>75</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Acetyl (12)</td>
<td>>80</td>
<td>>80</td>
<td>7</td>
</tr>
<tr>
<td>2-Pyridyl(13)</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Furoyl (14)</td>
<td>>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Thiophenecarboxyl (15)</td>
<td>30</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

The iron chelators were incubated with cells for 72h, at the end of this incubation period, cells density was determined by the MTT assay (Richardson et al., 1995).

Figure 1.15: PIH analogs illustrating the 100, 200, 300 series backbone and their corresponding R groups as used by Richardson et al., 1995.
1.9.1.4 Di-2-pyridylketone isonicotinoyl hydrazone analogs:

Following development of the PIH analogues, an additional range of aroylhydrazones known as the di-2-pyridylketone isonicotinoyl hydrazone (PKIH) series was synthesised (Fig. 1.16) (Bernhardt et al., 2003). These iron chelators have been shown to readily cross the cell membrane due to their lipophilicity, and they predominately remain neutral at physiological pH (Bernhardt et al., 2003). Studies on SK-N-MC cells demonstrated that all PKIH analogues, apart from di-2-pyridylketone 3-bromobenzoyl hydrazone (PK3BBH) were efficient in both increasing iron efflux from pre-labeled cells and preventing iron uptake from Tf (Becker et al., 2003). Of the chelators examined, PKIH, di-2-pyridylketone thiophenecarboxyl hydrazone, di-2-pyridylketone benzoyl hydrazone, and PK3BBH, were found to have the highest antiproliferative activity in SK-N-MC cells similar to that of 311 (Table 1.6) (Becker et al., 2003).

The Fe$^{2+}$-PKIH series complexes demonstrated anti-proliferative activity similar to that of the uncomplexed PKIH ligand, suggesting that they act through other mechanisms in addition to iron chelation (Becker et al., 2003). Subsequent investigations demonstrated that the Fe$^{2+}$-PKIH complexes were redox-active leading to the hydroxylation of benzoate and the degradation of DNA in the presence of Fe$^{2+}$ and H$_2$O$_2$ (Bernhardt et al., 2003; Chaston et al., 2003). Additionally, this series of ligands showed selectivity toward tumour cells as their activity against MRC-5 fibroblasts was much less pronounced (Becker et al., 2003).

PKIH analogs were found to decrease $[^{3}\text{H}]$ thymidine, $[^{3}\text{H}]$leucine, and $[^{3}\text{H}]$uridine incorporation (Becker et al., 2003). They were also found to increase the expression of both GADD45 and WAF1 mRNA levels leading to G1/S arrest, to a higher extent than 311 (Becker et al., 2003). Investigations into the structure activity relationship of this series of ligands demonstrated no strong correlation between their log P values and their antiproliferative activity (Becker et al., 2003).
Table 1.6: The Effects of PKIH Analogues on Cellular Proliferation of SK-N-MC NB Cells (Becker et al., 2003).

<table>
<thead>
<tr>
<th>Iron Chelators</th>
<th>IC50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFO</td>
<td>>50</td>
</tr>
<tr>
<td>311</td>
<td>3±2</td>
</tr>
<tr>
<td>PKIH</td>
<td>2±1</td>
</tr>
<tr>
<td>PKTH</td>
<td>3±1</td>
</tr>
<tr>
<td>PKBH</td>
<td>3±1</td>
</tr>
<tr>
<td>PKBBH</td>
<td>1±1</td>
</tr>
<tr>
<td>PKAH</td>
<td>42±9</td>
</tr>
<tr>
<td>PKHH</td>
<td>38±10</td>
</tr>
</tbody>
</table>

Cell density was determined by the MTT assay.

Figure 1.16: The Molecular Structure of PKIH analogs (Becker et al., 2003).
1.9.1.5 Di-2-pyridylketone thiosemicarbazone (DpT) series

Structure–activity relationship studies of aroyl hadrazones led to the identification of a number of structural characteristics important for iron chelating efficacy and potent anti-proliferative activity and development of hybrid Iron chelators notably the di-2-pyridylketone thiosemicarbazone (DpT, Fig 1.17) series (Yuan et al., 2004). These chelators are hybrids of the PKIH (Becker et al., 2003) and 2-hydroxy-1-naphthylaldehyde thiosemicarbazone series of ligands (Lovejoy and Richardson, 2002). The resulting ligands were assessed in terms of their antiproliferative activity both in \textit{in vitro} and \textit{in vivo} experiments against DFO, 311 and Triapine. The IC50 values for DpT analogues in SK-N-MC NB cells were between 0.03 and 0.06 µM compared to 5 µM, 0.3 µM and 0.26 µM for DFO, 311 and Triapine, respectively, (\textit{Table 1.7}) (Yuan et al., 2004) as analysed by the MTT assay 72 h after incubation with the compounds.

Similar results were also observed when the chelators were examined in SK-Mel-28 melanoma and MCF-7 breast cancer cells (Yuan et al., 2004). These iron chelators were far less efficient in inhibiting normal cells’ proliferation (IC50 > 25 µM) (\textit{Table 1.7}).

A further \textit{in vivo} study was performed on Dp44mT to examine its ability to inhibit the growth of a cytotoxic drug-resistant lung carcinoma M109 cell line (Yuan et al., 2004). After a treatment period of 5 days at a dose of 0.4 mg/kg, it was observed that Dp44mT could reduce tumour growth up to 47% of the control. In the same mouse model, Triapine® was found to be more effective at a much higher dose of 6 mg/kg, being able to reduce tumour size to 10% of the control (Yuan et al., 2004). However, it was found that unlike Dp44mT, Triapine® significantly decreased animal weight, haemoglobin concentration, haematocrit, erythrocyte and leukocyte cell counts (Yuan et al., 2004).

In a study by Whitnall and coworkers, the antiproliferative activity of Dp44mT was compared to that of Triapine® both \textit{in vitro} and \textit{in vivo} (Whitnall et al., 2006). The antiproliferative activity of both ligands was examined for both ligands across a range of 28 tumour cell lines. This study indicated that Dp44mT had a significantly higher antiproliferative effect than Triapine, and a much greater activity than DFO in the tested cell lines (Whitnall et al., 2006). Furthermore, in this study, Dp44mT could overcome resistance to other anti-tumour agents, by exerting its antiproliferative effect via a p53-independent mechanism. The latter highlighted the suitability of Dp44mT as a potential anti-cancer agent, as approximately 50% of tumours have a mutated p53.
Figure 1.17: Molecular Structure of Dpt Analogs (Yuan et al., 2004).
In accordance with previous *in vivo* studies using a murine tumour (Yuan *et al.*, 2004), Whitnall and coworkers demonstrated that Dp44mT can inhibit the growth of a variety of solid human tumour xenografts in nude mice (Whitnall *et al.*, 2006). The results of this study confirmed the growth inhibitory efficacy of Dp44mT both in *in vitro* and *in vivo* models under short- and long-term treatment regimens. For example, under a short-term regimen (i.e. administration of Dp44mT for 14 days at a dose of 0.75 mg/kg), the tumour burden in treated mice was on average 5.6% of the control (Whitnall *et al.*, 2006). However under long term regimen (i.e. 7 weeks of treatment at a dose of 0.4 mg/kg), the tumours of the treated mice were 92% smaller than those of the control group (Whitnall *et al.*, 2006).

Interestingly, this study showed that *in vivo* iron-depletion was not a major mechanism of the anti-tumour activity of this compound, since under the experiments’ conditions, Dp44mT did not lead to iron-depletion within the tumour (Whitnall *et al.*, 2006) nor in the whole body (Whitnall *et al.*, 2006). It was suggested that the redox activity of the Dp44mT-Fe complex (Yuan *et al.*, 2004; Richardson *et al.*, 2006) played a significant role in its anti-cancer effects. At high non-optimal doses, Dp44mT was shown to result in post-necrotic cardiac fibrosis (Whitnall *et al.*, 2006).

Studies on the mechanism of action of the DpT series and Dp44mT in particular, revealed that the antiproliferative effect of Dp44mT was mediated by its activity against multiple molecular targets, which is a desirable characteristic of potential anti-cancer therapeutics (Lilenbaum *et al.*, 1999). The effect of this series was also due to their ability to gain access and bind intracellular iron, forming redox-active complexes which are able to generate ROS. Hence, the DpT series of chelators act via a “double punch” mechanism, depleting cellular iron and forming redox-active iron complexes (Richardson *et al.*, 2006).

Interestingly Dp44mT and other iron chelators, including 311 and DFO markedly up-regulate the expression of the metastasis suppressor gene N-myc downstream regulated gene-1 (Ndrg1) in tumour cells *in vitro* (Wadler *et al.*, 2004) and *in vivo* (Whitnall *et al.*, 2006).

Increased Ndrg1 expression was correlated to chelator antiproliferative activity and was reversed by iron repletion (Wadler *et al.*, 2004). These results on the effect of iron chelator on Ndrg1 suggest another link between iron metabolism and proliferation and points to a novel mode of anticancer activity.
Table 1.7: The Effects of Dpt Analogues on cellular proliferation of cancer cells

<table>
<thead>
<tr>
<th></th>
<th>SK-N-MC neuroblastoma</th>
<th>SK-Mel-28 melanoma</th>
<th>MCF-7 breast cancer</th>
<th>MRC-5 fibroblasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFO</td>
<td>5 ± 2</td>
<td>15 ± 7</td>
<td>14 ± 9</td>
<td>> 25</td>
</tr>
<tr>
<td>311</td>
<td>0.3 ± 0.2</td>
<td>0.9 ± 0.5</td>
<td>—</td>
<td>> 25</td>
</tr>
<tr>
<td>Triapine</td>
<td>0.26 ± 0.01</td>
<td>2.6 ± 0.6</td>
<td>3.0 ± 1.5</td>
<td>—</td>
</tr>
<tr>
<td>Dp2mT</td>
<td>> 25</td>
<td>> 25</td>
<td>> 25</td>
<td>> 25</td>
</tr>
<tr>
<td>Dp4mT</td>
<td>0.19 ± 0.1</td>
<td>0.6 ± 0.5</td>
<td>0.3 ± 0.2</td>
<td>> 25</td>
</tr>
<tr>
<td>Dp44mT</td>
<td>0.03 ± 0.01</td>
<td>0.06 ± 0.03</td>
<td>0.06 ± 0.01</td>
<td>> 25</td>
</tr>
<tr>
<td>Dp4eT</td>
<td>0.06 ± 0.01</td>
<td>0.09 ± 0.06</td>
<td>0.08 ± 0.01</td>
<td>> 25</td>
</tr>
<tr>
<td>Dp4aT</td>
<td>0.06 ± 0.01</td>
<td>0.10 ± 0.06</td>
<td>0.07 ± 0.01</td>
<td>> 25</td>
</tr>
<tr>
<td>Dp4pT</td>
<td>0.05 ± 0.006</td>
<td>0.09 ± 0.05</td>
<td>0.07 ± 0.01</td>
<td>> 25</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>0.02 ± 0.01</td>
<td>0.35 ± 0.09</td>
<td>0.6 ± 0.2</td>
<td>—</td>
</tr>
</tbody>
</table>

The Chelators were incubated with cells for 72h, at the end of this incubation period, cells density was determined by the MTT assay (Yuan *et al.*, 2004).
1.9.1.6 Tachypyridine

\[N,N',N''-\text{tris}(2\text{-pyridylmethyl})-\text{cis},\text{cis}-1,3,5-\text{triaminocyclohexane} \]

(tachpyridine or tachpyr, Fig. 1.18) is a hexadentate chelator with higher antiproliferative activity than DFO (Torti et al., 1998). A study by Torti and co workers have demonstrated that tachpyridine inhibits Ft synthesis and the proliferation of bladder cancer cells in culture with an IC\(_{50}\) of 4.6 \(\mu\)mol/L compared with 70 \(\mu\)mol/L for DFO (Torti et al., 1998). Toxicity studies with tachpyridine complexes suggest that iron depletion mediates its cytotoxic effects (Torti et al., 1998).

Similar to Triapine and Dp44mT, tachpyridine induces apoptotic cell death via a p53-independent pathway (Abeyasinghe et al., 2001; Greene et al., 2002). Additionally, tachpyridine-induced death was prevented in cells microinjected with Bcl-X\(_L\) and a dominant-negative caspase-9 expression vector, suggesting the involvement of the mitochondrial apoptotic pathway (Greene et al., 2002). Furthermore, tachpyridine-Fe complexes produce OH\(^-\) or hypervalent Fe through the Haber-Weiss reaction, which contributes to its anti-tumour activity (Samuni et al., 2002). Interestingly, unlike most iron chelators that arrest cells at the G1-S interface due to RR inhibition, tachpyridine arrests cells at G\(_2\), which is a radiosensitive phase of the cell cycle (Turner et al., 2005). In fact, radiation increased the sensitivity of tumour cells to the action of tachpyridine (Turner et al., 2005).

Tachpyridine binds iron, but it can also bind Cu\(^{+2}\) and Zn\(^{+2}\), which may underlie its ability to arrest cells in G\(_2\) (Torti et al., 1998). Currently, tachpyridine is in preclinical development with the National Cancer Institute (Turner et al., 2005), and evaluation of tachpyridine derivatives, such as trenpyr, are under way (Torti et al., 2005).

Figure 1.18: Molecular Structure of Tachypyridine (Torti et al., 1998).
1.10 Caged Iron Chelators

The extensive *in vitro* and *in vivo* studies provided in this section clearly demonstrate the enormous anti-tumour potential of ICT, but a new approach is required that will avoid problems of toxicity that accompany the prolonged and repeated exposure of a patient to “classical” iron chelators. Ideally, smart chelating agents are required that possess appropriate physicochemical properties for effective cellular uptake, and that may be selectively activated *in situ* within tumours. One way to achieve such *in situ* activation is to apply caged iron chelators (CICs) that are ordinarily inactive as chelators, but which upon exposure to a physiologically relevant light source (e.g. UVA, 320-400 nm), are converted to the free iron-binding molecule in a highly spatially selective and dose-controlled fashion. Such a strategy most readily lends itself to topical administration of CICs, which is ideally suited to the challenge of treating external lesions as in NMSC. Indeed, although the promise of antitumour ICT is widely recognised, the potential of iron chelators in skin cancer has yet to be properly explored. The use of light-activated CICs for treatment of NMSC would allow for specific localised release of a given therapeutic chelator within the targeted tissue, while substantially decreasing the need for systemic repeated exposure of the patient to strong ICs and their obvious toxic side effects. Topical CICs therapy might also provide a powerful alternative for treatment of other iron-related hyperproliferative skin disorders such as psoriasis.

Pourzand and colleagues from our laboratory have recently developed two prototype photo-activatable and photo-controlled ‘caged’ iron chelators derived from SIH and PIH (see Fig. 1.19). The caging group blocks the critical iron-binding function of the iron chelators PIH and SIH. Initial proof of concept of this approach was delivered with the 2-nitrophenyl ethyl (2-NPE) caging group for the purpose of skin photoprotection (Yiakouvaki *et al.*, 2006). In these studies the prototypes were examined for (i) uncaging by broad spectrum UVA radiation at a physiologically relevant dose; (ii) iron chelation by caged and uncaged products *in vitro*; (iii) modulation of the intracellular labile iron concentration prior to, and following UVA irradiation of a human skin fibroblast cell line, FEK4; (iv) protection of skin cells from oxidative damage following radiation treatment. These initial testings revealed that exposure to UVA light (320-400 nm) cleaves the caging function to generate the parent chelator and an inactive fragment (Fig. 1.19). Furthermore, unlike the parent compounds, the caged chelators 2NPE-SIH and 2NPE-PIH did not diminish the normal labile iron pool in cells. However, exposure to a physiologically relevant UVA dose subsequently provided promising levels of
protection of skin fibroblast cells against UVA-mediated oxidative damage and necrotic cell death in monolayer cultures (Yiakouvaki et al., 2006). Highly localised topical application of light-activated caged-iron chelators could not only be beneficial for skin photoprotection but could also provide a powerful alternative therapeutic strategy for hyperproliferative skin disease states in which elevated iron levels are implicated such as psoriasis and NMSC (Yu et al., 2006).

Figure 1.19: Prototype phoactivatable CICs. Reproduced with the permission of Dr Ian Eggleston.
1.11 Aims and objectives of the study

The purpose of this study was to evaluate the growth inhibitory potential of iron chelators SIH, PIH and their caged-derivatives (+/- UVA) in monolayer cultures of normal, psoriatic and skin cancer cells (SCC) isolated from the patients. The primary objective was to provide evidence for the efficient and selective antiproliferative activity of the caged-chelators as powerful alternatives to existing therapies against skin hyperproliferative disorders notably NMSC and psoriasis.

The project workplan was split into 4 periods:

(1) Synthesis and in vitro characterisation of PIH, SIH and their caged derivatives 2NPE-PIH and 2NPE-SIH. Synthesised compounds were fully characterised by NMR, MS, and dark stability in PBS buffer, pH 7.4, assessed by RP-HPLC. Kinetics of uncaging upon UVA irradiation was assessed by HPLC, and quantum efficiency of release determined.

(2) Evaluation of the rate of proliferation of skin cell models and elucidation of the role of intracellular LIP in cell proliferation. The growth rate of cells was evaluated by cell counting assay and light microscopy. The intracellular LIP was evaluated by Calcein-fluorescent assay.

(3) Comparison of the antiproliferative activity of ‘classical’ PIH/SIH in normal, psoriatic and cancer-derived SCC cell lines: Cell growth retardation/inhibition of the chelators was evaluated by MTT and then the effect of those compounds was further examined by BrdU assay (i.e. to monitor the rate of DNA synthesis) and Annexin V/PI assay (i.e. to monitor cell death). The antiproliferative/antitumour activity of the chelators was then confirmed with colony-forming ability assay.

(4) Comparison of the antiproliferative activity of caged iron chelators in absence or presence of UVA. The caged chelators were either uncaged in vitro or in situ (inside the cells) with UVA. Their antiproliferative activity was then evaluated using MTT assay.
CHAPTER TWO

MATERIALS AND METHODS

2.1 Chemicals and Reagents

Cell culture materials were obtained from Gibco (Germany) except for Foetal Calf Serum (FCS) that was purchased from PAA Laboratories (Austria). All chemicals were from Sigma-Aldrich Chemical (Poole, UK) unless otherwise indicated. Annexin-V-FLUOS and Bovine Serum Albumin (BSA) were supplied from Roche (Mannheim, Germany). CA-AM (Calcein-acetoxyethyl ester) was purchased from Molecular Probes (Leiden, Netherlands). Desferrioxamine mesylate Ph. Eur. (Desferal, DFO) was purchased from Ciba-Geigy laboratories (Basel, Switzerland). MilliQ water used to prepare phosphate buffered saline (PBS) and other stock solutions were issued from a Millipore purification system (MilliQ cartridge: Millipore, Bedford, MA) in order to minimize the presence of trace elements such as transition metals.

2.2. Cell culture

All the cell lines outlined below were cultured routinely and incubated in a humidified atmosphere at 37°C with 5% CO₂.

2.2.1 FEK4

FEK4 cells are human primary foreskin fibroblasts (a kind gift from Prof R. M. Tyrrell). The FEK4 fibroblasts are passage-dependent and in this project were used between passages 11 to 16.

The growth medium was composed of 15% FCS (heat-inactivated at 56°C for 45 min before use)-EMEM (Earle’s modified minimum essential medium) supplemented with 0.25% sodium bicarbonate, 2 mM L-glutamine and 50 IU/ml of each of penicillin/ streptomycin (P/S).

The stock FEK4 cells were passaged by trypsinisation once a week and then seeded in tissue culture plates for experiments as detailed below:
- For MTT and clonogenic assays, 2 x 10⁴ cells were seeded per 3 cm plate in 3ml media.
- For flow cytometry, LIP and BrdU assays, 12 x 10⁴ cells were seeded per 10 cm plate in 12 ml media.

2.2.2 HaCaT

Human spontaneously immortalised skin keratinocyte (KC) cell line (a kind gift from Prof R. M. Tyrrell). This cell line maintains full epidermal differentiation capacity, but remains non-tumourigenic (Boukamp et al., 1988).

The growth medium was 10% FCS-DMEM (high-glucose Dulbecco’s modified eagles medium) containing 50 IU/ml P/S.

Cells were passaged once a week and seeded for experiments as follows:
- For MTT and clonogenic assays, 2 x 10⁴ cells were seeded per 3 cm plate in 3 ml media.
- For flow cytometry, LIP and BrdU assays, 8 x 10⁴ cells were seeded per 10 cm plate in 12 ml of media.

2.2.3 Swiss 3T3

The Swiss 3T3 are spontaneously immortalized mouse embryonic fibroblasts (a kind gift from Prof I. Leigh, Dundee). This cell line is used as a feeder layer for the cultivation of keratinocytes (Proby et al., 2000). The 3T3 cells secrete both extracellular matrix proteins that aid KC attachment, and growth factors that stimulate proliferation.

3T3 Feeder layer preparation: Cells were first grown in 10% FCS DMEM containing 50 IU/ml P/S. When the cells reached 80% confluency, mitomycin C (stock 0.2 g/ml in PBS) was added to cultured media at 4 μg/mL final concentration, and incubated for 2 h at 37°C. Mitomycin C is a DNA cross-linker that inhibits DNA replication in 3T3 cells to avoid their overgrowth when used with keratinocytes (KCs). After incubation, medium was aspirated and cells were washed thoroughly (three times) with warm PBS to ensure that no mitomycin C remained to inhibit the growth of the keratinocytes. The mitomycin-treated 3T3 fibroblasts were then trypsinised and resuspended in RM+ media (see below). This fibroblast cell suspension was then used as a feeder layer for matrix-dependent KC cultures (i.e. KCP7, KCP8, PM1, Met2 and MKPS cells).
2.2.4 KCP7 and KCP8

The KCP7 and KCP8 are human primary skin KCs derived from infant foreskin (Zhong et al., 2004).

Cells were grown in a rich medium called RM+ (i.e. DMEM and Ham’s F12 medium in a ratio of 3:1 (v/v) supplemented with 10% FCS, hydrocortisone (0.4 µg/ml), cholera toxin (10^{-10} M), epidermal growth factor (10 ng/ml), insulin (5 µg/ml), transferrin (5 µg/ml), liothyronine (2 x 10^{-11} M), 0.25% sodium bicarbonate, 2 mM L-glutamine and 50 IU/ml of each of penicillin/ streptomycin (P/S).

These primary KC cells were seeded at a density of 1 x 10^5 cells per 3 cm plate in the presence of 3T3 feeder layer seeded at a density of 4 x 10^5 cells per 3 cm plate. The primary KCs were used at passage 3.

2.2.5 PM1 and Met 2

PM1 is an epidermal KC cell line, clonally derived from forehead skin showing dysplasia.

Met2 is a Squamous Cell Carcinoma (SCC) KC cell line, clonally derived from a local recurrence of invasive SCC.

PM1 and Met 2 are isogenic cell lines isolated from the same patient. (a kind gift from Prof Irene Leigh, Dundee, see Popp et al., 2000; Proby et al., 2000).

- For the MTT assay, 5 x 10^4 cells were seeded per 3 cm plates containing 3ml of RM+ media.
- For BrdU and LIP assays, 25 x 10^4 cells were seeded per 10 cm plates containing 12 ml of RM+ media.

2.2.6 MKPS

MKPS is an immortalised KC cell line derived from the skin of a male patient with chronic plaque psoriasis. (a kind gift from Prof Irene Leigh, Dundee).

MKPS cells stock was grown in RM+ media in the presence of 3T3 feeder layer.

For the MTT assay, the MKPS cells were seeded in RM+ media without 3T3 in 3 cm dishes at a density of 5 x 10^4 cells/ plate in 5 ml of media.

For BrdU and LIP assays, MKPS cells were seeded in 10 cm plates containing 15ml of RM+ media at a density of 25 x 10^4 cells per plate.
2.3 Chemical treatments

The compounds were added to media of cells grown for 2 or 3 days (i.e. conditioned media, CM) at the required final concentrations. The cells were incubated with the compounds for 24-72 h, depending on the experimental requirement.

2.3.1. Stock solutions:

DFO (MW 657): The DFO stock solution was prepared at the final concentration of 150 mM in H₂O. Aliquots were kept at -20°C until required.

BIH (MW 225): The BIH stock solution was prepared at the final concentration of 100 mM in dimethyl sulphoxide (DMSO). Aliquots were kept at -20°C until required.

PIH (MW 286): PIH powder was first dissolved in 1N HCl at the final concentration of 500 mM and then further diluted in PBS to obtain a 25 mM stock solution. Because of the tendency of the stock solution to precipitate over time, for experiments involving PIH treatment, the stock solution was prepared freshly on the day of treatments.

SIH (MW 241): The SIH stock solution was prepared at the final concentration of 100 mM or 200 mM in DMSO, depending on the experimental condition.

2NPE PIH (MW 435) and 2NPE SIH (MW 390): The stock solutions were prepared at the final concentrations of 4, 100, or 200 mM in DMSO, depending on the experimental requirement.

To avoid the toxicity of DMSO in cell treatments with stock solutions made in DMSO (i.e. BIH, SIH, 2NPE-PIH and 2NPE-SIH), for cell treatments, the DMSO’s final concentration in CM was kept to less than 0.1%.
2.4 Iron saturation assay

The Fe$^{3+}$ complexes of the chelators were prepared by adding Fe$^{3+}$ (as FeCl$_3$) to the ligands in a 1:1 ligand:metal ratio for the hexadentate chelators (i.e., DFO) and in a 2:1 ligand:metal ratio for the tridentate chelators (i.e., PIH, SIH, UVA irradiated 2NPE-PIH and -SIH). The solutions were then mixed thoroughly and incubated for 1h at 37°C prior to addition to cell culture media. Cells were incubated with the iron-complexed chelator for 72 h at a concentration equivalent to their IC50 for relevant ligands. Then the MTT assay was performed as described in section 2.9.

2.5. UVA irradiation

2.5.1 Irradiation of cells in plates

Prior to irradiation, the CM medium was removed from the plates, and the cells were washed thoroughly with PBS. Cells were then covered with PBS (i.e. 2 ml for 3 cm plate). This was followed by irradiation of cells at doses of 50, 100 and 250 kJ/m2. The UVA doses were measured using an IL1700 radiometer (International Light, Newbury, MA). All irradiations were performed with a broad-spectrum Sellas 4kW UVA lamp (Sellas, Germany). This lamp emits primarily UVA radiation (significant emission in the range of 350–400 nm) and some near-visible radiation longer than 400 nm. The incident dose rate was 150W/m2. The spectrum of the lamp is shown in Fig 2.1.

Irradiation was carried out in an air-conditioned room at 18°C in order to maintain the temperature of the cells to approximately 25°C throughout the irradiation procedure. The PBS was then removed, and cells were incubated in CM with or without the compound for the appropriate incubation time (e. g. 4 h to 72 h) at 37°C.
2.5.2 Irradiation of 2-NPE-PIH and 2-NPE-SIH

For cell culture treatments, 2-NPE-PIH and 2-NPE-SIH stock solutions were prepared in DMSO at final concentrations of 100 mM or 200 mM, depending on the experimental requirement and then irradiated at in quartz cuvettes at a UVA dose 250 kJ/m². The cells were then treated with the UVA-irradiated (uncaged) compounds for 24-72 h.

To generate the uncaged profile for 2-NPE-PIH and 2-NPE-SIH by reverse phase HPLC, 2NPE-PIH and 2NPE-SIH were prepared in DMSO at a final concentration of 1 mg/ml and then irradiated in quartz cuvettes with increasing UVA doses of 5, 10, 20, 50, 100, 250 and 500 kJ/m².

2.6 Reverse Phase HPLC analysis of 2NPE-PIH and 2NPE-SIH following in vitro uncaging with UVA irradiation

HPLC profiles of 2NPE-PIH and 2NPE-SIH and SIH were monitored at 280nm, 1h following UVA irradiation.

HPLC: Dionex UltiMate 3000 HPLC system was equipped with a Phenomenex Gemini 5 µm C-18 (150 x 4.6 mm) column with a flow rate of 1 ml/min.
Mobile phase A was MeCN (Acetonitrile) containing 0.1% TFA (Trifluoroacetic acid), B H$_2$O containing 0.1% TFA using a HPLC gradient of 5% A to 60% A over a period of 10 min.

2.7 Cell Growth Curve

FEK4 and HaCaT cells were seeded in 3cm plates containing 3ml media at a density of 2 x 104. Over a period of 7 days cells were trypsinised and counted on a hemocytometer every 24 h in triplicate.

The mean cell counts at each time point were then used to plot the growth curve, based on which the cells’ doubling time was calculated.

2.8. BrdU assay

2.8.1 Principle of the assay

During cell proliferation the DNA has to be replicated before the cell is divided into two daughter cells. This close association between DNA synthesis and cell doubling makes the measurement of DNA synthesis very attractive for assessing cell proliferation. If labelled DNA precursors are added to the cell culture, cells that are about to divide incorporate the labelled nucleotide into their DNA.

The thymidine analogue 5-bromo-2'-deoxy-uridine (BrdU) is a synthetic nucleotide that can be incorporated into the newly synthesized DNA of replicating cells (during the S phase of the cell cycle), by substituting for thymidine during DNA replication.

Antibodies specific for BrdU can then be used to detect the incorporated chemical, thus indicating cells that were actively replicating their DNA. Binding of the antibody requires the denaturation of the DNA by exposing the cells to acid. FITC-conjugated second antibodies will then allow the detection of the "newly synthesized" DNA that will fluoresce green. The denatured DNA can be stained with propidium iodide (PI) and will fluoresce red.
2.8.2 BrdU Pulsing

To pulse cells, 10 µM BrdU was added to cells for 1 h at 37°C. For the negative control no BrdU was added. After incubation, cells were washed with PBS, then harvested with 0.25% (w/v %) trypsin, and collected in the CM and kept on ice. Cells were then centrifuged at 1000 rpm (120 x g) for 8 min in a Falcon 6/300 MSE centrifuge pre-cooled to 4°C. Medium was then removed. To permeabilise the cells, 5ml of ice-cold 70% ethanol was added slowly, drop-wise onto them while vortexing to avoid formation of clumps. The cells were left on ice for a minimum of 30 min and then stored at 4°C prior to BrdU staining.

2.8.3 BrdU Staining

Cells were first centrifuged at 2000 rpm (120 x g) to remove ethanol and then washed twice with PBS. Then the DNA was denatured by resuspending the cell suspension in 2M hydrochloric acid (HCl), for 30min with occasional mixing. This step allows the access of the anti-BrdU antibody to its epitope in the DNA. Cells were then centrifuged at 1000 rpm (120 x g) to remove the HCl, followed by washing with PBS-T (PBS + 0.1% BSA + 0.2% Tween20, pH7.4). Cells were then stained with the anti-BrdU primary antibody (Beckton Dickinson), for 20min at room temperature (RT) in the dark. Following a second wash with PBS-T, the cell suspension was incubated with the FITC-conjugated secondary antibody (DAKO) for 20 min (at RT in the dark). Cells were then washed with PBS-T and then RNAs were eliminated, by treating the cells with RNAse (DNAse-free) for 15min at RT. Then PI was added and cells were further incubated in the dark for 30min.

RNAse treatment is necessary because PI incorporates into both DNA and RNA. But we are only interested in the signal coming from PI incorporated into DNA.

Cells were then analyzed by flow cytometry. Fluorochromes were excited by a 488nm laser. The FITC fluorescence was collected between 515 and 545nm and the PI fluorescence was collected above 580nm. Pulse processing of the PI signal was used to distinguish true G2 from G1 doublets and to eliminate the latter (i.e to gate G2 in our experiment). 20,000 events were collected, at a low flow rate setup.
Plan of Experiments to evaluate the antiproliferative effects of Compounds

Grow cells for 48h

Treat cells with Iron Chelators
Or Caged Iron Chelators +/-UVA
For up to 72h

Short Term Effects
Results on the Day

MTT BrdU Annexin V PI

Long Term Effects
Results 2-3 weeks after treatment

Clonogenic Assay Raft
2.9 MTT Assay

2.9.1 Principle of the assay
The MTT assay is widely used in cell proliferation and cytotoxicity assays (Berridge et al., 1996). It is a sensitive colorimetric assay (Mosmann, 1983; Doyle and Griffiths, 1998) that is performed to determine the viability of cells after relevant treatments. The principle of this assay is based on the capacity of cellular and mitochondrial dehydrogenase enzyme to convert MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], a yellow water-soluble substrate, into a dark blue formazan product that is water-insoluble. The amount of formazan produced is directly proportional to the viable cell number.

2.9.2. Procedure
The procedure involves the preparation of the MTT stock solution in PBS at 5mg/ml, which was then filtered through a 0.2 μm filter (Ministart®, Germany) for sterilisation and stored at –20°C.

MTT/SFM stock solution: The fresh MTT solution in serum free media (SFM) was prepared at a final concentration of 0.5 mg/ml.

On the day of the assay (24 to 72 h post-treatment with compounds +/- UVA) cells were washed with PBS and incubated with 500 μl of MTT/SFM for 3 h at 37°C. After incubation, MTT/SFM solution was aspirated and 500 μl of DMSO was added to each plate. Then the plates were swirled for 3 minutes on 3D rocking platform (Stuart Scientific, UK). Finally, 100 μl of each sample (for FEK4) or 20 μl of sample diluted in 80μl DMSO for the rest of keratinocytes, was added in duplicate to a 96-well micro-plate. Absorbance was read by VERSAmaxTM (Molecular devices, California) at 570 nm.
2.10 Clonogenic Assay (Colony Forming Assay)

2.10.1 Principle of the assay

This assay is the most reliable method for assessing viable cell number. It is based on the ability of a single cell to grow into a colony and its ability to undergo “unlimited” division. The colony is defined to consist of at least 50 cells (Doyle and Griffiths, 1998).

2.10.2 Procedure

Cells were grown and treated with compounds as described above for 24, 48, and 72h. On the day of experiments, cells were trypsinised and re-seeded as single cell suspension at a density of 500 cells/ 3cm plate for FEK4, and 250 cells/ 3 cm plate for HaCaT in fresh media in triplicates. Cells were then allowed to grow for 12 days by replacing thr media every 3-4 days. At day 12 media was removed, and colonies were fixed and stained with 0.2% w/v crystal violet solution (in 20% v/v methanol, 2% w/v paraform aldehyde) for 15min. Then the plates were washed twice with PBS and colonies were counted. Data were expressed as percent survival relative to the control.

2.11 Annexin V / Propidium Iodide Dual Staining Assay

2.11.1 Principle of the assay

Quantification of apoptotic, necrotic, and live cells was evaluated by flow cytometry. Apoptotic cells were shown to express phosphatidyl serine (PS) on the outer layer of the plasma membrane (Fadok et al., 1992). In the early stages of apoptosis, PS translocates from the inner part of the plasma membrane to the outer layer. Annexin-V-FLUOS is a phospholipid-binding protein with a high affinity for PS. Therefore it is suitable for the detection of apoptotic cells. On the other hand, necrotic cells that lose cell membrane integrity are stained with both Annexin-V-FLUOS and PI. Therefore, Annexin-V-FLUOS and PI double-staining can differentiate between necrotic and apoptotic cells.
2.11.2 Procedure

After relevant treatments and incubation periods (i.e. 4h to 72h), cells were collected and washed with incubation buffer (10 mM Hepes/NaOH, pH 7.4, 5 M NaCl, 100 mM CaCl\textsubscript{2}). Then 5 x 105 cells were resuspended in 100 µl of incubation buffer containing Annexin-V-FLUOS (20 µl/ml) and PI (20 µg/ml). Samples were then transferred to a 5 ml polystyrene round-bottom tube and incubated for 20 min at RT under dark condition. Finally 400 µl of incubation buffer was added. Data analysis was performed using FACSDiva software (Becton-Dickinson, Erembodegem, Belgium).

2.12 Organotypic 3D raft culture using de-epidermalised dermis (DED)

Glycerol preserved skin (Euro Skin Bank, Netherlands) was washed and incubated in PBS at 37\textdegree C for up to 10 days. Epidermis was then mechanically removed using Forceps and the de-epidermalized dermis was cut into 2 x 2 cm squares and placed in culture plates with the papillary dermal surface on the underside. Stainless steel rings were placed on top of the dermis, and 5x 105 FEK4 were inoculated into the rings on the reticular dermal surface. Following an overnight incubation, the depidermalized dermis was inverted to orient the papillary dermal surface on top before the rings were replaced. Then 3 x 105 HaCaT KCs were seeded inside the rings onto the dermis. After 2 days, the dermis was raised to the air-liquid interface in the same orientation, by placing the composites on stainless steel grids (Fig. 2.2).

After 7 days of raising the HaCaT Raft-DEDs, the 3D cultures were treated with DFO, PIH or 2NPE-PIH (+/- UVA) at a final concentration of 100 µM for 72 h. The cultures were then incubated for an additional 10 days (in the absence of compounds). On the 10th day, HaCaT Raft-DEDs were removed from the grids, fixed in 10% formalin and embedded in paraffin. Deparafinized sections were stained with haematoxylin and Eosin for histologic examination. The medium used for this experiment was the rich RM+ that allows the skin cell to achieve a higher proliferative state, and was refreshed every 3 days.
Figure 2.2: Organotypic raft culture using de-epidermalised dermis (DED). Provided by Dr Reelfs with thanks.
2.13 LIP determination in 96 well-plates

2.13.1 Principle of the assay
The level of LIP was determined by an adaptation of the method developed by (Epsztejn et al., 1999; Petrat et al., 1999).
The cytochemical calcein acetoxyethyl ester (CA-AM) assay is well established as a technique for the assay of cellular LIP. The principle of this assay is that non-fluorescent lipophilic CA-AM that easily penetrates cellular membranes produces fluorescent CA when rapidly cleaved by unspecific cytosolic esterases. The fluorescent CA is a fluorochromic alcohol that chelates labile iron (Tenopoulou et al., 2007). The level of intracellular CA-Fe complexes is determined by the increase in fluorescence produced by the addition of the fast membrane permeable iron chelator, SIH. SIH is a lipophilic strong chelator that restores the fluorescence by removing the complexed iron (Glickstein et al., 2005).

2.13.2 Procedure

Step I: CA Loading
Cells were grown for 72, 96 or 120 h as indicated in the cells section. On the day of treatment, the CM was aspirated and the cells were washed with PBS. Cells were then harvested by treatment with 0.125% trypsin and neutralised with 10% FCS PBS to avoid interference with fluorescence. Bovine serum albumin (BSA) was then added at a final concentration of 3 mg/ml to keep the osmotic integrity of the cells. Next, the cell suspension was centrifuged at 1000rpm (120 x g) for 2 min in a Falcon 6/300 MSE centrifuge. The supernatant was then aspirated and the cells were loaded with 0.25 μM CA-AM for 15 min at 37°C in Earle’s minimum essential media, containing 20 mM HEPES (pH 7.3) and 3 mg/ml BSA.

Step II: Washing
This step allows the elimination of the excess CA-AM from the cell suspension. After loading, the cell suspension was centrifuged at 1000rpm (120 x g) for 2 min. The supernatant was then aspirated and the cells were resuspended in 4 ml of BSA (3 mg/ml in PBS) and centrifuged for 2 min at 1000 rpm (120 x g). The supernatant was then aspirated.
Step III: fluorescence monitoring

This step allows the measurement of basal fluorescence intensity of free CA, CA-Fe and total CA. After washing, the cell pellet was re-suspended in 300 µl of fixing solution [10 mM HEPES buffer containing 150 mM NaCl and 2 mM diethyltriamine-pentaacetic acid (DTPA) which is a non-permeable iron chelator, affinity > 10^{27}]. At this point the cell suspension was transferred to 96 well plates (Costar 3603) (i.e.100µl cell suspension per well in triplicate). The fluorescence (F1) was then measured (excitation 485 – emission 535) by a Fluoroskan Ascents microplate reader (Labsystems, OY). Next, 5 µl of SIH (4 mM stock solutions) was then added to obtain the final concentration of 0.2 mM. The 96 well plate was then placed on a rocking platform (Stuart Scientific, UK) for 15 min to allow chelation. The fluorescence (F2) was then recorded at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The fractional increase of fluorescence ($\Delta F = (F2-F1) / F2$) was first determined by the calibration curve and then normalised to total cellular protein. This correlates with the LIP (µM / µg) within the cells (Duarte and Jones, 2007).

The calibration curve was prepared with ferrous ammonium sulphate (Petrat et al., 2000). It was initially diluted with PBS to 1 mM and then to a final concentration of 1 µM (final). From this solution, a series of 1:1 serial dilutions were prepared up to the final concentration of 2.44×10^{-4} µM (i.e. in total 12 concentrations were used). Next, 0.25 µM of CA stock solution (Sigma, C0875) was added to the 12 serial dilutions and the fluorescence (F1) was recorded (Excitation 485 – Emission 535) by a Fluoroskan Ascents microplate reader (Labsystems, OY).

To each well, 5 µl of SIH (4 mM stock solutions) was added and the plate was placed on a rocking platform (Stuart Scientific, UK) for 15 min to allow chelation. After the 15 min, the fluorescence (F2) was measured (Excitation 485 – Emission 535). For the calibration curve (Darbari et al, 2003), the fractional increase of fluorescence ($\Delta F = (F2-F1) / F2$) was plotted against the iron concentration used ($y = 9.981x + 0.088$, is the linear equation of the trendline).
Step IV: Protein measurements:

Protein concentrations were then measured according to the method of Bradford (Bradford, 1976) with slight modification. This modification was performed to enable the measurements of the protein content to be carried out in the 96-well plate to decrease the amount of protein extract used. To calibrate the standard curve, BSA (2 mg/ml) was first diluted (1:1) with MilliQ water (i.e. to 1 mg/ml) and then used at final concentrations of 0, 1, 2, 3, 4, 6, 8, 10 mg/ml.

The total volume of cellular extract (1 μl) or BSA (0-10 μl) with MilliQ water used in the each well was 160 μl, done in duplicates. Finally 40 μl of Bio-rad Protein Reagent (Bio-rad. 500-0006) was added, and the solution was thoroughly mixed with a pipette (preferably, a multichannel pipette). The absorbance was read using a VERSAmax™ (Molecular devices, California) at 595 nm.
The schematic presentation of the steps for measuring CA-Fe by CA-assay

Step I
- CA loading (via CA-AM)

Step II
- Washing

Step III
- Monitoring Fluorescence

Step IV
- Protein Measurement
2.14 Statistical analysis

Results are expressed as mean ± standard deviation (SD). Paired or unpaired Student’s one-tailed t-test was used as appropriate to test differences between groups of data. Note that the rejection p value is 0.05. Statistical analysis was performed using Microsoft Excel.

2.15 Synthesis of Caged –iron chelators and analogues

All compounds were synthesised in the School of Chemistry, University of Nottingham under the supervision of Dr James Dowden, according to Yiakouvaki et al. (2006) and unpublished procedures by Dr Savovic (Pourzand and Dowden’s laboratories).

2.15.1 Solvents, reagents, equipments

All solvents and reagents were purchased from commercial sources and used as received. 1H and 13C NMR (nuclear magnetic resonance) were obtained on a Varian EX-400 NMR spectrometer at 400 and 100 MHz, respectively.

2.15.2 General procedure for phenol alkylation (2NPE-SIH precursor a and 2-NPE-PIH precursor b)

A solution of the phenol (salicylaldehyde or pyridoxal HCl) (2.5 mmol), 1-(1-bromo-ethyl)-2-nitro-benzene, and K$_2$CO$_3$ anhydrous (for precursor a) or Cs$_2$CO$_3$ (for precursor b) in dimethyl formamide was stirred at 60°C for 12 h and then concentrated under vacuum. The obtained crude extracts were separated as outlined in the following table:

<table>
<thead>
<tr>
<th>Aimed Product</th>
<th>Residue Partitioned between</th>
<th>Column chromatography</th>
<th>Recrystalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-NPE-SIH precursor (a)</td>
<td>DCM x 3 and H2O</td>
<td>EtOAc:Hexane (7:3)</td>
<td>-</td>
</tr>
<tr>
<td>2-NPE-PIH precursor (b)</td>
<td>EtOAc x 3 and H2O</td>
<td>Et$_2$O: Hexane (2:8)</td>
<td>EtOAc:Hexane</td>
</tr>
</tbody>
</table>
2.15.3 General procedure for hydrazide formation (to synthesise 2NPE-SIH and 2-NPE-PIH, BIH, SIH, PIH)

A solution of aldehyde (1 mmol) and isonicotinic acid hydrazide (1 mmol) in ethanol (10 ml) or ethanol: water (9:1, 10 ml) for PIH and 2-NPE-PIH, was heated at reflux for 24 h. The reaction to make 2-NPE-PIH (final product) was performed in presence of filtered Dowex® 50WX4-100 acidic resin.

The obtained crude extracts were separated as outlined in the following table:

<table>
<thead>
<tr>
<th>Aimed Product</th>
<th>Column chromatography</th>
<th>Recrystalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2NPE-SIH</td>
<td>EtOAc:Hexane (7:3)</td>
<td>EtOAc:EtOH</td>
</tr>
<tr>
<td>2-NPE-PIH</td>
<td>MeOH:DCM (0.3: 9.7) to (0.6:9.4)</td>
<td>EtOAc: EtOH: Et₂O</td>
</tr>
<tr>
<td>SIH</td>
<td>-</td>
<td>EtOAc:EtOH</td>
</tr>
<tr>
<td>PIH</td>
<td>-</td>
<td>EtOH: H₂O (9:1)</td>
</tr>
<tr>
<td>BIH</td>
<td>-</td>
<td>MeOH:EtOH</td>
</tr>
</tbody>
</table>

Figure 2.3: Structures of caged iron chelators and control compounds. (1) Cs₂CO₃, DMF; (2) isonicotinic acid hydrazide, Dowex® 50WX4-100, EtOH/H₂O (9:1).
(Adapted from Yiakouvaki et al., 2006)(Yiakouvaki et al., 2006).
CHAPTER THREE

RESULTS AND DISCUSSION

3.1. The Choice of Cell Lines

To investigate the antiproliferative potential of Fe chelation as a powerful alternative therapy for skin hyperproliferative diseases such as NMSC or psoriasis, a series of experiments was performed to evaluate the impact of the parental compounds (PIH and SIH) and their caged derivatives (+/−UVA) on cell growth and cell cycle. The Fe chelator DFO was used as a positive control and the SIH derivative BIH, which lacks the iron binding moiety, was used as a negative control.

The proof of concept studies were carried out using FEK4 fibroblasts and HaCaT keratinocytes (KCs) as cell models. FEK4 cells are human primary skin fibroblasts that were originally isolated from the foreskin of a newborn baby in Tyrrell’s laboratory (ISREC, Switzerland). FEK4 fibroblasts are not immortalised and are therefore passage-dependent. HaCaT KCs are spontaneously immortalised cells and were originally isolated from a male human in Boukamp’s laboratory (1988). The HaCaT cell line has proved to be a useful and reliable in vitro model of human skin cell carcinoma. Furthermore as a cell line, it shows high genomic stability with successive passaging and provides reproducible results with time. This cell line is hyperproliferative and has a significantly higher proliferation rate than normal human skin KCs and fibroblasts (unpublished data, this laboratory). Both FEK4 and HaCaT cells are well characterised in Pourzand’s laboratory in terms of their molecular and enzymatic antioxidant defence capacity, susceptibility to UVA and H₂O₂, labile iron profile (+/- UVA), intracellular content of Fe, HO-1, HO-2 (+/- UVA) and short-term response to Fe chelators DFO, PIH, SIH and their caged-derivatives (+/- UVA) (Pourzand and Tyrrell, 1999; Pourzand et al., 2000; Zhong et al., 2004; Yiakouvaki et al., 2006; Reelfs et al., 2010).

The proof of concept experiments described in this section was first carried out with FEK4 and HaCaT cells. The obtained results were then further confirmed in a series of hyperproliferative cancerous and psoriatic cell lines. The cancer cell models used in this
study consisted of one keratinocyte cell line (i.e. PM1), clonally derived from forehead skin showing dysplasia, and one SCC line (i.e. Met 2) derived from a local recurrent cutaneous tumour. PM1 and Met 2 are isogenic KC cell lines isolated from the same patient (a kind gift from Prof Irene Leigh, Dundee, see Proby et al., 2000 and Popp et al., 2000). As additional model of hyperproliferative cell line, we also used the MKPS cell line. MKPS is an immortalised KC cell line derived from the psoriatic lesion of a male patient (a kind gift from Prof Irene Leigh, Dundee). Other control cells also included human primary cultured KC cells KCP7 and KCP8 that were passage-dependent and were used between passages 3-5 after which they usually differentiate.

3.1.1 Comparison of the Growth Rate of Skin Cells

3.1.1.1 Cell Count Assay
For the purpose of this PhD project, the growth rate of HaCaT KCs was compared to that of human primary skin fibroblasts FEK4, using the cell count assay. HaCaT and FEK4 cells were seeded at low confluency (i.e. 2 x 10^4 cells per 3cm plate) and the doubling time was calculated for both cell lines by counting the number of cells every 24 h in triplicates over a period of 7 days. The results (Fig 3.1A) showed that both in FEK4 and HaCaT cultures, there was a lag period of about 24 h after seeding, corresponding to the adaptation and recovery of the cells. However from 24 h onwards, the cells started to proliferate and rapidly entered the exponential phase, as evidenced by the logarithmic straight line plot in Fig 3.1A. As the cell density increased, the proliferation rate receded as a result of cell-cell contact inhibition and the cells entered the plateau phase after the 7th day (data not shown). Further comparison, revealed significant difference in proliferation rates of both cell types (i.e. 0.01754 versus 0.01056 for HaCaT and FEK4 cells respectively, p=0.01513). The doubling time for HaCaT was found to be ~17h, against ~28h for FEK4. The latter is in agreement with previous findings from this laboratory (unpublished).

The differential growth rate of FEK4 and HaCaT cells made them suitable as models of slow and fast growing cells for comparative studies aiming at evaluating the growth inhibitory effects of Fe chelators used in our study. Also since under conditions used in this study, both cell types maintained their exponential growth phase profile over the period of 24-120 h after seeding (see Fig 3.1A), it was possible to monitor the antiproliferative potential of Fe chelators in a time-dependent manner within this period.
3.1.1.2 BrdU Assay

The BrdU incorporation assay was used to compare the growth rate of FEK4, HaCaT and MKPS cells with that of cancer cell models PM1 and Met2 (all in exponential phase of their growth). The BrdU incorporation assay coupled with flow cytometry is a highly sensitive and reproducible technique particularly for determining the proportion of cells in the S phase of the cell cycle and provides both quantitative and qualitative data. The results (Fig. 3.1B) showed that in the exponential growth phase of cells, only 18% ± 2 of FEK4 cells were in S phase. In contrast in PM1 and Met2 cancer cell models, the percentages of cells in S phase were much higher than FEK4 (i.e. 49% and 38%, respectively). In comparison, the percentage of HaCaT cells in S phase was even higher (i.e. 55% ± 8). The psoriatic MKPS cells had the highest proliferation rate with 79% of cells in S phase. In summary, these results illustrated that compared to FEK4 control cells, all other cell lines have much higher growth rate.

3.1.1.3 Growth rate of primary keratinocytes

Previous unpublished work from this laboratory has already established that in comparison to the immortalised HaCaT KCs, the primary human KC cells KCP7 and KCP8 have much slower growth rate (i.e. several fold-lower than HaCaT cells). However these cell lines were not suitable as cell models for routine experiments. This is because the culture of KCP primary KCs is very time consuming and for experimental set up they often require 3-4 weeks of growth in culture before reaching the appropriate cell density for methodologies used in the study. In comparison, FEK4 and HaCaT experimental set up required only 2-3 days of growth in culture to reach the appropriate stage. Furthermore KCP cell culture is not only matrix-dependent (i.e. requires feeder layer for growth similar to PM1, Met2 and MKPS) but also extremely passage-dependent, since as primary KCs, KCP 7 and KCP8 can only be used between passages 1-5 after which they differentiate. The latter reason was also a major limitation for the number of repeats of the experiments. Therefore in this PhD project, KCP7 and KCP8 cells were only used as checkpoints in some of the experiments to compare the results obtained with other cell models.
1A. Combined logarithmic plot of growth curves data for HaCaT keratinocytes and human primary skin fibroblasts FEK4 cells. Log values of average cell counts were plotted and the best fit line was plotted using linear regression analysis. Statistical analysis was carried out using Graphpad Prism 5.0. (n=3).

1B. Cell proliferation rate of FEK4 fibroblasts and HaCaT, PM1, Met2 and MKPS KCs as measured by BrdU-assay. Exponentially-growing cells were first pulsed with BrdU (10 μM) for 1 h, and then harvested and processed by flow cytometry for determination of the percentage of cells in S phase. 20'000 events were collected and analysed (n=2-3).

Figure 3.1: Comparison of growth rate of a series of skin cell lines.

1A. Combined logarithmic plot of growth curves data for HaCaT keratinocytes and human primary skin fibroblasts FEK4 cells. Log values of average cell counts were plotted and the best fit line was plotted using linear regression analysis. Statistical analysis was carried out using Graphpad Prism 5.0. (n=3).

1B. Cell proliferation rate of FEK4 fibroblasts and HaCaT, PM1, Met2 and MKPS KCs as measured by BrdU-assay. Exponentially-growing cells were first pulsed with BrdU (10 μM) for 1 h, and then harvested and processed by flow cytometry for determination of the percentage of cells in S phase. 20'000 events were collected and analysed (n=2-3).
3.1.2 Comparison of the Basal LIP Level in Skin Cells

Numerous studies have highlighted that compared to normal cells, the cancer cells are more sensitive to Fe-depletion. It has been suggested that this sensitivity relates to their high requirement for iron which is necessary for the rapid cancer cell multiplication. However to our knowledge, no study has demonstrated to date a clear relationship between the high turnover of iron in cancer cells and their high rate of proliferation. This information is also missing for skin-related hyperproliferative disorders notably NMSC and psoriasis. Nevertheless it is known that iron is involved in the pathology of skin diseases as the presence of excess iron has been demonstrated in a variety of skin disorders such as psoriasis, venous ulceration and atopic eczema.

Our cell models provided us with an opportunity to investigate whether there is a correlation between the intracellular level of labile iron and the proliferation rate of the cells. Such studies could provide valuable clues to understand the modulation of intracellular iron levels during progression of normal skin cells towards early and late stages of carcinogenesis.

Zhong et al. (2004), from this laboratory, have already demonstrated that epidermal keratinocytes (e.g. HaCaT, KCP7 and KCP8) are more resistant to UVA-induced oxidative damage and cell death than dermal fibroblasts (e.g. FEK4, FCP7 and FCP8) presumably because both the ‘basal’ and ‘UVA-induced’ level of labile iron is considerably lower in keratinocytes than in fibroblasts. Indeed this study has revealed that the basal intracellular LIP level of primary skin KCs, KCP7 and KCP8, is 3-4-fold lower than their respective matched primary skin fibroblasts FCP7 and FCP8. The basal intracellular level of LIP in HaCaT KCs was also found to be 2.5-fold lower than that of FEK4 fibroblasts (see Table I and (Zhong et al., 2004).

For the purpose of this PhD project, the intracellular level of LIP was evaluated with the highly sensitive CA fluorescence assay in PM1, Met2, MKPS and HaCaT KC cell lines over a period of 120 h after seeding. The results (Table II) demonstrated that in exponential growth phase, the basal LIP levels of PM1, Met2 and MKPS KCs are on average 1.6-2-fold higher than that of HaCaT cells. The comparison of data obtained in this study (Table II) with that of Zhong et al. (2004; Table I) further revealed that the basal LIP levels of cancer
cell lines PM1 and Met 2 as well as the psoriatic cell line MKPS are on average 3-4 fold higher than primary KCs, KCP7 and KCP8.

The higher labile iron content of the PM1, Met2 and MKPS (Table II) appeared to correlate with their proliferation rate, since the intracellular LIP levels of these fast growing cells were significantly higher than that of primary KCs (Table I and unpublished data, this laboratory). Nevertheless primary FEK4 fibroblasts that had comparable basal level of LIP to PM1, Met2 and MKPS, showed much lower growth rate as shown in Fig 3.1B.

These observations suggested that although the basal LIP level might not always correlate with cell proliferation rate, it might however be a useful parameter to measure as it could provide valuable information about the sensitivity of the cell lines to Fe-depletion for instance during ICT. The PM1, Met2 and MKPS cell lines were therefore used as models of high proliferating cells to evaluate the antiproliferative potential of SIH, PIH and their caged derivatives i.e. 2NPE–PIH and 2NPE–SIH, followed or not by exposure to low to moderate doses of UVA. Sections 3.2 and 3.3 provide the summary of these findings.
Table I. The comparison of the basal intracellular level of LIP in skin cell lines

<table>
<thead>
<tr>
<th>Cell-line</th>
<th>LIP= [Fe] + [CA-Fe] (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibroblast: FCP7</td>
<td>2.01 ± 0.06</td>
</tr>
<tr>
<td>Keratinocyte: KCP7</td>
<td>0.27 ± 0.03</td>
</tr>
<tr>
<td>Fibroblast: FCP8</td>
<td>1.67 ± 0.21</td>
</tr>
<tr>
<td>Keratinocyte: KCP8</td>
<td>0.31 ± 0.17</td>
</tr>
<tr>
<td>Fibroblast: FEK4</td>
<td>1.21 ± 0.45</td>
</tr>
<tr>
<td>Keratinocyte: Hacat</td>
<td>0.50 ± 0.06</td>
</tr>
</tbody>
</table>

Table II. Fold difference in basal LIP of PM1, Met2 and MKPS as compared to HaCaT cells

<table>
<thead>
<tr>
<th>Ratio of LIP/protein (µM/ug)</th>
<th>Time After Seeding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72h</td>
</tr>
<tr>
<td>HaCaT</td>
<td>1.00</td>
</tr>
<tr>
<td>PM1</td>
<td>1.44</td>
</tr>
<tr>
<td>Met2</td>
<td>2.05</td>
</tr>
<tr>
<td>MKPS</td>
<td>2.42</td>
</tr>
</tbody>
</table>

Note: Average from 2-3 experiments.
3.2. The Antiproliferative Effect of Parental Iron Chelators

3.2.1. Comparison of the Growth Inhibitory Effect of Equimolar Concentration of PIH, SIH, DFO and BIH in skin cells

Prolonged exposure of cells to strong Fe chelators has been associated with severe toxicity and cell death due to iron starvation. Previous studies from this laboratory have demonstrated that short term treatment (i.e. 4-18 h) of FEK4 cells with Fe chelators Desferal (DFO) as well as parental PIH, SIH compounds and their caged-derivatives (at a final concentration of 100 µM) successfully depletes the basal and UVA-induced transit labile iron in cells but has no significant toxicity to the cells (Pourzand et al., 1999b; Reelfs et al., 2004; Zhong et al., 2004; Yiakouvaki et al., 2006). This was also confirmed for HaCaT KCs when treated for 4-18 h with DFO at a final concentration of 100 µM (Zhong et al., 2004).

In the present study we extended these observations by incubating the exponentially growing cultures of HaCaT and FEK4 cells for longer periods (up to 72 h) with Fe Chelators DFO, PIH and SIH at a final concentration of 100 µM. The SIH derivative ‘BIH’ that lacks the iron binding moiety was used as a non-chelating analogue control compound. A study performed by Yiakouvaki et al. (2006, this laboratory) has already demonstrated that overnight treatment of FEK4 cells with BIH at a final concentration of 100 µM triggers no toxicity to cells and unlike its analogues PIH and SIH, it does not modulate the basal or UVA-induced level of LIP in the cells.

3.2.1.1 MTT Assay

We first evaluated the cytotoxicity of the compounds with the MTT assay 24, 48 and 72 h after addition of compounds to exponentially growing HaCaT and FEK4 cells. The MTT assay monitors the ability of cellular dehydrogenases to convert the yellow soluble MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) into a insoluble purple formazan product. The intensity of the production of this purple product is directly proportional to cell density as well as cellular reductive capacity and subsequently cell viability. Therefore this rapid and sensitive assay is often used as the first line of evaluation and screening of novel compounds in both cell proliferation and cytotoxicity studies.
The MTT assay (Fig 3.2) demonstrated a significant reduction in cellular enzymatic activity of both FEK4 and HaCaT cells following prolonged treatment with Fe chelators. Nevertheless while with DFO and SIH, this effect occurred in both cell lines in a time-dependent manner, with PIH, the time-dependent reduction in activity could only be observed in FEK4 cells (Fig 3.2A). Indeed in PIH-treated HaCaT cells the observed reduction in enzymatic activities at 24h did not significantly change on progressing to 48 and 72 h time points (Fig 3.2B). Nevertheless, compared to FEK4 cells, SIH- and DFO-treatment had a more pronounced effect on HaCaT cells, as reflected by a more significant reduction in enzymatic activity at all time points used in the study. In contrast, the effect observed with PIH was less impressive and comparable in both cell lines (Fig 3.2A and 3.2B). For example at the 72 h post-treatment time point, the percentage control enzymatic activities calculated for both PIH-treated HaCaT and FEK4 cells were 54% ± 8 and 46% ± 9, respectively (see Fig 3.2A and 3.2B). For the same time point, the observed percentage control activity in SIH- and DFO-treated FEK4 cells was slightly lower (i.e. 34% ±7 and 35% ± 4, respectively) than the corresponding PIH-treated cells (Fig 3.2A). In contrast in SIH- and DFO-treated HaCaT cells, the respective percentage control activities were substantially lower (i.e. 4% ± 1 and 3% ± 2, respectively) than the corresponding PIH-treated cells (Fig 3.2B).

The treatment of both cell lines with BIH, a SIH derivative lacking the iron-binding moiety, did not have a significant effect in both cell lines (Fig 3.2), suggesting that the observed reduction in activity with its analogues PIH and SIH might be related to their Fe chelation property.

Overall HaCaT cells were found to be more sensitive to Fe chelators DFO and SIH than FEK4. The lower basal LIP level of HaCaT cells might play a role in their increased sensitivity to Fe-depletion when compared to FEK4 cells (Table I and (Zhong et al., 2004)). Finally the lower response of both cell types to PIH when compared to that of SIH and DFO, suggested that PIH might not be a suitable candidate chelator for iron chelation therapy.
Figure 3.2: The evaluation of growth inhibitory effect of PIH, SIH, and DFO on FEK4 (A) HaCaT (B) cells with MTT assay.

Exponentially growing cells were incubated for 24, 48, and 72 h with compounds prior to MTT assay, as described in Materials and Methods section. The results were expressed as percentage of control (Mean ±SD; n=3-8)

*: p< 0.05 Significant difference between value and corresponding untreated control.
†: p<0.05 Significant difference between value and corresponding 24h treatment
Δ: p< 0.05 Significant difference between value and corresponding 48h treatment.
3.2.1.2 Cell Count Assay

To ascertain that the observed reduction in enzymatic activity in MTT assay was related to decrease in cell density due to the growth inhibitory effect of the chelators rather than direct impact on cellular dehydrogenases enzymatic activity, we used the cell count assay as a control methodology to evaluate the change in cell density 24, 48 and 72 h following treatment of HaCaT cells with 100 µM DFO and PIH. While the MTT assay is invariably more sensitive than the cell count assay, there are a number of benefits associated with the latter. Namely, cell counting provides a direct measure of cell proliferation rates and it can give a clear indication of compound cytotoxicity. On a par with the benefits of cell counting, its drawbacks include an inherently increased risk of error (the procedure involves many more steps than the MTT assay), a reduced sensitivity and a much more labour intensive procedure. The results (Fig 3.3) showed that the trend of PIH and DFO cell count data are similar to those obtained with the MTT assay. Namely, both PIH and DFO treatments at a final concentration of 100 µM, substantially decreased the HaCaT cell proliferation rate, as reflected by the decrease in the number of viable cells. However the effect was much smaller with PIH. Also, there was again evidence of much reduced time-dependence with PIH.
Figure 3.3: The evaluation of growth inhibitory effect of PIH (A) and DFO (B) on HaCaT cells, with the cell count assay.

Exponentially growing cells were incubated for 24, 48, and 72 h with compounds prior to the cell count assay, as described in Materials and Methods section.

The results were expressed as percentage of control (Mean ± SD; n=3)

* : p< 0.05 Significant difference between value and corresponding control.

Δ : p< 0.05 Significant difference between value and corresponding 24h treatment.

† : p< 0.05 Significant difference between value and corresponding 48h treatment.
3.2.1.3 Light Microscopy

The relative reduction in cell density was also visualized by light microscopy in both FEK4 (Fig 3.4A) and HaCaT cells (Fig 3.4B), 72 h following treatment of cells with DFO, SIH and PIH at a final concentration of 100 µM. With the BIH-treated cells, there was again no evidence of reduction in cell density.
Figure 3.4A. The microscopic evaluation of cell confluence in FEK4 cells treated (or not) with Fe chelators DFO, PIH and SIH.

The microscopic photography was taken 72 h following treatment of the cells with compounds at a final concentration of 100 µM. BIH was used as a non-chelating control compound.
Figure 3.4B: The microscopic evaluation of cell confluency in HaCaT cells treated (or not) with Fe chelators DFO, PIH and SIH.

The microscopic photography was taken 72 h following treatment of the cells with compounds at a final concentration of 100 µM. BIH was used as a non-chelating control compound.
3.2.2 Effect of PIH, SIH and DFO on Skin Cell Survival Using Colony Forming Ability Assay

The results obtained with the MTT assay provided information about the short term effect of Fe chelators on HaCaT cells’ proliferation (i.e. up to 72 h post-treatment). In an attempt to relate these findings to an in vivo setting, the colony forming ability (CFA) assay was also performed in parallel with the MTT assay in HaCaT cells. The CFA assay is a useful methodology for monitoring the antiproliferative behaviour of the Fe chelators since unlike the MTT assay, it monitors the long term toxic/growth-inhibitory effect of the compounds. The CFA assay assesses the ability of a single cell to plate, divide and form colonies 14 days following treatment with compounds of interest (e.g. Fe-chelators in this study). The CFA assay has been recognized as a reliable and powerful first line in vitro method (i.e. prior to in vivo testing) for evaluation of the anticancer effects of the chemotherapeutic agents in terms of inhibition of cancer cell proliferation and their ability to form a colony. Furthermore the CFA assay has been used to reliably predict treatment outcomes in vivo.

For the purpose of this study, the exponentially growing HaCaT cells were treated with SIH, PIH and DFO at a final concentration of 100 µM for 24, 48 or 72 h. After each treatment, the cells were trypsinised and then seeded at single cell density and allowed to grow for 14 days in the absence of the compounds. At day 14th, the colonies were counted and expressed as percentage colony formation of the untreated control. The results (Fig 3.5) showed that in HaCaT cells, SIH and DFO have a much higher antiproliferative activity than PIH. Indeed the counting of colonies revealed that SIH and DFO treatments considerably reduce the percentage of colony formation in a time-dependent manner. Briefly, compared to control HaCaT cells, the 24 h treatment of cells with DFO and SIH decreased the percentage of colonies from 100% (i.e. control) to 74% ± 3 and 48%, respectively, and the 48 h treatment reduced further the DFO and SIH values to 14% ± 8 and 19%, respectively. Interestingly, only very few colonies were formed in cell culture plates that were originally treated with both compounds for 72 h. These results were in agreement with those of the MTT assay, although the effects observed with CFA were more pronounced.

Surprisingly, PIH treatment did not have a significant effect on colony formation in HaCaT cells, even after 72 h pre-treatment. The latter observation did not correlate with the MTT and cell count data, suggesting that the short term decrease in cell proliferation in PIH-treated
HaCaT cells must have been a transient effect that only occurred in the presence of the compound, and that presumably after removal of the compounds and addition of fresh media, cells have re-started to proliferate. In other words, the Fe chelating property of PIH might only cause ‘growth retardation’ in cells due to a transient Fe depletion rather than ‘growth inhibition’. Growth retardation due to transient iron starvation could translate as a longer S phase in the cell cycle, since the iron required for RR implicated in DNA synthesis is scarce. In this scenario, the removal of the Fe chelator should restore the DNA synthesis and cell division as a whole. In contrast growth inhibition may occur when RR activity is inhibited by the Fe chelator, so that the cell cycle stops at G1/S phase. The G1/S arrest in cell cycle usually leads to cell death. To distinguish between these two phenomena, it was therefore necessary to monitor both the percentage of cells in S phase of the cell cycle and cell death following Fe chelator treatments. Section 3.2.3 and 3.2.4 provide the summary of these analyses.
Figure 3.5: The evaluation of growth inhibitory effect of PIH, SIH, and DFO on HaCaT cells with the clonogenic forming ability assay.

Exponentially growing cells were incubated for 24, 48, and 72 h with Fe chelators at a concentration of 100 µM. Cells were then seeded at single cell density, incubated for 14 days, stained and counted. The values are expressed as percentage of control (Mean ± SD) n=2-3.

* : p< 0.05 Significant difference between value and control.
† : p< 0.05 Significant difference between value and corresponding 24h
Δ : p< 0.05 Significant difference between value and corresponding 48h.
3.2.3 Effect of PIH, SIH and DFO on HaCaT Cell Proliferation as Measured by BrdU Incorporation Assay

To verify the above hypothesis, we evaluated the percentage of HaCaT cells in S phase of the cell cycle with BrdU incorporation assay following 72 h treatment with DFO, SIH and PIH at a final concentration of 100 µM. The results (Fig 3.6) revealed that both SIH and DFO are capable of efficiently decreasing the percentage of cells in S phase, although the effect with DFO was more pronounced than SIH. In contrast, compared to control cells, PIH-treatment did not show any change in the percentage of cells in S phase. These results implied that the observed decrease in percentage colony formation with DFO and SIH in CFA experiments (Fig 3.5) might be due to the fact that these compounds provoke a significant G1/S arrest in HaCaT cell cycle, leading to cell death as reflected by reduced colony formation. In contrast, the PIH-treated cells progress to S phase and therefore fully survive (Fig 3.5 and 3.6).
Figure 3.6: The evaluation of growth inhibitory effect of DFO, PIH and SIH HaCaT cells as measured by the BrdU-assay.

Exponentially growing cells were incubated for 72 h with the indicated compounds at a concentration of 100 µM prior to pulsing with BrdU (10 µM) for 1h, then harvested and processed by flow cytometry for determination of the percentage of cells in S phase. 20,000 events were collected and analysed.

The results were expressed as percentage of control (n=2).
3.2.4 Effect of PIH, SIH and DFO on HaCaT Cell Death as Measured by Annexin V / PI Dual Staining Assay

To further verify the above assumption, it was decided to quantify the percentage of cell death using the sensitive flow cytometry-based Annexin V / PI dual staining assay. For this purpose, the exponentially growing HaCaT cells were treated for 24, 48 or 72 h with SIH, PIH and DFO at a final concentration of 100 µM. The flow cytometry analysis (Fig 3.7) demonstrated that in agreement with CFA (Fig 3.5) and BrdU data (Fig 3.6), prolonged exposure of HaCaT keratinocytes to DFO and SIH provokes a time-dependent increase in cell death and at the 72 h time point, only 8% and 5% of cells survive, respectively. However the percentage of dead cells remained extremely low in cells exposed to PIH for the same period of time (Fig 3.7).

These results suggested that in contrast to PIH, DFO and SIH should have much higher inhibitory effect on the RR enzyme, since treatment of cells with both of these chelators led to substantial G1/S arrest of cells in cell cycle leading to cell death. This assumption is in agreement with previous findings by Richardson and coworkers who demonstrated that compared to PIH, SIH and DFO have much higher antiproliferative activity presumably because they are more potent inhibitors of RR (Richardson et al., 1995; Yu et al., 2006). Furthermore they demonstrated that in general, the pyridoxal (PIH) analogues show high Fe chelation efficacy but low anti-proliferative activity (Richardson et al., 1995). Using the hepatocyte and reticulocyte cell models, they further demonstrated that among the PIH analogues, the least cytotoxic chelators (i.e. PIH, 101, and 107) were highly effective Fe chelators but lacked anti-proliferative activity (Richardson et al., 1995).

A recent study on both normal and immortalized skin keratinocyte (HaCaT) versus oral normal and SCC cancer cell lines has also demonstrated that prolonged Fe chelation with DFO (72-96 h) induces cell death in all cell lines used (Lee et al., 2006). In the same study, the reduction in cell proliferation with DFO was also demonstrated in HaCaT cells grown in 3-dimensional (3D) organotypic collagen-based culture. DFO caused severe growth inhibition in the form of less epithelial maturation, decreased epithelial thickness and decreased surface keratinisation compared to controls.
Figure 3.7: The evaluation of percentage of ‘live’ (grey) and ‘dead’ (black) HaCaT cells by flow cytometry 4, 24, 48 and 72 h following treatment with DFO, PIH and SIH.

Exponentially growing cells were incubated for 4, 24, 48 and 72 h with the indicated compounds at a concentration of 100 µM prior harvesting and dual Annexin-V/PI staining, and processed by flow cytometry for determination of the percentage of dead cells. 10,000 events were scored. The results were expressed as percentage of total events recorded (n=1).
3.2.5 Effect of PIH and DFO on HaCaT Epidermal Cells in 3D De-epidermalised Dermis Raft Organotypic Culture

The low antiproliferative activity of PIH was further verified with morphological studies in a HaCaT 3D organotypic skin equivalent raft culture. Fig 3.8 illustrates a typical section of a primary human keratinocyte raft made with DED and grown for 17 days.

For the purpose of this experiment, HaCaT cells were raised on a series of 3D de-epidermalised dermis (DED) and at day 7 of growth, they were treated with 100 µM DFO or PIH for 72 h. The media containing the chelators was then removed and replaced with fresh media. The cultures were then incubated for an additional 10 days and then stained with haematoxylin–Eosin for microscopic view. As it can be seen in Fig 3.9, the DED-raft cultures of the untreated HaCaT cells as well as those treated with PIH produced epithelial stratification with well-preserved morphologic differentiation and distinct stratum corneum that was comparable to that of normal keratinocytes illustrated in Fig 3.8. In contrast the DFO-treated culture produced a very thin stratum corneum (or at least invisible) and the epidermis thickness on average was lower when compared to that of control or PIH-treated cells. Furthermore the epidermal layer in DFO-treated epidermis appeared significantly damaged with the appearance of considerable holes within the tissue. Also the damaged cells appeared to have condensed chromatin, presumably due to their propensity to undergo apoptotic cell death as a result of G1/S cycle arrest by DFO (see Fig 3.10). These results further confirmed that in contrast to DFO, PIH lacks effective antiproliferative activity.
Figure 3.8: Typical section of a primary human keratinocyte raft made with DED and grown for 17 days. The epidermal and dermal layers are clearly indicated for information.

Figure 3.9: Morphological study of DED-Raft HaCaT cultures treated with 100 µM DFO and PIH for 72 h.
Figure 3.10: Magnification of the epidermal layer of control and DFO-treated DED-rafts of Figure 3.9.
3.2.6 Determination of IC50 for PIH, SIH and DFO

All the chelators used in this study are known to have similar strong iron binding activities but DFO and SIH were found to have more potent antiproliferative activity than PIH. Therefore it was of particular interest to determine the IC50 values of these chelators (i.e. the Fe chelator doses necessary to inhibit the proliferation of cells by 50%) as a mean to evaluate the extent of their growth inhibitory effect in skin cells. For this purpose FEK4 and HaCaT cells were analyzed by the MTT assay 72 h following treatment with a range of doses of PIH, SIH, and DFO, as detailed in the Materials and Methods section. The results were expressed as a percentage of the control values.

Table III summarises the IC50 values obtained by the MTT assay for PIH, SIH and DFO in the skin cell models of the study. As it can be seen, the IC50 values for PIH were overall much higher than SIH and DFO for all the cell lines used, consistent with the notion that this chelator is the least effective antiproliferative agent. Furthermore as it was demonstrated above, the decrease in cell proliferation with PIH was transient as it only occurred in the MTT assay in the presence of the compound. In contrast, SIH and DFO appeared to have a much stronger growth inhibitory effect than PIH as reflected by their lower IC50 values obtained for all the cell lines, except PM1 that required a much higher concentration of these chelators to achieve the IC50 value. These results suggested that the response of cells to the antiproliferative action of Fe-chelators depends not only on the chelator identity but also on the cell type.
Table III. Comparison of the IC50 values of Fe chelators in skin cell models

<table>
<thead>
<tr>
<th>Cell line</th>
<th>PIH (μM)</th>
<th>SIH (μM)</th>
<th>DFO (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEK4</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>HaCaT</td>
<td>100</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>KCP7</td>
<td>200</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>KCP8</td>
<td>200</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>PM1</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Met 2</td>
<td>200</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>MKPS</td>
<td>200</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: Average from 2-8 experiments.
3.2.7 Effect of Fe3+-Chelator Complexes on Cellular Proliferation

To confirm that the observed growth retardation / inhibitory effects of the Fe chelators used in the study were related to their Fe chelating property, additional MTT assays were performed with DFO, SIH and PIH where the chelators were complexed (or not) with Fe3+ (Fe-citrate). The compounds were then added to the cells at their corresponding IC50 (see Table III) and higher concentrations, so that the observed effect could also be verified in a dose-dependent context.

As it can be seen in Fig 3.11, the treatment of FEK4 cells with iron saturated PIH, SIH and DFO reversed significantly the observed decrease in enzymatic activity (as measured by MTT assay) of the cells treated with Fe chelators alone at both their IC50 and higher concentrations. For example the comparison at IC50 concentrations revealed that iron saturation of PIH could substantially increase the enzymatic activity of cells treated with PIH alone from 46% ± 9 to 85% ± 10. Also iron saturation of SIH increased the enzymatic activity of SIH-treated cells from 48% ± 5 to 94% ± 5. Finally iron saturation of DFO increased the enzymatic activity of DFO-treated cells from 52% ± 4 to 84% ± 12, respectively.

Similarly when HaCaT cells were treated with 100 μM PIH, 20 μM SIH and 10 μM DFO complexed with Fe3+, the cellular enzymatic activity also significantly increased when compared to treatment with Fe chelatros alone (Fig 3.12) (i.e. from 54% ±8 in PIH-treated cells to 75% ± 9 in PIH+ Fe3+-treated cells; from 37% ± 13 in SIH-treated cells to 97% ± 6 in SIH+ Fe3+-treated cells and from 53% ±8 in DFO-treated cells to 91% ± 16 in DFO+ Fe3+-treated cells, respectively.

Interestingly in both FEK4 and HaCaT cells, the iron saturation of Fe chelators at the IC50 or at higher concentrations yielded the same increase in enzymatic activity.

We also checked the response of PM1 and Met2 to DFO, PIH and SIH saturated or not with Fe3+ at their corresponding IC50 concentrations (Fig 3.13), results for PIH are demonstrated in Fig 3.18. Again here, the iron saturation of Fe chelators substantially reversed the observed decrease in enzymatic activity of the chelator-treated cells, although the effect was more pronounced with DFO-Fe3+ than SIH- and PIH-Fe3+.
Overall the results confirmed that saturation of Fe chelators with iron reverses the antiproliferative activities of the chelators at both IC50 and higher concentrations, so the growth retardation/inhibitory effects of Fe chelators were iron-related. These results were in agreement with previous studies carried out with these chelators in other cell models (Richardson et al., 2005)
Figure 3.11: Growth inhibitory effect of PIH, SIH, and DFO (+/- iron-citrate) on FEK4 cells as measured by the MTT assay.

Exponentially growing cells were incubated for 72 h with compounds complexed (or not) with iron, prior to the MTT assay, as described in the Materials and Methods section. The results were expressed as the percentage of untreated control (Mean ± SD; n=3-5)

*: p< 0.05 Significant difference from the corresponding untreated control.
Figure 3.12: Growth inhibitory effect of PIH, SIH, and DFO (+/- iron-citrate) on HaCaT cells (MTT assay).

Exponentially growing cells were incubated for 72h with compounds complexed (or not) with iron, prior to the MTT assay, as described in Materials and Methods section. The results were expressed as a percentage of the untreated control (Mean ± SD; n=3-5).

*: p< 0.05: Significant difference from the corresponding untreated control.
Figure 3.13: Growth inhibitory effect of SIH, and DFO (+/- iron-citrate) on PM1 and MET2 cells (MTT assay).

Exponentially growing cells were incubated for 72 h with compounds complexed (or not) with iron, prior to the MTT assay, as described in Materials and Methods section. The results were expressed as a percentage of the untreated control.
3.3 Antiproliferative Effect of Caged Iron Chelators

While SIH as a lipophilic Fe chelator with strong antiproliferative activity appears to be suitable for topical Fe chelation therapy of skin hyperproliferative diseases such as skin cancer, the prolonged topical application of SIH *per se* may be harmful as it could locally cause starvation of the normal skin cells surrounding the skin tumour/lesion from the essential nutrient iron. Our novelly designed light-activatable caged iron chelators (CICs) should circumvent this problem, as in practice the compounds will be first applied topically and then switched on selectively *in situ* within the tumour in a dose- and context-dependent manner. This section provides the summary of the pilot study performed with the aim of evaluating the antiproliferative activity of CICs derived from PIH and SIH (i.e. 2NPE–PIH and 2NPE–SIH, respectively) following uncaging with UVA radiation.

3.3.1 *In vitro* Characterisation of 2NPE–PIH and 2NPE–SIH (+/- UVA) by Reverse Phase HPLC

The first stage of this project involved the chemical synthesis of 2NPE–PIH and 2NPE–SIH in Nottingham under supervision of Dr James Dowden who initially designed and synthesized these CICs in collaboration with Dr Pourzand (see Yiakouvaki *et al.*, 2006). Following synthesis and evaluation of the purity of the compounds in Nottingham with NMR and MS analyses, the decaging profile of the CICs (+/- UVA or ambient light) was further characterised in the Bath laboratory in collaboration with Dr Ian Eggleston:

Fig 3.14A illustrates the reverse HPLC profile of 2NPE–PIH and PIH with or without irradiation with a UVA dose of 250kJ/m² as compared to the previously obtained profile of 2NPE–SIH and SIH (+/-UVA, 250kJ/m²) by Yiakouvaki *et al.* (2006) (Fig 3.14B). As can be seen, UVA irradiation triggers the uncaging of the 2NPE–PIH and 2NPE–SIH CICs and converts them to parental compounds PIH and SIH, respectively. This is further illustrated by co-injection of UVA-irradiated CICs with pure parental compounds (Fig 3.14A and 3.14B). The uncaging of 2NPE–PIH and 2NPE–SIH by UVA and the release of active PIH and SIH is schematised in Fig 3.15.
Figure 3.14: Prototype photo-activatable CICs (in collaboration with Dr Ian Eggleston).

2-NPE-SIH /PIH were run first (0.1mm in CH3CN/aq 1:1); then same samples were run after irradiation with 250kJ/m2 UVA; and irradiated samples were run with parental compounds i.e. with SIH or PIH co-injection.

PIH*: UVA-irradiated 2NPE-PIH
To evaluate the minimum UVA dose necessary for uncaging of 2NPE-SIH and 2NPE-PIH caged-chelators and release of parental compounds, the CICs were exposed to a range of doses of UVA (i.e. 5, 10, 20, 50, 100 and 250 kJ/m²) and then the relative peak areas of the reverse-HPLC profiles were quantified 1h following irradiation. The results (Fig 3.16) revealed that even at very low doses of 5-10 kJ/m², UVA could trigger the uncaging of the CICs. For 2NPE-SIH a low dose of 50 kJ/m² was sufficient to fully release the uncaged compound i.e. SIH. At natural exposure level, 50 kJ/m² will be equivalent to 10-15 min exposure to sunlight at sea level (i.e. a sub-erythemal non-damaging dose). Typically with a fluence rate of 150 W/cm², and a distance of 15 cm, the irradiation time for this dose will be around 2-3 min in the laboratory setting (or during CIC-based therapy in the clinical setting). For 2-NPE-PIH however higher doses of 100-250 kJ/m² were necessary for clean conversion of the caged-PIH to parental PIH. In comparison, in psoralen-UVA (PUVA) therapy, the typical UVA dose applied for sensitisation of skin is between 5-50 kJ/m² depending on the skin type of the patients. However PUVA is not an effective single therapy and usually necessitates multiple treatments that would cause an accumulation of the UVA doses applied. The cumulative doses in PUVA treatments of psoriatic patients could reach values up to 500kJ/m². The single and lower UVA dose treatment necessary to uncage the CIC compounds might therefore provide a clear advantage for caged-iron chelation therapy of skin hyperproliferative disease when compared to PUVA.

To evaluate the stability of the prototype CICs, additional reverse-HPLC analyses were performed with samples of 2NPE-PIH and –SIH kept for a few days at room temperature under ambient light. These results (not shown) revealed that the compounds are fully stable at ambient light and uncaging of the compounds occurs only upon exposure to a UVA broad spectrum lamp (i.e. 340-400nm with maximum peak at 364nm) to exclude partial uncaging of the CICs, a UVA dose of 250kJ/m² was used for experiments involving CIC uncaging by UVA.
Figure 3.15: Prototype photoactivatable CICs. Reproduced with the permission of Dr Ian Eggleston

Figure 3.16: Reverse-HPLC analysis of UVA-induced uncaging of 2NPE-SIH and 2NPE-PIH.

Quantifications of relative peak areas of reverse-HPLC analysis of (A) 2NPE-SIH and SIH;

(B) 2NPE-PIH and PIH (collected at 280nm 1h post-UVA treatment).
3.3.2 Comparative IC50 Values for Parental PIH, SIH and their UVA-
irradiated Caged Derivatives

To compare the antiproliferative activity of uncaged CICs versus the parental compounds, a
series of MTT assays in FEK4 and HaCaT cells 72 h following treatment with a range of
concentrations of the compounds (see a representative example in Fig 3.17) was performed.
These experiments allowed determination of the IC50 values of both parental and their UVA-
irradiated caged derivatives. Table IV provides the summary of the main findings as outlined
below:

- The IC50 values calculated for UVA irradiated 2-NPE-PIH-treated FEK4 and HaCaT cells
 were similar to that of parental PIH (i.e. 100 μM). Furthermore the unirradiated 2-NPE-PIH
 had no antiproliferative activity, consistent with the notion that the UVA-mediated release of
 PIH from the caged-compound is necessary for its antiproliferative action (Fig 3.17).

- The IC50 values calculated for SIH and its UVA-irradiated caged derivative were found to
 be around 50 μM and 20 μM, respectively for FEK4, and 20 μM for HaCaT cells. Again the
 unirradiated 2-NPE-SIH had no apparent antiproliferative activity, consistent with the notion
 that the UVA-mediated release of SIH from the caged-compound is necessary for its
 antiproliferative action (Fig 3.17).

To ascertain that the antiproliferative activity of UVA-irradiated CICs is related to their Fe
chelation properties as a result of their conversion to their respective parental compounds, the
UVA-irradiated 2NPE-PIH were complexed with Fe⁺³ using iron citrate and then performed
MTT assays were then carried out 72 h following addition of the compound (at its IC50
concentration) to HaCaT cell cultures. The results (Fig 3.18) revealed that iron saturation of
both parental PIH and its UVA-irradiated caged version significantly reduced the decrease in
enzymatic activity following treatment of cells with PIH and UVA-irradiated 2NPE-PIH
alone.
Figure 3.17: The determination of IC50 values for PIH/ SIH and 2NPE-PIH/-SIH (+/- UVA, 250 kJ/m²) HaCaT cells with the MTT assay.

The results are expressed as mean ± SD, (n=3) for PIH and its derivatives, and (n=2) for SIH and its derivatives.
Table IV. The comparison of IC50 values of PIH, SIH to UVA-irradiated 2NPE-PIH and 2NPE-SIH in FEK4 and HaCaT cells (MTT assay - 72h post treatment)

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Compound</th>
<th>IC50 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEK4</td>
<td>PIH</td>
<td>100</td>
</tr>
<tr>
<td>FEK4</td>
<td>UVA-irradiated 2NPE-PIH</td>
<td>100</td>
</tr>
<tr>
<td>FEK4</td>
<td>SIH</td>
<td>50</td>
</tr>
<tr>
<td>FEK4</td>
<td>UVA-irradiated 2NPE-SIH</td>
<td>20</td>
</tr>
<tr>
<td>HaCaT</td>
<td>PIH</td>
<td>100</td>
</tr>
<tr>
<td>HaCaT</td>
<td>UVA-irradiated 2NPE-PIH</td>
<td>Above 100</td>
</tr>
<tr>
<td>HaCaT</td>
<td>SIH</td>
<td>20</td>
</tr>
<tr>
<td>HaCaT</td>
<td>UVA-irradiated 2NPE-SIH</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 3.18: Growth inhibitory effect of PIH and UVA irradiated 2NPE PIH(+/− iron-citrate) on FEK4 cells (MTT assay).

Exponentially growing cells were incubated for 72 h at concentrations of 100 µM or 200 µM of compounds complexed (or not) with iron, prior to MTT assay, as described in Material and Methods section. The results were expressed as percentage of the untreated control (Mean ± SD; n=3)

* : p< 0.05 Significant difference from the corresponding free ligand.

DFO:Iron = 1:1
SIH:Iron = 2:1
PIH:Iron = 2:1
3.3.3 Effect of PIH/SIH, 2-NPE-PIH/SIH and Subsequent UVA Irradiation on the Proliferation of Skin Cells

After assessing the antiproliferative effect of parental PIH/SIH and their UVA-irradiated caged derivatives, it was important to assess the antiproliferative activity of the CICs uncaged in situ inside the cells. For this purpose, exponentially growing FEK4 and HaCaT cells were first treated for 18 h with 2NPE-SIH or SIH and 2NPE-PIH or PIH, respectively, at a final concentration of 100µM and then irradiated with a range of UVA doses. Following UVA irradiation, the cells were incubated for 72 h in the absence of compounds and then analysed with the MTT assay.

The results (Fig 3.19A) demonstrated that in the absence of UVA, caged-PIH does not alter the cellular enzymatic activity of HaCaT cells, but following UVA irradiation provides a significant decrease in the observed activity of cells. UVA-irradiated controls only marginally altered the enzymatic activity of HaCaT cells, indicating that the effect observed in caged-treated irradiated cells is unrelated to radiation but rather related to uncaging of the 2NPE-caging group and release of active antiproliferative PIH compound. The antiproliferative activities of UVA-irradiated PIH-treated cells were quite similar to those obtained with caged-PIH, implying efficient in situ uncaging of caged-PIH by UVA even at lower doses of 50 and 100kJ/m². Similarly, when SIH and 2NPE-SIH were tested in FEK4 cells, the antiproliferative activity of UVA-irradiated SIH-treated cells was also quite similar to that obtained with UVA-irradiated caged-SIH (Fig 3.19 B). Nevertheless UVA irradiation of FEK4 cells in the absence of compounds revealed higher toxicity at 250 kJ/m². This is in agreement with previous findings from this laboratory that have shown that FEK4 fibroblasts are more susceptible to UVA irradiation than HaCaT cells (Zhong et al., 2004). Nevertheless the lower non-damaging UVA dose of 50 kJ/m² appeared to be sufficient to uncage the 2NPE-SIH in agreement with the in vitro uncaging UVA dose evaluated by the reverse HPLC data. Furthermore the results of Fig 3.19B suggested that for 2NPE-PIH the lower UVA doses of 50 and 100 kJ/m² are also effective in situ uncaging as the effect observed with the caged-PIH using the MTT assay was quite similar to that obtained with parental compound upon low doses of UVA.
PIH 100µM 18h: PIH was added for 18h prior to UVA irradiation and then removed.

2NPE PIH 100µM 18h: Caged PIH was added for 18h prior to UVA irradiation and then removed.

SIH 100µM 18h: SIH was added for 18h prior to UVA irradiation and then removed.

2NPE SIH 100µM 18h: Caged PIH was added 18h prior to UVA irradiation then removed.

Figure 3.19: The evaluation of cell proliferation following treatment of (A) HaCaT cells with PIH and 2NPE-PIH +/-UVA (n=3) and treatment of (B) FEK4 cells with SIH and 2NPE-SIH +/-UVA (n=2) with MTT assay. The results are expressed as mean ± SD.

T-test (vertical comparisons):
†: (p< 0.05), significant difference between caged PIH treated +/-UV and untreated cells +/-UV.
‡: (p< 0.05), significant difference between PIH treated +/-UV and untreated cells +/-UV.
□: (p< 0.05), significant difference between PIH treated +/-UV and Caged PIH treated cells +/-UV.

T-test (horizontal comparisons):
+: (p< 0.05), significant difference between unirradiated and irradiated cells.
Δ: (p< 0.05), significant difference between Caged PIH treated and Caged PIH + UV treated cells.
*: (p< 0.05), significant difference between PIH treated and PIH + UV treated cells.
3.4 Concluding remarks

The evaluation of the antiproliferative activity of PIH and SIH and their caged derivatives in our cell models revealed that while short-term (i.e. 4 - 18 h post - UVA) exposure of cells to 2NPE-based CICs provides protection against UVA-induced oxidative damage with no apparent toxicity (see Yiakouvaki et al., 2006), the prolonged (i.e. 24 – 72 h) exposure of cells to parental SIH or UVA-irradiated 2NPE-SIH triggers growth inhibition because of G1/S arrest in the cell cycle leading to substantial cell death. PIH and UVA-irradiated PIH on the other hand only caused transient growth retardation in cells in the form of a delayed S phase but had no apparent toxicity to skin cells, since the percentage of dead cells remained extremely low in cells exposed to these compounds for the same length of time. These results highlighted the importance of the choice of the parental Fe chelators in determining the level of toxicity of cells. Based on these results, 2NPE-PIH, that had very low toxicity, appeared to be the best candidate for skin photoprotection. In contrast, 2NPE-SIH that triggered high levels of cell death upon UVA light appeared to have potential for topical caged-iron chelation therapy of iron-related skin disorders, notably skin cancer. The low toxicity of UVA-irradiated 2NPE-PIH was further confirmed in morphological studies in 3D organotypic raft cultures using the DED dermis.

The growth-retardation or inhibitory effects observed with Fe chelators or uncaged CICs were related to their iron-chelating property, as their saturation with iron, could reverse their antiproliferative activity in analysed skin cells. Finally, the studies aimed at evaluating the antiproliferative activity of CICs upon in situ uncaging with low doses of UVA revealed that in the absence of UVA, 2NPE–PIH and –SIH do not alter the cell growth, but following ‘low’ UVA radiation doses, they provide a significant decrease in growth rate of cells that is comparable to the effects observed with the parental chelators alone.

Taken together, these data indicated that 2NPE-PIH, which possesses very high iron chelating potential, but low antiproliferative activity (i.e. upon uncaging by UVA), is more suitable for skin photoprotection. In contrast, 2NPE-SIH which remains inactive inside the cells until its strong iron binding activity and high antiproliferative properties are activated by UVA, offers a highly selective and dose-controlled alternative for the treatment of hyperproliferative skin disorders such as skin cancer and psoriasis.
3.5 Future Work

Although the pilot study performed in this PhD project provided the first evidence for the suitability of 2NPE-SIH for caged-iron chelation therapy of skin hyperproliferative disease, it is clear that more data are still required to validate this approach. One of the essential requirements for the continuation of this project is to study the antiproliferative potential of this promising prototype CIC in additional cell models of cancerous and psoriatic cell lines. Also the effect observed in monolayer cultures should be further validated in 3D DED raft cultures so that the long-term antiproliferative action of the CIC could be clearly demonstrated. At this point, it will also be necessary to evaluate the minimum UVA dose necessary to uncage the CIC compound in the epidermal layer of the 3D raft culture. Dr Reelfs from this laboratory has already established an enzymatic protocol that would allow the separation of the epidermal layer of the rafts and further digestions in order to obtain the KC cell suspension. This cell suspension can be analysed with the CA assay by flow cytometry to evaluate the modulation of LIP in epidermal layers treated with CICs + UVA. Furthermore Dr Eggleston’s laboratory are presently designing a series of fluorescent 2NPE-SIH molecules that could allow the visualization of the depth of penetration of the CICs in epidermal layer of rafts with fluorescence microscopy. Such studies are necessary to complement the studies performed in this thesis.

Following the above investigations, the antiproliferative action of 2-NPE-SIH-type CICs should then be validated in skin xenografts of cancerous and psoriatic cell lines in animal models. At this point further measures have also to be taken to find out the best topical formulation for efficient administration of the CICs.

Future work should also include the design of more improved CICs with new Fe chelators and new caging groups allowing uncaging at lower UVA doses while keeping the high lipophilicity, high iron-binding activity and high antiproliferative activity upon uncaging. An in-depth analysis of novel and improved CICs might allow then the selection of CICs with the most efficient growth inhibitory/iron binding ability for subsequent in vivo testing in order to identify the most promising CIC(s) for topical caged iron-chelation therapy of iron-related skin hyperproliferative diseases, notably skin cancer and psoriasis.

Furthermore the prototype CICs studied in this thesis offer considerable scope for optimisation/fine tuning, with respect to wavelength of release (by varying the caging group),
lipophilicity and toxicity (by varying the chelators and/or caging group). For instance, chemical fine-tuning of either chelator or caging moieties to enhance either cytotoxic or protective functions upon release from the inactive caged structure could offer a wide range of medical and healthcare applications. This is a major advantage for several applications, and cannot be achieved with systemic iron chelation approaches currently in development.
REFERENCES

Boyer, R.F., Schori, B.E., 1983. The incorporation of iron into apoferritin as mediated by ceruloplasmin. *Biochem Biophys Res Commun* 116, 244-250.

Price, B.D., Calderwood, S.K., 1992. Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res 52, 3814-3817.

