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Abstract

The method of neutron di�raction with isotopic or isomorphic substitution (NDIS)
was employed to investigate the atomic-scale structure of several disordered multi-
component materials, thus reducing the complexity of correlations associated with a
single di�raction pattern.

The solvation of the Cl� ion in a 5 molal solution of NaCl in D2O was investigated
at temperatures and pressures up to 150 �C and 33.8 kbar, respectively, thus extending
the state conditions for studying the structure of this geological uid. Changes to the
structure with increasing temperature at 0.1 kbar may be attributed to a reduction
in the dielectric permittivity, and the structural variation with increasing pressure at
150 �C reects changes in the structure of water to a more simple-uid like phase.

NDIS with Se-isotopes was used to help untangle the composition-dependent struc-
ture of As-Se glasses. The results for As0:30Se0:70 and As0:35Se0:65 favour the formation
of a chemically ordered over a chemically disordered network, while the results for
As0:40Se0:60 reveal broken chemical order through the appearance of homopolar bonds.
The work shows a need to improve previous structural models that were produced by
using both the reverse Monte Carlo and �rst-principles molecular-dynamics methods.

Rare-earth clustering in the aluminosilicate glass (R2O3)0:2(Al2O3)0:2(SiO2)0:6 was
investigated via NDIS, using Nd and Pr as an isomorphic pair. The results indicate
a network structure based on SiO4 tetrahedra along with AlO4 and AlO5 units in the
approximate ratio of 4:1. Each rare-earth (R) ion has, on average, 7.3(2) nearest-
neighbour oxygen atoms at a distance of �rRO = 2.43(2) �A, and the R-R nearest neigh-
bour distance is 3.9(4) �A. The results are discussed by reference to the structure of
a rare-earth glass of the same composition, but where Nd/Pr is replaced by a smaller
rare-earth ion pair such as Dy or Ho.



1. Introduction

Disordered materials such as liquids and glasses are ubiquitous in nature and in our
daily lives, where examples range from geologically relevant systems to optical �bres
and phase-change memory alloys [1{4]. These materials have in common a disordered
atomic structure which lacks the long-range order typical of crystals, where a unit cell
is repeated periodically to form a highly ordered lattice. However, decades of studies
have shown that some kind of order does exist within disordered materials on short
(� 5 �A), intermediate (up to � 20 �A) and extended (> 20 �A) length scales [5{9].

A disordered material is often formed from local structural motifs, such as cation-
centred pyramids or tetrahedra, that link to form a network structure. The topology
of this network will depend on the chemical nature of the motifs, on their relative
abundance, on the addition of modifying atoms, and on the pressure and temperature
[10{13]. Because di�erent network topologies give rise to di�erent material properties,
knowledge of this structure is a matter of great interest for both fundamental and
applied research. In fact, the development of realistic microscopic models for these
systems may lead to an ability to predict, control and �ne-tune the related physical
properties, following the principles of rational design [4, 10, 14].

In order to guide in the development of realistic microscopic models, detailed exper-
imental information on the atomic-scale structure and dynamics is fundamental. How-
ever, unravelling the structural features of multi-component systems is quite challeng-
ing, because topological and chemical disorder lead to complexity. X-ray and neutron
di�raction provide tools for helping to unravel this complexity, and provide information
at the pair-correlation function level (two-body correlations).

Site-speci�c experimental probes include neutron di�raction with isotopic or iso-
morphic substitution (NDIS), Anomalous X-ray di�raction (AXD) and spectroscopic
techniques such as extended X-ray absorption �ne structure (EXAFS), X-ray absorp-
tion near edge structure (XANES) and nuclear magnetic resonance (NMR) [15{19]. A
complete description of a disordered material often emerges through a combination of
the results obtained by using several di�erent methods. However, spectroscopic tech-
niques often require some a priori structural information to interpret the data, while
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AXD is best exploited to probe systems having atoms with an atomic number Z > 30
and requires an ability to accurately calculate the real and imaginary parts of the
dispersion terms [20].

In the present work, NDIS has been employed to investigate the structure of three
di�erent disordered systems. Having a neutral charge, neutrons can easily penetrate
a material and investigate its structure by interacting strongly with nuclei. Here,
the scattering power is found to vary not only between elements, but also between
isotopes of the same atomic species. When the di�erence in the scattering power of
two isotopes o�ers a good contrast, ND with isotope substitution can be employed. By
using this method, which was for the �rst time employed by Enderby and co-workers
in the Sixties [15], di�raction patterns of isotopically labelled samples can be combined
via simple mathematical relations to access the pair-correlation functions and related
quantities, such as the coordination numbers and bond distances. An alternative way
of obtaining a neutron-scattering-length contrast is by using the method of isomorphic
substitution, where samples that have an identical structure are made by using di�erent
chemical species. The substituted chemical species have to be chosen such that they are
chemically isomorphic, i.e. they have similar structural chemistry and ionic radii. ND
with isotopic or isomorphic substitution therefore represents an extremely powerful
tool for reducing the complexity of correlations associated with a single di�raction
pattern for a multi-component system, and for obtaining site-speci�c experimental
information on the structure of liquids and glasses. Signatures of intermediate and
extended range order manifest themselves by peaks in the measured di�raction patterns.
The appearance of a so-called �rst sharp di�raction peak at a scattering vector QFSDP �
1 � 1:5 �A�1 is associated with intermediate range order (IRO), while the so-called
principal peak at QPP � 2:0� 2:7 �A�1 is associated with extended range order (ERO).
The underlying periodicities associated with these peaks are given by 2�/QFSDP or
2�/QPP, with a correlation length of 2�/�QFSDP or 2�/�QPP, that depends on the
full-width at half-maximum of the FSDP or PP [9].

In this work, some examples are shown of how the experimental information on
the structure of disordered systems can provide a severe test for the validity of Re-
verse Monte Carlo (RMC) modelled data and molecular-dynamics simulations. In fact,
structure re�nement methods such as RMC [21] and Empirical Potential Structure Re-
�nement (EPSR) [22] are often used to provide models that are in agreement with the
experimental information. This is achieved by constructing three-dimensional models
in which atoms are moved until con�gurations are produced that are in agreement
with measured di�raction patterns and other applied constraints such as the mea-
sured number density, distance of closest approach between the centres of two atoms,
and characteristics of the local structural motifs. Once a model is constructed that
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is in agreement with experimental data, additional information related to three and
four-body correlations, such as bond-angles and torsion-motions distributions, can be
inferred. However, such information needs to be treated carefully, since the original
experimental data are provided only at the two-body correlation level. MD simulations
are also often employed to model the structural and dynamical properties of liquids
and network glass-forming materials. Any MD method aims at solving, via iterative
numerical schemes, the equations of motion that describe the physical evolution of a
system. However, �nding the right ingredients for describing an analytical potential
that models correctly the interactions is not trivial. Also, there is often a trade-o�
between an accurate description of the chemical bonds and the number of atoms that
can be dealt with on a realistic computational time scale [4].

Thesis outline

The content of the thesis is organised as follow:

� Chapter 2 - The essential theory of neutron scattering is presented and the Faber-
Ziman formalism used for multi-component disordered materials is introduced.
The methods of isotopic and isomorphic substitution are also explained, and the
formalism of �rst-order di�erence functions is introduced.

� Chapter 3 - The D4c and GEM di�ractometers used to perform the ND exper-
iments are presented, and the procedures for correcting and analysing the data
are explained.

� Chapter 4 - The structure of a 5 molal solution of NaCl in water is investigated
via the Cl-isotope substitution method over a wide range of state conditions,
spanning pressures between 100 bar and 33.8 kbar, and temperatures between
50 �C and 150 �C. The experiments were performed using a Ti-Zr pressure-cell at
pressures up to 1 kbar and a Paris-Edinburgh press at higher pressures [23].

� Chapter 5 - The method of ND with Se-isotope substitution is used to investigate
the structure of the chalcogenide glasses AsxSe1�x with x = 0:30, x = 0:35 and
x = 0:40. The results are compared to those obtained from recent RMC and
�rst-principles MD simulations [24{26].

� Chapter 6 - The structure of the rare-earth aluminosilicate glass
(R2O3)0:2(Al2O3)0:2(SiO2)0:6 was investigated via ND with isomorphic substitu-
tion using the large rare-earth elements Nd and Pr as an isomorphic pair. The
results are compared to those obtained via the same experimental method for the
structure of a rare-earth aluminosilicate glass having an identical composition,
where the isomorphic pair were the small rare-earth elements Dy and Ho [27].
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� Chapter 7 - Overall conclusions for the work presented in this thesis are drawn
and a future perspective is given.

I declare that this thesis is my own work and has not been submitted in any form
for another degree or diploma at any university or other institute of tertiary educa-
tion. Information derived from the published or unpublished work of others has been
acknowledged in the text and a list of references is given.



2. Theory

2.1 Neutron di�raction

In 1932, James Chadwick discovered the neutron, one of the fundamental building
blocks for the atomic nucleus [28]. Within the next ten years, Fermi found that slow
neutrons are more easily captured by nuclei than fast ones (1934) [29], nuclear �ssion
was discovered (1938) [30], and the �rst nuclear reactor was built (1942) [31]. In the
nineteen �fties, Shull and Brockhouse began the development of neutron scattering
techniques: neutron di�raction and inelastic scattering are now established techniques
that play a major role in the investigation of condensed matter.

Having a neutral charge, neutrons can easily penetrate a material and probe its
structure by interacting strongly with nuclei. Neutrons have a non-zero magnetic mo-
ment that leads to magnetic scattering through interactions with the magnetic dipole
moment of the atomic electrons. The energy E, mass mn and wavelength � of a neutron
are related via

E =
h2

2mn�2 =
~2k2

2mn
(2.1)

where h = 6:626 � 1034 J s is Planck’s constant and ~ = h
2� , mn = 1:67 � 10�27 kg.

The neutron wavevector can be expressed in terms of the associated wavelength as:

k =
2�
�
; (2.2)

such that
p = ~k (2.3)

is the neutron momentum. If the neutron energy is in units of meV and the wavelength
is in units of �A, then

�(�A) = 9:04[E(meV)]�1=2 (2.4)

and it is straight-forward to calculate that neutrons with energies of the order of ten to
a hundred meV have wavelengths on an interatomic scale. A scattering event between



2.1 Neutron di�raction 11

an incident unpolarised neutron and a nucleus in a non-magnetised sample can occur
only via the strong force. Such interactions can be modelled as point-like in the form
of the Fermi pseudo-potential [29, 32]

V (r) =
2�~2

mn
b�(r); (2.5)

where r is the position of the neutron relative to the nucleus, and b is the bound
scattering length, which is a measure of the scattering power of each nucleus and is
in general spin-dependent [33]. In a di�raction experiment, neutrons with an incident
ux � are either transmitted or scattered once they reach the sample. Neutrons having
an initial wavevector ki and energy Ei are scattered to give a �nal wavevector kf and
�nal energy Ef in a direction (2�,�), as shown in Figure 2-1, where the geometry of a
neutron-scattering event is illustrated.

Figure 2-1: Schematic for a neutron-scattering experiment. A neutron in the incident
beam of ux �, having initial wavevector ki, is scattered to give a �nal wavevector kf
in the direction (2�,�) [34].

The scattering wavevector, or momentum transfer, is de�ned as

Q = ki � kf (2.6)

and, according to the scattering triangle illustrated in Figure 2-2, its modulus can be
expressed as

Q2 = ki2 + kf 2 � 2kikf cos(2�): (2.7)
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Figure 2-2: The scattering triangle that de�nes the momentum transfer.

The energy that a neutron loses to the sample during a scattering event is de�ned as

�E = Ei � Ef = ~!: (2.8)

If �E 6= 0, the scattering event is inelastic and ki 6= kf . When the scattering event
is elastic, i.e. �E = 0 and ki = kf , or in the \static approximation", when ki � kf ,
Eq. (2.7) can be re-written, using Eq. (2.2), in the form

Q =
4�
�

sin �: (2.9)

The static approximation requires that the incident neutron energy is much larger than
the energy exchanged with the sample, Ei >> ~!, such that the change in the mag-
nitude of the momentum of a neutron following a scattering event is negligible. If the
system has a maximum thermal energy ~!max, then the minimum characteristic time
for the atomic motion is �min � !max

�1, which corresponds to the period of the atomic
vibrations in a solid or to the atomic-scale relaxation time in a liquid. Therefore, in
terms of timescales, the static approximation is satis�ed when � snapshot << �min, where
� snapshot � !min

�1 is the characteristic time for a neutron to travel one interatomic dis-
tance (� �i for a di�raction experiment). This condition implies that the structure of
the sample is relatively static when the neutron probes it, and hence that a scatter-
ing event results in a \snapshot" of the system. Atomic motions typically occur with
�min � 10�13 � 10�12 s, while for neutrons having an incident energy in the range of
tens or a few hundred of meV, 10�15 6 � snapshot 6 10�13 s. Hence, the static approxi-
mation is not completely valid in neutron di�raction and dynamical e�ects have to be
considered.
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The di�erential scattering cross section, which is the quantity measured in a neutron-
di�raction experiment, can be de�ned as [20]

d�
d


=
number of neutrons scattered into solid angle d
 per second

�d

: (2.10)

By taking into account that in a real sample each scattering centre has a certain position
and scattering length, Eq.(2.10) can be expressed as

d�
d


(Q) =

*������

NX

i=1

bieiQ�ri

������

2+

=

* NX

i;j

bib�je
iQ�rij

+

; (2.11)

where the vector rij = ri � rj denotes the relative position of the scattering centres i
and j. The asterisk in b�j represents a complex conjugate, as bi can have both a real and
an imaginary part. The latter is associated to absorption events and has to be taken
into account if the incident neutron energy is close to an absorption resonance of an
isotope. The triangular brackets in Eq.(2.11) denote a thermal average of the atomic
positions that, during the time of an experiment, undergo thermal displacement. Let’s
assume that there is no correlation between (1) nuclear spin-state and site, (2) nuclear
spin themselves, (3) isotopic mass and site. Under these assumptions, the horizontal
bars in Eq.(2.11) represent an average over an ensemble of samples having the same
structure and isotopic composition, where the scattering lengths for each member of
the ensemble are randomly and di�erently distributed [20]. In this case, the term bib�j
can be rewritten as [32]

bib�j = b2 if i = j (2.12)

bib�j = b2 if i 6= j (2.13)

and Eq.(2.11) can be expressed as

d�
d


(Q) = Nb2 + b2
* NX

i;j 6=i

eiQ�rij
+

(2.14)

=
�
d�
d


(Q)
�self

+
�
d�
d


(Q)
�distinct

(2.15)

where the self term describes the scattering coming from the same site (i = j), while
the distinct term is associated with scattering from di�erent sites (i 6= j).
By adding and subtracting b2 between the terms in Eq. (2.14), it follows that
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d�
d


(Q) = N(b2 � b2) + b2
* NX

i;j

eiQ�rij
+

= Nb2inc + b2coh

* NX

i;j

eiQ�rij
+

=
�
d�
d


(Q)
�inc

+
�
d�
d


(Q)
�coh

: (2.16)

The incoherent scattering term of Eq.(2.16) describes the variation of the scattering
lengths about their mean value and contains no structural information. The associated
scattering length is called incoherent and it is de�ned by b2inc � b2 � �b2. The coherent
scattering term in Eq.(2.16) contains instead information about the relative positions
of the scattering centres, and the coherent scattering length is de�ned by bcoh � �b. For
a polyatomic system having NS atoms of n di�erent chemical species �, it is convenient
to generalise Eq. (2.15) and expressed the di�erential scattering cross section per atom
as:

1
NS

�
d�
d


(Q)
�

=
1
NS

�
d�
d


(Q)
�self

+
1
NS

�
d�
d


(Q)
�distinct

; (2.17)

where

1
NS

�
d�
d


(Q)
�self

=
nX

�
c�(b2coh;� + b2inc;�)[1 + P�(Q)]: (2.18)

and

1
NS

�
d�
d


(Q)
�distinct

= F (Q) + Pdistinct(Q); (2.19)

The self term describes the isotropic di�raction from individual atomic sites �, where
P�(Q) is the associated inelastic scattering term for chemical species �. The total
structure factor F (Q) is built from the di�raction pattern collected from pairs of dif-
ferent atomic sites and contains the desired structural information. Pdistinct(Q) is an
inelastic-scattering term associated with distinct scattering. The inelasticity terms re-
sults from the breakdown of the static approximation due to the recoil of nuclei in their
interaction with incident neutrons, and are therefore more severe in the presence of
light nuclei such as hydrogen and deuterium.
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2.1.1 Nuclear and Magnetic Di�erential Scattering Cross Section

The neutron has a �nite magnetic dipole moment, n = �1:913 �N , where �N =
5:051 �10�27 J T�1 is the nuclear magneton. Hence, if a material has a magnetic dipole
moment, a magnetic interaction can occur between neutrons and atoms of the material,
during a scattering event. In this case, the total di�erential scattering cross section,
containing contributions from both nuclear and magnetic interactions, can be de�ned
as

�
d�
d


(Q)
�

total
=
�

d�
d


(Q)
�

nuclear
+
�

d�
d


(Q)
�

magnetic
: (2.20)

In a di�raction experiment, the desired structural information is contained only in the
nuclear component of Eq. (2.20), and corrections to subtract the magnetic component
are therefore required. For paramagnetic ions, the magnetic scattering can be quanti�ed
using the free-ion approximation [35, 36] such that

�
d�
d


(Q)
�

magnetic
= cp(nre)2 1

6
J(J + 1)g2

JF 2(Q); (2.21)

where cp is the atomic fraction of the paramagnetic ion in the sample, J is the total
angular-momentum quantum number, gJ is the Land�e splitting factor [37], re is the
classical radius of an electron and (nre)2 = 0:2906 barn. The magnetic form factor
F (Q) is given by

F 2(Q) = hj0(Q)i2 + C02hj0(Q)ihj2(Q)i+ C22hj2(Q)i2 + C24hj2(Q)ihj4(Q)i

+C44hj4(Q)i2 + C46hj4(Q)ihj6(Q)i+ C66hj6(Q)i2; (2.22)

where the radial integrals hji(Q)i (i = 0; 2; 4 and 6) are given by [38] and the coe�cients
Cij (i = 0; 2; 4 or 6 and j = 2; 4 or 6) are given by [35].
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2.2 Faber-Ziman formalism

According to the Faber-Ziman formalism [39], the total structure factor for a multi-
component system having n di�erent chemical species can be expressed in terms of
n(n+ 1)=2 partial structure factors S��(Q) such that

F (Q) =
nX

�;�

c�c�b�b�[S��(Q)� 1]; (2.23)

where c� and c� are the atomic fractions, b� and b� the coherent scattering lengths for
chemical species � and �, respectively. The total pair-distribution function G(r) is the
Fourier transform of F (Q) and contains the desired real-space information

G(r) =
1

2�2�r

1Z

0

QF (Q) sin(Qr)dQ (2.24)

=
nX

�;�

c�c�b�b�
�
g��(r)� 1

�
; (2.25)

where � is the atomic number density of the sample. The partial pair-distribution
function g��(r) in Eq. (2.25) provides a measure of the probability of �nding an atom
of chemical species � at a radial distance r from a central atom of chemical species �.
The coordination number �n�� is obtained from the expression

�n�� = 4��c�
Z r2

r1

g��(r)r2dr; (2.26)

and represents the average number of atoms of chemical species � contained within a
spherical shell of radii r1 and r2 centred on an atom of chemical species �. If the peak
in g��(r) is not symmetrical, it can be helpful to de�ne a weighted peak position by

�r�� =

r2R

r1

rg��(r)dr

r2R

r1

g��(r)dr
: (2.27)

Below the distance of closest approach between two atoms, G(r) is given by the
low-r limit

G(r ! 0) = G(0) = �
nX

�;�

c�c�b�b� (2.28)
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and the sum rule [15]
1Z

0

F (Q)Q2dQ = 2�2�G(0) (2.29)

can be derived from Eq. (2.24) by taking the limit as r ! 0.
The partial structure factors and partial pair-distribution functions are related via

the Fourier transform pair:

S��(Q)� 1 =
4��
Q

Z 1

0
r[g��(r)� 1]sin(Qr)dr (2.30)

g��(r)� 1 =
1

2�2r�

Z 1

0
Q[S��(Q)� 1]sin(Qr)dQ: (2.31)

In general, a total pair-distribution function will contain multiple overlapping peaks
corresponding to di�erent partial pair-distribution functions. These peaks can be �tted,
in order to �nd parameters such as the coordination number and peak position, by
taking into account the �nite Q-range that can be accessed by a di�ractometer. The
density correlation function can be de�ned as

Dexp(r) =
2
�

1Z

0

Q
F (Q)��G(0)

�� sin(Qr)M(Q) dQ; (2.32)

where the normalisation by
��G(0)

�� ensures that the weighting factors for the g��(r)
functions sum to unity, and the modi�cation function M (Q), de�ned by the step-
function

M(Q) =

8
><

>:

1 if Q � Qmax

0 if Q > Qmax;
(2.33)

takes into account the maximum Q-value, Qmax, that can be accessed by a di�rac-
tometer. In some cases, a Lorch modi�cation function [40] can be used instead of a
step function, in order to reduce Fourier transform artefacts that a�ect the real space
function:

L(Q) =

8
><

>:

sin( �Q
Qmax

)

( �Q
Qmax

)
if Q � Qmax

0 if Q > Qmax:
(2.34)
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Equation (2.32) can be rewritten as [41]

Dexp(r) = 4��r
G(r)��G(0)

�� 
 P (r)

= 4��
nX

�=1

nX

�=1

c�c�b�b���G(0)
�� rg��(r)
 P (r)� 4��r; (2.35)

where the symbol 
 denotes the 1-D convolution operator and P (r) is the Fourier
transform of the modi�cation function M(Q), which in the case of the step function
(Eq. (2.33)) is given by

P (r) =
1
�

QmaxZ

0

cos(Qr) dQ

=
Qmax

�
sinc(Qmaxr): (2.36)

A real-space peak in rg��(r), labelled by i, can be represented by a Gaussian func-
tion centred at r��(i), of width ���(i) and area that gives a coordination number n��(i).
Then, the function

D�t

�
r; r��; n��; ���

�
=
X

i

0

B@w��(i)
n��(i)

c�(i)r��(i)
1

p
2����(i)

�

exp

8
<

:
�
�
r � r��(i)

�2

2
�
���(i)

�2

9
=

;

 P (r)

1

CA� 4��r; (2.37)

where w�� = 2c�c�b�b�=
��G(0)

�� for � 6= � and w�� = c2
�b2�=

��G(0)
�� for � = �, can be

�tted to Dexp(r) by minimising the goodness of the parameter �t R�, de�ned as [42]

R�
�
r��; n��; ���

�
=

vuut
P

i
�
Dexp(ri)�D�t(ri)

�2
P

iD2
exp(ri)

: (2.38)

Hence, the peak positions and coordination numbers can be obtained for each set of
pair-correlation functions.
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2.3 Neutron Di�raction with Isotopic or Isomorphic Sub-
stitution

The neutron scattering length b is a measure of the scattering power of each nucleus.
This quantity is found to vary not only between elements, but also between isotopes of
the same atomic species. Fig. 2-3 shows how the coherent component of the neutron
scattering length b varies with the atomic weight. An exploitation of this variation
of the coherent neutron scattering length for a given chemical species enables the ap-
plication of the neutron di�raction with isotope substitution (NDIS) method, where
di�raction patterns are measured for samples that are identical in every respect ex-
cept for the isotopic composition of one or more of their elements. An alternative way
of obtaining a neutron-scattering-length contrast is by using the isomorphic substitu-
tion method, where samples having an identical structure are made by using di�erent
chemical species. The substituted chemical species have to be chosen such that they
are chemically isomorphic, for instance by having the same number of valence electrons
and a similar size.

Figure 2-3: The dependence on the atomic weight of the coherent scattering lengths
for neutrons and X-rays (reproduced from references [43, 44]). The X-ray scattering
amplitude depends on Q / sin(�)=�, and scales with the atomic number. Neutrons do
not show such a dependence and the scattering amplitude varies in an irregular manner.
The red dashed line indicates the potential scattering for neutrons.
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2.4 Di�erence functions

The structure of a sample containing n di�erent chemical species is described by m =
(n+ 1)n=2 di�erent partial structure factors. Let’s consider the simple case of a binary
system (n = 2) for which m = 3 total structure factors F 1(Q), F 2(Q) and F 3(Q) are
measured. In matrix notation

0

BBBB@

F1(Q)

F2(Q)

F3(Q)

1

CCCCA
=

0

BBBB@

c2
�b2�;1 c2

�b
2
�;1 2c�c�b�;1b�;1

c2
�b2�;2 c2

�b
2
�;2 2c�c�b�;2b�;2

c2
�b2�;3 c2

�b
2
�;3 2c�c�b�;3b�;3

1

CCCCA
�

0

BBBB@

S��(Q)� 1

S��(Q)� 1

S��(Q)� 1

1

CCCCA
; (2.39)

which, by introducing the column vectors F(Q) and S(Q), and the scattering matrix
A, can be re-written as

F(Q) = A � S(Q): (2.40)

The full set of partial structure factors can then be obtained from the equation

S(Q) = A�1 � F(Q); (2.41)

where A�1 is the inverse of A.
In many cases, and especially for multicomponent systems with n > 2 chemical

species, it is not feasible to measure the full set of partial structure factors. Site-
speci�c information can be accessed, however, by forming di�erence functions, where
the complexity of pair-correlation functions associated with a single F (Q) is reduced
by eliminating, in turn, di�erent partial structure factors. For instance, let’s consider
a two-component system where

F1(Q) = c2
�b

2
�
�
S��(Q)� 1

�
+ c2

�b
2
�;1
�
S��(Q)� 1

�
+

2c�b�c�b�;1
�
S��(Q)� 1

�
(2.42)

and

F2(Q) = c2
�b

2
�
�
S��(Q)� 1

�
+ c2

�b
2
�;2
�
S��(Q)� 1

�
+

2c�b�c�b�;2
�
S��(Q)� 1

�
(2.43)

are the total structure factors measured for two samples that are identical in every
respect except for the isotopic composition of chemical specie �. Then, the di�erence
function
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�F�(Q) = F2(Q)� F1(Q)

= c2
�

�
b2�;2 � b

2
�;1

� �
S��(Q)� 1

�
+ 2c�c�b�

�
b�;2 � b�;1

� �
S��(Q)� 1

�
(2.44)

removes S��(Q), whereas the weighted di�erence function

�F�(Q) = F1(Q)�
b2�;1
b2�;2

F2(Q)

= c2
�b

2
�

 

1�
b2�;1
b2�;2

!
�
S��(Q)� 1

�
+ 2c�c�b�

 

b�;1 �
b2�;1
b�;2

!
�
S��(Q)� 1

�

(2.45)

removes S��(Q). Similarly, the weighted di�erence function

�FX(Q) =
b�;1
b�;2

F2(Q)� F1(Q)

= c2
�b

2
�

 
b�;1
b�;2
� 1

!
�
S��(Q)� 1

�
+ c2

�

�
b�;2b�;1 � b2�1

� �
S��(Q)� 1

�
(2.46)

removes S��(Q). The Fourier transform of a di�erence function provides the corre-
sponding real-space information, e.g.

�GX(r) =
1

2�2r�

1Z

0

�FX(Q) sin(Qr)QdQ

=
b�;1
b�;2

G2(r)�G1(r)

= c2
�b

2
�

 
b�;1
b�;2
� 1

!

g��(r) + c2
�

�
b�;2b�;1 � b2�;1

�
g��(r) + �GX(0); (2.47)

where the low-r limit is given by

�GX(0) =
b�;1
b�;2

G2(0)�G1(0) = �c2
�b

2
�

 
b�;1
b�;2
� 1

!

� c2
�

�
b�;2b�;1 � b2�;1

�
: (2.48)



3. Instrumentation and data
analysis

Neutron di�raction can be performed using both continuous neutron sources, as at the
nuclear reactor of the Institut Laue Langevin (ILL) in Grenoble (France), and pulsed
neutron sources, as at ISIS (Rutherford Appleton Laboratory, Didcot, UK). In the
present chapter, a description is given of the neutron sources and of the instrumentation
employed for this thesis work. Also, the method used for the data treatment is outlined.

3.1 The ILL reactor neutron source

At the research High Flux Reactor (HFR) of the ILL the �ssion of 235U nuclei is
exploited to produce a continuous neutron beam, via the nuclear reactions

235
92 U + 1n! 91

36Kr� + 145
56 Ba� + Energy

(3.1)
91
36Kr� + 145

56 Ba� ! 90
36Kr + 144

56 Ba + 2n + ; 91
36Kr� + 145

56 Ba� ! 90
36Kr + 144

56 Ba + 2n + ;
(3.2)

where an asterisk labels an unstable nucleus. The emitted neutrons n are also used to
self-sustain the chain reaction. As shown in Figure 3-1, the fuel element is placed in
the reactor core, where it is surrounded by heavy water (D2O) that acts as a moderator
medium [45]. The highly energetic neutrons (E � 1 MeV) produced from the �ssion
events are slowed down via inelastic collisions with the water molecules. The geometry is
optimised such that the resultant neutron spectrum, described by a Maxwell-Boltzmann
distribution, has a peak in intensity at an energy of 25 meV. The integrated ux of
thermal neutrons (1.5 � 1015 neutrons cm2) is maximum at a distance from the core
centre of approximately 40 cm: here, cold or hot sources are placed, as well as the
noses of beam tubes for the extraction of neutrons, as shown in Figure 3-1. Two D2
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Figure 3-1: A 3D image of the reactor core at the ILL (Courtesy of the ILL), where
some of the main components are shown. The fuel element (a) is surrounded by D2O to
moderate the highly energetic neutrons produced by nuclear �ssion. Some of the noses
of the beam tubes (b) are pointing towards the region of maximum ux, in order to
extract and convey neutrons to the instruments. One of the cold sources is also visible
(c).

cold sources at 25 K are used to provide slow neutrons with low energies and therefore
higher wavelengths. Also, a block of graphite, that is heated to 2400 K via -radiation
emitted from the core, allows for the production of high-energy neutrons, called hot
neutrons, to provide a spectrum of more energetic neutrons with shorter wavelengths.

3.1.1 The D4c di�ractometer

The two-axis di�ractometer D4c at the ILL is one of the instruments that receives
neutrons from the hot source [46]. The schematic layout in Figure 3-2 shows the typical
path followed by a neutron beam in a two-axis neutron di�ractometer. The neutrons
extracted from the moderator are collimated and guided towards a monochromator,
where a speci�c wavelength is selected via Bragg scattering. After impinging on the
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sample, neutrons are scattered and detected over a wide scattering angle 2� range. The
D4c layout is shown in Figure 3-3. The available monochromators allow for both vertical
and horizontal focusing. Depending on their take-o� angles, the monochromators can
provide three possible wavelengths: � = 0.7 �A via the Cu (220) reection, � = 0.5 �A
via the Cu (220) reection, and � = 0:35 �A via the Cu (331) reection. A Rh or Ir �lter
is used to suppress �=2 contamination for incident wavelengths of � = 0.5 �A or � =
0.7 �A, respectively. A high-transmission monitor, located between the monochromator
and the beam-slits at the entrance to the belljar, is used to measure the incident-
beam intensity so that it can be normalised. The sample is mounted in an evacuated
cylindrical belljar (outer diameter = 46 cm, height = 55 cm) that has a thin aluminium
window facing the detectors. Vertical and horizontal slits allow the incident beam to
be de�ned at the sample position, giving a maximum illuminated height of 5 cm in the
vertical direction, and width of 2 cm in the horizontal direction. The instrument is
equipped with nine 1D position-sensitive microstrip detectors pressurized with 3He-gas
to 15 bar for e�cient detection of short-wavelength neutrons. Each detector has 64
cells and covers a scattering-angle range 2� = 8�. There is a gap of 2� = 7� between
the detectors, so that more than one detector position is required to collect a complete
di�raction pattern. Usually, scans of 6 detector positions are used in order to reach
the same counting statistics at di�erent angles. The �nal 2� range for a di�raction
pattern is 1:5� � 2� � 140�. The maximum available Q-range depends on the selected
incident wavelength, so that 0:5 �A�1 � Q � 33 �A�1 for � = 0:35 �A, 0:3 �A�1 � Q � 23
�A�1 for � = 0:5 �A and 0:2 �A�1 � Q � 17 �A�1 for � = 0:7 �A.

3.2 The ISIS spallation neutron source

A schematic of the ISIS spallation neutron source is shown in Fig. 3-4. Initially, H� ions
are produced and then accelerated in the LINAC. As they enter the synchrotron, the
ions are stripped of their electrons by a tin foil, leaving bare protons that are accelerated
to a high energy of � 800 MeV. The proton beam is then �red at a Tantalum target,
and the violent process of spallation occurs. The interaction between a proton and a
target nucleus results in the emission of neutrons and the production of light nuclear
fragments, so that each proton produces about 15 neutrons. Protons are �red into the
target with a pulse repetition rate of 50 Hz, and hence the resulting neutron ux is
also pulsed. Before their use in a scattering experiment, the neutrons are slowed down
by a moderator in order to give a suitable wavelength distribution, as shown in Fig.
3-5. The data collection at ISIS is based upon the principle of time-of-ight neutron
scattering. This technique consists of measuring the time of ight t taken for a neutron
to travel a total ight path L from the moderator to the detector, via the sample, as
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Figure 3-2: Schematic of a typical di�raction experiment at a continuous neutron
source.

Figure 3-3: Top view schematic of D4c [46].
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Figure 3-4: Schematic of the ISIS accelerator-based neutron source at the RAL [34].

shown in Figure 3-6. The de Broglie relation gives a neutron wavelength, � = h=mnv,
where mn is the neutron mass, and the neutron speed v can be expressed in terms of
the moderator-sample distance Li and the sample-detector distance Lf as

v =
Li + Lf

t
: (3.3)

It follows that Eq. (2.9) can be rewritten as

Q =
4�m
ht

(Li + Lf ) sin �: (3.4)
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Figure 3-5: Wavelength distribution of the three moderators used at ISIS, which are
hydrogen, methane or water based [48].

3.2.1 The GEM di�ractometer at ISIS

The General Materials di�ractometer, GEM, located at ISIS Target Station 1, is ded-
icated to both amorphous materials and powder crystallography [47]. GEM receives
neutrons after they have been slowed down by a liquid methane moderator. The pri-
mary ight path Li is 17 m, while the secondary ight path varies depending on the
scattering angle. A long ight path leads to high-Q resolution in reciprocal space. The
large GEM Qmax = 55 �A�1 is helpful for obtaining well-de�ned peaks in real space.
The sample tank, in which the candle stick holding the sample is inserted, is evacuated
during the experiment to a pressure below 1 mbar in order to minimise background due
to scattering from air. The detector array, shown in Fig. 3-7, is divided into 8 detector
banks, giving a total detector area of 7.270 m2, and a wide range of scattering angles
from 1.2� to 171.4�.
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Figure 3-6: Schematic of a typical time-of-ight di�raction experiment using a spalla-
tion neutron source.

Figure 3-7: Schematic layout of the detector banks of the GEM detector array. All of
the detectors are constructed using ZnS(Ag)/6Li scintillators [34].
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3.3 Neutron-di�raction data analysis

The theory outlined in Chapter 2 refers to the small sample limit, where an incident
neutron undergoes a single scattering event when impinging on the sample. In a real
experiment, it is necessary to take into account the facts that absorption and scattering
events lead to an attenuation of the incident and scattered neutron beams, and that
neutrons can be multiply scattered. Also, for most di�raction experiments, the sample
is held in a container. Therefore, in order to correct the data to obtain the sample scat-
tering cross-section of Eq. (2.10), some complementary measurements and calculations
are required. In this section, a description of the data treatment is given. The formal-
ism used is valid for a neutron-di�raction experiment performed with a monochromatic
incident neutron beam. For pulsed sources, where the incident beam has neutrons with
di�erent wavelengths, it is necessary to take into account that, at each scattering angle
2�, neutrons of all the available energies can be detected. This feature also implies
that each detector bank will require a di�erent wavelength-dependent correction for
inelasticity e�ects.

3.3.1 Attenuation and multiple scattering corrections

In the case of a sample having cylindrical geometry, the attenuation coe�cient Ai ;j (�)
can be calculated using the method of Paalman and Pings [49]. The attenuation coe�-
cient Ai ;j (�) refers to events in which a neutron scattered in medium i is attenuated in
medium j. The multiple-scattering cross-section can be calculated by using the quasi-
isotropic approximation [50]. For instance, for the simple case of a bare sample S, the
multiple scattering cross section MS(�) is given by

MS(�) = NSAS;S(�)
�S

4�
�S(�)

�
1 + PS(�)

�
; (3.5)

where �S = 4�
�
b2S + b2S;inc

�
is the total scattering cross-section of the sample, �S is the

ratio of multiple scattering to single scattering, and PS(�) is an inelasticity correction.

3.3.2 Background and container corrections

Let’s consider a di�raction experiment in which the scattered intensity, normalised to
the incident ux, is measured for the sample S in its container C, IE

SC(�), for the empty
container, IE

C(�), and for the background B when no sample or container is present
IE

B(�). The background-corrected intensity is then given by

IE0

SC(�) = IE
SC(�)� IE

B(�) = AS;SC(�)IS(�) +AC;SC(�)IC(�) + a(�)MSC(�): (3.6)
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Similarly, the background-corrected intensity for the empty container is given by

IE0

C (�) = IE
C(�)� IE

B(�) = AC;C(�)IC(�) + a(�)MC(�): (3.7)

In these equations, IE0

SC(�) and IE0

C (�) are expressed in terms of:

� the sample intensity IS(�) as calculated in the small-sample limit, and the at-
tenuation factor for the sample in the presence of the sample and its container
AS;SC(�);

� the container intensity IC(�) as calculated in the small-sample limit, and the
attenuation factor for the container in the presence of the sample and its container
AC;SC(�);

� a calibration factor a(�) that converts a cross-section to an intensity;

� the multiple-scattering cross-section for the sample-container system MSC(�);

� the attenuation coe�cient for the empty container AC;C(�);

� the multiple-scattering cross-section for the empty container MC(�).

If NS is the number of sample scattering centres illuminated by the neutron beam, the
single-scattered intensity for the sample can be written as

IS = a(�)NS
d�
d


���
S
(�) (3.8)

and, likewise, the single-scattered intensity for the empty container can be written as

IC = a(�)NC
d�
d


���
C

(�): (3.9)

By combining Eqs. (3.6) - (3.8), the di�erential scattering cross section can be written
as

d�
d


���
S

=
1

NSAS;SC

2

4
 
IE0

SC(�)
a(�)

�MSC(�)

!

�
AC;SC

AC;C

 
IE0

C (�)
a(�)

�MC(�)

!3

5 : (3.10)

3.3.3 Vanadium normalisation

The scattered intensities can be placed on an absolute cross-section scale by us-
ing the inchoerent scattering from vanadium for which �coh = 0.01838(12) barn and
�incoh = 5.08(6) barn. Therefore, the di�raction pattern for a piece of vanadium is
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always measured in a neutron-di�raction experiment. The measured intensity for vana-
dium, normalised to the incident ux and corrected for background scattering, is given
by

IE0

V (�) = AV;V(�)IV(�) + a(�)MV(�); (3.11)

where the single scattered intensity for vanadium is given by

IV(�) = a(�)NV
d�
d


(�)
���
V

= a(�)NV
�V

4�
(1 + PV(�)) (3.12)

and the multiple-scattering cross-section can be expressed as

MV(�) = NVAV;V(�)
�V

4�
�V(�)(1 + PV(�)): (3.13)

In Equations (3.12) and (3.13), NV is the number of vanadium scattering centres in
the neutron beam, AV;V(�) is the attenuation coe�cient, �V = 4�b2inc is the incoherent
scattering cross section, PV (�) is the correction term for inelasticity e�ects, and �V(�) is
the fraction of neutrons undergoing multiple scattering. On combining these equations,
the measured experimental intensity for vanadium can be rewritten as

IE0

V (�) = a(�)AV;V(�)NV

�
�V

4�
(1 + PV(�))

�
[1 + �V(�)]; (3.14)

such that the calibration coe�cient is given by

a(�) =
IE0

V (�)
AV;V(�)NV

��V
4� (1 + PV(�))

�
[1 + �V(�)]

: (3.15)

3.3.4 Data analysis ow-chart

The ow-chart in Figure 3-8 outlines the general data-analysis procedure that is followed
to treat the data obtained from a di�raction experiment on D4c or GEM, where the
isotopic or isomorphic substitution method may be employed. For example, when
the total pair distribution function G(r) is obtained by Fourier transforming F (Q),
some low-r oscillations are introduced that should oscillate around the G(r ! 0) limit.
However, these oscillations are artefacts that are introduced by the Fourier transform
procedure, and do not have physical meaning. Therefore, the back Fourier transform
of G(r), obtained by setting the low-r oscillations to the G(r ! 0) limit, should agree
with the measured F (Q). A large discrepancy between these two functions may imply
e.g. an incorrect background subtraction or data normalisation.
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Figure 3-8: Data-analysis ow-chart for measurements from a di�raction experiment.



4. Structure of an aqueous
solution of NaCl under high
pressure and temperature
conditions

4.1 Introduction

Sodium chloride in water is one of the most common uids in many di�erent settings,
ranging from cellular biological processes [51], to environmental industrial applications
in Carbon Capture and Storage (CCS) [14]. Known also as brine, this uid plays a
fundamental role in geological settings where the state conditions for a wide range of
uid compositions can vary over a broad range of temperatures and pressures. On the
sea oor, for instance, the salinity, temperature and pressure conditions can be such
that ice-like clathrate hydrate structures occur when su�cient methane is produced
by organic matter on degradation. This typically happens on the continental margins,
where temperatures do not exceed 20 �C at pressures of a few hundred bar [52{54].
On the other hand, relevant hydrothermal conditions for the formation of ore deposits
can also be encountered in the ocean, where sea-water can even reach temperatures
and pressures above the critical point of water, 407 �C and 298 bar [55]. Pressures
between 15 and 25 kbar, at temperatures up to 770 �C, are found in the subduction
zones, where the salinity of aqueous uids can reach high values up to 20 wt% NaCl,
corresponding to a 5 molal aqueous solution of NaCl [1]. Halite-bearing uid inclusions
in hydrothermal ore-forming systems can even reach salinity values between 40 and 70
wt% NaCl [56, 57].

The quantitative modelling of such processes represents a real challenge for geo-
chemists. One of the reasons is the paucity of experimental data over an extended range
of concentrations, temperatures and pressures. Another is the lack of a molecular-scale
understanding of fundamental phenomena such as the ion speciation in aqueous solu-
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tions. The thermodynamic parameters used in geochemical models are therefore usually
estimated via empirical correlations [58], and extrapolated to hydrothermal conditions
using the Hegelson-Kirkham-Flowers equation of state [59], which originates from the
dielectric continuum theory of Born [60]. This theory is based on the primary assump-
tion that the dielectric permittivity of the solvent near to ions is the same as that
in bulk solution, an over-simpli�cation that can a�ect the calculation of relevant geo-
chemical parameters. It is therefore of fundamental importance to provide the scienti�c
community with experimental information at the microscopic level that can guide in
the development of models at the atomic scale [61].

In this direction, di�erent experimental techniques can be used and combined with
molecular-dynamics simulations. Spectroscopic techniques, such as Raman and infrared
spectroscopy, provide insight into the nature and energy of bonds, but do not provide
information on the geometry of the hydration shell [62]. Experimental methods, such as
NDIS [63, 64] and Extended X-Ray Absorption Fine Structure spectroscopy (EXAFS)
[65, 66], are the main site-speci�c techniques for providing structural information on
the ion-speciation in aqueous solutions, and its pressure and temperature dependence.
With respect to X-rays, neutrons are more sensitive to light nuclei such as hydrogen.
Also, neither the Na or Cl K-edges are accessible via EXAFS, and NDIS is therefore
a more appropriate technique for investigating the structures of water and aqueous
solutions of NaCl.

Over the last few years, the advancement in high-pressure and high-temperature
experimental setups has provided unprecedented insight into the molecular-scale struc-
ture of solutions, even at geologically relevant state conditions [67{69]. However, the
investigated range of concentrations, temperatures and pressures is still rather limited,
and more experimental data are needed to test the validity of the information obtained
from molecular-dynamics simulations.

In the present work, in order to expand the range of available experimental data,
a NDIS experiment using Cl-isotopes was performed on a 5 molal NaCl-D2O solution,
at temperatures up to 150 �C and pressures up to 33.8 kbar. The method of �rst-order
di�erence functions was used to provide site-speci�c information on the solvation of Cl�

ion. A high-concentration solution was chosen in order to maximise the atomic fraction
of the Cl� ions in solution, which is necessary to provide good counting statistics for a
NDIS experiment. A molality of 5 was chosen to match the salinity that can be reached
in subduction zones [1]. Heavy water was used in order to avoid the large incoherent and
inelastic scattering e�ects associated with light hydrogen nuclei. The NDIS experiment
presented in this chapter was performed in two stages. The �rst part of the experiment
was performed in March 2013 using the D4c di�ractometer at the ILL, where the use
of a Paris-Edinburgh press allowed a maximum pressure of 33.8 kbar to be reached at
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a temperature of 150 �C. We are not aware of any other NDIS experiments on aqueous
solutions for this pressure and temperature range. One of the reasons is the high
technical di�culty of performing a NDIS experiment with such a setup. Details of this
part of the experiment are described by Dr. Rowlands in her thesis [23]. The second
part of the experiment was performed in July 2015, on D4c, using a Ti-Zr pressure cell
with a heating system that allowed us to span a pressure range between 0.1 and 1 kbar,
which is not readily accessible by using a Paris-Edinburgh press. The development
of the Ti-Zr pressure cell setup was part of this thesis work. Aqueous solutions of
similar composition have already been studied [70{75], using a setup similar to the
one that we developed, but the present work combined improved instrumentation with
the di�ractometer D4c [46], thus allowing for the collection of data sets with markedly
improved quality and statistics. Also, the results obtained with the Ti-Zr pressure
cell were necessary to guide in the data analysis and interpretation of the data sets
measured with the Paris-Edinburgh press. The results from the di�erent setups allows
for insight into the coordination environment of the Cl� ion, over a temperature and
pressure range that has never previously been accessed. The results are required to
inform ongoing MD simulations.

In this chapter, the essential theory is outlined in section 4.3. The experimental
details for the Ti-Zr heated pressure cell experiment are given in section 4.4. The
experimental results are shown in section 4.5.1, where they are compared to those
obtained for the higher pressure range using the Paris-Edinburgh press. Discussions
and conclusions follow in section 4.6 and 4.7, respectively.

4.2 Units

The concentration of a solution can be expressed in di�erent units. In this chapter, the
concentration is expressed in terms of the molality m, as de�ned by

molality =
numbers of moles of solute

1 kg of solvent
; (4.1)

and occasionally in terms of weight percent (wt%), where

wt% =
mass of solute

mass of solution
� 100: (4.2)

Pressures are given in kilobars and, for reference, 1 kbar = 0.1 GPa.
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4.3 Theory

As shown by Eq.(2.17), in a neutron-di�raction experiment the measured di�erential
scattering cross section contains both desired information on the total structure factor
and undesired information on the distinct and self inelastic-scattering terms. When
dealing with aqueous solutions, inelastic scattering is mostly associated with the pres-
ence in the sample of light nuclei, such as hydrogen and deuterium. This scattering
manifests itself in the di�erential scattering cross-section measured in a reactor-based
experiment by a characteristic Q-dependent slope, that has to be subtracted in order
to obtain F (Q). In this case, a Placzek correction cannot be applied [20, 76], and it is
necessary to employ empirical methods.

If two samples are identical in every respect except for their Cl-isotope compositions,
the inelasticity terms cancel when a di�erence function �FCl(Q) is formed [70]. For
instance, let NaNatCl-D2O be a solution prepared using chlorine with its natural isotopic
abundance, NatCl, and let Na37Cl-D2O be a solution prepared using 37Cl isotopes. If

the measured di�erential scattering cross sections are represented by d�
d
(Q)

���
Nat

and

d�
d
(Q)

���
37

, respectively, then their subtraction gives

1
NS

�
d�
d


(�)
���
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�
d�
d


(�)
���
37
�

=
1
NS

2

4 1
ANat

S;SC(�)
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SC (�)
a(�)

�MNat
SC (�)

!

�
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S;SC(�)
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SC(�)
a(�)

�M37
SC(�)

!3

5+Xc(�)

= �FCl(Q) + cCl(�b2NatCl � �b237Cl); (4.3)

where Xc(�) denotes the correction for the cell, as shown in Eq. (3.10),

Xc(�) =
1

NSAC;C(�)

 
IE

C(�)
a(�)

�MC(�)

! 
ANat

C;SC(�)
ANat

S;SC(�)
�
A37

C;SC(�)
A37

S;SC(�)

!

: (4.4)

The superscripts Nat and 37 refer to the attenuation and multiple-scattering terms
corresponding to the NaNatCl-D2O and Na37Cl-D2O samples, respectively.
The di�erence function �FCl(Q) is de�ned by

�FCl(Q) � NatF (Q)� 37F (Q)

= A[SClD(Q)� 1] +B[SClO(Q)� 1] + C[SClNa(Q)� 1] +D[SClCl(Q)� 1];
(4.5)
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where the weighting factors are given by

A = 2cClcDbD(bNatCl � b37Cl) (4.6)

B = 2cClcObO(bNatCl � b37Cl) (4.7)

C = 2cClcNabNa(bNatCl � b37Cl) (4.8)

D = c2
Cl(b

2
NatCl � b

2
37Cl): (4.9)

The Fourier transform of �FCl(Q) gives the corresponding real-space function

�GCl(r) =
1

2�2�r

1Z

0

QM(Q)�FCl(Q) sin(Qr)dQ

= A[gClD(r)� 1] +B[gClO(r)� 1] + C[gClNa(r)� 1] +D[gClCl(r)� 1]; (4.10)

where � is the atomic number density. The theoretical low-r limit is given by the sum
of the weighting factors

�GCl(r! 0) = �(A+B + C +D); (4.11)

and therefore depends on the isotopic enrichment of the chemical species and the solu-
tion concentrations. When the di�erence function �GCl(r) is formed, the Cl-D peak
position is expected to be the shortest [70, 77] and, if contributions from the other Cl
atom pair-correlations can be neglected at this distance, it follows that

gClD(r) �
�GCl(r) ��GCl(r! 0)

A
: (4.12)

In this case, the mean number of D atoms contained in a spherical shell of radii r1 and
r2, centred on a Cl atom, is given by

�nD
Cl = 4��

r2Z

r1

gClD(r)r2dr: (4.13)
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4.4 Experimental method

The NDIS experiments were performed on Cl-isotopically enriched 5 m NaCl-D2O sam-
ples. Solutions of NaNatCl-D2O (Puratronic R 99.999 % metal based purity from Alfa
Aesar) and Na37Cl-D2O (95 % isotopic enrichment from SigmaAldrich) were measured
on D4c using the Ti-Zr pressure-cell, while solutions of NaMixCl-D2O and Na35Cl-D2O
(99 % isotopic enrichment from SigmaAldrich) were measured on D4c using the Paris-
Edinburgh press. For the NaMixCl-D2O solution, MixCl denotes a 50:50 mixture of 35Cl
and 37Cl. In both cases, the solutions were prepared in the Liquid and Amorphous Ma-
terials group laboratory at the University of Bath by Dr. Zeidler and Dr. Rowlands.
Details on the samples preparation are given in reference [23]. The atomic fractions and
bound coherent scattering lengths of the elements in the samples are listed in Table 4.1.
The total scattering cross sections for the samples, at the incident neutron wavelengths,
are given in Table 4.2.

Table 4.1: The atomic fractions and bound coherent scattering lengths [33] for the
experiments on 5 m solutions of NaCl-D2O. The numbers in parenthesis indicate the
uncertainty and apply to the least signi�cant digits.

Element atomic fraction bcoh (fm) Relative abundance (%)
Na 0.0313(1) 3.62(2) {

NatCl 0.0313(1) 9.57708(8) {
37Cl 0.0313(1) 3.08(6) 24.23
35Cl 0.0313(1) 11.65(2) 75.77

MixCl 0.0313(1) 7.365(5) {
D 0.6249(1) 6.671(4) 0.015
O 0.3125(1) 5.803(4) {

Table 4.2: The total scattering cross-sections at the incident neutron wavelengths �i for
di�erent 5 m solutions of NaCl-D2O. The value for the total cross-section per nucleon
for D2O, 3.745(4) barn, was taken from reference [78].

Sample �T (barn) �i (�A)
NaNatCl-D2O 4.445(3) 0.49873(5)
Na37Cl-D2O 3.339(4) 0.49873(5)
Na35Cl-D2O 4.691(4) 0.4971(8)

NaMixCl-D2O 4.181(4) 0.4971(8)

Each measured F (Q) function has contributions from ten partial structure factors,
whereas �FCl(Q) has contributions from only four Cl-� partial structure factors, where
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� = D, O, Na or Cl. The weighting factors for the partial structure factors in F (Q)
and in �FCl(Q) are given in Tables 4.3 and 4.4, respectively.

Table 4.3: The S��(Q) weighting factors in the F (Q) function for a 5 m solution of
NaCl-D2O. I-Nat and I-37 refer to the weighting factors in NatF (Q) and 37F (Q), re-
spectively, while II-35 and II-Mix refer to the weighting factors in 35F (Q) and MixF (Q),
respectively.

Weighting factor I-Nat (mbarn) I-37 (mbarn) II-35 (mbarn) II-Mix (mbarn)
cNa

2bNa
2 1.3(8) 10�4 1.3(8) 10�4 1.3(8) 10�4 1.3(8) 10�4

cCl
2bCl

2 8.9(3) 10�4 9.28(11) 10�5 1.329(5) 10�3 5.31(9) 10�4

cD
2bD

2 0.17(2) 0.17(2) 0.17(2) 0.17(2)
cO

2bO
2 0.03(1) 0.03(1) 0.03(1) 0.03(1)

2cNabNacClbCl 6.80(7) 10�4 2.19(5) 10�4 8.27(8) 10�4 5.23(6) 10�4

2cNabNacDbD 9.45(3) 10�3 9.45(3) 10�3 9.45(3) 10�3 9.45(3) 10�3

2cNabNacObO 4.12(21) 10�3 4.12(21) 10�3 4.12(21) 10�3 4.12(21) 10�3

2cClbClcDbD 0.025(4) 8.02(2) 10�3 0.03(1) 0.019(11)
2cClbClcObO 0.011(6) 3.49(6) 10�3 0.013(4) 8.36(8) 10�3

2cDbDcObO 0.151(16) 0.151(16) 0.151(16) 0.151(16)

Table 4.4: The S��(Q) weighting factors in the di�erence function �FCl(Q) for a 5 m
solution of NaCl-D2O. In the �rst case (I), �FCl(Q) was obtained by using NatCl and
37Cl isotope substitution, while in the second case (II), �FCl(Q) was obtained by using
35Cl and MixCl (a 50:50 mixture of 35Cl and 37Cl) isotope substitution.

Cl-� I (mbarn) II (mbarn)
Cl-D 16.95(15) 11.16(71)
Cl-O 7.37(8) 4.86(31)
Cl-Na 0.46(2) 0.30(2)
Cl-Cl 0.81(1) 0.79(7)
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4.4.1 The Ti-Zr pressure cell

The Ti-Zr cell setup was developed in order to access a pressure range that is com-
plementary to that of the Paris-Edinburgh press, i.e. pressures below 2.4 kbar. It
comprised a Ti-Zr pressure cell, a uid-separator, a pressure transducer, a pump and
heating system. A sketch for the setup is shown in Figure 4-1, while technical drawings
for the cell and separator are shown in Figures 4-2 and 4-3, respectively.

Figure 4-1: Schematic showing the Ti-Zr pressure cell together with the heating and
pressure setups (not to scale). The cell sits on a candle-stick in contact with a thermally-
insulating support. The cell orientation is �xed with respect to the candle stick via a
metal locking-pin. The high-pressure capillary on top of the cell is connected to a cross-
�tting, and hence to a separator (pressure generator-side) and to a pressure transducer
(sample-side). The cell is heated by using four cartridge heaters embedded in two
aluminium rings mounted at the ends of the cell. Two thermocouples are connected to
the rings, in order to regulate the power supply, and hence the temperature of the cell.
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The Ti-Zr cell

The material for the cell was chosen to be Ti0:676Zr0:324, a so-called null-scattering
alloy, that has a nominal mean coherent neutron-scattering length of zero. This al-
loy can be used for high-pressure neutron-scattering research because of its excellent
strength properties [79, 80]. Ti0:676Zr0:324 also exhibits an exceptionally good corrosion
resistance due to the formation of a protective oxide �lm on the metal surface. This
oxide layer, having a thickness of 5-10 nm [81], occurs naturally and prevents chemical
attack of the underlying metal surface. In general, water and electrolytic solutions can
be highly corrosive at high temperatures, thus altering the mechanical properties of the
alloy after dissolving the oxide layer. In fact, even though Ti-Zr cells have been used
in several neutron di�raction experiments on aqueous solutions at high temperatures
and pressures [72, 73, 82], problems were encountered due to leaks and combustion
[72, 83, 84]. For this reason, and because our cell (donated by Dr. George Neilson) had
already been used before, we limited our maximum temperature to 150 �C and pressure
to 2 kbar, after mechanical tests were performed [81]. The cell-geometry is shown in
Figure 4-2. The high-pressure capillary used to seal the top of the cell was made of a
stainless steel-alloy, called RESATO HP 160, that is highly resistant to corrosion.

The separator and the pressure transducer

A uid-separator was used to pressurise the sample, in which a sealed oating pis-
ton separates the liquid sample from the pressurising uid (3M FluorinertTM FC-770).
Hence, the pressure on the generator side was transmitted to the sample via displace-
ment of the piston. Once the piston reaches a stable position, the pressure between
the two uids is in balance, assuming that the piston is frictionless. Although the prin-
ciple is simple, the practical realisation of a separator optimised for high-temperature
and pressure experiments is quite challenging, because the materials that are employed
must be chemically resistant. Also, leaks or sample contamination are likely to happen
if the piston does not isolate properly the two uids. In order to avoid these issues, a
special separator design, shown in Figure 4-3, was developed by Burkhard Annigh�ofer.

The seal between the uids was achieved by using compressed elastomer O-rings
(Viton-FKM, Hardness: 70 Shore(A)) that could withstand the accessible pressure
and temperature regime. Four O-rings were greased and mounted around the piston,
as shown in Figure 4-4(d), by making use of a sliding-tool. The piston was then
pushed into the separator’s body, and a plunger was used to check it had reached its
initial position. Once the vessel’s volume was �lled with sample, the separator was
hermetically sealed using a Bridgman seal. Pressure on the uid-separator piston was
generated by a spindle-pump, making use of 3M FluorinertTM FC-770 as the pressure-
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transmitting uid. Gauges were used to measure the pressure in the pump-reservoir
and the pressure applied to the piston. A pressure transducer was also connected to
the cell in order to measure the pressure on the sample side of the separator. The high-
pressure connections between the cell, the uid-separator and the pressure transducer,
were chosen in order to minimise the overall sample volume. This feature was required
because of the high cost of 37Cl-isotopes.

The heating system

The heating system consisted of two aluminium clamps connected at the ends of the
cell, as shown in Figures 4-4(b) and (c). Each clamp had four embedded cartridge
heaters. A test was made to ensure that the pressure cell could be uniformly heated. It
showed that, without the sample, the maximum temperatures measured in the middle
part of the cell were 48, 96 and 139 �C when the clamps were heated at 50, 100 and
150 �C. The di�erence between the measured and the target temperatures diminish in
the presence of the sample, due to thermal convection. Two thermocouples were used
to regulate the temperature of each clamp, and another was placed in contact with the
bottom of the cell.
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Figure 4-2: Drawing of the Ti-Zr pressure cell used for the D4c experiment on NaCl-
D2O. The high-pressure �tting is shown screwed into the top of the cell. The internal
diameter of the cell is 5.03 mm. The overall volume, including the high-pressure �tting,
is about 1.2 ml. The drawing was made by Burkhard Annigh�ofer.
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Figure 4-3: Drawing of the uid-separator developed for the D4c experiment on NaCl-
D2O. The body of the separator has an outlet to the high-pressure generator side
(bottom), another to the sample side (top-left) and an outlet into which a mushroom-
Bridgman seal is plugged (top), once the sample has been loaded. The sample volume is
1.48 ml. The oating rubbing piston (part labelled as 180 089) is sitting in its starting
position, before pressure is applied from the generator. The drawing was made by
Burkhard Annigh�ofer.
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Figure 4-4: In (a) the Ti-Zr cell is mounted as shown in the schematic of Figure 4-1,
except that the heating clamps are missing. In (b) one of the heating clamps is mounted
at the top-end of the cell, while in the inset both of the heaters are mounted. As shown
in (c), each clamp is made of two semi-cylindrical parts, connected by two bolts, in
which four cartridge heaters are embedded. These heaters are connected via the yellow
wires to the power supply. In (d), the body of the separator, and the Bridgman seal,
are shown. The inset shows the mushroom-plug of the Bridgman seal, the piston with
four green O-rings (Viton-FKM, Hardness: 70 Shore(A)), and the conical sliding-tool
used to mount them. In (e) the high-pressure �ttings used to form the central cross
are shown. The �tting at the bottom, also shown in the inset, is the one that seals the
cell and is made of a strong corrosion-resistant stainless-steel alloy (RESATO HP 160)
to avoid leaks. Figure (f) shows the metal pin that locks the cell to the candle-stick
to avoid rotation. The thermal-insulating yellow support is made of PAI (Polyamide-
imide) \Torlon 4203" that can withstand temperatures up to 250 �C.
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4.4.2 D4c neutron-di�raction experiment

The Ti-Zr cell setup was assembled outside the D4c belljar, where the �lling stage
could be done more easily. The procedure for loading the sample was carefully thought
through and was tested several times before the experiment because the �lling stage
had to be done as quickly as possible in order to minimise contamination of the sample
by atmospheric water. In fact, the H/D balance of the measured samples is a key
parameter in a neutron-di�raction experiment with deuterated samples, if the slopes
arising from inelastic scattering are to cancel once a �rst-order di�erence function is
taken. Secondly, the �lling of the high-pressure capillaries had to be done carefully
in order to avoid the presence of air bubbles in the can. Lastly, it was important to
establish a procedure to recover the sample prepared from 37Cl. Considerable e�ort
was made to guarantee that the setup could be re-mounted in an identical position for
each measurement, in order to maintain a constant background. This is important in
experiments using the Ti-Zr alloy, because of the presence in the material of phase-
separated crystalline domains, in which the mean coherent neutron-scattering length
is not zero, as for the ideal case: small Bragg peaks appear in the di�raction patterns
and have preferred orientations.

Procedure for loading the sample and mounting the cell

The following procedure was used for mounting and �lling the cell:

1. The high-pressure �tting was screwed into the top of the cell and tightened with
spanners. The cell was then placed on the candle-stick as shown in Figure 4-4(f),
so that the metal pin would prevent the cell from rotating. Then, the body of the
cross-union was screwed into the top of the �tting, (Figure 4-5), and the relative
position between the at cell surface and the body of the cross union was set at
about 45� (Figure 4-5).

2. A teon tube of length 14 cm and outer diameter of 0.6 mm was inserted vertically,
from the top entrance of the cross-union down to the bottom of the cell, as
shown in Figure 4-6(a). Then, a syringe with a needle was �lled with sample and
attached to the end of the tube, after making sure that there were no bubbles in
either the syringe or needle. The sample was injected into the the teon tube to
ensure that the cell was �lled from the bottom, while slowly extracting the tube,
up to the central point of the cross union. The rising level of the sample was
checked visually using a ash light pointing at the cross union’s outlets.

3. The volume of the pressure transducer was �lled with sample using the syringe,
before the pressure �tting was screwed into the transducer and tightened with
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Figure 4-5: On the left: the body of the cross �tting is mounted on the cell via the
high-pressure capillary that seals the cell. On the right: the orientation between the
�tting and the cell is checked, using as a reference one of the at surfaces at the end of
the cell.

spanners. The pressure �tting volume was also �lled with sample, as shown in
Figure 4-6(b), and then screwed into one of the outlets on the cross union.

4. The separator vessel was �lled from the top outlet (Figure 4-6(c)), after checking
that the piston was placed at the very bottom. Once the rising level of the sample
reached the height of the lateral outlet, the Bridgman seal was plugged into the
top outlet as follows:

� the gland-nut of the seal was �rmly hand tightened so that the Bridgman
seal was tight against the body of the separator;

� the small nut on top of the gland nut was then strongly tightened, keeping
the shaft constant in orientation, and allowing the lead washer to ow and
therefore to seal the vessel.

Holding the separator in a horizontal position, its volume was �lled from the
lateral outlet, a pressure �tting was connected to this outlet, and �lled with
sample before being screwed into the cross union (Figure 4-6(d)).

5. After all of the parts were connected to the cross union, a small amount of sample
was injected into the top outlet of the cross-�tting to �ll the remaining volume, as
shown in Figure 4-6(e). The needle was then inserted in the cell to break possible
air-bubbles, and then removed to check that the level of the sample was constant.
The outlet was then closed with a �tting that was tightened with spanners.

6. In order to check that the right amount of sample, corresponding to 3.12 ml, had
been injected, the bottle containing the sample, the syringe with needle, and the
teon tube were weighed before and after the �lling procedure.
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Figure 4-6: Di�erent steps in the �lling stage. (a) A teon tube is inserted in the cell
via the cross-union, and is connected to a needle in order to inject the sample in the
syringe. (b) The volume of the pressure transducer, and of the connection �tting, is
�lled. (c) The separator is �lled before screwing in the Bridgman seal, and after it
is placed horizontally (d) the pressure �tting is connected and the remaining volume
�lled. Once all the �lled components are connected to the cross-union, some more
sample is inserted from the top outlet of the cross union, before this outlet is closed.

The setup was then mounted in the D4c belljar. The candle-stick was �xed on a
plate with screws. The heating clamps were connected around the ends of the cell,
making sure that the aluminium parts were not exposed to the incident neutron beam.
The cartridge heater wires were connected to an external power supply via a belljar
feed-through. The electrical resistance of each heater was measured after the clamps
were �xed, to check that they had not been damaged during the mounting. Three
thermocouples were mounted and placed carefully to avoid scattering from the incident
beam. Two of them were connected to the heating clamps and one to the bottom of the
cell. The separator was mounted in a horizontal position to avoid possible secondary
scattering from neutrons di�racted from the pressure cell, and its bottom outlet was
connected to the pressure generator with a pig-tail high-pressure �tting. This con-
nection was designed to be exible and minimise the stress on the other components
during the tightening of the junctions. The connections to the external spindle-pump,
and to the electrical power supply for the heating system, were realised via two belljar
feed-throughs. Neutron-absorbing 10B4C ags were then positioned close to the pres-
sure cell in order to collimate the incident neutron beam. The belljar environment,
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with the Ti-Zr cell setup, is shown in Figure 4-7. The belljar lid was mounted and the
belljar was placed under vacuum once it was checked that everything was in place. The
heaters at the top and bottom of the cell were controlled via separate power supplies,
and displays were used both to set the temperature and to read the values measured by
the thermocouples. Gauges were used to monitor the sample-pressure and check that
leaks were not occurring.

Procedure for unloading the sample and cleaning the setup

At the end of each measurement with a NaCl-D2O sample, the cell and the other parts
in contact with salty water had to be carefully cleaned. Also, for the Na37Cl-D2O case,
a special procedure was followed to recover the maximum possible amount of sample.
At the end of the measurement, the setup was dismounted from the D4c belljar, so that
the unloading could be done in the atelier. As each component was disconnected from
the cross union, the sample was extracted with a syringe and, if necessary, use was
made of a teon tube. For each component, the procedure was repeated as many times
as necessary to ensure that no more sample would be injected into the recovery-sample
bottle. After having drawn as much sample as possible, each component was rinsed
many times with water and the washings were kept in a separate bottle. In order to
check that Cl was no longer contained in the setup, an aqueous solution with AgNO3

was made in a separate container, and a drop of the recovered sample was added to
the solution. If the solution turned out to be cloudy, than more rinsing was required.

The cell and the high-pressure �ttings were than rinsed with acetone and placed
under vacuum to be dried. The piston was removed from the separator and acetone-
soaked cotton-buds were used to clean traces of extruded lead on its external surface.
After this, the separator’s body was ultrasounded for �ve minutes at 50 �C in a vessel
�lled with a Gigapur-05 decontamination detergent. Once dried, the separator was
rinsed with acetone and again dried by ushing Argon through it. The O-rings in the
piston were changed after each loading, and the piston itself was cleaned with acetone.
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Figure 4-7: View of the D4c belljar once the setup is mounted. (a) The neutron-
absorbing ags, made of 10B4C, shield the setup by collimating the incident neutron
beam. The orientation of the ags is kept constant for the di�erent measurements. The
separator is rotated horizontally and is connected to a pig-tail high-pressure capillary.
(b) The cell is mounted on the candle-stick, the heating-clamps are connected, and
the yellow wires of the cartridge heaters are suspended far from the can. The pressure
transducer is to the right of the cross-union, while the separator is placed in a horizontal
position and is connected to a pig-tail high-pressure capillary to the left.
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4.4.3 The pressure, temperature and density dependence of the NaCl-
D2O solution

The state conditions reached with the Ti-Zr cell setup during the neutron-di�raction
experiment are shown in Table 4.5 and Figure 4-8, where they are compared to those
reached with the Paris-Edinburgh press. The temperature and pressure dependence
of the mass density for the 5 m NaCl-D2O solution is also shown. Density values
for the Ti-Zr cell range were obtained from Potter and Brown [85], but values for a
5 m NaCl-D2O solution in the Paris-Edinburgh press range are not available in the
literature. For the higher pressure range, the density was estimated [23] by making use
of di�raction data for D2O collected with both the Ti-Zr pressure cell and the Paris-
Edinburgh press. The principal peak position QPP in the total structure factor was
then plotted as a function of the known number density [86] in the spanned pressure
range from ambient to 33.8 kbar, and a linear dependence was found. Then, the QPP
values measured for the NaCl-D2O D4c experiment with the Ti-Zr pressure cell were
plotted as a function of the number density, and an extrapolation was made for higher
densities by assuming the same rate of change with pressure as found for D2O [23]. In
Table 4.5, the ratio between the number density �, and its value at ambient conditions
�0, shows that the number density decreases with increasing temperature at constant
pressure, and increases with pressure at constant temperature, such that �=�0 � 1 at
1 kbar and 150 �C.

Table 4.5: The temperature and pressure dependence of the mass density � for a 5 m
solution of NaCl-D2O, and its ratio with the number density �0 at ambient conditions.
The densities for the Ti-Zr pressure cell range were taken from Potter and Brown [85],
while the values for the Paris-Edinburgh press range were estimated [23].

Setup Temperature (�C) Pressure (kbar) � (�A�3) � / �0

25 0.001 0.09536 1.00000
Ti-Zr cell 50(1) 0.10(1) 0.09468 0.99287

100(2) 0.10(1) 0.09233 0.96823
150(4) 0.10(1) 0.08951 0.93865
150(4) 0.50(1) 0.09175 0.96214
150(4) 1.00(2) 0.09377 0.98333

PE-press 150(4) 2.4(5) 0.10177 1.06722
150(4) 10.0(5) 0.11141 1.16831
150(4) 22.4(5) 0.12748 1.33683
150(4) 27.9(5) 0.13390 1.40415
150(9) 33.8(5) 0.14033 1.47158
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Figure 4-8: Temperature and pressure dependence of the mass density � for a 5 m
solution of NaCl-D2O. The values correspond to those reported in Table 4.5.
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4.5 Results

In this section, the total structure factors and �rst-order di�erence functions obtained
from the NDIS experiment for the 5 m NaCl-D2O samples are presented. The data
sets obtained with the Ti-Zr pressure cell are compared with those obtained with a
Paris-Edinburgh press.

4.5.1 Total structure factors

Each total structure factor, F (Q), was extracted from the measured di�erential scat-
tering cross-section by �tting a �fth-order polynomial to d�(Q)

d
 Q to remove the Q-
dependent slope that originates from inelastic scattering. Figure 4-9 shows examples
of the �ts obtained for the 5 m NaNatCl-D2O solutions. This empirical method has
previously been applied to the data sets obtained from water and ice Ih [23, 87].

The total structure factors for 5 m solutions of NaNatCl-D2O and Na37Cl-D2O
measured with the Ti-Zr pressure cell are shown in Figures 4-10 and 4-11, respectively.
For comparison, the total structure factors for 5 m solutions of NaMixCl-D2O and
Na35Cl-D2O measured using the Paris-Edinburgh press are shown in Figure 4-12 and
4-13. The total pair-distribution functions G(r) are shown in Figures 4-14 { 4-15 for
the Ti-Zr cell data sets, and in Figures 4-16 { 4-17 for the Paris-Edinburgh press data
sets. Table 4.6 gives the temperature and pressure dependence of the oxygen-deuterium
peak position and coordination number.
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Figure 4-9: The solid black lines with vertical error bars are the di�erential scattering
cross-sections for a 5 m NaNatCl-D2O solution measured using the Ti-Zr cell. The
solid green lines are the �ts used to remove the Q-dependent slope that originates
from inelastic scattering. The inset zooms into the the error bars that are hardly
distinguishable, given the high-quality counting statistics.
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Figure 4-10: The temperature and pressure dependence of the total structure factor
NatF (Q) for a 5 m NaNatCl-D2O solution. The solid black lines are the data sets mea-
sured using a Ti-Zr heated pressure-cell, where vertical o�sets, indicated in parenthesis,
are used for clarity of presentation. The vertical error bars are hardly distinguishable
given the high-quality counting statistics. The red curves show spline �ts to the ex-
perimental datasets. The green curves are the back-Fourier transforms of the G(r)
functions shown in Figure 4-14, once the low-r oscillations are set to their theoretical
limit. The dashed vertical black line is plotted as a reference for the �rst peak position
at 50 �C and 0.1 kbar.
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Figure 4-11: The temperature and pressure dependence of the total structure factor
37F (Q) for a 5 m Na37Cl-D2O solution. The solid black lines are the data sets measured
using a Ti-Zr heated pressure-cell, where vertical o�sets, indicated in parenthesis, are
used for clarity of presentation. The vertical error bars are hardly distinguishable given
the high-quality counting statistics. The red curves show spline �ts to the experimental
datasets. The green curves are the back-Fourier transforms of the G(r) functions in
Figure 4-15, once the low-r oscillations are set to their theoretical limit. The dashed
vertical black line is plotted as a reference for the �rst peak position at 50 �C and 0.1
kbar.
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Figure 4-12: The pressure dependence of the total structure factor 35F (Q) for a 5 m
Na35Cl-D2O solution. The solid black lines are the data sets measured using a Paris-
Edinburgh press with heated anvils. Vertical o�sets, indicated in parenthesis, are used
for clarity of presentation. The vertical error bars are hardly distinguishable given the
high-quality counting statistics. The red curves show spline �ts to the experimental
datasets. The green curves are the back-Fourier transforms of the G(r) functions shown
in Figure 4-16, once the low-r oscillations are set to their theoretical limit. The dashed
vertical black line is plotted as a reference for the �rst peak position at 150 �C and 2.4
kbar.



4.5 Results 58

Figure 4-13: The pressure dependence of the total structure factor MixF (Q) of a 5 m
NaMixCl-D2O solution. The solid black lines are the data sets measured using a Paris-
Edinburgh press with heated anvils. Vertical o�sets, indicated in parenthesis, are used
for clarity of presentation. The vertical error bars are hardly distinguishable given the
high-quality counting statistics. The red curves show spline �ts to the experimental
datasets. The green curves are the back-Fourier transforms of the G(r) functions shown
in Figure 4-17, once the low-r oscillations are set to their theoretical limit. The dashed
vertical black line is plotted as a reference for the �rst peak position at 150 �C and 2.4
kbar.
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Figure 4-14: The temperature and pressure dependence of the total pair-distribution
function NatG(r) for a 5 m NaNatCl-D2O solution. The solid black curves give the
NatG(r) functions obtained by Fourier-transforming the NatF (Q) functions of Figure
4-10, and are set to the calculated NatG(r ! 0) limit at r-values smaller than the
distance of closest approach between the centres of two atoms. The solid red curves
show the Fourier transform artefacts in the low-r region. The dashed vertical black line
is plotted as a reference for the peak position at 50 �C and 0.1 kbar. Vertical o�sets,
indicated in parenthesis, are used for clarity of presentation.
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Figure 4-15: The temperature and pressure dependence of the total pair-distribution
function 37G(r) for a 5 m Na37Cl-D2O solution. The solid black curves give the 37G(r)
functions obtained by Fourier-transforming the 37F (Q) functions in Figure 4-11, and are
set to the calculated 37G(r ! 0) limit at r-values smaller than the distance of closest
approach between the centres of two atoms. The solid red curves show the Fourier
transform artefacts in the low-r region. The dashed vertical black line is plotted as
a reference for the peak position at 50 �C and 0.1 kbar. Vertical o�sets, indicated in
parenthesis, are used for clarity of presentation.
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Figure 4-16: The pressure dependence of the total pair-distribution function 35G(r)
for a 5 m Na35Cl-D2O solution. The solid black curves give the 35G(r) functions
obtained by Fourier-transforming the 35F (Q) functions in Figure 4-12, and are set to
the calculated 35G(r! 0) limit at r-values smaller than the distance of closest approach
between the centres of two atoms. The solid red curves show the Fourier transform
artefacts in the low-r region. The dashed vertical black line is plotted as a reference
for the peak position at 150 �C and 2.4 kbar. Vertical o�sets, indicated in parenthesis,
are used for clarity of presentation.
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Figure 4-17: The pressure dependence of the total pair-distribution function MixG(r)
for a 5 m NaMixCl-D2O solution. The solid black curves give the MixG(r) functions
obtained by Fourier-transforming the MixF (Q) functions in Figure 4-13, and are set
to the calculated MixG(r ! 0) limit at r-values smaller than the distance of closest
approach between the centres of two atoms. The solid red curves show the Fourier
transform artefacts in the low-r region. The dashed vertical black line is plotted as a
reference for the peak position at 150 �C and 2.4 kbar. Vertical o�sets, indicated in
parenthesis, are used for clarity of presentation.
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Sample Setup Temperature (�C) Pressure (kbar) rOD (�A) nD
O

NaNatCl-D2O TiZr cell 50(1) 0.10(1) 0.95(1) 2.04(1)
100(2) 0.10(1) 0.95(1) 2.02(1)
150(4) 0.10(1) 0.95(1) 2.02(1)
150(4) 0.50(1) 0.95(1) 2.02(1)
150(4) 1.0(5) 0.95(1) 2.01(1)

Na37Cl-D2O TiZr cell 50(1) 0.10(1) 0.96(1) 2.04(1)
100(2) 0.10(1) 0.95(1) 2.04(1)
150(4) 0.10(1) 0.95(1) 2.03(1)
150(4) 0.50(1) 0.95(1) 2.04(1)
150(4) 1.0(5) 0.95(1) 2.03(1)

Na35Cl-D2O PE press 150(4) 2.4(5) 0.95(2) 2.04(3)
150(4) 10.0(5) 0.96(2) 1.97(3)
150(4) 22.4(5) 0.95(2) 2.02(3)
150(9) 27.9(5) 0.95(2) 2.06(3)
150(9) 33.8(5) 0.95(2) 2.02(3)

NaMixCl-D2O PE press 150(4) 2.4(5) 0.95(2) 1.97(3)
150(4) 10.0(5) 0.95(2) 1.96(3)
150(4) 22.4(5) 0.96(2) 2.01(3)
150(9) 27.9(5) 0.96(2) 2.04(3)
150(9) 33.8(5) 0.95(2) 2.00(3)

Table 4.6: Pressure dependence of the oxygen-deuterium peak position rOD and coor-
dination number nD

O as found from the �rst peak in the measured G(r) functions shown
in Figures 4-14, 4-15, 4-16 and 4-17.



4.5 Results 64

4.5.2 Di�erence functions

The �rst-order di�erence functions �FCl(Q) that were obtained for the Ti-Zr cell setup
are shown in Figure 4-18, and those obtained for the Paris-Edinburgh press setup are
shown in Figure 4-19. A comparison between the two sets of �FCl(Q) functions is
shown in Figure 4-20.

The Paris-Edinburgh press di�erence functions presented here were obtained by
using a di�erent method to that used by Rowlands in [23]. In fact, she formed di�erence
functions by using an equation equivalent to Eq.(4.3), by assuming that A35

C;SC(�) =
AMix

C;SC(�), A35
S;SC(�) = AMix

S;SC(�) and that the multiple-scattering contributions for both
samples are identical, such that

�FCl(Q) + cCl(�b235Cl � �b2MixCl) =
I35

SC(�)� IMix
SC (�)

a(�)NSAS;SC(�)
; (4.14)

where AS;SC(�) is an average of A35
C;SC(�) and AMix

C;SC(�). This assumption is not valid,
however, because there is a di�erence of about 1% between A35

C;SC(�) and AMix
C;SC(�),

which compares to a di�erence of about 4% between ANat
C;SC(�) and A37

C;SC(�). Di�erence
functions for the Paris-Edinburgh press data sets were therefore formed by subtracting
the d�(Q)

d
 functions for the Na35Cl-D2O and NaMixCl-D2O samples, after the corrections
for attenuation and multiple scattering were applied following Eqs. (4.3) { (4.4).

The �GCl(r) functions measured using the Ti-Zr cell are shown in Figure 4-21.
Figure 4-22 shows the temperature dependence of the �rst peak in �GCl(r) when the
pressure is kept constant at 0.1 kbar and the temperature is increased from 50 �C to
150 �C. Figure 4-23 shows the pressure dependence of the �rst peak in �GCl(r) when
the temperature is kept constant at 150 �C, and pressure increased from 0.1 to 1 kbar.

The �GCl(r) functions measured using the Paris-Edinburgh press are shown in
Figure 4-24. A comparison of the real-space functions at 150 �C and in the pressure
range between 0.1 and 33.8 kbar is shown in Figure 4-25. To facilitate this comparison,
the real-space information is expressed in terms of the normalised function

�G0Cl(r) =
�GCl(r) ��GCl(r! 0)

A
: (4.15)

such that the �rst peak gives gClD(r) in the absence of other overlapping partial pair-
distribution functions (see Eq.(4.12)). Figure 4-26 shows the temperature dependence
of the Cl-D weighted peak position and coordination number at a constant pressure
of 0.1 kbar. Figure 4-27 shows the pressure dependence of the Cl-D weighted peak
position and coordination number at a constant temperature of 150 �C. Values for the
Cl-D bond distances, weighted peak positions and coordination numbers are listed in
Tables 4.7 { 4.8.
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Figure 4-18: The temperature and pressure dependence of the �rst-order di�erence
function �FCl(Q) for a 5 m NaCl-D2O solution. The di�erence functions were obtained
from the total structure factors shown in Figures 4-10 and 4-11. The solid black lines
are the measured data sets, with vertical black error bars. The red curves show spline
�ts to the experimental datasets. The green curves are the back-Fourier transforms
of the �GCl(r) functions shown in Figure 4-21, once the low-r oscillations are set to
their theoretical limit. The data sets are o�set vertically, for clarity of presentation,
and the o�sets are indicated in parenthesis. The dashed vertical black line is plotted
as a reference for the �rst peak position at 50 �C and 0.1 kbar.
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Figure 4-19: The pressure dependence of the �rst-order di�erence function �FCl(Q)
for a 5 m NaCl-D2O solution. The di�erence functions were obtained from the total
structure factors shown in Figures 4-13 and 4-12. The solid black lines are the measured
data sets, with vertical black error bars. The red curves show spline �ts to the exper-
imental datasets. The green curves are the back-Fourier transforms of the �GCl(r)
functions shown in Figure 4-21, once the low-r oscillations are set to their theoretical
limit. The data sets are o�set vertically, for clarity of presentation, and the o�sets are
indicated in parenthesis. The dashed vertical black line is plotted as a reference for the
�rst peak position at 150 �C and 2.4 kbar.
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Figure 4-20: The pressure dependence of the �rst-order di�erence function �FCl(Q)
for a 5 m NaCl-D2O solution at 150 �C. The data sets measured at pressures up to
1 kbar were obtained using a heated Ti-Zr pressure cell and are taken from Figure
4-18. The data sets measured at pressures higher than 1 kbar were obtained using a
Paris-Edinburgh press with heated anvils and are taken from Figure 4-19. The solid
black lines with vertical black error bars represent the measured data sets. The error
bars are smaller for the data sets measured with the Ti-Zr pressure cell because the
sample volume (� 1 ml) was 30 times larger than the volume (30 �l) corresponding to
the Ti-Zr gaskets of the PE press. The red curves show spline �ts to the experimental
datasets. The green curves are the back-Fourier transforms of the respective �GCl(r)
functions, once the low-r oscillations are set to their theoretical limit. The data sets are
o�set vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
The dashed vertical black line is plotted as a reference for the �rst peak position at 0.1
kbar.
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Figure 4-21: The temperature and pressure dependence of the �rst-order di�erence
function �GCl(r) for a 5 m NaCl-D2O solution. The solid black lines were obtained by
Fourier transforming the spline-�tted �FCl(Q) functions shown in Figure 4-18, using
a Lorch modi�cation function with Qmax = 21 �A�1, and setting the low-r oscillations
(red solid lines) to their theoretical limit. The solid blue lines were obtained by Fourier
transforming the spline-�tted �FCl(Q) functions shown in Figure 4-18, and setting the
low-r oscillations to their theoretical limit. The data sets are o�set vertically, for clarity
of presentation, and the o�sets are indicated in parenthesis. The dashed vertical black
line is plotted as a reference for the peak position at 50 �C and 0.1 kbar.
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Figure 4-22: The temperature dependence of the �rst-order di�erence function �GCl(r)
for a 5 m NaCl-D2O solution at 0.1 kbar. The solid lines were obtained by Fourier
transforming the spline-�tted �FCl(Q) functions at 0.1 kbar, using a Lorch modi�cation
function with Qmax = 21 �A�1, and setting the low-r oscillations (dashed lines) to their
theoretical limit. The dashed vertical black line is plotted as a reference for the peak
position at 50 �C.
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Figure 4-23: The pressure dependence of the �rst-order di�erence function �GCl(r)
for a 5 m NaCl-D2O solution at 150 �C. The solid lines were obtained by Fourier
transforming the spline-�tted �FCl(Q) functions shown in Figure 4-18, using a Lorch
modi�cation function with Qmax = 21 �A�1, and setting the low-r oscillations (dashed
lines) to their theoretical limit. The dashed vertical black line is plotted as a reference
for the peak position at 0.1 kbar.
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Figure 4-24: The pressure dependence of the �rst-order di�erence function �GCl(r) for
a 5 m NaCl-D2O solution. The solid black lines were obtained by Fourier transforming
the spline- �tted �FCl(Q) functions shown in Figure 4-19, using a Lorch modi�cation
function with Qmax = 9.75 �A�1, and setting the low-r oscillations (red solid lines) to
their theoretical limit. The curves are o�set vertically, for clarity of presentation, and
the o�sets are indicated in parenthesis. The dashed vertical black line is plotted as a
reference for the peak position at 2.4 kbar.
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Figure 4-25: The pressure dependence of the normalised �rst-order di�erence function
�G0Cl(r) for a 5 m NaCl-D2O solution. The data sets measured at pressures up to
1 kbar were obtained by using a heated Ti-Zr pressure cell and are shown in Figure
4-21. The data sets measured at pressures higher than 1 kbar were obtained by using a
Paris-Edinburgh press with heated anvils and are shown in Figure 4-24. The solid black
lines were obtained by Fourier transforming the spline-�tted �FCl(Q) functions shown
in Figure 4-18 and 4-19, using a Lorch modi�cation function with Qmax = 21 �A�1

for pressures � 1 kbar and Qmax = 9.75 �A�1 for pressures > 1 kbar, and setting the
low-r oscillations (red solid lines) to their theoretical limit. The solid blue lines were
obtained by Fourier transforming the spline-�tted �FCl(Q) functions shown in Figure
4-18, using a Lorch modi�cation function with Qmax = 9.75 �A�1 for pressures � 1 kbar.
The functions thus obtained were then normalised following Eq.(4.15). The curves are
o�set vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
The dashed vertical black line is plotted as a reference for the peak position at 0.1 kbar.
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Figure 4-26: Temperature dependence of the chlorine-deuterium peak position rClD
(red triangles with error bars) and coordination number nD

Cl (blue squares with error
bars), at a constant pressure of 0:1 kbar, corresponding to a �=�0 range that varies by
� 6 % (Table 4.5). The weighted peak position and coordination number, at ambient
temperature and pressure [88] (black triangles and squares, respectively, with error
bars) are also shown, to provide a reference value.
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Figure 4-27: Pressure dependence of the chlorine-deuterium weighted peak-position
rClD (red triangles with error bars) and coordination number nD

Cl (blue squares with
error bars) at a constant temperature of 150 �C, corresponding to a �=�0 range that
varies by a � 54 % di�erence (Table 4.5).
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�GCl(r) Setup Temperature (�C) rClD (�A) rClD (�A) nD
Cl

NaNat�37Cl TiZr cell 50(1) 2.23(2) 2.33(2) 5.7(3)
100(2) 2.27(2) 2.34(2) 5.5(3)
150 (4) 2.28(2) 2.35(2) 5.4(3)

Table 4.7: Temperature dependence of the chlorine-deuterium peak position rClD, the
weighted peak-position rClD, and the coordination number nD

Cl, at a pressure of 0:1 kbar.
Values were obtained from the measured �GCl(r) functions shown in Figures 4-21 and
4-22.

�GCl(r) Setup Pressure (kbar) rClD (�A) rClD (�A) nD
Cl

NaNat�37Cl TiZr cell 0.10(1) 2.28(4) 2.35(2) 5.4(3)
0.50(1) 2.24(4) 2.35(2) 5.4(3)
1.00(2) 2.24(4) 2.27(2) 5.2(5)

Na35�MixCl PE press 2.4(5) 2.19(4) 2.27(6) 6.1(9)
10.0(5) 2.21(4) 2.33(6) 7.3(9)*
22.4(5) 2.19(4) 2.16(6) 6.5(9)*
27.9(5) 2.36(4) 2.04(6) 6.0(9)*
33.8(5) 2.39(4) 2.07(6) 6.5(9)*

Table 4.8: Pressure dependence of the chlorine-deuterium peak position rClD, the
weighted peak-position rClD, and the coordination number nD

Cl at a temperature of
150 �C. Values were obtained from the measured �GCl(r) functions shown in Figures
4-21 and 4-24. Asterisks indicate coordination numbers that are ill-de�ned because of
a broadening of the �rst peak in �GCl(r).
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4.6 Discussion

The total structure factors for the NaNatCl-D2O and Na37Cl-D2O solutions show a
principal peak position at about 2.2 �A�1 that remains constant over the spanned tem-
perature at pressures up to 1 kbar (Figures 4-10 and 4-11). For the same system, as
studied via NDIS at ambient conditions, Enderby et al. also found a principal peak
position at about 2.2 �A�1 [89]. The total structure factors for the Na35Cl-D2O and
NaMixCl-D2O solutions are shown in Figures 4-12 and 4-13. In this case, the princi-
pal peak position becomes sharper and shifts from about 2.2 �A�1 to 2.5 �A�1, as the
pressure increases from 2.4 kbar to 33.8 kbar, at a constant temperature of 150 �C.
For each F (Q) function, there is good agreement between the measured data set and
the back-Fourier transforms of �GCl(r) after the low-r oscillations have been removed,
except at Q-values between 4 and 6 �A�1, i.e. where the �fth-order polynomial used to
subtract the inelastic-scattering contribution to d�(Q)

d
 does not correct perfectly for the
slope.

The �rst peak in the G(r) functions of Figures 4-14 { 4-17 corresponds to the
intra-molecular O-D correlations. The peak position gives the O-D intra-molecular
bond distance, and this remains constant at about 0:95(1) �A over the temperature
and pressure ranges spanned in both the Ti-Zr pressure cell and Paris-Edinburgh press
experiments. Also, the coordination number of deuterium around oxygen is consistent
with nD

O = 2, as expected for D2O molecules, and does not evolve with temperature and
pressure. These results are in agreement with those found from an NDIS experiment
on a 1 m solution of NaCl-D2O: at the state conditions de�ned by 300 �C and 0.12
kbar, or by 460 �C and 0.8 kbar, de Jong and Neilson [74] found rOD = 0:97(2) �A
and nD

O = 2:0(1). Also, a bond distance rOD = 0:96(2) �A is found from neutron-
di�raction measurements on D2O at ambient conditions [87], and in the pressure range
between 2.4 and 33.8 kbar [90]. Zeidler et al. [91] �nd an intra-molecular bond distance
rOD = 0:985(5) �A for pure heavy water. Discrepancies between the measured rOD

values can arise from the di�erent approaches used to correct data sets for inelastic
scattering.

As shown in Figures 4-14 and 4-17, the �rst peak in G(r) has a constant height
and width as the temperature is �rst increased to 150 �C and the pressure is increased
to 1.0 kbar. It then decreases in height and broadens when the pressure is increased
to 33.8 kbar at 150 �C. Despite the fact that the �rst peak position and coordination
number do not vary with the experimental conditions, the observed changes are likely
to reect alterations to the structure of water as the density is increased.

In fact, water at ambient conditions favours a tetrahedral hydrogen-bonded arrange-
ment of the H2O molecules (Fig. 4-28), that di�ers substantially from the structure
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Figure 4-28: A tetrahedral arrangement of hydrogen-bonded water molecules [92]. The
�� symbol denotes a partial negative charge near the oxygen atom, while the �+ symbol
denotes a partial positive charge at the hydrogen position.

adopted by simple uids, i.e. a classical system of approximately spherical, non po-
lar molecules interacting via pair potentials. When the pressure is increased, the water
structure is progressively modi�ed as to resemble that of a simple uid, as shown by: (1)
neutron di�raction in which pressure and temperature were increased to 6.5 GPa and
670 K [93]; (2) X-ray di�raction in which pressure and temperature were increased to 17
GPa and 850 K [94, 95]; (3) molecular-dynamics simulations at pressures and temper-
atures up to 1.5 GPa and 500 K, respectively [69, 96]. Interestingly, such modi�cations
are found to occur without a major change to the intra-molecular bond distance, dis-
torting only a little the tetrahedral arrangement of the hydrogen bonds. Thus, the
broadening of the �rst peak in G(r) observed in the present work, which corresponds
to a wider distribution of possible intra-molecular bond distances, is consistent with the
experimental observations of water under pressure. It should also be pointed out that,
as supported by previous studies, the intra-molecular structure of the water molecule
is not a�ected markedly by the presence of ions, even at high concentrations [97].

The �rst-order di�erence functions �FCl(Q) are shown in Figures 4-18 { 4-20. The
counting statistics are signi�cantly better for the data sets measured with the Ti-Zr
cell setup, as compared to the Paris-Edinburgh setup, because the sample volume (� 1
ml) was 30 times larger than the sample contained in the Ti-Zr gaskets of the PE press
(30 �l). Also, there are di�culties in fully removing from �FCl(Q) the scattering from
the Ti-Zr gaskets used in the PE press. For example, the feature at about Q = 3 �A�1
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in the 2.4 kbar measurement (Figure 4-20) is likely to originate from unwanted Ti-Zr
scattering, as well as the features between 8 and 10 �A�1 for the data sets at pressures
higher than 10 kbar.

Figure 4-18 shows that, although the �rst peak in �FCl(Q) at 2.2 �A�1 becomes
sharper with increasing temperature and pressure, its position does not shift signi�-
cantly up to 150 �C and 1 kbar. This peak position is in agreement with the results
found from two previous neutron-di�raction studies at ambient conditions: a peak po-
sition at about 2.3 �A�1 was found by Soper et al. [70] for a 5.32 m NaCl-D2O solution,
while Barnes et al. [77] report a peak position of about 2.2 �A�1 for a 3.62 m NaCl-D2O
solution. Figures 4-19{4-20 show a shift in the �rst peak position in �FCl(Q), from
� 2.2 �A�1 to about 2.45 �A�1, as the pressure is increased from 0.1 to 33.8 kbar at
150 �C. Also, the shape of the �FCl(Q) becomes similar to that of a simple uid as
the pressure is increased to 33.8 kbar.

In real space, the �GCl(r) function of Figure 4-21 show an evolution in the struc-
ture of the �rst peak. These functions were obtained by Fourier transforming the corre-
sponding spline-�tted �FCl(Q) functions, using a Lorch function with Qmax = 21 �A�1.
At a constant pressure of 0.1 kbar, and temperature increasing from 50 �C to 150 �C,
there is a shift in rClD from 2.23(2) to 2.29(2) �A, while nD

Cl decreases from 5.7(3) to
5.4(5) as shown in Figure 4-26. These values for rClD are consistent with those found
from previous experiments on NaCl-D2O and other Cl-aqueous solutions [70, 77, 88]
at ambient conditions. In particular, Soper et al. [70, 88] found rClD = 2:26(3) �A and
nD

Cl = 5:5(4) for a 5.32 m NaCl-D2O solution [70, 88].
In Table 4.7, the weighted peak position is also reported as a function of temper-

ature: rClD increases from 2.33(2) to 2.35(2) �A, as the temperature is increased from
50 �C to 150 �C at 0.1 kbar, suggesting that the shift in the measured rClD value is
a real e�ect of temperature rather then being related to the shape of the peak. An
expansion of the �rst peak with increasing temperature therefore seems to be realistic.
An analogous e�ect is also found for a 2 m solution of NiCl2 as investigated at a con-
stant pressure of 1 kbar with temperature increasing from 100 �C to 300 �C [72]: in this
case, there is an increase of rClD from 2.30(3) to 2.39(4) �A, and a decrease of the Cl-D
coordination number from 6.9(5) to 4.9(5).

Figure 4-22 shows an increase in the height of the �GCl(r) function near the �rst-
minimum position at about 2.8 �A, as the temperature is increased from 50 �C to 150 �C
at 0.1 kbar, at a distance where the Na-Cl �rst neighbours are likely to be found [69].
This increase of height might be due to a combination of e�ects. For instance, thermal
e�ects may lead to an increased rate of exchange between the deuterium atoms at
distances corresponding to the �rst and second peaks around the Cl�ion. Also, ion-
pairing may increases with temperature, although this information cannot be inferred
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directly from �GCl(r), because the contribution to the �GCl(r) function from gNaCl(r)
is very small, as indicated by the weighting factors given in Table 4.4. For example,
Shen et al. [69] performed molecular-dynamics simulations on a 1.7 m sodium chloride
solution and found that when the temperature increases from 25 �C to 275 �C, at about
0.1 kbar, there is an increase in ion-pairing and a shift of the Na{Cl peak position
towards lower-r values from about 3 to 2.8 �A. Also, they found that the height of the
�rst Cl{D peak at � 2.4 �A decreases with increasing temperature, while the magnitude
gClD(r) increases at � 3 �A. A simple explanation for this e�ect is based on the fact
that the electrostatic Coulomb interaction between two ions in solution with charges
q1 and q2 is modi�ed by the presence of water, as expressed by the relative dielectric
permittivity �r in the expression

FCoulomb(r) =
q1q2

4��r �0r2 : (4.16)

As shown in Figure 4-29, at a pressure of 0.1 kbar, an increase in temperature from
50 �C to 150 �C corresponds to a strong decrease in �r from about 70 to 45. The observed
decrease of the coordination number nD

Cl with increasing temperature (Table 4.7), is
therefore consistent with a decrease of the dielectric permittivity, which promotes ion-
association rather than ion-hydration. The pressure dependence of �GCl(r) at 150 �C
is shown in Figures 4-23 and Table 4.8. In this case, there is a contraction of rClD

from 2.35(2) �A to 2.07(6) �A, which is particularly marked when the pressure exceeds
1 kbar. The coordination number nD

Cl does not vary substantially, being 5.4(2) at 0.1
kbar and 5.2(4) at 1 kbar. The small change in nD

Cl is consistent with the behaviour
of the dielectric permittivity that, at constant temperature, increases slowly with pres-
sure (Figure 4-29), thereby favouring ion-hydration. However, the uncertainty in the
measured coordination numbers is such that it is di�cult to identify a clear trend.

Figures 4-24 and 4-25 show the �GCl(r) functions obtained by Fourier transforming
the corresponding spline-�tted �FCl(Q) functions after a Lorch function is applied with
Qmax = 9:75 �A�1. The modi�cation function is used to smooth unphysical features in
the �FCl(Q) functions, without altering the shape of the main peaks at lower Q-values.
As the pressure increases from 2.4 to 33.8 kbar at 150 �C, �GCl(r) shows a �rst peak
that becomes progressively broader and merges more-and-more with the second peak.
In particular, at pressures higher than 2.4 kbar, the �rst shell becomes less developed, so
that the identi�cation of a �rst minimum for calculating the Cl-D coordination number
becomes unclear. Table 4.8 and Figure 4-27 show a contraction of rClD with increasing
pressure, but the dependence of the Cl-D coordination number is not as clear. Such
behaviour is di�cult to understand in terms of the dielectric permittivity, because data
are available for the latter only up to a maximum pressure of 5 kbar [98, 99]. Figure
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Figure 4-29: Variation of the relative dielectric permittivity �r with temperature and
pressure. The curves are isopleths and are labelled accordingly. The �lled circle repre-
sents the critical point of water [98].

4-29 shows that, at a constant temperature of 150 �C, � increases from about 45 at
ambient pressure to about 55 at 5 kbar, such that the change in dielectric permittivity
should promote ion-hydration rather then Na-Cl ion-association. A possible way to
interpret this change is that the e�ect of increasing pressure is to push both the �rst
and second coordination shells closer to the Cl�ion. The system progressively undergoes
more frustration that leads to a broader angular and Cl-D bond-length distribution.
However, it has to be noted that some of the broadening at these highest pressures
arises from the limited Q-range (Qmax = 9.75 �A�1) used to form the �G0Cl(r) functions
(Figure 4-25).
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4.7 Conclusions

The neutron di�raction with isotope substitution experiments have provided new in-
sight into the Cl�ion coordination environment in a 5 m NaCl-D2O solution, for a
temperature and pressure range that had not been previously investigated. Two dif-
ferent setups involving either a Ti-Zr pressure cell or a Paris-Edinburgh press were
employed. These setups allowed, in the �rst case, for a substantial improvement in
the quality of data obtained under high-pressure conditions and, in the second case, to
increase for the �rst time the investigated pressures up to 33.8 kbar.

The total structure factors and pair distribution functions show that the water
molecules remain intact. At 150 �C and pressures up to 33.8 kbar the total structure
factor evolves, becoming more simple-uid like. In real space, this is accompanied
by a broader range of possible O-D intra-molecular bond distances. However, the
coordination number nD

O is consistent with 2 over the entire temperature and pressure
range that was spanned, suggesting that, even though pressure changes the distribution
of intra-molecular O-D bond distances, it does not break these O-D intra-molecular
bonds.

The di�erence functions formed in real space show that, at a constant pressure
of 0.1 kbar and temperature increasing from 50 �C to 150 �C, the �rst shell expands.
This e�ect, and the decrease of nD

Cl, can be related to the behaviour of the dielectric
permittivity of water, which decreases with increasing temperature, thus favouring ion-
association. At a constant temperature of 150 �C, an increase in pressure up to 1 kbar
shows a compression of rClD, and a slight decrease in the Cl-D coordination number
that is expected, given the behaviour of water’s dielectric permittivity.

At higher pressures, the di�erence functions measured with the Paris-Edinburgh
setup have lower-quality counting statistics as compared to the Ti-Zr pressure cell
datasets. Despite this, the reciprocal-space functions show clear pressure-driven changes
to the solution structure, which evolves, as for water, to become more simple-uid like.
In real space, these changes are reected by a progressive evolution of the �rst and
second peaks. The weighted peak position indicates a progressive shift towards lower
r-values for the Cl �rst peak . The height of the minimum after the �rst peak posi-
tion in �GCl(r) becomes large at pressures higher than 2.4 kbar, making it di�cult to
identify reliable Cl-D coordination numbers.

A comparison of the present experimental results with those obtained from ongoing
molecular-dynamics simulations should help to understand the contributions of the
di�erent gCl�(r) partial pair-distribution functions to �GCl(r). Our �ndings emphasise
the importance of a joint approach between neutron di�raction and molecular-dynamics
simulations, in order to help in the interpretation of the new experimental information.



5. The structure of AsxSe1�x

glasses (0.3 � x � 0.4)

5.1 Introduction

Chalcogenide glasses (ChGs) are systems formed by one or more of the chalcogen ele-
ments S, Se and Te. The chalcogen is usually covalently bonded to a network-forming
element such as As, Ge, Sb, Ga, Si or P. ChG-based technological applications in-
clude infra-red transmitting materials such as prisms, windows and wave-guides. They
are also used as the host-matrix for infra-red lasers [2, 3]. The functionality of ChGs
depends on the exible or rigid nature of their underlying networks, and therefore a
detailed understanding of the atomic-scale structure is required in order to tailor spe-
ci�c optical, electronic and mechanical properties. The structure of a network-forming
glass can change its topology when the chemical composition is varied. Mean-�eld
constraint-counting theory predicts that a change in the structure will occur, from
an elastically oppy to a stressed-rigid phase, when the mean number of Lagrangian
bonding constraints per atom, Nc, equals three, the number of degrees of freedom
per atom in three dimensions. An elastically-oppy phase is under-constrained (Nc

< 3) whereas a stressed-rigid phase is over-constrained (Nc > 3). A system in which
all of the bond-stretching and bond-bending constraints are intact, and which has no
dangling bonds, is expected to undergo a transition between these phases at a mean
coordination number �n = 2:4 [100, 101]. Furthermore, if the network can self-organise
during its formation, by including structures that minimise over-constrained regions,
two transitions can occur such that the oppy and stressed-rigid phases are separated
by a composition range known as the intermediate phase (IP) [102].

Boolchand et al. [103] performed temperature-modulated di�erential scanning calorime-
try experiments on the AsxSe1�x system, �nding an IP for the composition range
0:291(1) < x < 0:37(1). For these As-Se glasses, under the assumptions that: (1) As is
3 fold-coordinated; (2) Se is 2 fold-coordinated; (3) that there are no dangling bonds;
the mean coordination number �n = 2:4 occurs when x = 0:4, meaning that the in-
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termediate phase is shifted markedly from the mean-�eld expectation. First-principles
molecular dynamics (FPMD) simulations for amorphous and liquid AsxSe1�x systems,
with 0:2 � x � 0:4, point to thresholds and anomalies in the behavior of the reciprocal
space functions, that can be linked to the IP region [24]. In the present work, the
method of neutron di�raction with isotope substitution will be used to investigate the
reciprocal-space features of the AsxSe1�x glassy system.

In addition, the extent of the chemical ordering will be assessed. Here, two con-
trasting models exist to describe the chemical ordering in network glasses [104]. Both
of these models are based on the so-called \8-N" bonding rule, where N is the total
number of s and p electrons in the outmost shell of an atom [105]. In the random
covalent network (RCN) model, the bond distribution is treated as purely statistical,
depending only on the local coordination environment and on the concentration of the
atomic species [106]. This implies that e�ects that would enforce chemical ordering
can be neglected, as for example the relative bond energies, and that heteropolar and
homopolar bonds are both allowed at all compositions. In contrast, in the chemically
ordered network (CON) model, di�erences between the chemical bonds are taken into
account such that heteropolar bonds are preferred [107, 108].

Figure 5-1 show the crystal structure for As2Se3 with 3 fold-coordinated As atoms
in corner-sharing AsSe3=2 pyramids [109].

Figure 5-1: Crystal structure for As2Se3 [109]. The As atoms are in purple and the Se
atoms are in yellow.

The predominant structural motifs for AsxSe1�x glasses are pyramidal AsSe3=2 units
that are crossed-linked by Sen chains. However, Boolchand et al. [103] found that, in
addition to Sen chains and As(Se1=2)3 pyramids, quasi-tetrahedral Se=AsSe3=2 units
are present for the Se-rich compositions, allowing 4 fold-coordinated As atoms to exist,
against the prediction of the \8-N" bonding rule. Bauchy et al. [24] found the existence
of homopolar As-As bonds via �rst-principles molecular dynamics (FPMD) simulations
for x > 0:3, which lead to the growth of ethylene-like structures that contain these
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As-As bonds. Hosakawa et al. [26] investigated AsxSe1�x glasses (x = 0.29, 0.33 and
0.40) by combining anomalous X-ray scattering experiments and reverse Monte Carlo
modelling. They found a breakdown of the \8-N" bonding rule around As, and a
fraction of homopolar bonds As-As that is in agreement with the FPMD results found
by Bauchy et al. [24, 25]. However, their results showed discrepancies in the region of
the pre-peak of SAsSe(Q).

In order to provide experimental information for a deeper understanding of these
glassy networks, and to test the validity of the RMC and FPMD simulations, NDIS
experiments were made using the GEM di�ractometer at ISIS. Three compositions
in the 0:3 � x � 0:4 range were investigated to span the IP, namely As0:30Se0:70,
As0:35Se0:65 and As0:40Se0:60.

5.2 Theory

The method of NDIS exploits the variation between the coherent neutron-scattering
lengths of isotopes of the same chemical species. Di�raction patterns are measured for
samples that are identical in every respect, except for the isotopic composition of one
or more of the chemical elements. Consider, for example, the As0:30Se0:70 composition.
Because As is a monoisotopic element, it is possible to use only Se isotope substitution.
Let NatF (Q) be the total structure factor measured for As0:30

NatSe0:70, where Nat
indicates the natural isotopic abundance for Se, and let 76F (Q) be the total structure
factor measured for an isotopically-enriched sample of As0:30

76Se0:70. The di�raction
patterns can be Fourier transformed to give the corresponding total pair distribution
functions G(r) by using Eq.(2.25). For example, in the case of the natural sample,
NatG(r) is given by

NatG(r) =
1

2�2�r

1Z

0

NatF (Q)Q sin(Qr)dQ

= c2
Asb

2
As[gAsAs(r)� 1] + c2

Seb
2
NatSe[gSeSe(r)� 1] + 2cAscSebAsbNatSe[gAsSe(r)� 1];

(5.1)

where � is the atomic number density of the system, and the partial pair-distribution
functions g��(r) are de�ned in Section 2.2. At r-values smaller than the distance of
closest approach between the centres of two atoms

NatG(r ! 0) = NatG(0) = �(cAsbAs + cSebNatSe)
2; (5.2)

and the average coordination number can be de�ned as
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nNat = 4��
r2Z

r1

h
NatG(r)� NatG(0)

i

jNatG(0)j
r2dr (5.3)

=
c2

Asb
2
As4��

jNatG(0)j

r2Z

r1

gAsAs(r)r2dr +
c2

Seb
2
NatSe4��

jNatG(0)j

r2Z

r1

gSeSe(r)r2dr

+
2cAsbAscSebNatSe4��

jNatG(0)j

r2Z

r1

gAsSe(r)r2dr

=
cAsb2As
jNatG(0)j

nAs
As +

cSeb2NatSe
jNatG(0)j

nSe
Se +

2cAsbAsbNatSe
jNatG(0)j

nSe
As:

(5.4)

The same formalism is valid for the isotopically enriched sample, and an average coor-
dination number n76 can be calculated by replacing bNatSe by b76Se in Eqs.(5.1)-(5.4),
such that:

n76 = 4��
r2Z

r1

�76G(r)� 76G(0)
�

j76G(0)j
r2dr (5.5)

=
cAsb2As
j76G(0)j

nAs
As +

cSeb276Se
j76G(0)j

nSe
Se +

2cAsbAsb76Se
j76G(0)j

nSe
As: (5.6)

The measured di�raction patterns NatF (Q) and 76F (Q) can be combined to form
�rst-order di�erence functions, where di�erent partial structure factors can be elimi-
nated in turn (Section 2.4). For example, the di�erence function

�FSe(Q) = 76F (Q)� NatF (Q)

= 2cAscSebAs(b76Se � bNatSe)[SAsSe(Q)� 1] + c2
Se(b

2
76Se � b

2
NatSe)[SSeSe(Q)� 1];

(5.7)

removes S AsAs(Q), whereas the weighted di�erence function

�FX(Q) =
�
bNatSe
b76Se

�
76F (Q)� NatF (Q)

= c2
Asb

2
As

�
bNatSe
b76Se

� 1
�

[SAsAs(Q)� 1] + c2
SebNatSe(b76Se � bNatSe)[SSeSe(Q)� 1];

(5.8)
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removes S AsSe(Q), and

�FAs(Q) = NatF (Q)�
�
bNatSe
b76Se

�2
76F (Q)

= 2cAscSebAsbNatSe

�
1�

bNatSe
b76Se

�
[SAsSe(Q)� 1]

+ c2
Asb

2
As

"

1�
�
bNatSe
b76Se

�2
#

[SAsAs(Q)� 1] (5.9)

removes S SeSe(Q). The Fourier transform of a di�erence function provides the corre-
sponding real-space information. For instance, the Fourier transform of Eq.(5.7) gives

�GSe(r) =
1

2�2�r

1Z

0

Q�FSe(Q) sin(Qr)dQ

=
1

2�2�r
�
2cAscSebAs(b76Se � bNSe)

�
1Z

0
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+
1
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Se(b
2
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2
NSe)

i 1Z
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Q[SSeSe(Q)� 1] sin(Qr)dQ
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(5.10)

Here, the low-r limit is given by

�GSe(0) = �2cAscSebAs(b76Se � bNatSe)� c
2
Se(b

2
76Se � b

2
NatSe); (5.11)

and an averaged coordination number can be de�ned by
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nSe =
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Likewise, average coordination numbers can be de�ned for the Fourier transforms of
Eqs.(5.8) and (5.9):

nX =
cAsb2As

�
bNatSe
b76Se

� 1
�

j�GX(0)j
�nAs

As +
cSebNatSe(b76Se � bNatSe)
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�nSe
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(5.14)
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1� bNatSe

b76Se

�
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�nSe

As +
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1�

�
bNatSe
b76Se

�2
�

j�GAs(0)j
�nAs

As:

(5.15)

5.3 Experimental method

5.3.1 Sample preparation

The samples were prepared in the Liquid and Amorphous Materials laboratory at Bath.
For each composition, two di�erent glassy samples were prepared that were identical
in every respect, except that one contained Se of natural isotopic abundance, NatSe,
whilst the other contained the isotope 76Se. Silica ampoules were etched with HF acid,
then thoroughly rinsed with water and acetone. Once dried by heating under vacuum
at 800 �C, the ampoules were loaded with As (99.99999+% purity from Alfa Aesar) and
NatSe (purity � 99.999% from Sigma Aldrich) or 76Se (99.8% 76Se, relative abundance
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9.0%, and 0.2% 77Se, relative abundance 7.6%, from Isoex USA) in the desired ratio,
inside an argon-�lled glove-box. Once loaded, an ampoule was evacuated to � 10�6

Torr, sealed, and then placed into a rocking furnace. The temperature was increased at
1 �C/min to 685 �C, dwelling for 4 hours each at the Se melting point (221 �C) and at
the As melting point (614 �C). At the Se boiling point (685 �C), the samples were left
to dwell for 47 hours. The furnace was then placed vertically and left for another hour
before the temperature was ramped down, at 1 �C/min, to 400 �C, where the sample
was left to equilibrate for 4 hours. Finally, the ampoule was quenched by dropping it
into a container �lled with an ice-water mixture.

The glasses were prepared in three di�erent stages. Firstly, the As0:30Se0:70 samples
were prepared for the �rst part of the neutron-di�raction experiment. These samples
were used to prepare the As0:35Se0:65 samples, by adding the required amount of Se, for
the second part of the NDIS experiment. Similarly, these samples were then used to pre-
pare the As0:40Se0:60 samples to carry out the third part of the NDIS experiment. The
chemical compositions of the prepared glasses were not measured. All of the prepared
samples were glassy, except for As0:40

76Se0:60, which was found to be crystalline during
the di�raction experiment, although the procedure used to prepare it was the same as
that used for the other samples. Thus far, an explanation for this crystallisation has
not been found. In order to form di�erence functions for the As0:40Se0:60 composition, a
As0:40

MixSe0:60 sample was investigated, where MixSe indicates a mixture of 50% NatSe
and 50% 76Se. The density of the samples was measured using a He pycnometer. The
mean bound coherent scattering lengths bcoh, the total neutron-scattering cross sections
�T and the measured number densities of the samples are listed in Table 5.1.

Table 5.1: Parameters describing the samples used for the neutron-di�raction experi-
ments. Values for bcoh and �T were calculated using the data given by Sears [33]. The
tabulated neutron-absorption cross section for 76Se (�abs=85(7) barn) is incorrect. In-
stead, it was estimated from neutron-di�raction data analysis to be �abs=115(23) barn
[110].

Sample bcoh (fm) �T (barn) @ �i = 1.798 (�A)) � (�A�3)
As0:30

NatSe0:70 7.553(9) 17.0(3) 0.03475(7)
As0:30

76Se0:70 10.508(7) 96.6(16.4) 0.03475(7)
As0:35

NatSe0:65 7.484(6) 16.5(6) 0.0349(1)
As0:35

76Se0:65 10.23(6) 90.4(15.3) 0.0349(1)
As0:40

NatSe0:60 7.414(7) 16.0(2) 0.0354(1)
As0:40

MixSe0:60 8.68(3) 50.11(7.06) 0.0354(1)
As0:40

76Se0:60 9.947(5) 128.42(7.06) 0.0354(1)
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5.3.2 GEM experiment

The three parts of the NDIS experiment were carried out on the GEM di�ractometer at
ISIS, which is described in Section 3.2. The As0:30Se0:70, As0:35Se0:65 and As0:40Se0:60

compositions were investigated in October 2013, March 2014 and August 2014, respec-
tively. The samples were coarsely ground inside an argon-�lled glove-box, and then
loaded into a vanadium can (outer diameter = 5 mm, wall thickness = 0.1 mm). The
loaded can was closed under argon, and then taken out of the glove-box. In order to
achieve a higher packing fraction, and hence a higher number of scattering centres in
the neutron beam, each can was placed into a ultrasound bath for a couple of minutes.
The packing fraction values reached using this procedure were in the range 57-64 %.
The loaded can was mounted on a stick to be centred in the neutron beam. In each part
of the NDIS experiment, di�raction patterns were measured for each of the samples,
the empty vanadium can, the empty belljar, and a vanadium rod for normalisation
purposes.

5.4 Results

5.4.1 Total structure factors

The measured total structure factors are shown in Figures 5-2 { 5-4. In Figure 5-5, a
comparison is shown between the di�raction patterns measured for As0:40Se0:60 using
D4c (from [90]) and GEM. In Figure 5-6, the neutron-di�raction results from [90] are
shown for As0:40Se0:60, where the isotopically-enriched sample was As0:40

76Se0:60 instead
of As0:40

MixSe0:60.
The total structure factors show similar features across the composition range, with

oscillations that die out at Q � 30 �A�1. Figure 5-5 show good agreement between the
total structure factors measured using GEM and D4c for the As0:40Se0:60 composition,
and the small discrepancy most likely originates from the di�erence in the resolution
functions between the two di�ractometers. For all of the compositions, there is a dif-
ference in the total structure factors such that, in terms of magnitude, 76F (Q) (or
MixF (Q) ) > NatF (Q). The reason lies in the di�erence between the coherent neutron-
scattering lengths of the Se isotopes employed in the NDIS experiment, as indicated
by Table 5.1. At Q � 1.25 �A�1, a pre-peak manifests itself in all of the total struc-
ture factors. This feature, also known as a �rst sharp di�raction peak (FSDP), is
a signature of the presence of intermediate range order (IRO), having a periodicity
given by 2�/QFSDP and correlation length given by 2�/�QFSDP, where �QFSDP is the
full-width at half-maximum [7, 111]. The FSDP position found in the present work
is consistent with the value Q � 1.2 �A�1 found for liquid and glassy As0:40Se0:60 by
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Hosokawa et al. [112]. In particular, they found via AXS that the IRO is dominated
by the As-As pair-distribution function with a correlation length of about 5.2 �A. The
total pair-distribution functions are shown in Figures 5-7 { 5-11. The comparison in
Figure 5-10 shows that there is good agreement between the G(r) functions measured
on GEM and on D4c for the As0:40

NatSe0:60 and As0:40
MixSe0:60 samples. The �rst

peak position, at about 2.40(3) �A, does not vary substantially across the compositions
and the same value is found for the crystalline, glassy and liquid structures of many
di�erent AsxSe1�x compositions [112{117].

Figure 5-2: Total structure factors 76F (Q) and NatF (Q) for As0:30
76Se0:70 and

As0:30
NatSe0:70, respectively. The solid black lines with vertical error bars are the

measured data sets. The error bars are hardly distinguishable, given the high-quality
counting statistics. The red curves show spline �ts to the measured data sets. The
green curves are the back-Fourier transforms of the G(r) functions shown in Figure
5-7, once the low-r oscillations are set to their theoretical G(r ! 0) limit. The curves
for NatF (Q) have been o�set vertically, for clarity of presentation, and the o�sets are
indicated in parenthesis.
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Figure 5-3: Total structure factors 76F (Q) and NatF (Q) for As0:35
76Se0:65 and

As0:35
NatSe0:65, respectively. The solid black lines with vertical error bars are the

measured data sets. The error bars are hardly distinguishable, given the high-quality
counting statistics. The red curves show spline �ts to the measured data sets. The
green curves are the back- Fourier transforms of the G(r) functions shown in Figure
5-8, once the low-r oscillations are set to their theoretical G(r ! 0) limit. The curves
for NatF (Q) have been o�set vertically, for clarity of presentation, and the o�sets are
indicated in parenthesis.
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Figure 5-4: Total structure factors MixF (Q) and NatF (Q) for As0:40
MixSe0:60 and

As0:40
NatSe0:60, respectively. The solid black lines with vertical error bars are the

measured data sets. The error bars are hardly distinguishable, given the high-quality
counting statistics. The red curves show spline �ts to the measured data sets. The
green curves are the back-Fourier transforms of the G(r) functions shown in Figure
5-9, once the low-r oscillations are set to their theoretical G(r ! 0) limit. The curves
for NatF (Q) have been o�set vertically, for clarity of presentation, and the o�sets are
indicated in parenthesis.
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Figure 5-5: Comparison between the total structure factors MixF (Q) and NatF (Q) for
As0:40

MixSe0:60 and As0:40
NatSe0:60, respectively, as measured on GEM or on D4c. The

solid black lines represent the data sets measured on GEM with Qmax set to the D4c
value of 23.45 �A�1. The solid red lines represent the data sets measured on D4c [90].
In both cases, the vertical error bars are hardly distinguishable, given the high-quality
counting statistics. The curves for NatF (Q) have been o�set vertically, for clarity of
presentation, and the o�sets are indicated in parenthesis.
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Figure 5-6: Total structure factors 76F (Q) and NatF (Q) for As0:40
76Se0:60 and

As0:40
NatSe0:60, respectively. The solid black lines with vertical error bars are the

data sets measured on D4c [90]. The error bars are hardly distinguishable, given the
high-quality counting statistics. The red curves show spline �ts to the measured data
sets. The curves for NatF (Q) have been o�set vertically, for clarity of presentation, and
the o�sets are indicated in parenthesis.
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Figure 5-7: Total pair-distribution functions 76G(r) and NatG(r) for As0:30
76Se0:70

and As0:30
NatSe0:70, respectively. The solid red lines show the Fourier transforms of

the spline-�tted data sets shown in Figure 5-2. The solid black curves also show the
Fourier transforms of these spline-�tted data sets after the low-r oscillations are set to
their theoretical G(r ! 0) limit but, in this case, a Lorch modi�cation function was
applied, with Qmax = 40 �A�1, to smooth the data after the �rst peak. The curves for
76G(r) are o�set vertically, for clarity of presentation, and the o�sets are indicated in
parenthesis.
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Figure 5-8: Total pair-distribution functions 76G(r) and NatG(r) for As0:35
76Se0:65

and As0:35
NatSe0:65, respectively. The solid red lines show the Fourier transform of the

spline-�tted data sets shown in Figure 5-3. The solid black curves also show the Fourier
transforms of these spline-�tted data sets after the low-r oscillations are set to their
theoretical G(r ! 0) limit, but, in this case, a Lorch modi�cation function was applied,
with Qmax = 40 �A�1, to smooth the data after the �rst peak. The curves for 76G(r) are
o�set vertically, for clarity of presentation, and the o�set is indicated in parenthesis.
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Figure 5-9: Total pair-distribution functions MixG(r) and NatG(r) for As0:40
MixSe0:60

and As0:40
NatSe0:60, respectively. The solid red lines show the Fourier transform of

the spline-�tted data sets shown in Figure 5-4. The solid black curves also show the
Fourier transforms of these spline-�tted data sets after the low-r oscillations are set to
their theoretical G(r ! 0) limit, but, in this case, a Lorch modi�cation function was
applied, with Qmax = 40 �A�1, to smooth the data after the �rst peak. The curves for
MixG(r) are o�set vertically. for clarity of presentation, and the o�set is indicated in
parenthesis.
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Figure 5-10: Comparison between the total pair-distribution functions MixG(r) and
NatG(r) for As0:40

MixSe0:60 and As0:40
NatSe0:60, respectively, as measured on GEM or

D4c. The solid black lines represent the Fourier transforms of the GEM spline-�tted
data, after Qmax is set to the D4c value of 23.45 �A�1, and the low-r oscillations (black
dashed lines) are set to their theoretical G(r ! 0) limit. The solid red lines, taken
from [90], represent the Fourier transforms of the D4c spline-�tted data, once the low-r
oscillations (red dashed lines) are set to their theoretical limit G(r ! 0). In both cases,
a Lorch function was applied to smooth the data after the �rst peak. The curves for
MixG(r) are o�set vertically, for clarity of presentation, and the o�sets are indicated in
parenthesis.
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Figure 5-11: Total pair-distribution functions 76G(r) and NatG(r) for As0:40
76Se0:60

and As0:40
NatSe0:60, respectively, as measured on D4c [90]. The solid red lines show the

Fourier transforms of the spline-�tted data sets shown in Figure 5-6, with Qmax = 23.45
�A�1. The solid black curves also show the Fourier transforms of these spline-�tted data
sets after the low-r oscillations are set to their theoretical G(r ! 0) limit but, in this
case, a Lorch function was applied, with Qmax = 23.45 �A�1, to smooth the data after
the �rst peak. The curves for 76G(r) are o�set vertically, for clarity of presentation,
and the o�sets are indicated in parenthesis.
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5.4.2 First-order di�erence functions

The total pair-correlation functions in Figures 5-7 { 5-11 show a �rst peak at about
2.40(3) �A. As found for other chalcogenide glasses, such as GexSe1�x [108], the ho-
mopolar As-As and Se-Se bonds are expected to be comparable in length to heteropolar
As-Se bonds. The �rst-order di�erence functions introduced in Section 5.2 can be used
to eliminate, in turn, one of the g��(r) functions from G(r). These di�erence functions
can be re-written as

�GSe(r) = a1[gAsSe(r)� 1] + a2[gSeSe(r)� 1] (5.16)

with a1 = 2cAscSebAs(b76Se � bNatSe) and a2 = c2
Se(b

2
76Se � b

2
NatSe);

�GX(r) = b1[gAsAs(r)� 1] + b2[gSeSe(r)� 1] (5.17)

with b1 = c2
Asb

2
As

�
bNatSe
b76Se

� 1
�

, b2 = c2
SebNatSe(b76Se � bNatSe), and where the symbol X

refers to the homopolar As-As and Se-Se bonds;

�GAs(r) = c1[gAsSe(r)� 1] + c2[gAsAs(r)� 1]; (5.18)

with c1 = 2cAscSebAsbNatSe

�
1� bNatSe

b76Se

�
and c2 = c2

Asb
2
As

�
1�

�
bNatSe
b76Se

�2
�
.

The same formalism holds for the di�erence functions formed when MixSe was used in
place of 76Se. By looking at the weighting factors listed in Table 5.2, it is possible to
understand which partial pair-correlation function receives the largest weighting. For
instance, in the case of �GSe(r), the weighting factor for the Se-Se correlations (a2) is
larger than that for the As-Se correlations (a1) for all of the compositions. In the case
of �GX(r), the weighting factor (b2) for the Se-Se correlations is larger than that for
the As-As correlations (b1) for all of the compositions, and the latter is also negative.
In the case of �GAs(r), the weighting factor (c1) for the As-Se correlations is larger
than that for the As-As correlations (c2) for all of the compositions.

The measured �rst-order di�erence functions are shown in Figures 5-12 { 5-16.
Figures 5-12 { 5-14 give the functions measured on GEM and Figure 5-15 shows a
comparison between the functions measured for As0:40Se0:60 using GEM or D4c (from
[90]). Figure 5-16 shows the di�erence functions measured for As0:40Se0:60 on D4c using
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Table 5.2: Weighting factors for the �rst-order di�erence functions of Eqs. 5.16 {
5.18. The di�erence functions for As0:30Se0:70 (I-GEM), As0:35Se0:65 (II-GEM) and
As0:40Se0:60 (III-D4c) were obtained using 76Se isotope substitution, while the di�erence
functions for As0:40Se0:60 (III-GEM) were obtained using MixSe isotope substitution

Weighting factor I-GEM (barn) II-GEM (barn) III-GEM (barn) III-D4c (barn)
a1 0.1170(6) 0.1270(6) 0.0640(4) 0.133
a2 0.418(12) 0.36(1) 0.131(4) 0.306
b1 -0.0135(1) -0.0180(1) -0.0140(1) -0.024
b2 0.165(4) 0.142(3) 0.058(2) 0.121
c1 0.076(2) 0.083(2) 0.051(1) 0.087
c2 0.0220(3) 0.0300(4) 0.0252(5) 0.04

76Se isotope substitution (from [90]). The features for a given di�erence function do not
change substantially with the glass composition. For instance, the �FAs(Q) functions
show a clear FSDP at Q � 1.25 �A�1, while the �FSe(Q) and �FX(Q) functions exhibit
a shoulder in this low-Q region.

The real-space di�erence functions are shown in Figures 5-17{5-22. These were
obtained by Fourier transforming the corresponding reciprocal-space functions with
Qmax = 30 �A�1, where the oscillations have already died out, in order to avoid Fourier
transforming statistical noise. The �rst peak position in �GSe(r) is at 2.38(3) �A for
As0:30Se0:70, 2.40(3) �A for As0:35Se0:65 and 2.41(3) �A for As0:40Se0:60. These average
bond distances compare well with the As-Se bond distances of 2.38 �A and 2.40 �A found
in crystalline As0:50Se0:50 and As0:40Se0:60 [113, 115], respectively. Also, the Se-Se bond
distance is found to vary between 2.30 and 2.34 �A in liquid and glassy Ge{Se systems
[108], and the value 2.32 �A is found in amorphous Selenium [118].

The �rst peak position in �GX(r) varies between 2.30(2) �A and 2.39(2) �A. These
values can be compared with the average As-As bond distance of 2.44 �A found for
crystalline As0:50Se0:50 [115], and with the Se-Se bond distance of 2.30 - 2.34 �A found
in [108]. In Figure 5-19, the �GX(r) function measured on GEM for As0:40Se0:60 shows
a double peak in the region between 2.27 �A and 2.69 �A. Figure 5-21 shows a comparison
between the �rst peaks in the �GX(r) functions measured on GEM, obtained with or
without the application of a Lorch function, and the same function measured on D4c.
Figures 5-22 shows again the �GX(r) function as measured on D4c, but this time by
using 76Se isotope substitution. The functions measured on D4c both show a single
peak. Also, the dip in the GEM data at � 2.5 �A occurs at a larger distance than
the As-As bond length of 2.44 �A found in crystalline As0:50Se0:50 [115], and the second
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peak in the GEM data at � 2.60 �A is much larger than typical Se-Se homopolar bond
distances [108]. Thus, although the As-As correlations receive a negative weighting in
�GX(r) (Table 5.2), it is likely that the double-peak feature in the GEM data originates
from poor counting statistics for the As0:40

MixSe0:60 sample. The �rst peak position in
�GAs(r) varies between 2.40(2) �A and 2.42(2) �A. These distances compare well with
the value of 2.42(2) �A found by Benmore and Salmon [116] for the As-As and As-Se
bond distances in glassy Ag2As3Se4 and Cu2As3Se4.

Figure 5-12: First-order di�erence functions for As0:30Se0:70, as obtained from the total
structure factors 76F (Q) and NatF (Q) shown in Figure 5-2. The solid black lines with
vertical error bars are the �rst-order di�erence functions measured on GEM. The error
bars are hardly distinguishable, given the high-quality counting statistics. The red
curves show spline �ts to the measured data sets. The green curves are the back-Fourier
transforms of the �G(r) functions shown in Figure 5-17, once the low-r oscillations
are set to their theoretical �G(r ! 0) limit. The curves have been o�set vertically, for
clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-13: First-order di�erence functions for As0:35Se0:65, as obtained from the total
structure factors 76F (Q) and NatF (Q) shown in Figure 5-3. The solid black lines with
vertical error bars are the �rst-order di�erence functions measured on GEM. The error
bars are hardly distinguishable, given the high-quality counting statistics. The red
curves show spline �ts to the measured data sets. The green curves are the back-Fourier
transforms of the �G(r) functions shown in Figure 5-18, once the low-r oscillations
are set to their theoretical �G(r ! 0) limit. The curves have been o�set vertically, for
clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-14: First-order di�erence functions for As0:40Se0:60, as obtained from the total
structure factors MixF (Q) and NatF (Q) shown in Figure 5-4. The solid black lines
with vertical error bars are the �rst-order di�erence measured on GEM. The error bars
are hardly distinguishable, given the high-quality counting statistics. The red curves
show spline �ts to the experimental data sets. The green curves are the back-Fourier
transforms of the �G(r) functions shown in Figure 5-19, once the low-r oscillations
are set to their theoretical �G(r ! 0) limit. The curves have been o�set vertically, for
clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-15: First-order di�erence functions for As0:40Se0:60, as obtained from the total
structure factors MixF (Q) and NatF (Q) shown in Figure 5-4. The solid black lines with
vertical error bars are the �rst-order di�erence functions measured on GEM, after Qmax

is set to the D4c value of 23.45 �A�1. The red solid lines with vertical error bars are
the �rst-order di�erence functions measured on D4c [90]. The vertical error bars are in
both cases hardly distinguishable, given the high-quality counting statistics. The curves
have been o�set vertically, for clarity of presentation, and the o�sets are indicated in
parenthesis.
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Figure 5-16: First-order di�erence functions for As0:40Se0:60, as obtained from the total
structure factors 76F (Q) and NatF (Q) shown in Figure 5-6. The solid black lines
with vertical error bars are the �rst-order di�erence functions measured on D4c (from
[90]). The vertical error bars are hardly distinguishable, given the high-quality counting
statistics. The red curves show spline �ts to the measured data sets. The green curves
are the back-Fourier transforms of the �G(r) functions in Figure 5-19, once the low-r
oscillations are set to their theoretical �G(r ! 0) limit. The curves have been o�set
vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-17: Real-space �rst-order di�erence functions �G(r) for As0:30Se0:70. The
solid red lines show the Fourier transforms of the spline-�tted data sets shown in Figure
5-12 with Qmax = 30 �A�1. The solid black curves also show the Fourier transforms
of these spline-�tted data sets, after the low-r oscillations are set to their theoretical
�G(r ! 0) limit but, in this case, a Lorch function was applied, with Qmax = 30 �A�1,
to smooth the data after the �rst peak. The curves for �GSe(r) and �GAs(r) are o�set
vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-18: Real-space �rst-order di�erence functions �G(r) for As0:35Se0:65. The
solid red lines show the Fourier transforms of the spline-�tted data sets shown in Figure
5-13 with Qmax = 30 �A�1. The solid black curves also show the Fourier transforms
of these spline-�tted data sets, after the low-r oscillations are set to their theoretical
�G(r ! 0) limit but, in this case, a Lorch function was applied, with Qmax = 30 �A�1,
to smooth the data after the �rst peak. The curves for �GSe(r) and �GAs(r) are o�set
vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-19: Real-space �rst-order di�erence functions �G(r) for As0:40Se0:60. The
solid red lines show the Fourier transforms of the spline-�tted data sets shown in Figure
5-14 with Qmax = 30 �A�1. The solid black curves also show the Fourier transforms
of these spline-�tted data sets, after the low-r oscillations are set to their theoretical
�G(r ! 0) limit but, in this case, a Lorch function was applied, with Qmax = 30 �A�1,
to smooth the data after the �rst peak. The curves for �GSe(r) and �GAs(r) are o�set
vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-20: Comparison between the real-space �rst-order di�erence functions �G(r)
for As0:40Se0:60. The solid black lines are the Fourier transforms of the GEM spline-
�tted data sets shown in Figure 5-15 (Qmax = 23.45 �A�1), after the low-r oscillations
are set to their theoretical �G(r ! 0) limit, and with a Lorch function applied (with
Qmax = 23.45 �A�1) to smooth the data after the �rst peak. The solid red lines are
the Fourier transforms of the D4c spline-�tted data sets shown in Figure 5-15, after
the low-r oscillations are set to their theoretical �G(r ! 0) limit, and with a Lorch
function applied (with Qmax = 23.45 �A�1) to smooth the data after the �rst peak. The
curves for �GSe(r) and �GAs(r) are o�set vertically, for clarity of presentation, and
the o�sets are indicated in parenthesis.
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Figure 5-21: Zoom into the �rst-peak region of the �GX(r) �rst-order di�erence func-
tions for As0:40Se0:60 shown in Figures 5-20 and 5-22. The solid black line is the
Fourier transform of the GEM spline-�tted data, after Qmax was set to the D4c value
of 23.45 �A�1. The green solid line is also the Fourier transform of the GEM spline-�tted
data after Qmax was set to the D4c value, but in this case a Lorch modi�cation function
was applied. The solid red line is the Fourier transform of the D4c di�erence function.
The position of typical Se-Se distances (2.30{2.34 �A) [108] and the As-As distance in
crystalline As0:50Se0:50 (2.44 �A) [115] are also shown. The dip after the �rst peak for
the GEM data sets could originate from the nearest-neighbour As-As correlations that
receive a negative weighting factor in the equation for �GX(r) (Table 5.2), but the
As-As bond length would be much larger than found for crystalline As0:50Se0:50. The
peak in the GEM data sets in the range � 2.5{2.7 �A does not correspond to typical
Se-Se bond distances and may therefore be a Fourier-transform artefact.
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Figure 5-22: Real-space �rst-order di�erence functions �G(r) for As0:40Se0:60 as ob-
tained from [90]. The solid red lines show the Fourier transforms of the spline-�tted
data sets shown in Figure 5-16 with Qmax = 23.45 �A�1. The solid black curves also
show the Fourier transforms of these spline-�tted data sets, after the low-r oscillations
are set to their theoretical �G(r ! 0) limit but, in this case, a Lorch function was
applied, with Qmax = 23.45 �A�1, to smooth the data after the �rst peak. The curves for
�GSe(r) and �GAs(r) are o�set vertically, for clarity of presentation, and the o�sets
are indicated in parenthesis..
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In order to facilitate a comparison between di�erence functions having di�erent
weighting factors, the real-space information can be expressed in terms of the nor-
malised function

�G0(r) =
�G(r)��G(0)
j�G(0)j

: (5.19)

The normalised weighting factors corresponding to the �G0(r) functions formed using
76Se isotope substitution are given in Table 5.3.

Table 5.3: Normalised weighting factors for the �G0(r) di�erence functions. The dif-
ference functions for As0:30Se0:70 (I-GEM), As0:35Se0:65 (II-GEM) and As0:40Se0:60 (III-
D4c) were obtained using 76Se isotope substitution.

Weighting factor I-GEM (barn) II-GEM (barn) III-D4c (barn)
a01 = a1=j�GSe(0)j 0.219(6) 0.26(1) 0.303
a02 = a2=j�GSe(0)j 0.781(12) 0.74(2) 0.697
b01 = b1=j�GX(0)j -0.089(9) -0.148(14) -0.247
b02 = b2=j�GX(0)j 1.089(79) 1.148(84) 1.247
c01 = c1=j�GAs(0)j 0.774(2) 0.731(6) 0.687
c02 = c2=j�GAs(0)j 0.226(2) 0.296(9) 0.313

Figure 5-23 shows a comparison between the normalised �G0(r) functions obtained
for the three investigated compositions using 76Se isotope substitution, and o�ers a
starting point for some qualitative remarks on the contribution of the di�erent pair-
correlation functions to the di�erence functions. The data sets shown for As0:30Se0:70

and As0:35Se0:65 were measured on GEM, and Qmax was set to the D4c value of
23.45 �A�1. The data sets shown for As0:40Se0:60 were measured [90] using D4c (Figure
5-22).

The �rst peak in �G0Se(r), which is likely to have contributions from both As-Se
and Se-Se bonds, has a constant height across the composition range, despite the fact
that the Se-Se correlations have weighting factors (a02) higher than those for the As-Se
correlations (a01) (see Table 5.3). This may be an indication that most of the bonds
are heteropolar or that the fraction of Se-Se bonds does not vary strongly with the Se
concentration. The height of the �rst peak in �G0X(r), to which homopolar As-As and
Se-Se correlations can both contribute, decreases with the Se concentration. In this
case, the Se-Se correlations have weighting factors (b02) higher than those for the As-As
correlations (b01), which are negative. Therefore, the reduction of the peak’s height,
with increasing As content, may be due to either a decrease in the fraction of Se-Se
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bonds and/or to an increase in the fraction of As-As bonds.
The �rst peak in �G0As(r) can have contributions from both As-Se and As-As bonds,

where the weighting factors for the As-Se correlations (c01) are higher than those for the
As-As correlations (c02). The height of the �rst peak does not vary strongly between
As0:30Se0:70 and As0:35Se0:65 but shows a decrease for As0:40Se0:60, and is accompanied
by a small broadening of the peak width, so that the total area does not change consid-
erably. This might be consistent with the fact that most of the bonds are heteropolar,
and that the fraction of As-Se bonds does not change very much with the composition.
The global trend seems to suggest: (1) that most of the bonds are heteropolar; (2) that
the fraction of Se-Se bonds decreases and the fraction of As-As bonds increases, as the
composition is changed from As0:30Se0:70 to As0:40Se0:60. However, these observations
are speculative because the di�erent compositions have di�erent weighting factors.
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Figure 5-23: Comparison between the normalised �rst-order di�erence functions for
As0:30Se0:70 (GEM - Figure 5-17), As0:35Se0:65 (GEM - Figure 5-18) and As0:40Se0:60
(D4c - Figure 5-22). For As0:30Se0:70 and As0:35Se0:65 the �G0(r) functions were ob-
tained by setting Qmax to the D4c value of 23.45 �A�1. The solid black lines represent
As0:30Se0:70, the solid blue lines represent As0:35Se0:65, and the solid red lines repre-
sent As0:40Se0:60, after the unphysical low-r oscillations are set to their theoretical
�G(r ! 0) limits. The data sets obtained by Fourier transforming without a Lorch
modi�cation function are joined smoothly to those obtained by Fourier transforming
with a Lorch modi�cation function at an r-value after the �rst peak. The curves for
�G0Se(r) and �G0As(r) are o�set vertically, for clarity of presentation, and the o�sets
are indicated in parenthesis.
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5.5 Discussion

In order to understand more quantitatively the contributions of the di�erent partial
pair-distribution functions to the �G(r) functions, a comparison will be made of the
present experimental results with those obtained from �rst-principles molecular dy-
namics (FPMD) simulations [25] and from reverse Monte Carlo (RMC) modelling [26],
both in reciprocal and real space. Note that, while Bauchy et al. [25] investigated
the As0:30Se0:70, As0:35Se0:65 and As0:40Se0:60 compositions via FPMD simulations,
Hosokawa et al. [26] combined Anomalous X-ray Scattering (AXS) measurements and
RMC modelling for the As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60 compositions.

5.5.1 Comparison with FPMD simulations and RMC modelling

In Figures 5-24 { 5-25, the total structure factors for As0:30Se0:70, As0:35Se0:65 and
As0:40Se0:60 measured via NDIS are compared to those obtained from the FPMD sim-
ulation and RMC methods. The total structure factors for the latter were obtained
from a neutron-weighted linear combination of the partial structure factors given by
Bauchy et al. [25] or by Hosokawa et al. [26], respectively. There is qualitative agree-
ment between the RMC and NDIS results, but the heights of the peaks are not perfectly
reproduced. This might be due, in part, to the fact that the RMC data were modelled
by using AXS measurements having a di�erent resolution function as compared to the
data sets measured via NDIS. The agreement between the NDIS results and FPMD
simulations is not as good. In particular, the pre-peak at about 1.25 �A�1 appears as a
shoulder as opposed to a peak. Figures 5-26 { 5-27 give the corresponding real-space
information, and show that the average �rst-peak position from the RMC data sets is
systematically smaller than found from NDIS. In comparison, the real-space functions
obtained by FPMD simulations show an average peak position that is systematically
larger than found from NDIS.

Figures 5-28 { 5-30 compare the �rst-order di�erence functions. In this case, the
RMC data agree better with the NDIS results as compared to the FPMD simulations.
The corresponding real-space information is presented in Figures 5-31 { 5-33. Again,
the average �rst-peak positions are systematically shifted towards smaller or larger
values for the RMC and FPMD results, as compared to the NDIS results, respectively.
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Figure 5-24: Total structure factors NatF (Q) for As0:30Se0:70, As0:35Se0:65 and
As0:40Se0:60. The solid black lines with vertical error bars are the experimental data sets
measured using GEM or D4c. The vertical error bars are hardly distinguishable, given
the high-quality counting statistics. The solid blue lines are the FPMD simulations
obtained from a neutron-weighted linear combination of the partial structure factors
given in [25]. The solid magenta lines are the RMC-modelled total structure factors
for As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60, obtained from a neutron-weighted linear
combination of the partial structure factors given in [26]. The curves have been o�set
vertically, for clarity of presentation, and the maximum Q-value has been reduced to
25 �A�1. The o�sets are indicated in parenthesis.
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Figure 5-25: Total structure factors 76F (Q) or MixF (Q) obtained for the Se-isotope
enriched samples. The solid black lines with vertical error bars are the measured
data sets for As0:30

76Se0:70 (GEM), As0:35
76Se0:65 (GEM), As0:40

76Se0:60 (D4c) or
As0:40

MixSe0:60 (GEM). The vertical error bars are hardly distinguishable, given the
high-quality counting statistics. The solid blue lines are the FPMD simulations ob-
tained from a neutron-weighted linear combination of the partial structure factors
given in [25]. The solid magenta lines are the RMC-modelled total structure factors for
As0:29

76Se0:71, As0:33
76Se0:67 and As0:40

MixSe0:60 for comparison with the GEM data,
and for As0:40

76Se0:60 for comparison with the D4c data. The latter were obtained from
a neutron-weighted linear combination of the partial structure factors given in [26]. The
curves have been o�set vertically, for clarity of presentation, and the maximum Q-value
has been reduced to 25 �A�1. The o�sets are indicated in parenthesis.
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Figure 5-26: Total pair-distribution functions NatG(r) for As0:30Se0:70, As0:35Se0:65 and
As0:40Se0:60. The solid black lines were obtained by Fourier transforming the NatF (Q)
functions of Figure 5-24, and were set to the calculated NatG(r ! 0) limit at r-values
smaller than the distance of closest approach between the centres of two atoms. A
Lorch function was applied, with Qmax = 40 �A�1, to smooth the data after the �rst
peak. The solid blue lines are the FPMD simulations obtained from a neutron-weighted
linear combination of the partial pair-correlation functions given in [25]. The solid
magenta lines are the RMC-modelled total pair-distribution functions for As0:29Se0:71,
As0:33Se0:67 and As0:40Se0:60, as obtained from a neutron-weighted linear combination
of the partial pair-distribution functions given in [26]. The curves have been o�set
vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-27: Total pair-distribution functions 76G(r) or MixG(r) for As0:30Se0:70,
As0:35Se0:65 and As0:40Se0:60. The solid black lines were obtained by Fourier trans-
forming the F (Q) functions of Figure 5-25, and were set to the calculated 76G(r! 0)
or MixG(r! 0) limit at r-values smaller than the distance of closest approach between
the centres of two atoms. A Lorch function was applied, with Qmax = 40 �A�1, to smooth
the data after the �rst peak. The solid blue lines are the FPMD simulations obtained
from a neutron-weighted linear combination of the partial pair-correlation functions
given in [25]. The solid magenta lines are the RMC-modelled total pair-distribution
functions for As0:29

76Se0:71, As0:33
76Se0:67 and As0:40

MixSe0:60 for comparison with the
GEM data, and for As0:40

76Se0:60 for comparison with the D4c data. The latter were
obtained from a neutron-weighted linear combination of the partial pair-distribution
functions given in [26]. The curves have been o�set vertically, for clarity of presentation,
and the o�sets are indicated in parenthesis.
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Figure 5-28: First-order di�erence functions �FSe(Q) for As0:30Se0:70, As0:35Se0:65 and
As0:40Se0:60. The solid black lines with vertical error bars are the experimental data sets
measured on GEM or D4c. The vertical error bars are hardly distinguishable, given
the high-quality counting statistics. The solid blue lines are the FPMD simulations
obtained from a neutron-weighted linear combination of the partial structure factors
given in [25]. The solid magenta lines are the RMC-modelled �FSe(Q) functions for
As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60, as obtained from a neutron-weighted linear
combination of the partial structure factors given in [26]. The curves have been o�set
vertically, for clarity of presentation, and the maximum Q-value set at 25 �A�1. The
o�sets are indicated in parenthesis.
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Figure 5-29: First-order di�erence functions �FX(Q) for As0:30Se0:70, As0:35Se0:65 and
As0:40Se0:60. The solid black lines with vertical error bars are the experimental data sets
measured on GEM or D4c. The vertical error bars are hardly distinguishable, given
the high-quality counting statistics. The solid blue lines are the FPMD simulations
obtained from a neutron-weighted linear combination of the partial structure factors
given in [25]. The solid magenta lines are the RMC-modelled �FX(Q) function for
As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60, as obtained from a neutron-weighted linear
combination of the partial structure factors given in [26]. The curves have been o�set
vertically, for clarity of presentation, and the maximum Q-value set at 25 �A�1. The
o�sets are indicated in parenthesis.
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Figure 5-30: First-order di�erence functions �FAs(Q) for As0:30Se0:70, As0:35Se0:65 and
As0:40Se0:60. The solid black lines with vertical error bars are the experimental data sets
measured on GEM or D4c. The vertical error bars are hardly distinguishable, given
the high-quality counting statistics. The solid blue lines are the FPMD simulations
obtained from a neutron-weighted linear combination of the partial structure factors
given in [25]. The solid magenta lines are the RMC-modelled �FAs(Q) functions for
As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60, as obtained from a neutron-weighted linear
combination of the partial structure factors given in [26]. The curves have been o�set
vertically, for clarity of presentation, and the maximum Q-value has been set at 25
�A�1. The o�sets are indicated in parenthesis.
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Figure 5-31: Real-space �rst-order di�erence functions �GSe(r) for As0:30Se0:70,
As0:35Se0:65 and As0:40Se0:60. The solid black lines are the experimental data sets
measured on GEM or D4c, with a Lorch function applied (Qmax = 30 �A�1) to smooth
the data after the �rst peak. The solid blue lines are the FPMD simulations obtained
from a neutron-weighted linear combination of the partial pair-distribution functions
given in [25]. The solid magenta lines are the RMC-modelled �GSe(r) functions for
As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60, obtained from a neutron-weighted linear com-
bination of the partial pair-distribution functions given in [26]. The curves have been
o�set vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-32: Real-space �rst-order di�erence functions �GX(r) for As0:30Se0:70,
As0:35Se0:65 and As0:40Se0:60. The solid black lines are the experimental data sets mea-
sured on GEM or D4c, with a Lorch function applied (Qmax = 30 �A�1) to smooth the
data after the �rst peak. The solid blue lines are the FPMD simulations obtained from
a neutron-weighted linear combination of the partial pair-distribution functions given in
[25]. The solid magenta lines are the RMC-modelled �GX(r) functions for As0:29Se0:71,
As0:33Se0:67 and As0:40Se0:60, obtained from a neutron-weighted linear combination of
the partial pair-distribution functions given in [26]. The curves have been o�set verti-
cally, for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 5-33: Real-space �rst-order di�erence functions �GAs(r) for As0:30Se0:70,
As0:35Se0:65 and As0:40Se0:60. The solid black lines are the experimental data sets
measured on GEM or D4c, with a Lorch function applied (Qmax = 30 �A�1) to smooth
the data after the �rst peak. The solid blue lines are the FPMD simulations obtained
from a neutron-weighted linear combination of the partial pair-distribution functions
given in [25]. The solid magenta lines are the RMC-modelled �GAs(r) functions for
As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60, obtained from a neutron-weighted linear com-
bination of the partial pair-distribution functions given in [26]. The curves have been
o�set vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.
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The �rst-peak positions and partial coordination numbers given by Bauchy et al.
[25] and by Hosokawa et al. [26] for the partial pair-distribution functions are given
in Tables 5.4{5.5. Although the RMC and FPMD values do not match, they both
show the same trends, i.e. when the As content increases, the coordination number
�nAs

As increases, whereas the coordination numbers �nSe
As and �nSe

Se both decrease. Tables
5.6 { 5.9 show a comparison between the neutron-weighted coordination numbers and
peak positions obtained from RMC or FPMD, and the values obtained using NDIS.
The results show that, as the As concentration increases:

� the coordination numbers nexp, nRMC and nMD associated with �GX(r) decrease.
This trend is consistent with both a decrease of �nSe

Se and an increase of �nAs
As, given

that gAsAs(r) has a negative weighting factor in �GX(r) (Table 5.2);

� the coordination numbers nexp, nRMC and nMD associated with �GSe(r) remain
about constant;

� the coordination numbers nexp and nMD associated with �GAs(r) remain con-
stant, whereas nRMC decreases. Since both �nSe

As and �nAs
As contribute to these

total coordination numbers, and the �rst decreases while the second increases,
the trend for nRMC is due to a decrease in �nSe

As by 41% between the compositions
As0:30Se0:70 and As0:40Se0:60, as compared to a 18% decrease in the corresponding
FPMD values.

The discrepancy between the coordination numbers obtained using NDIS versus RMC
or FPMD can be quanti�ed as

�n =
��n� nexp

��
��nexp

�� ; (5.20)

where n refers to a coordination number obtained via RMC or FPMD, and nexp refers
to a coordination number obtained from NDIS. For the As0:30Se0:70 and As0:35Se0:65

compositions (Tables 5.6 { 5.7), the discrepancy between the coordination numbers
obtained via RMC and NDIS varies between 0 and 27.3%. In both cases, the largest
discrepancy is obtained for the di�erence function �GX(r), which involves both As-
As and Se-Se correlations. For the FPMD and NDIS values, the discrepancy varies
between 0 and 2% for As0:30Se0:70, and between 0 { 18% for As0:35Se0:65. For the
As0:40Se0:60 composition (Tables 5.8 { 5.10), the discrepancy between the coordination
numbers obtained from RMC and NDIS reaches 60-76% for �GX(r), as compared to a
discrepancy of 0-33% for FPMD and NDIS. Hence, the coordination numbers obtained
via NDIS are in better agreement with those obtained using FPMD simulations rather
than from RMC modelling.
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RMC compositions nAs
As rAsAs nSe

As rAsSe nSe
Se rSeSe

As0:29Se0:71 0.12 2.41 3.57 2.35 0.54 2.29
As0:33Se0:67 0.24 2.45 3.05 2.37 0.50 2.31
As0:40Se0:60 0.73 2.41 2.53 2.37 0.32 2.25

Table 5.4: Coordination numbers and peak positions from the partial-pair correlation
functions for As0:29Se0:71, As0:33Se0:67 and As0:40Se0:60 obtained using RMC [26].

FPMD compositions nAs
As rAsAs nSe

As rAsSe nSe
Se rSeSe

As0:30Se0:70 0.07 2.57 2.94 2.47 0.74 2.39
As0:35Se0:65 0.37 2.53 2.66 2.46 0.59 2.41
As0:40Se0:60 0.65 2.55 2.40 2.45 0.42 2.37

Table 5.5: Coordination numbers and peak positions from the partial-pair correlation
functions for As0:30Se0:70, As0:35Se0:65 and As0:40Se0:60 obtained using FPMD simula-
tions [25].

As0:30Se0:70 rexp (�A) nexp rRMC (�A) nRMC rMD (�A) nMD
NatG(r) 2.40(3) 2.2(1) 2.34 2.3 2.43 2.2
76G(r) 2.40(3) 1.96(4) 2.33 2.0 2.43 2.0

�GSe(r) 2.38(3) 1.7(1) 2.32 1.7 2.41 1.7
�GX(r) 2.34(3) 1.1(1) 2.29 0.8 2.38 1.1
�GAs(r) 2.40(3) 3.3(1) 2.35 4.0 2.45 3.3

Table 5.6: The average peak positions and coordination numbers (rexp, nexp) for the
real-space functions obtained for As0:30Se0:70 on GEM, as well as the average peak
positions and coordination numbers obtained from the RMC modelling of As0:29Se0:71
(rRMC, nRMC) [26], and from the FPMD simulations of As0:30Se0:70 (rMD, nMD) [25].

As0:35Se0:65 rexp (�A) nexp rRMC (�A) nRMC rMD (�A) nMD
NatG(r) 2.40(3) 2.2(1) 2.36 2.3 2.43 2.3
76G(r) 2.40(3) 1.93(4) 2.36 1.9 2.43 2.0

�GSe(r) 2.40(3) 1.7(1) 2.35 1.7 2.42 1.7
�GX(r) 2.32(3) 0.8(1) 2.31 0.8 2.38 0.9
�GAs(r) 2.40(3) 3.3(1) 2.37 3.6 2.45 3.3

Table 5.7: The average peak positions and coordination numbers (rexp, nexp) for the
real-space functions obtained for As0:35Se0:65 on GEM, as well as the average peak
positions and coordination numbers obtained from the RMC modelling of As0:33Se0:67
(rRMC, nRMC) [26] and from the FPMD simulations of As0:35Se0:65 (rMD, nMD) [25].
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As0:40Se0:60 rexp (�A) nexp rRMC (�A) nRMC rMD (�A) nMD
NatG(r) 2.41(3) 2.2(1) 2.37 2.4 2.44 2.3
MixG(r) 2.41(3) 2.1(1) 2.37 2.1 2.44 2.2
�GSe(r) 2.40(3) 1.7(1) 2.36 1.7 2.43 1.8
�GX(r) 2.39(3) 0.3(2) 2.29 0.12 2.37 0.4
�GAs(r) 2.42(3) 3.1(1) 2.38 3.4 2.45 3.2

Table 5.8: The average peak positions and coordination numbers (rexp, nexp) for the
real-space functions obtained for As0:40Se0:60 on GEM, as well as the average peak
positions and coordination numbers obtained from the RMC modelling of As0:40Se0:60
(rRMC, nRMC) [26] and from the FPMD simulations of As0:40Se0:60 (rMD, nMD) [25].

As0:40Se0:60 rexp (�A) nexp rRMC (�A) nRMC rMD (�A) nMD
NatG(r) 2.41(3) 2.3(1) 2.37 2.4 2.44 2.3
MixG(r) 2.41(3) 2.1(1) 2.37 2.1 2.44 2.2
�GSe(r) 2.41(3) 1.8(1) 2.36 1.7 2.43 1.8
�GX(r) 2.39(3) 0.5(2) 2.29 0.12 2.37 0.4
�GAs(r) 2.41(3) 3.2(1) 2.38 3.4 2.45 3.2

Table 5.9: The average peak positions and coordination numbers (rexp, nexp) for the
real-space functions obtained for As0:40Se0:60 on D4c ([90]), as well as the average peak
positions and coordination numbers obtained from the RMC modelling of As0:40Se0:60
(rRMC, nRMC) [26] and from the FPMD simulations of As0:40Se0:60 (rMD, nMD) [25].

As0:40Se0:60 rexp (�A) nexp rRMC (�A) nRMC rMD (�A) nMD
NatG(r) 2.41(3) 2.3(1) 2.37 2.4 2.44 2.3
76G(r) 2.41(3) 2.0(1) 2.37 1.8 2.44 2.0

�GSe(r) 2.41(3) 1.7(1) 2.36 1.7 2.43 1.7
�GX(r) 2.38(3) 0.5(2) 2.29 0.2 2.37 0.5
�GAs(r) 2.41(3) 3.3(1) 2.38 3.5 2.45 3.3

Table 5.10: The average peak positions and coordination numbers (rexp, nexp) for the
real-space functions obtained for As0:40Se0:60 on D4c ([90]), as well as the average peak
positions and coordination numbers obtained from the RMC modelling of As0:40Se0:60
(rRMC, nRMC) [26] and from the FPMD simulations of As0:40Se0:60 (rMD, nMD) [25].
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5.5.2 Network models

The coordination numbers obtained from the NDIS, RMC and FPMD methods can
be compared to those calculated by assuming either the RCN or CON model. Both
models assume that the \8-N" rule holds [108], such that As is 3-fold coordinated and
Se is 2-fold coordinated. Then, the number of nearest-neighbour atoms for As can be
denoted by zAs = 3, and the number of nearest-neighbour atoms for Se can be denoted
by zSe = 2. The RCN model assumes that there is no di�erence between the bond
energies or any other e�ect that could lead to preferential ordering, i.e. the distribution
of the bond types is purely statistical. In this case, by de�ning the total number of
bonds as

z =
cAszAs + cSezSe

2
; (5.21)

the coordination numbers for homopolar and heteropolar bonds are given by [106]

nAs
As = cAs

z2
As
2z

;

nSe
Se = cSe

z2
Se

2z
;

nSe
As = cSe

zSezAs

2z
: (5.22)

In the CON model, heteropolar bonds are favoured, such that only As-Se and Se-Se
bonds are allowed for the Se-rich region of the phase diagram (cAs < 0:4), while only As-
Se and As-As bonds are allowed for the As-rich side (cAs > 0:4). At the stoichiometric
composition,

cAs =
zSe

zSe + zAs
= 0:4 (5.23)

and only As-Se bonds are allowed, such that

nAs
As = nSe

Se = 0;

nSe
As = 3;

i.e. the network is expected to be completely chemically ordered for As0:40Se0:60 [108].
The As0:30Se0:70 and As0:35Se0:65 compositions are in the Se-rich region 0 � cAs < 0:4
where

nSe
As = zAs = 3;

nSe
Se = zSe �

cAs

cSe
zAs: (5.24)
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In Figures 5-34 { 5-41, the coordination numbers obtained from the NDIS, RMC and
FPMD methods are compared to those calculated by assuming either the RCN or
the CON model. The results show that neither of these models perfectly describe
the structure of the investigated AsxSe1�x glassy networks for the spanned compo-
sition range. In particular, even if the CON model seems to be more realistic for
the As0:30Se0:70 and As0:35Se0:65 compositions, it fails in describing the coordination
numbers for As0:40Se0:60, especially in the case of the �GX(r) functions for which the
nearest-neighbour coordination number involves only homopolar bonds. In fact, for
the CON model, only heteropolar bonds are allowed at the stoichiometric composition,
whereas the NDIS, RMC and FPMD results are all consistent with the presence of
homopolar As-As and Se-Se bonds.

Figure 5-34: The di�erences between the coordination numbers obtained from the
GEM data and the values obtained from either the RCN (red markers) or CON (black
markers) model. The values for As0:30Se0:70 are represented by squares (�, �), the
values for As0:35Se0:65 are represented by circles (�, �), and the values for As0:40Se0:60
are represented by triangles (N, N). The values related to the total pair-distribution
functions are highlighted in yellow for NatG(r) and in blue for IsoG(r), where Iso =
76 for As0:30

IsoSe0:70 and As0:35
IsoSe0:65, or Iso = Mix for As0:40

IsoSe0:60. The values
obtained from the di�erence functions are highlighted in green for �GSe(r), cyan for
�GX(r) and magenta for �GAs(r).
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Figure 5-35: The di�erences between the coordination numbers obtained from the
GEM or D4c data and the values obtained from either the RCN (red markers) or CON
(black markers) model. The plot is identical to the one in Figure 5-34, but in this case
the values for As0:40Se0:60 are from D4c with MixSe isotope substitution. The values
for As0:30Se0:70 (GEM) are represented by squares (�, �), the values for As0:35Se0:65
(GEM) are represented by circles (�, �), and the values for As0:40Se0:60 (D4c) are
represented by triangles (N, N). The values related to the total pair-distribution func-
tions are highlighted in yellow for NatG(r) and in blue for IsoG(r), where Iso = 76 for
As0:30

IsoSe0:70 and As0:35
IsoSe0:65, or Iso = Mix for As0:40

IsoSe0:60. The values obtained
from the di�erence functions are highlighted in green for �GSe(r), cyan for �GX(r)
and magenta for �GAs(r).
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Figure 5-36: The di�erences between the coordination numbers obtained from the
GEM or D4c data and the values obtained from either the RCN (red markers) or CON
(black markers) model. The plot is identical to the one in Figure 5-35, but in this case
the values for As0:40Se0:60 are from D4c with 76Se isotope substitution. The values
for As0:30Se0:70 (GEM) are represented by squares (�, �), the values for As0:35Se0:65
(GEM) are represented by circles (�, �), and the values for As0:40Se0:60 (D4c) are rep-
resented by triangles (N, N). The values related to the total pair-distribution functions
are highlighted in yellow for NatG(r) and in blue for 76G(r). The values obtained from
the di�erence functions are highlighted in green for �GSe(r), cyan for �GX(r) and
magenta for �GAs(r).
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Figure 5-37: The di�erences between the coordination numbers obtained from the
NDIS experiments (GEM and D4c data) and the values obtained from either the RCN
(red markers) or CON (black markers) model. The graph summarises the information
contained in Figures 5-34 { 5-36 by taking, for a given composition and function i,
the weighted average of (xi � �i), where xi = �nexp � �nmodeln and �i is the associated
error. The weighted average is de�ned by �nw =

P3
i=1wixi=

P3
i=1wi, where wi = 1=�2

i .
The values for As0:30Se0:70 (GEM) are represented by squares (�, �), the values for
As0:35Se0:65 (GEM) are represented by circles (�, �), and the values for As0:40Se0:60
(GEM and D4c) are represented by triangles (N, N). The values related to the total
pair-distribution functions are highlighted in yellow for NatG(r) and in blue for IsoG(r).
The values obtained from the di�erence functions are highlighted in green for �GSe(r),
cyan for �GX(r) and magenta for �GAs(r).
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Figure 5-38: The di�erences between the coordination numbers obtained from the
RMC-modelled data [26] and the values obtained from either the RCN (red markers)
or CON (black markers) model. The values for As0:30Se0:70 are represented by squares
(�, �), the values for As0:35Se0:65 are represented by circles (�, �), and the values for
As0:40Se0:60 are represented by triangles (N, N). The values related to the total pair-
distribution functions are highlighted in yellow for NatG(r) and in blue for MixG(r).
The values obtained from the di�erence functions are highlighted in green for �GSe(r),
cyan for �GX(r) and magenta for �GAs(r).
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Figure 5-39: The di�erences between the coordination numbers obtained from the
RMC-modelled data [26] and the values obtained from either the RCN (red markers)
or CON (black markers) model. The values for As0:30Se0:70 are represented by squares
(�, �), the values for As0:35Se0:65 are represented by circles (�, �), and the values
for As0:40Se0:60 are represented by triangles (N, N). The values related to the total
pair-distribution functions are highlighted in red for NatG(r) and in blue for 76G(r).
The values obtained from the di�erence functions are highlighted in green for �GSe(r),
cyan for �GX(r) and magenta for �GAs(r).
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Figure 5-40: The di�erences between the coordination numbers obtained from the
FPMD simulations [25] and the values obtained from either the RCN (red markers) or
CON (black markers) model. The values for As0:30Se0:70 are represented by squares
(�, �), the values for As0:35Se0:65 are represented by circles (�, �), and the values for
As0:40Se0:60 are represented by triangles (N, N). The values related to the total pair
distribution functions are highlighted in yellow for NatG(r) and in blue for MixG(r).
The values obtained from the di�erence functions are highlighted in green for �GSe(r),
cyan for �GX(r) and magenta for �GAs(r).
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Figure 5-41: The di�erences between the coordination numbers obtained from the
FPMD simulations [25] and the values obtained from either the RCN (red markers) or
CON (black markers) model. The values for As0:30Se0:70 are represented by squares
(�, �), the values for As0:35Se0:65 are represented by circles (�, �), and the values for
As0:40Se0:60 are represented by triangles (N, N). The values related to the total pair
distribution functions are highlighted in yellow for NatG(r) and in blue for 76G(r). The
values obtained from the di�erence functions are highlighted in green for �GSe(r), cyan
for �GX(r) and magenta for �GAs(r).



5.6 Conclusion 139

5.6 Conclusion

The atomic structures of glassy As0:30Se0:70, As0:35Se0:65 and As0:40Se0:60 have been
investigated using NDIS on GEM. The total structure factors and �rst-order di�erence
functions were compared, both in reciprocal and real space, with the neutron di�raction
measurements performed on D4c for the As0:40Se0:60 composition. The results are in
good overall agreement.

The functions measured via NDIS were also compared with the RMC results from
Hosokawa et al. [26] and with the FPMD results from Bauchy et al. [25]. The reciprocal-
space functions measured by NDIS are better reproduced by RMC as compared to
FPMD, especially in the region of the pre-peak at low-Q.

In real space, a systematic shift towards smaller r-values is found for the �rst peak
position of the RMC functions as compared to the NDIS functions. This disagreement
may originate from the fact that the RMC models were obtained by using AXS measure-
ments that have a limited Qmax = 11.5 �A�1 as compared to Qmax = 40 �A�1 for NDIS.
In comparison, the �rst peak in the FPMD real-space functions is systematically shifted
towards larger r-values as compared to the NDIS results. Globally, neither the RMC
nor the FPMD results match the NDIS real-space functions, even though the FPMD
and RMC partial coordination numbers show the same trend, i.e. as the As content
increases the coordination number �nAs

As increases, whereas the coordination numbers
�nSe

As and �nSe
Se both decrease. However, the coordination numbers obtained from NDIS

are in better agreement with the FPMD rather than with the RMC results.
A comparison of the coordination numbers obtained from the NDIS, RMC and

FPMD methods, with those predicted from the CON and RCN models, reveals that
neither of these models describe the investigated glasses in an exhaustive way. How-
ever, the CON seems to better describe the network structures for the As0:30Se0:70 and
As0:35Se0:65 compositions, but fails to predict the observed homopolar bonds for the
stoichiometric composition.

Our NDIS results provide a severe test of the RMC and FPMD models, and reveal
discrepancies both in reciprocal and real-space. The reliability of the RMC results
is related, in part, to the sensitivity of the experimental AXS data to the relevant
correlations in the system, and the measurements su�er from a limited Q-range. Also,
constraints related to the choice of minimum bond distances and bond angles can a�ect
the reliability of the RMC results.

In respect of the simulations, the FPMD results may su�er from the presence of a
residual pressure, as found from simulations of the GeSe2 system [119]. A comparison
between the present results and those obtained from the full set of partial structure
factors, measured for As0:40Se0:60 on D4c using NDIS [90], will allow for a more complete
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understanding of the contributions of the di�erent partial pair-distribution functions
g��(r) to the �G(r) di�erence functions.



6. Structure of Large Rare-Earth
Aluminosilicate Glasses

6.1 Introduction

The rare-earths belong to a group of chemical elements that includes the lanthanides
(La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), yttrium and scandium.
Y and Sc are regarded as rare-earth elements because they tend to occur in the same
ore deposits as the lanthanides and exhibit similar chemical properties [120]. Due
to their electronic, optical and magnetic properties, these chemical elements play a
major role in many modern technologies and are extensively used in many di�erent
�elds, including aeronautics, cancer-treatment and bioprobe applications, and they
have also been proposed as candidates for the storage matrices of radioactive waste [121,
122]. Also, the incorporation of optically active rare-earth ions into oxide glasses yields
materials that can act as lasers and optical ampli�ers for all-�bre optical systems [123].
Because the energy transfer between the rare-earth ions has a strong dependence on
their separation, it is desirable to control the rare-earth to rare-earth nearest-neighbour
distance in these materials [41]. In silicate glasses, this can be achieved by co-doping
the rare-earth oxides with Al2O3. However, in order to tailor speci�c optical, electronic
and mechanical properties, it is necessary to develop realistic microscopic models. To
this end, information on the atomic-scale structure of these glassy systems is required.

The structure of aluminosilicate (AS) glasses can be understood in terms of a net-
work of corner-sharing SiO4 and AlO4 units, linked via bridging oxygen atoms [124].
When all the oxygen atoms in SiO4 are bridging oxygen atoms, the charge on each unit
is neutral. In contrast, an AlO4 unit having four bridging oxygen atoms will have a net
charge of [AlO4]�. When the rare-earth R3+ species are introduced into AS glasses,
they tend to induce topological disorder, because they act as network modi�ers. This
modifying behaviour is found to be stronger with increasing cation �eld strength (CFS),
where CFS= z=R2 (z is the ion valence and R the ionic radius), and as the SiO2 content
decreases [125].
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However, there is still an open debate on the structural features of these glasses.
For instance, while for decades both Si and Al were thought to be 4-fold coordinated
by O, unless the network modi�er content is too low for charge-balancing the AlO4

species, recent work on R2O3-Al2O3-SiO2 glasses shows that a signi�cant population of
AlO5 and AlO6 units are present over the entire range of compositions, especially for
decreasing SiO2 content and for increasing CFS [124]. Figure 6-1 shows examples of
sites where a three-fold coordinated oxygen atom, denoted as O[3], is linked to (a) two
AlO4 units and one SiO4 unit or to (b) one SiO4 unit and with edge-shared AlO4/AlO6

polyhedra.

Figure 6-1: Examples of two di�erent con�gurations containing three-fold coordinated
oxygen atom sites (magenta spheres) obtained via MD simulations on RAS glass [124]:
(a) O[3]{SiAl2[4] with solely corner-sharing among all Si/Al groups; (b) O[3]{SiAl[4]Al[6]

(marked by an asterisk) with edge-shared AlO4/AlO6 polyhedra. O[1] and O[2] species
are given in red and blue, respectively, whereas green and yellow atoms depict Al and
Si, respectively.

Di�erent methods can be used to investigate the structure of these systems. Nu-
clear Magnetic Resonance (NMR) spectroscopy is one of the most powerful techniques
for accessing information on the local structure around nuclei such as 17O, 27Al and
29Si. However, for glasses rich in rare-earth content, and with unpaired electron spins,
accurate NMR experiments are di�cult because of paramagnetic broadening and reso-
nance shifts. Thus, NMR studies have largely been con�ned to systems containing Y,
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La, Lu, or Sc, which do not have unpaired electron spins, and are diamagnetic. For
these elements, the CFS increases along the series La3+ < Y3+ < Lu3+ < Sc3+, as the
ion radius shrinks [126{128].

An alternative method to investigate the structure of rare-earth AS (RAS) glasses
is by using neutron di�raction with isomorphic substitution (NDIS), as explained in
Section 2.1.1. In the present chapter, NDIS will refer to isomorphic as opposed to
isotope substitution. In the present work, a ND experiment was performed on the
(R2O3)0:2(Al2O3)0:2(SiO2)0:6 glassy system, where the chosen isomorphic rare-earth
species were Neodymium and Praseodymium. The Nd3+ and Pr3+ ions are at the large-
size end of the rare-earth series, are adjacent to one another in the periodic table and
exhibit a similar structural chemistry, as indicated by their Pettifor chemical parameters
(0.6975 and 0.70) [129] 1. Also, they have similar ionic radii, namely 0.983 �A and 0.99 �A
when they are six-fold coordinated, respectively [126]. However, their coherent neutron
scattering lengths are quite di�erent (bNd=7.69(5) fm versus bPr=4.58(5) fm), which
makes them ideal candidates for applying NDIS. In order to access the gRR(r) partial
pair-correlation function, which contains the desired information on the R-R nearest-
neighbour distance, an additional measurement was made on a sample prepared using
a 50:50 mixture of Nd and Pr, where the rare-earth ions in this sample will be denoted
by Mix.

The results of this work will be compared with those obtained by P. Chirawatkul
[27], who investigated the structure of (R2O3)0:2(Al2O3)0:2(SiO2)0:6 glasses, by using
ND with isomorphic substitution. The rare-earth species employed were Dy3+ and
Ho3+, which are at the small-sized end of the rare-earth series, and are comparable in
size. Comparisons will also be made with La-AS glasses, because the La3+ ion has an
ionic radius of 1.032 �A, a Pettifor chemical parameter that is similar to Nd and Pr, and
is non-paramagnetic, which makes feasible a detailed study via NMR.

1In the phenomenological scale proposed by Pettifor, the elements are arranged in order to reproduce
the structural stability of binary compounds.
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6.2 Theory

Consider three isomorphic samples of a four-component (R2O3)0:2(Al2O3)0:2(SiO2)0:6

glassy system, with R = Nd, Pr or Mix (a 50:50 mixture of Nd and Pr), that are identical
in every respect except for the coherent neutron scattering length of the RE species
bNd > bMix > bPr. The corresponding total structure factors, denoted by NdF (Q),
MixF (Q) and PrF (Q), are given by

NdF (Q) = c2
Alb

2
Al
�
SAlAl(Q)� 1

�
+ c2
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2
Si
�
SSiSi(Q)� 1

�
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The weighting factors for the pair-correlation functions involving only the matrix atoms
(Al, Si and O) do not change between the samples, unlike those for the pair-correlation
functions involving the rare-earth species. Hence, �rst-order di�erence functions �F (i)

R (Q)
can be formed to eliminate the matrix-to-matrix atom (�� �0) pair-correlation func-
tions, where



6.2 Theory 145

�F (1)
R (Q) = NdF (Q)� PrF (Q) (6.4)
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and where the �(i)
R�(Q) (i = 1, 2 or 3) di�erence functions involve only the R� � atom

pair-correlation functions :-
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Let the matrix-matrix di�erence function be de�ned by
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Then the total structure factors given by Eqs.(6.1) { (6.3) can be re-written as
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By subtracting a weighted �rst-order di�erence function from a total structure factor,
the R� � correlations can be eliminated to leave only the �� �0 and R� R correlations.
These so-called \total minus weighted di�erence functions" are given by
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�F (3)(Q) = MixF (Q)�
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The set of total structure factors for the samples can be written in matrix notation
as F(Q) = A � S(Q) (Eq.(2.39)), i.e.

0

BBBB@

NdF (Q)
MixF (Q)
PrF (Q)

1

CCCCA
=

0

BBBB@

c2
Rb

2
Nd 2cRbNd 1

c2
Rb

2
Mix 2cRbMix 1

c2
Rb

2
Pr 2cRbPr 1

1

CCCCA
�

0

BBBB@

SRR(Q)� 1

�R�(Q)

���(Q)

1

CCCCA
; (6.17)

where
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SRSi(Q)� 1

�
+ cObO

�
SRO(Q)� 1

�
;(6.18)

involves only the R� � pair-correlation functions. The values of the weighting factors
in the total and various di�erence functions are listed in Table 6.1.

The matrix A is given by

A
(mbarn)

=

0

BBBB@

6:5(10)10�3 0:162(1) 1

4:2(10)10�3 0:129(1) 1

2:3(10)10�3 0:096(1) 1

1

CCCCA
; (6.19)

and the inverse matrix A�1

A�1

(mbarn)�1 =

0

BBBB@

1866 �3733 1866

�105:25 241:04 �135:794

5:81 �14:566 9:756

1

CCCCA
; (6.20)

will enable the reciprocal-space functions SRR(Q), �R�(Q) and ���(Q) to be determined
individually.
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For all of these functions, the corresponding real-space information can be accessed
via Fourier transformation. The total pair-distribution functions corresponding to the
total structure factors in Eqs.(6.1){(6.3) are given by

RG(r) =
1

2�2�r

1Z

0

RF (Q)Q sin(Qr)dQ; (6.21)

with R = Nd, Mix or Nd. The real-space di�erence functions corresponding to Eqs.(6.4){
(6.6) are given by

�G(i)
R (r) =

1
2�2�r

Z 1

0
�F (i)

R (Q)Q sin(Qr)dQ: (6.22)

The real-space \total minus weighted" di�erence functions corresponding to Eqs. (6.14){
(6.16) are given by

�G(i)(r) =
1

2�2�r

Z 1

0
�F (i)(Q)Q sin(Qr)dQ: (6.23)

The Fourier transform of the R-R partial structure factor gives the partial pair-distribution
function

gRR(r)� 1 =
1

2�2�r

Z 1

0
[SRR(Q)� 1]Q sin(Qr)dQ: (6.24)

The real-space information corresponding to the �R�(Q) function is given by

�R�(r) =
1

2�2�r

Z 1

0
�R�(Q)Q sin(Qr)dQ; (6.25)

and for the ���(Q) function it is given by

���(r) =
1

2�2�r

Z 1

0
���(Q)Q sin(Qr)dQ: (6.26)
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6.3 Experimental method

6.3.1 Sample preparation

The glassy samples were prepared in the Liquid and Amorphous Materials laboratory
in Bath by Dr. Zeidler and Dr. Drewitt. In order to employ the method of isomorphic
substitution, three di�erent (R2O3)0:2(Al2O3)0:2(SiO2)0:6 samples were prepared, with
RE = Nd, Pr or Mix, a 50:50 mixture of Nd and Pr. The glasses were prepared by
dry mixing powders of Nd2O3 (purity 99.99% from Alfa-Aeser) and/or Pr2O3 (purity
99.99% from Alfa-Aeser), SiO2 (purity 99.995% from Alfa-Aeser) and Al2O3 (purity
99.998% from Sigma-Aldrich) in a Pt-Rh crucible in the desired ratio. The crucible
was then put inside a furnace and left at 1600 �C for one hour. Because these samples are
not hygroscopic they were quenched in air on a liquid-N2 cooled Cu block while dousing
with liquid N2. The density of the samples was measured using a He pycnometer. The
mean bound coherent scattering lengths bcoh, the total neutron-scattering cross sections
�T, and the measured number densities of the samples are listed in Table 6.2.

Table 6.2: Parameters describing the (R2O3)0:2(Al2O3)0:2(SiO2)0:6 samples, with R =
Nd, Mix and Nd, investigated via the NDIS method. Values for bcoh and �T were
calculated using the data given by Sears [33].

Samples bcoh (fm) �T (barn) @ �i = 1.798 (�A) � (�A�3)
R = Nd 5.49(5) 10.3(9) 0.083(1)
R = Mix 5.33(4) 7.5(4) 0.083(1)
R = Pr 5.17(3) 4.72(6) 0.083(1)

6.3.2 D4c experiment

The di�raction patterns were measured using the D4c di�ractometer at the ILL by Dr.
Zeidler and Dr. Drewitt. Each sample was coarsely ground and then loaded into a
vanadium can (outer diameter = 5 mm, wall thickness = 0.1 mm). The vanadium can
was then placed inside the evacuated belljar of the instrument. The measurements were
performed at room temperature with an incident neutron wavelength of 0.49672(1) �A.
The di�raction patterns were also measured for the empty vanadium can, the empty
belljar, and a vanadium rod of dimensions comparable to the sample for normalisation
purposes.
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6.4 Results

6.4.1 Total structure factors

The (R2O3)0:2(Al2O3)0:2(SiO2)0:6 samples exhibit paramagnetic behaviour due to the
presence of the rare-earth species Nd3+ and Pr3+. Therefore, the measured total di�er-
ential scattering cross sections have both nuclear and magnetic components, as shown
in the example in Figure 6-2. In order to extract the former, the latter was calculated
for each rare-earth ion according to Eq. (2.21), and was then subtracted from the cor-
responding total di�erential scattering cross section. Thereafter, the data sets were
corrected and analysed following the procedure explained in Section 3.3.

Figure 6-2: The solid black line with vertical error bars is the measured total di�erential
scattering cross section for the (R2O3)0:2(Al2O3)0:2(SiO2)0:6 sample, with R = Nd. The
inset zooms into the the error bars that are hardly distinguishable, given the high-
quality counting statistics. The solid green line is the magnetic component of the total
di�erential scattering cross section, given by Eq. (2.21).

Figure 6-3 shows the corrected total structure factors NdF (Q), MixF (Q) and PrF (Q).
Figure 6-4 superposes these total structure factors and shows that they have common
structural features. There are, however, systematic discrepancies, that can be seen
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more clearly in the inset, that arise from the di�erence between the coherent scattering
lengths of the rare-earth elements (bNd > bMix > bPr). The corresponding real-space
functions RG(r) are represented in Figure 6-5. The ringing around each �rst peak is
due to the truncation of each F (Q) function at a �nite Qmax value. The �rst low-r
oscillation before the �rst peak in RG(r) was not set to the theoretical G(r ! 0) limit
before the back-Fourier transform, in order to ensure that the data sets are correctly
normalised. Following Eqs.(6.1){(6.3) and Eq.(6.21), the G(r ! 0) limit is given by

RG(r ! 0) = RG(0) = �(cAlbAl + cSibSi + cObO + cRbR)2: (6.27)

The �rst peak in RG(r) at about 1.65 �A is well separated from the second peak and is
associated with Si{O and Al{O correlations. Figures 6-6 { 6-8 show the results obtained
by �tting the �rst peak in the D(r) functions (Eq. (2.32)), to three Gaussian functions
convoluted with a sinc function (Eq.(2.35)), with Qmax = 23.15 �A�1. The Gaussian
functions represent the Si-O and Al-O correlations contained under the �rst peak. The
Si-O parameters were set to �rSiO = 1:61 �A and �nO

Si = 4:0, where the latter are found
from NMR studies on glassy diamagnetic systems such as La0:66SiAl0:55O3:81 [130] and
(La2O3)(Al2O3)(SiO2)[124]. The average bond distances and coordination numbers for
the Al-O correlations were determined by using a program called RDFgenie, and are
listed in Table 6.3. This program implements the procedure described by Martin et
al. [41] and is a Fortan code written by Prof. Salmon. The Al-O correlations are well
described by two Gaussian functions, which indicate the presence of both 4- and 5-fold
coordinated Al atoms, as suggested by the NMR experiments of Schaller and Stebbins
in [125]. By using the RDFgenie �tting program, the relative fractions of the AlO4

and AlO5 units is found to be 80(3)% and 20(3)%, respectively. The goodness-of-�t
parameter R�, de�ned by [42]

R�
�
r��; n��; ���

�
=

vuut
P

i
�
Dexp(ri)�D�t(ri)

�2
P

iD2
exp(ri)

; (6.28)

is also reported in Table 6.3, along with the �tted r-space range.
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Table 6.3: The average coordination numbers and bond distances for AlO4 and AlO5
units in glassy (R2O3)0:2(Al2O3)0:2(SiO2)0:6 samples (with R = Nd, Mix or Pr), as
obtained from the �rst peak in the measured RD(r) functions. The R� value, de�ned
in Eq. (2.38), gives the goodness-of-�t parameter for the �tted r-space range.

RG(r) �nO
Al �rAlO (�A) �nO

Al �rAlO (�A) R� range (�A)
R = Nd 4.0(2) 1.75(2) 5.0(1) 1.80(2) 0.052 0 - 1.9
R = Mix 4.0(2) 1.75(2) 5.0(1) 1.82(2) 0.053 0 - 1.9
R = Pr 4.0(2) 1.75(2) 5.0(1) 1.82(2) 0.041 0 - 1.9

Figure 6-3: Total structure factors NdF (Q), MixF (Q) and PrF (Q) for
(R2O3)0:2(Al2O3)0:2(SiO2)0:6 with R = Nd, Mix or Pr, respectively. The solid
black lines with vertical error bars are the measured data sets. The error bars are
hardly distinguishable, given the high-quality counting statistics. The red curves show
spline �ts to the measured data sets. The green curves are the back-Fourier transforms
of the RG(r) functions shown in Figure 6-5, once the low-r oscillations are set to their
theoretical G(r ! 0) limit. The curves for NdF (Q) and MixF (Q) have been o�set
vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.



6.4 Results 154

Figure 6-4: Superposition of the total structure factors NdF (Q), MixF (Q) and PrF (Q)
for (R2O3)0:2(Al2O3)0:2(SiO2)0:6 with R = Nd, Mix or Pr, respectively. The solid black,
red and blue lines, with vertical error bars, are the measured data sets for NdF (Q),
MixF (Q) and PrF (Q), respectively. The error bars are hardly distinguishable, given
the high-quality counting statistics. The inset zooms into the low-Q region, where the
maximum Q-value is set at 8 �A�1, for clarity of presentation.
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Figure 6-5: Total pair-distribution functions NdG(r), MixG(r) and PrG(r) for
(R2O3)0:2(Al2O3)0:2(SiO2)0:6 with R = Nd, Mix or Pr, respectively. The solid black
lines are the Fourier transforms of the spline-�tted data sets shown in Figure 6-3, af-
ter the majority of the low-r oscillations (solid red lines) are set to their theoretical
RG(r ! 0) limit. The curves for NdG(r) and MixG(r) have been o�set vertically, for
clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 6-6: The �rst peak in the NdD(r) function for (R2O3)0:2(Al2O3)0:2(SiO2)0:6
with R = Nd. The solid black line is the measured D(r) function, and is �tted with
three Gaussians convoluted with a sinc function using RDFgenie (solid red curve). The
solid blue, pink and green curves show the contributions from dSiO(r), dAlO(r) for
AlO4 units, and dAlO(r) for AlO5 units, respectively. The dashed black line shows the
residual. The �t gives R� = 0.052 in the �tted range 0 { 1.9 �A.
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Figure 6-7: The �rst peak in the MixD(r) function for (R2O3)0:2(Al2O3)0:2(SiO2)0:6
with R = Mix. The solid black line is the measured D(r) function, and is �tted with
three Gaussians convoluted with a sinc function using RDFgenie (solid red curve). The
solid blue, pink and green curves show the contributions from dSiO(r), dAlO(r) for
AlO4 units, and dAlO(r) for AlO5 units, respectively. The dashed black line shows the
residual. The �t gives R� = 0.053 in the �tted range 0 { 1.9 �A.
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Figure 6-8: The �rst peak in the PrD(r) function for (R2O3)0:2(Al2O3)0:2(SiO2)0:6 with
R = Pr. The solid black line is the measured D(r) function, and is �tted with three
Gaussians convoluted with a sinc function using RDFgenie (solid red curve). The solid
blue, pink and green curves show the contributions from dSiO(r), dAlO(r) for AlO4 units
and dAlO(r) for AlO5 units, respectively. The dashed black line shows the residual. The
�t gives R� = 0.051 in the �tted range 0 { 1.9 �A.
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6.4.2 First-order di�erence functions

The �rst-order di�erence functions �F (i)
R (Q) shown in Figure 6-9 were obtained from

the total structure factors following Eqs. (6.4){(6.6). The real-space �G(i)
R (r) functions

are shown in Figure 6-10. The �rst peak at about 2.43(1) �A is well separated from the
remaining peaks. Because the nearest-neighbour atoms to the rare-earth species are
expected to be oxygen, this peak position will correspond to the R-O bond distance.
For instance, in crystalline Nd2O3, the Nd-O distance is at about 2.39 �A [131]. The
average coordination number of O around R can be calculated using the equation

�nO
R = 4��cO

Z r2

r1

2

4�G(i)
R (r)��G(i)

R (0)
2cRcO�bRbO

3

5 r2dr; (6.29)

where r1 and r2 are the integration limits of the �rst-peak region, because

gRO(r) =
�G(i)

R (r)��G(i)
R (0)

2cRcO�bRbO
; (6.30)

where

�bR =

8
>>>><

>>>>:

(bNd � bPr) for i = 1

(bNd � bMix) for i = 2

(bMix � bPr) for i = 3:

(6.31)

Following the de�nitions given by Eqs.(6.4)-(6.6) and Eq.(6.22), the �G(i)
R (r ! 0)

limits for the di�erence functions are given by

�G(1)
R (r ! 0) = NdG(0)� PrG(0) (6.32)

�G(2)
R (r ! 0) = NdG(0)� MixG(0) (6.33)

�G(2)
R (r ! 0) = MixG(0)� PrG(0): (6.34)

The �nO
R values and average R-O bond distances obtained from the �rst-peak positions

in the �G(i)
R (r) functions are summarised in Table 6.4.
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Figure 6-9: First-order di�erence functions �F (i)
R (Q), for i = 1, 2 and 3, as obtained

from the total structure factors shown in Fig. 6-3. The solid black lines with vertical
error bars are the measured data sets. The red curves show spline �ts to these measured
data sets. The green curves are the back-Fourier transforms of the �G(i)

R (r) functions
shown in Figure 6-10, after the low-r oscillations are set to their theoretical �G(i)

R (r !
0) limit. The curves for i = 1 and 2 have been o�set vertically, for clarity of presentation,
and the o�sets are indicated in parenthesis.

Table 6.4: The average R-O coordination numbers and bond distances obtained from
the �G(i)

R (r) functions.

�G(i)
R (r) �nO

R �rRO (�A)
i = 1 7.3(2) 2.43(2)
i = 2 7.1(2) 2.41(2)
i = 3 7.4(2) 2.41(2)
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Figure 6-10: Real-space �rst-order di�erence functions �G(i)
R (r), for i = 1, 2 and 3.

The solid black lines are the Fourier transforms of the spline-�tted data sets shown
in Figure 6-9, after the low-r oscillations (solid red lines) are set to their theoretical
�G(i)

R (r ! 0) limit. The curves for i = 1 and 2 have been o�set vertically, for clarity
of presentation, and the o�sets are indicated in parenthesis.
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6.4.3 \Total minus weighted" di�erence functions

The \total minus weighted" di�erence (TMWD) functions obtained following Eqs.(6.14){
(6.16) are shown in Figures 6-11 { 6-12. In this case, the R-� correlations are removed to
leave only the R-R and �-� correlations. The comparison in Fig.6-12 shows that there
is very good agreement between the �F (i)(Q) functions. The real-space information is
shown in Figure 6-13. The \ringing" around each �rst peak is due to the truncation
of the �F (i)(Q) functions at a �nite Qmax value. The �rst oscillation before the peak
was not set to the theoretical �G(i)(r ! 0) limit before the back-Fourier transform, in
order to aid in the correct normalisation of the datasets. Following Eqs.(6.14){(6.16)
and Eq.(6.23), the �G(i)(r ! 0) limit for each of the \total minus weighted" di�erence
functions is given by

�G(1)(r ! 0) =
bNd

PrG(0)� bPr
NdG(0)

bNd � bPr
(6.35)

�G(2)(r ! 0) =
bNd

MixG(0)� bMix
NdG(0)

bNd � bMix
(6.36)

�G(3)(r ! 0) =
bMix

PrG(0)� bPr
MixG(0)

bMix � bPr
: (6.37)

The �rst peak at about 1.65 �A in the �G(i)(r) functions is well separated from the
second peak, as in the case of the G(r) functions shown in Figure 6-5, and can be
assigned to the Si-O and Al-O correlations. Figures 6-14 { 6-16 show the results ob-
tained by �tting the �rst peak in the �D(i)(r) functions, with three Gaussian functions
convoluted with a sinc function (Eq.(2.35)), where Qmax = 23.15 �A�1. These Gaussian
functions represent the Si-O and Al-O pair-correlations contained under the �rst peak.
The Si-O parameters were set to �rSiO = 1:61 �A and �nO

Si = 4. The Al-O correlations are
well described by two Gaussian functions, which indicate the presence of both AlO4

and AlO5 units, as suggested by the NMR results of Schaller and Stebbins in [125]. By
using the RDFgenie �tting program, the relative fractions of the AlO4 and AlO5 units
were found to be 80(3)% and 20(3)%, respectively. The �tted Al-O bond distances and
coordination numbers are listed in Table 6.5.
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Table 6.5: The average coordination numbers and bond distances for the AlO4 and
AlO5 units in glassy (R2O3)0:2(Al2O3)0:2(SiO2)0:6 samples (with R = Nd, Mix or Pr),
as obtained from the �rst peak in the measured �D(i)(r) functions, for i = 1, 2 and 3.
The goodness-of-�t parameter R� is given, along with the �tted r-space range.

�G(i)(r) �nO
Al �rAlO (�A) �nO

Al �rAlO (�A) R� range (�A)
i = 1 4.0(2) 1.75(2) 5.0(1) 1.82(2) 0.070 0 - 1.9
i = 2 4.0(2) 1.75(2) 5.0(1) 1.82(2) 0.093 0 - 1.9
i = 3 4.0(2) 1.75(2) 5.0(1) 1.80(2) 0.056 0 - 1.9

Figure 6-11: \Total minus weighted" di�erence functions �F (i)(Q), for i = 1, 2 and
3. The solid black lines with vertical error bars are the measured data sets. The red
curves show spline �ts to the measured data sets. The green curves are the back-Fourier
transforms of the �G(i)(r) functions shown in Figure 6-13, after the low-r oscillations
are set to their theoretical �G(i)(r ! 0) limit. The curves for i = 1 and 2 have been
o�set vertically, for clarity of presentation, and the o�sets are indicated in parenthesis.



6.4 Results 164

Figure 6-12: Superposition of the \total minus weighted" di�erence functions �F (i)(Q),
for i = 1, 2 and 3, shown in Figure 6-11. The solid black, red and blue lines, with
vertical error bars, are the measured data sets for �F (1)(Q), �F (2)(Q) and �F (3)(Q),
respectively. The error bars are hardly distinguishable, given the high-quality counting
statistics. The inset zooms into the low-Q region, where the maximum Q-value is set
at 4 �A�1, for clarity of presentation.
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Figure 6-13: Real-space \total minus weighted" di�erence functions �G(i)(r), for i =
1, 2 and 3. The solid black lines are the Fourier transforms of the spline-�tted data
sets shown in Figure 6-11, after the low-r oscillations (solid red lines) are set to their
theoretical �G(i)(r ! 0) limit. The curves for i = 1 and 2 have been o�set vertically,
for clarity of presentation, and the o�sets are indicated in parenthesis.
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Figure 6-14: The �rst peak in the �D(1)(r) function. The solid black line is the
measured �D(1)(r) function, and is �tted with three Gaussians convoluted with a sinc
function using RDFgenie (solid red curve). The solid blue, pink and green curves show
the contributions from dSiO(r), dAlO(r) for AlO4 units, and dAlO(r) for AlO5 units,
respectively. The �t gives R� = 0.070 for the range 0 { 1.9 �A.
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Figure 6-15: The �rst peak in the �D(2)(r) function. The solid black line is the
measured �D(2)(r) function, and is �tted with three Gaussians convoluted with a sinc
function using RDFgenie (solid red curve). The solid blue, pink and green curves show
the contributions from dSiO(r), dAlO(r) for AlO4 units, and dAlO(r) for AlO5 units,
respectively. The �t gives R� = 0.093 for the range 0 { 1.9 �A.
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Figure 6-16: The �rst peak in the �D(3)(r) function. The solid black line is the
measured �D(3)(r) function, and is �tted with three Gaussians convoluted with a sinc
function using RDFgenie (solid red curve). The solid blue, pink and green curves show
the contributions from dSiO(r), dAlO(r) for AlO4 units, and dAlO(r) for AlO5 units,
respectively. The �t gives R� = 0.056 for the range 0 { 1.9 �A.



6.4 Results 169

6.4.4 The SRR(Q) partial structure factor, � R�(Q) and ���(Q) functions

The reciprocal-space functions SRR(Q), �R�(Q) and ���(Q), obtained by solving Eq. (6.17),
are shown in Figures 6-17 { 6-19, and the corresponding real-space functions are given
in Figures 6-20 { 6-22.

The SRR(Q) partial structure factor and the gRR(r) partial pair-distribution func-
tion contain information on the correlations between the rare-earth atoms. The data
are quite noisy, especially for Q � 16 �A�1. In order to to reduce e�ectively the statis-
tical noise, a cosine and a Lorch functions were both applied to the spline-�tted data,
for Q � 12 �A�1. The average R-R coordination number is given by

�nR
R = 4��cR

Z r2

r1

gRR(r)r2dr (6.38)

and the calculated value is listed in Table 6.6.
The �R�(Q) function, de�ned in Eq.(6.18), has contributions solely from the R-�

correlations. The data are quite noisy, especially for Q � 16 �A�1. In this case, the use
uniquely of a Lorch function, with Qmax = 15 �A�1, was su�cient to reduce e�ectively
the statistical noise. The �rst peak in �R�(Q) corresponds to the R-O correlations. The
average coordination number of O around R can be calculated using the equation

�nO
R =

4��
bO

Z r2

r1

�
�R�(r)� �R�(0)

�
r2dr; (6.39)

where r1 and r2 are the integration limits for the �rst-peak region, in which

gRO(r) =
�R�(r)� �R�(0)

bOcO
; (6.40)

and the limit �R�(r ! 0) is given by

�R�(r ! 0) = �R�(0) = �(cObO + cAlbAl + cSibSi): (6.41)

The ���(Q) function contains only those correlations between the matrix elements.
The corresponding real-space function has a �rst peak at 1.65(2) �A, which is associated
with the Si-O and Al-O correlations as for the case of the G(r) and �G(i)(r) functions.
The \ringing" around the �rst peak is due to the truncation of ���(Q) at a �nite
Qmax value. The �rst oscillation before the �rst peak was not set to the theoretical
���(r ! 0) limit before the back-Fourier transform in order to help ensuring that the
data set is correctly normalised.
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The low-r limit is given by

���(r ! 0) = ���(0) = �(cObO + cAlbAl + cSibSi)2: (6.42)

Figure 6-23 shows the result of �tting the �rst peak in ���(r) to three Gaussian
functions convoluted with a sinc function (Eq.(2.35)). The Gaussian functions represent
the Si-O and Al-O correlations within the region of the �rst peak. The Si-O parameters
were set to �rSiO = 1:61 �A and �nO

Si = 4. The Al-O correlations are well described by
two Gaussian functions, which indicate the presence of both AlO4 and AlO5 units, as
suggested by the NMR results of Schaller and Stebbins [125]. By using the RDFgenie
�tting program, the relative fractions of AlO4 and AlO5 units are found to be 80(3)%
and 20(3)%, respectively. The average Al-O bond distances and coordination numbers
and listed in Table 6.7.

Table 6.6: The average coordination numbers and bond distances for glassy
(R2O3)0:2(Al2O3)0:2(SiO2)0:6, with R = Nd, Mix or Pr, as obtained from the �rst
peak in the measured gRR(r) and �R�(r) functions.

r-space function Coordination number Peak position (�A)
gRR(r) �nR

R = 4.4(2) �rRR = 3.9(4)
�R�(r) �nO

R = 7.4(2) �rRO = 2.44(4)

Table 6.7: The average coordination numbers and bond distances for the AlO4 and
AlO5 units in glassy (R2O3)0:2(Al2O3)0:2(SiO2)0:6 samples with R = Nd, Mix or Pr, as
obtained from the �rst peak in the ���(r) function. The goodness-of-�t parameter R�
is given, along with the �tted r-space range.

r-space function �nO
Al �rAlO (�A) �nO

Al �rAlO (�A) R� range (�A)
���(r) 4.0(2) 1.74(2) 5.0(1) 1.81(2) 0.092 0.0 - 1.90
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Figure 6-17: Partial structure factor SRR(Q). The solid black line with vertical error
bars is the measured data set. The red curve shows a spline �t to the measured data
set. The green curve is the back-Fourier transform of the gRR(r) function (blue curve
in Figure 6-20), after the low-r oscillations are set to their theoretical gRR(r ! 0)
limit. The blue curve is the spline-�tted data, after a cosine and a Lorch functions are
applied.
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Figure 6-18: Di�erence function �R�(Q). The solid black line with vertical error bars
is the measured data set. The red curve shows a spline �t to the measured data set.
The green curve is the back-Fourier transform of the �R�(r) function shown by the blue
curve in Figure 6-21, after the low-r oscillations are set to their theoretical �R�(r ! 0)
limit. The blue curve is the spline-�tted data after a Lorch functions is applied.
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Figure 6-19: Di�erence function ���(Q). The solid black line with vertical error bars
is the measured data set. The red curve shows a spline �t to the measured data set.
The green curve is the back-Fourier transform of the ���(r) function shown in Figure
6-22, after the low-r oscillations are set to their theoretical ���(r ! 0) limit.
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Figure 6-20: Partial pair-distribution function gRR(r). The solid black line is the
Fourier transform of the spline-�tted data set shown in Figure 6-17, after a cosine and
a Lorch function were applied to smooth the data sets after Qmax = 12 �A�1. The
low-r oscillations (solid red lines) are set to the theoretical limit gRR(r ! 0) limit
at r-values smaller than the distance of closest approach between the centres of two
atoms. The solid blue line gives the Fourier transform of the spline-�tted data set, with
Qmax = 15 �A�1 and without the application of a cosine or Lorch function.
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Figure 6-21: Di�erence function �R�(r). The solid black line is the Fourier transform
of the spline-�tted data set shown in Figure 6-18, after a Lorch function was applied
with Qmax = 15 �A�1. The low-r oscillations (solid red lines) are set to their theoretical
�R�(r ! 0) limit at r-values smaller than the distance of closest approach between the
centres of two atoms. The solid blue line gives the Fourier transform of the spline-�tted
data set, without the application of a Lorch function.
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Figure 6-22: Di�erence function ���(r). The solid black line is the Fourier transform
of the spline-�tted data set shown in Figure 6-19. The low-r oscillations (solid red
lines) are set to their theoretical limit ���(r ! 0) limit at r-values smaller than the
distance of closest approach between the centres of two atoms.
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Figure 6-23: The �rst peak in the �D��(r) function. The solid black line is the
measured �D��(r) function, and is �tted with three Gaussians convoluted with a sinc
function using RDFgenie (solid red curve). The solid blue, pink and green curves show
the contributions from dSiO(r), dAlO(r) for AlO4 units, and dAlO(r) for AlO5 units,
respectively. The �t gives a goodness-of-�t parameter of R� = 0.092 for the range 0 {
1.9 �A.
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6.5 Discussion

A summary of the average coordination numbers and peak positions found in the pre-
vious section is given in Table 6.8.

r-space function Coordination number Peak position (�A)
AlO4, AlO5 R-O R-R

NdG(r) 4.0(2), 5.0(1) - - 1.75(2), 1.80(2)
MixG(r) 4.0(2), 5.0(1) - - 1.75(2), 1.82(2)
PrG(r) 4.0(2), 5.0(1) - - 1.75(2), 1.82(2)

�G(1)(r) 4.0(2), 5.0(1) - - 1.75(2), 1.82(2)
�G(2)(r) 4.0(2), 5.0(1) - - 1.75(2), 1.82(2)
�G(3)(r) 4.0(2), 5.0(1) - - 1.75(2), 1.80(2)
���(r) 4.0(2), 5.0(1) - - 1.74(2), 1.81(2)

�G(1)
R (r) - 7.3(2) - 2.43(2)

�G(2)
R (r) - 7.1(2) - 2.41(2)

�G(3)
R (r) - 7.4(2) - 2.41(2)

�R�(r) - 7.4(2) - 2.44(4)
gRR(r) - - 4.4(2) 3.9(4)

Table 6.8: Summary of the average Al-O, R-O and R-R coordination numbers and peak
positions for glassy (R2O3)0:2(Al2O3)0:2(SiO2)0:6.

The average Al-O coordination numbers and peak positions were obtained from the
G(r), �G(i)(r) and ���(r) functions by assuming �nO

Si = 4 and �rSiO = 1.61 �A. A popu-
lation of AlO4 and AlO5 units, having relative fractions of 80(3)% and 20(3)%, respec-
tively, were found by using the RDFgenie �tting procedure. The bond distances were
found to be �rAlO = 1:75(2) �A and �rAlO = 1:82(2) �A for AlO4 and AlO5 units, respec-
tively, and are consistent with those found by Martin et al. [127] in Y-aluminophosphate
glasses. Chirawatkul [27] performed a ND experiment on (R2O3)0:2(Al2O3)0:2(SiO2)0:6,
where the small rare-earth elements Dy and Ho were selected as an isomorphic pair.
She combined her results with RMC modelling and MD simulations, and found an �nO

Al

value ranging between 4.2(2) and 4.9(2). The value of �nO
Al = 4.2 that she selected as

a constraint for the RMC modelling procedure was estimated by Stebbins [132] for an
Y-AS glass having the same chemical formula [125], and is consistent with a popula-
tion of AlO4, AlO5 and AlO6 units having relative fractions of 78(3)%, 16(3)% and
6(3)%, respectively. In fact, Schaller and Stebbins [125] performed 27Al and 17O Magic
Angle Spinning (MAS) NMR experiments on both (Y2O3)0:2(Al2O3)0:2(SiO2)0:6 and
(La2O3)0:2(Al2O3)0:2(SiO2)0:6 glasses. They found that the La-containing glass has
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only AlO4 and AlO5 units, whilst the Y-containing glass has in addition AlO6 units.
The second peak position in G(r) and �G(i)(r) at � 2.42 �A can be assigned to the
R-O correlations. Let’s consider the �G(i)

R (r) di�erence functions and the �R�(r) func-
tion, where the matrix-matrix correlations are removed. The �rst peak position �rRO

varies between 2.41(2) { 2.43(2) �A for �G(i)(r) and is at 2.44(4) �A for �R�(r). The
coordination number �nO

R varies between 7.1(2) and 7.4(2) for the �G(i)
R (r) di�erence

functions and is 7.4(2) for �R�(r). For the (R2O3)0:2(Al2O3)0:2(SiO2)0:6 glass with R =
Dy and Ho, Chirawatkul found �nO

R = 7.2(3), and �rRO values that vary between 2.31(3) -
2.35(3) �A [27]. Hence, in the small RAS glass the �rRO bond distance is shorter, as com-
pared to the large RAS glass, but little change is found for �nO

R, within the experimental
error.

Figure 6-20 shows the measured gRR(r) function. It should be noticed that the
unphysical low-r oscillations do not correspond to the �rst-peak positions associated
with the Si-O, Al-O or R-O correlations, i.e. the R-� and �-�0 correlations appear
to have been properly removed. The value �nR

R = 4.4(2) found in the present work is
comparable to the value �nR

R = 4.6(2) found by Chirawatkul [27].

6.6 Conclusion

In this work the structure of the RAS glass (R2O3)0:2(Al2O3)0:2(SiO2)0:6 was investi-
gated via ND with isomorphic substitution using the large rare-earth elements Nd and
Pr as an isomorphic pair. Three isomorphic samples were measured on the D4c di�rac-
tometer at the ILL. The results have enabled the R-� correlations to be separated from
the �� �0 and R-R correlations. The results were compared with those obtained by P.
Chirawatkul [27], who investigated glassy (R2O3)0:2(Al2O3)0:2(SiO2)0:6. She used the
same di�raction method but with R = Dy and Ho, and interpreted the results using
MD simulations and RMC modelling.

The results obtained from the RG(r), �G(i)(r) and ���(r) functions of the present
work are consistent with a population of AlO4 and AlO5 units having relative fractions
of 80(3)% and 20(3)%, respectively. In her work, Chirawatkul used a population of
AlO4, AlO5 and AlO6 units having relative fractions of 78(3)%, 16(3)% and 6(3)%,
respectively, as estimated from the NMR results by Schaller and Stebbins [125], who
performed 27Al and 17O MAS NMR experiments on La- and Y-AS glasses having the
same (R2O3)0:2(Al2O3)0:2(SiO2)0:6 composition. They found that the La-containing
glass shows the presence of only AlO4 and AlO5 units, whilst the Y-containing glass
has in addition AlO6 units.
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The comparison between the large-size and small-size rare-earth AS glasses shows that,
as the cation �eld strength increases with decreasing rare-earth radius, the aluminosili-
cate network is perturbed more strongly. This manifests itself by a reduction in the R-O
bond distance from �rRO = 2.43(2) �A to �rRO = 2.31(3) - 2.35(3) �A. As a consequence,
AlO6 units are stabilised for the small RAS system, while only AlO4 and AlO5 units
are found in the investigated RAS glass. In respect to the R-R nearest-neighbours, a
detailed modelling of the present results via MD simulations could help to elucidate
more clearly the presence of clustered or dispersed rare-earth species.
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The method of neutron di�raction with isotopic or isomorphic substitution was used
to investigate the atomic-scale structure of three di�erent disordered materials.

In Chapter 4, the structure of a 5 m aqueous solution of NaCl was measured via
neutron di�raction with Cl-isotope substitution, for a temperature and pressure range
that had not previously been investigated. Two di�erent setups, involving either a Ti-
Zr pressure cell or a Paris-Edinburgh press, were employed on the D4c di�ractometer
at the ILL. In the �rst case, a substantial improvement in the quality of the data,
measured up to 150 �C and 1 kbar, was achieved. In the second case, the boundary
of investigated pressures was pushed up to 33.8 kbar at 150 �C [23]. The measured
intra-molecular O{D coordination numbers and bond distances for water are nD

O =
2.00(3) and rOD = 0.96(1) �A over the spanned range of state conditions. The measured
total structure factors were combined to give �rst-order di�erence functions �GCl(r),
thus providing new insight into the Cl�ion coordination environment. At a constant
pressure of 0.1 kbar and for temperature increasing from 50 �C to 150 �C, the �GCl(r)
functions show an increase in the weighted peak position rClD from 2.33(2) to 2.35(2) �A,
and a decrease in the nD

Cl coordination number from 5.7(3) to 5.4(3). This e�ect may
be related to the behaviour of the dielectric permittivity of water, which decreases with
increasing temperature, thus favouring ion association. At a constant temperature of
150 �C and for pressure increasing from 0.1 to 33.8 kbar, the data sets are a�ected by
low counting statistics and residual background scattering. However, the total structure
factors and di�erence functions show clear pressure-driven changes and indicate that,
as for water, the structure becomes more simple-uid like. The rClD bond distance
drops from 2.35(2) to 2.07(6) �A, and the evolution of the �rst and second peaks makes
it di�cult to calculate reliable nD

Cl coordination numbers. The results of this work
are being compared with ongoing molecular-dynamics simulations to understand the
contributions of the di�erent gCl�(r) partial pair-distribution functions to �GCl(r).
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In Chapter 5, the atomic structures of the glasses As0:30Se0:70, As0:35Se0:65 and
As0:40Se0:60 were investigated using neutron di�raction with Se-isotope substitution and
the GEM di�ractometer at ISIS. For the As0:40Se0:60 composition, the total structure
factors and �rst-order di�erence functions were compared with data sets measured on
D4c, and show good overall agreement. Comparisons were also made with the RMC
results from Hosokawa et al. that were obtained using AXS measurements [26], and with
the FPMD results from Bauchy et al. [25]. The reciprocal-space functions measured by
NDIS are better reproduced by RMC as compared to FPMD, especially in the region of
the pre-peak at low-Q. In real space, a systematic shift towards smaller r-values is found
for the �rst-peak position in the RMC functions as compared to the NDIS functions.
In contrast, the �rst-peak positions in the FPMD functions are systematically shifted
towards larger r-values as compared to the NDIS results. Globally, neither the RMC
nor the FPMD results match the NDIS real-space functions, even though the FPMD
and RMC partial coordination numbers show the same trend, i.e. as the As content
increases �nAs

As increases whereas �nSe
As and �nSe

Se both decrease. However, the coordination
numbers obtained from NDIS are in better overall agreement with the FPMD rather
than with the RMC results. A comparison of the coordination numbers obtained from
the NDIS, RMC and FPMD methods, with those predicted from the CON and RCN
models, reveals that neither of these models describe the investigated glasses in an
exhaustive way. However, the CON seems to better describe the network structures
for the As0:30Se0:70 and As0:35Se0:65 compositions, but fails to predict the observed
homopolar bonds for the stoichiometric composition. Our NDIS results provide a severe
test of the RMC and FPMD models, and reveal discrepancies both in reciprocal and
real-space. A comparison between the present results and those obtained from the full
set of partial structure factors, measured for As0:40Se0:60 on D4c using NDIS [90], will
allow for a more complete understanding of the contributions of the di�erent partial
pair-distribution functions g��(r) to the various di�erence functions.

In Chapter 6, the structure of the rare-earth aluminosilicate (RAS) glass
(R2O3)0:2(Al2O3)0:2(SiO2)0:6 was investigated via ND with isomorphic substitution us-
ing the large-size rare-earth elements Nd and Pr as an isomorphic pair. The D4c
di�ractometer at the ILL was employed for these experiments. The results have en-
abled a separation of the R-R, R-� and �-�0 pair-correlation functions, where � denotes
a matrix (Si, Al or O) atom. The results were compared to those obtained by P. Chi-
rawatkul [27], who used ND with isomorphic substitution to investigate the structure
of the small-size RAS glass (R2O3)0:2(Al2O3)0:2(SiO2)0:6, using Dy and Ho as an iso-
morphic pair. The ND results for both of these materials were complemented by the
MAS NMR results of Schaller and Stebbins [125]. The overall picture indicates that
the structure of a (R2O3)0:2(Al2O3)0:2(SiO2)0:6 glass is based on an aluminosilicate net-
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work that is perturbed by the presence of the network-modifying rare-earth ions. A
comparison between the large-size and small-size RAS glasses shows that as the cation
�eld strength increases with decreasing rare-earth radius, the aluminosilicate network is
perturbed more strongly. This manifests itself by a reduction in the R-O bond-distance
from �rRO = 2.43(2) �A to �rRO = 2.31(3) - 2.35(3) �A. In consequence, AlO6 units are
stabilised for the small RAS system, while only AlO4 and AlO5 units are found in the
investigated RAS glass. A detailed modelling of the present results via MD simulations
could help to elucidate more clearly the presence of clustered or dispersed rare-earth
species.

Looking ahead, it would be interesting to perform an experiment on the structure
of subcritical uids in the water-CO2 system. Many studies are being made on this ge-
ological uid because CO2 sequestration in deep aquifers is considered to be a possible
solution for the long-term storage of carbon dioxide, in order to mitigate global warm-
ing and climate change [14]. Also, the water-CO2 system is of interest for enhanced
geothermal systems that produce electricity using hydrothermal resources [133, 134].
Carbon dioxide could be used as a heat-transmission uid, combining the generation of
renewable energy with the geological storage of CO2. In the relevant state conditions
for this application, the temperature ranges between 100 �C and 300 �C for pressures up
to 600 bar. At 300 �C and 520 bar, 15-mole% of CO2 is dissolved in H2O, the system is
homogeneous, and it is still in a subcritical phase. Under these conditions, there should
be enough CO2 in the system to see structural changes and investigate them via NDIS
with H/D isotope substitution. The measured di�erence functions will contain detailed
information on the changes to the structure of water that are induced by the presence
of CO2. Thus, useful information would be provided to understand the microscopic
behaviour of this fundamental geological uid. A high-pressure and temperature setup
has been designed to perform a NDIS experiment on D4c at the ILL [135], but the
experiment could not be realised within the time scale of this PhD project.
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