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The best friend on earth of man is the tree. 

When we use the tree respectfully and economically, 

we have one of the greatest resources on earth. 

     Frank Lloyd Wright 
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Abstract  
 

 

Low embodied energy, ability to act as a carbon store and ease of recycling gives forest 

products an important role within a low carbon built environment. Almost 25 % of the 

coniferous resource within the South West of England is Douglas-fir, a species reputed for 

producing high quality timber. Despite this, the region is facing challenges in delivering the 

resources full potential, a contributing factor to which is a loss of knowledge regarding its 

quality. The aim of the work presented is to gain an improved understanding of the quality of 

Douglas-fir grown within the region, from the perspective of uses in structural applications, 

the factors which influence material quality and their interrelationships. 

 

Flexural modulus of elasticity, flexural and compressive strength were determined utilising 

small clear specimens derived from 1.3 and 8 m heights within 27 trees from six sites across 

the South West. Results showed a rise in the magnitude of properties with increasing cambial 

age, particularly so at younger ages. Differences in values were also recorded between stem 

heights and with rate of growth. These were however less than age related variations. Results 

compared favourably to those reported in other studies conducted on the species. Utilising 

SilviScan-3, anatomical properties including density, microfibril angle and cellular dimensions 

were measured. Significant variations were recorded with cambial age, and in some instances 

sampling height. The influence of growth rate on anatomical properties was small.  

 

Through statistical and composite modelling, microfibril angle was found to be strongly 

associated with changes in modulus of elasticity within juvenile wood. Within mature wood 

and for strength properties, density was the controlling factor. It was shown that a moderate 

proportion of variations in mechanical properties can be accounted for utilising visually 

identifiable wood characteristics. The new understanding that has been gained through this 

work presents opportunities for improved utilisation, the implementation of effective 

management practices and the development of more efficient visual grading techniques. 
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Chapter 1 - Introduction  
 

 

1.1 Introduction 

In this chapter an introduction is given to the vital role played by forests and the products 

derived from them within modern society, and within the built environment in particular. 

Some of the key issues surrounding the under utilisation and lack of understanding of material 

quality relevant to the standing timber resource within the South West of England, which 

form the impetus for this work, are also highlighted. This short contextual précis is then 

followed by a description of the subject areas covered and the issues to be addressed in this 

thesis.  

1.2 Timber utilisation in the United Kingdom 

Throughout history, forests and the products derived from them have played a vital role in the 

development of communities globally, with a detailed narrative of the modern historical 

evolution in our relationships with woodlands given by James (1990). Factors which have 

made forest products a valuable resource historically, such as the ability to source material 

locally, flexibility of end use and the relative ease of processing are still relevant today. 

However, it is also the case that, as the need for environmental responsibility and the 

sustainable use of materials increases, wood based products also offer the benefits of low 

embodied energy, the ability to act as a carbon store and ease of recycling (BRE, 2006). All of 

these qualities give timber many advantages as a material for use in construction over steel and 

concrete. 

 

According to the latest figures produced by the Timber Trade Federation (2011), by both 

volume (57 %) and value (47 %), sawn softwood is the most highly consumed wood based 

product within the United Kingdom, with an annual consumption of 8.1 million m3, of which 

approximately 36 % was obtained from home grown sources. The three largest markets for 

sawn softwood material are construction (65 %), pallets and packaging (20 %) and fencing and 
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outdoor use (10 %) (Moore, 2006). When combined with the high proportion of imported 

panel and pulp products, the United Kingdom is the third largest net importer of wood based 

material globally (Forestry Commission, 2010). 

 

Alongside the limited capacity for the production of manufactured wood products, the large 

quantities of material imported into the United Kingdom can be related to the fact that at 

12 %, the forest cover as a proportion of land area is comparatively very low, compared to 

figures at both European (37 %) and global (30 %) levels (Forestry Commission, 2007). For 

reasons of both efficiency and economics it is therefore essential that the best end use is made 

of the timber resources that are available within the United Kingdom. 

1.3 Forestry in South West England 

The area of focus in this study is the South West of England. A region which is commonly 

defined from the perspective of forestry as containing the counties of Cornwall, Devon, 

Dorset, Gloucestershire, Somerset, Wiltshire and the former county of Avon, as shown in 

Figure 1-1 below.  

 

 
Figure 1-1: Counties within the South West region from Forest Research (2009) 
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Chapter 2 - Literature review 
 

 

2.1 Introduction 

Given the large number of softwood species and sub-species found globally, the multiple 

levels at which their properties can be observed, the variability that exists at both the intra- 

and inter-tree levels and the wide array of measurement techniques that can be utilised, the 

quantity of literature regarding the anatomical and mechanical properties of softwoods is, not 

surprisingly, extensive. In this chapter, previously published literature relating to the aims and 

objectives of this thesis given in Chapter 1 is reviewed. 

 

The chapter begins with an overview of the Douglas-fir species and its history within the 

United Kingdom, followed by a presentation of the current understanding of the structure of 

softwoods at a number of hierarchal levels. A review is then given of the known variability of 

several anatomical and mechanical properties, the current understanding of the 

interrelationships between them and the techniques available for their assessment. Finally, the 

methodologies that have been adopted in the development of micromechanical models for the 

prediction of the modulus of elasticity of softwoods are discussed. 

2.2 Douglas-fir 

Douglas-fir is one of 20 members of the Pseudotsuga genus of trees, native to Europe prior to 

the Pleistocene glaciations (Hermann and Lavender, 1999). It is now found natively in 

Western North America (Mitchell, 1972). The first documented discovery of the species was 

on Vancouver Island in 1792 by Archibald Menzies, with introduction to the British Isles by 

David Douglas in 1827 (Fletcher and Samuel, 2010). The scientific name for the species is 

Pseudotsuga menziesii and a summary of historical nomenclature is given by Hermann (1982). 

The current native range of the species extends south for 3400 km from central British 

Columbia and east from the Pacific coast for 1600 km into the Rocky Mountains (Fletcher 
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2.3.2.2 Chemical constituents mechanical properties 

Numerous studies regarding the mechanical properties of the three primary chemical 

constituents of wood have been conducted, with typically a large range of results presented in 

all cases. Variability in results occurs for a number of reasons, including inaccuracies within 

molecular models due to neglecting to account for the thermal motion of molecules (Persson, 

2000) and the difficulties associated with isolating the chemical constituents in the same form 

found within the cell walls (Salmén, 2004). It is also the case that the mechanical properties of 

hemicellulose and lignin are sensitive to changes in moisture content, as demonstrated by 

Cousins (1976, 1978). In Table 2-1, a summary of the key elastic mechanical properties of the 

three chemical constituents derived through experimental tests, molecular modelling and 

estimations are shown. In the case of hemicellulose and lignin, mechanical properties are 

presented at a moisture content of 12 % where a range of values was available. The x axis 

corresponds to properties in the longitudinal direction of the tracheids, and the y axis the 

transverse as the constituents are arranged compositely within the cell wall. 

2.3.3 Nano structure - wood cells 

Studies of the cellular structure of different softwood species have shown that there are large 

similarities between them, which are likely to have arisen early in the evolution of woody 

plants and are clearly so important to their survival that they have changed little since (Barnett 

and Bonham, 2004). Within the stem, wood cells exist to carry out two primary functions; 

provide a passage for water and nutrient transportation from roots to crown, and to support 

the large static and dynamic forces induced by the biomass above (Booker and Sell, 1998). In 

order to fulfil these functions, softwoods are made up of tracheids and rays. Tracheids are 

aligned vertically and account for approximately 90 % of the cells present, they allow the 

vertical transportation of materials up the stem and carry the imposed loads (Dinwoodie, 

2000). Ray tracheids are found in the horizontal plane and allow for the movement of water 

and minerals radially, with ray parenchyma cells acting as a material store (Romberger et al., 

1993, Walker, 2006). The flow of nutrients between tracheids occurs through openings 

between them known as bordered pits, as described by Walker (2006). 
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understood, it is however thought that they increase cell wall strength, preventing collapse 

arising due to hydrostatic forces (Yang, 2006), similar to the role of the S3 layer microfibrils. 

Images of helical thickenings in the tracheids of Douglas-fir are shown in Figure 2-3. 

 

  
(a) (b) 

Figure 2-3: Helical thickenings in Douglas-fir tracheids (a) 1750x magnification (b) 10000x 

magnification from Meylan and Butterfield (1972) 

2.3.4 Micro structure - growth rings 

When grown in temperate climates, softwoods produce growth rings that reflect the annual 

spring onset and autumn cessation of cellular growth activity (Barnett and Jeronimidis, 2003). 

When grown in stands with a relatively uniform age structure the width of the growth rings 

produced by Douglas-fir has been shown to exhibit an overall trend of decreasing with age, 

following peak values attained in the rings immediately adjacent to the pith (Jozsa and Brix, 

1989, Abdel-Gadir, 1991, Fabris, 2000, Gartner et al., 2002). Mean peak values in the range 5 - 

7 mm, decreasing to widths of 2 - 3 mm by approximately 30 years of age are typical. This 

reduction in ring width with age is sometimes associated with reduced productivity in the 

stem. This is not the case however, as rings nearer the pith represent substantially less biomass 

accumulation than rings of the same width or less at greater ages (Ridley-Ellis et al., 2009). The 

utilisation of silvicultural practise such as continuous cover forestry described by Macdonald 

et al. (2010) with a mixed age stand structure, may result in different ring width patterns 

dependent upon the position of the tree within the stand structure.  

 

The wood produced at the start of the growing season is often referred to as earlywood and 

that later in the season latewood. On moving from the production of early to latewood 

transitional tracheids are produced, which possess intermediate characteristics (Larson, 1969a). 
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has now been largely replaced by the threshold method, in which a set density value is used to 

differentiate early and latewood (e.g. Parker, 1976), or the maximum derivative method, in 

which the transition point is defined by the maximum of the derivative of the function 

describing the intra-ring density profile (Koubaa et al., 2002). While comparable results have 

been obtained when the three methods have been evaluated (Barbour et al., 1997), a limitation 

of all three is the lack of consideration of transitional tracheids or transition-wood in the intra-

ring developmental profiles. This is likely a result of a continuation in the use of the early 

definitions adopted by Mork, at a time when the measurement of properties was time 

intensive.  

 

As a result of the commonly used methods for determining the demarcation from early to 

latewood, no literature demonstrating variations in the proportions of transition-wood within 

growth rings with age was found for Douglas-fir, although the presence of transitional 

tracheids has been acknowledged (e.g. Fabris, 2000). In Douglas-fir an overall trend of 

increasing latewood proportion with cambial age has been reported, with values rising from 

approximately 20 % in the growth rings adjacent to the pith, to 40 % by 20 years of age 

(Erickson and Harrison, 1974, Fabris, 2000, Gartner et al., 2002, Lachenbruch et al., 2010). 

For equivalent ages at increasing heights, a lower proportion of latewood has also been 

identified (Gartner et al., 2002). These overall trends are in line with those reported for 

Balsam-fir (Koga and Zhang, 2004) and Jack pine (Park et al., 2009). The influence of a 

changing rate of growth on the proportion of latewood present within a growth ring in 

Douglas-fir has shown mixed results. Erickson and Harrison (1974) demonstrated a reduction 

in the proportion of latewood of 5 % when ring width increased by 25 % compared to control 

stems, while Fabris (2000) showed negative linear correlations typically greater than 0.5 

between ring width and latewood proportion at every cambial age up to 33 years. Abdel-Gadir 

and Krahmer (1993) however found only weak negative correlations with ring width in 

Douglas-fir mature wood, while those in the juvenile wood were positive. The differences in 

the strength of correlations may arise due to the utilisation of different methods to assess the 

point of transition from early to latewood, or the fact that correlations calculated by Abdel-

Gadir and Krahmer were based on ring width variations grouped by simply juvenile or mature 

wood, and as such the developmental decline in ring width with age may have influenced the 

relationships observed. Moderate to strong negative correlations have also been observed 

between ring width and latewood proportion in Balsam-fir (Koga and Zhang, 2004) and 

Western hemlock and Western red cedar (Fabris, 2000). 
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2.3.5 Macro structure - the stem 

The image in Figure 2-4 shows a number of macroscopic features commonly found in a 

Douglas-fir stem.  

 
Figure 2-4: Section through Douglas fir stem, http://web.utk.edu/~grissino/ 

 

At the centre of the stem is the pith, the zone where initial growth takes place (McLean, 2008). 

Surrounding the pith is a red band of wood known as heartwood. Heartwood is a region of 

inactive tissue in which the xylem no longer fulfils the tasks of conduction or storage of water 

and minerals (Dinwoodie, 2000). Douglas-fir is termed a heartwood species, due to the 

typically high proportions of this wood type present. Cown (1992) states that even in fast 

grown trees that the width of the sapwood band rarely exceeds 75 mm. Heartwood is formed 

through the deposition of extractives such as phenols and terpenes within the lumens of 

tracheids, which as well as being responsible for the wide variation in heartwood colours, give 

natural resistance to fungal decay and insect attack (Taylor et al., 2007). It is believed that new 

increments of heartwood are formed each year at the boundary between heartwood and 

sapwood (Magel et al., 1994), although the mechanisms are still not fully understood (Taylor et 

al., 2007). Sapwood surrounds the heartwood and is identified by its lighter colour. It is 

responsible for the conduction of water and minerals through the stem. This is evidenced in 

the fact that on felling, Douglas-fir heartwood typically has a moisture content in the range 45 

- 50 %, whilst sapwood moisture content ranges from 100 - 180 % (Cown, 1992). Surrounding 

the sapwood is the vascular cambium, in which the processes through which wood is formed 

occur (Barnett and Jeronimidis, 2003). This in turn is surrounded by the bark, which plays a 

protective role and in Douglas-fir is characterised by its thick corky nature on the lower parts 

of the stem, which gives a high resistance to forest fires (Fontes, 2002). 
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growth results in a near cylindrical core of juvenile wood within softwoods, surrounded by a 

tapered mature wood zone (Macdonald and Hubert, 2002), as displayed in Figure 2-5. 

 

 
Figure 2-5:  Juvenile - mature wood profiles adapted from Macdonald and Hubert (2002)  

 

In comparison to mature wood, the juvenile wood of Douglas-fir has been shown to have 

increased ring width, a lower whole ring mean density and a lower proportion of latewood 

(Jozsa and Brix, 1989, Fabris, 2000). It has also been reported for softwoods in general that 

juvenile wood has shorter tracheids and higher S2 layer microfibril angles (Zobel and Sprague, 

1998, Larson, 2001). These characteristics result in a reduced modulus of elasticity, flexural 

strength and dimensional stability within juvenile wood (Zobel and Van Buijtenen, 1989, 

Zobel and Sprague, 1998), and it is therefore seen as undesirable. Defining the boundary 

between juvenile and mature wood production is complicated by the gradual transition 

between the two wood types that can occur. The most commonly used method for defining 

the age of demarcation is by use of both linear and non-linear segmented regression models 

(Abdel-Gadir and Krahmer, 1993, Sauter et al., 1999, Fabris, 2000, Alteyrac et al., 2006), in 

which demarcation age is determined based on the intersection point of two regression 

equations fitted so as to minimise residuals. The threshold method, whereby a value is selected 

for the property being assessed to define when mature wood production has commenced, was 

utilised by Clark et al. (2006). While this method allows for a defined property value for 

mature wood to be set, it does not account for the rate at which properties are changing, a 

significant factor which makes juvenile wood an undesirable characteristic, and as such it has 

not been widely adopted.  

Side View 

~ 20years 

Mature 

Wood 

Mature 

Wood 

Mature 

Wood 

~ 20 years 

Juvenile 

Wood 

End View 

Juvenile 

Wood 



                                                                                              CHAPTER 2 - LITERATURE REVIEW  

 
20  

A large range of demarcation ages have been established for Douglas-fir at breast height, 

including a mean of 15 years (Wellwood and Smith, 1962 cited in Fabris 2000, Senft et al., 

1986), 15 - 34 years (Di Lucca, 1989), 11 - 37 years (Abdel-Gadir and Krahmer, 1993) and a 

mean of 21 years (Fabris, 2000). The results presented by Fabris also displayed a general trend 

of decreasing demarcation age with increasing height within the stem. All demarcation ages in 

these studies were calculated utilising the whole ring mean density, the lack of results for 

microfibril angle is most likely due to the difficulty associated with obtaining sufficient 

measurements to perform calculations. The differences in the age of demarcation measured 

between and within studies has been shown to be due to silvicultural practices and site 

location (Fabris, 2000, Macdonald and Hubert, 2002), genotypic variability (Abdel-Gadir and 

Krahmer, 1993) and may also arise due to differences in the implementation of the segmented 

regression method. 

2.3.8 Compression wood 

Compression wood forms on the compression side of a stem in response to an external force 

acting to disrupt the vertical pattern of growth. This can occur through wind forces, growth 

taking place on a slope or in branches, where compression wood is a means for continually 

orientating branching angles (Kwon et al., 2001). There is also some evidence that rapid 

growth may result in the formation of compression wood around the entire stem (Walker, 

1993). An excellent review of many factors regarding the occurrence of compression wood in 

softwoods is given by Timell (1986). Compression wood can be identified due to its wide 

growth rings compared to those of normal wood growing on the opposite side of the stem, an 

off-centred pith and a darker colour due to the increased lignin content (Bowyer et al., 2007). 

In Douglas-fir, compression wood contains shorter tracheids with a rounded outline with 

large intercellular spaces in the cell corner regions (Kwon et al., 2001). While little literature 

exists pertaining to the particular anatomical characteristics of compression wood in Douglas-

fir, it has been shown more generally for softwood species that compression wood is typified 

by a highly lignified S2 layer, the absence of the S3 layer and a higher mean microfibril angle 

(Dinwoodie, 1961, Donaldson et al., 2004, Bowyer et al., 2007). The implications of these 

characteristics on utilisation are a higher compressive strength arising from the increased 

lignin content and a reduced modulus of elasticity and tendency to distort on drying as a result 

of the increased microfibril angle (Timell, 1986, Dhubhain et al., 1988, Walker, 2006). As a 

result of these factors, the presence of compression wood is often seen as negative from the 

perspective of timber quality in sawn structural members. 
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values to stabilise fully. The radial trends and values recorded by Di Luca (1987), Fabris (2000) 

and Gartner et al. (2002) in Douglas-fir correspond well to those shown in Figure 2-6. 

 
Figure 2-6: Change in relative density with age at breast height for several softwood species 

from Jozsa and Middleton (1994) 

 

The high densities recorded near the pith in Douglas-fir and a large number of other species 

are attributed to the morphology of the tracheids within early growth rings which tend to be 

short with a small diameter, causing an increased number of cell walls for a unit volume, and 

due to the increased likelihood of compression wood being formed due to high wind stresses 

on young stems (Kennedy, 1995 in McLean 2008). Longitudinally, Spicer and Gartner (2001) 

and Gartner et al. (2002) found that wood density patterns exhibited similar trends and values 

to those found at breast height in Douglas-fir, with similar results also reported in Balsam-fir 

(Koga and Zhang, 2004), Jack pine (Park et al., 2009) and Norway spruce (Jyske et al., 2008). 

With the use of x-ray densitometry, Jozsa and Middleton (1994) showed intra-ring density 

profiles in Douglas-fir juvenile wood with minimum relative density values of 0.25 in 

earlywood, rising to 0.8 in latewood. In more mature growth rings maximum values in 

latewood reached 0.85. Equivalent ranges and developmental characteristics with age at the 

intra-ring level were found in Douglas-fir by Fabris (2000), Gartner et al. (2002) and 

Lachenbruch et al. (2010). 
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2.4.3 Influence of growth rate on wood density 

The relationship between wood density and growth rate is one that has been studied 

extensively, due to the high level of importance that has been placed on density in the past as 

a predictor of wood quality traits. Zobel and Van Buijtenen (1989) and Zobel and Jett (1995) 

reviewed the results of over 100 studies investigating links between growth rate and density in 

several softwood species. While there were many conflicting results, Zobel and Jett grouped 

findings according to species and noted that within hard pines an increased rate of growth had 

a reduced negative influence on wood density in comparison to the results observed in some 

spruces and firs, a similar observation was made by Zhang (1995). It was however 

acknowledged by Zobel and Jett that several contradictory results had been reported for 

Douglas-fir specifically. 

 

In an early study of the influence of an increased rate of growth on density in Douglas-fir, 

Erickson and Harrison (1974) identified a decrease in density of 10 % compared to control 

trees, following the application of fertiliser at 20 years of age resulting in a 50 % increase in 

ring width. In a study of 12 year old Douglas-fir stems by King et al. (1988), a moderate 

negative linear correlation of -0.53 was identified between an increasing stem diameter and 

density. The study was however limited by the fact that the gravimetrically determined density 

was only evaluated on the outer four growth rings of each tree. A more in depth analysis of 

intra-tree density on 360 Douglas-fir stems was conducted by Abdel-Gadir (1991), in which x-

ray densitometry was used to determine values in juvenile and mature wood, with 10 growth 

rings from each region assessed per tree. The results showed that there was no relationship 

between the rate of growth and whole ring density in either juvenile or mature wood. It was 

however noted that an increasing ring width was moderately negatively correlated with 

earlywood density in the juvenile region, with an equal and opposite result observed in the 

latewood. Loo-Dinkins et al. (1991) found a relationship of decreasing density with the 

increasing volume of 16 year old Douglas-fir discs. While the results give only a broad 

overview, an increase in volume can be directly related to increasing growth rate, assuming the 

variable thickness of discs was accounted for. Moderate negative correlations between 

increasing bole volume and density were also reported by Vargas-Hernandez and Adams 

(1991). 

 

Perhaps the most extensive study to date regarding the influence of an increased growth rate 

on density in Douglas-fir was conducted by Fabris (2000), with differences in the rate of 

growth being primarily induced as a result of variations in the initial spacings of sample trees. 
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By investigating relationships within individual growth rings, Fabris was able to conduct 

analysis at a greater resolution than seen previously. It was noted at all cambial ages assessed, 

that a negative relationship between increasing ring width and whole ring mean density 

existed. The strength of the relationship did however vary, from weak statistically non-

significant linear correlations, to correlation coefficients in excess of -0.5. The majority of the 

non-significant results were found within the mature wood. Earlywood density was found to 

exhibit some moderate positive correlations within the juvenile wood, with moderate negative 

relationships present within the mature wood. The reverse was true of the latewood density, 

however no explanation was given for these differences in behaviour. While a number of 

other anatomical features were studied by Fabris, those relating to tracheid dimensions and 

their changes with growth rate, with the exception of tracheid length, were not assessed. As 

such it is not possible to fully interpret the causes of the behaviour observed.  

2.5 Wood microfibril angle 

2.5.1 Measurement of wood microfibril angle 

Techniques for measuring the angle of cellulose microfibrils with respect to the longitudinal 

orientation of tracheids are numerous, with comprehensive reviews given by Barnett and 

Jeronimidis (2003), Barnett and Bonham (2004) and Donaldson (2008). Methods can broadly 

be grouped into two types, those which rely on polarised light techniques to study the optical 

properties of crystalline cellulose, and those which directly or indirectly visualise the 

orientations of microfibrils (Donaldson, 2008). The polarisation technique was among the first 

to be used to assess microfibril angle in softwoods, being employed in the pioneering work of 

Preston (1934) and several subsequent studies (e.g. Page, 1969, Leney, 1981, Donaldson, 

1991). The technique utilises the birefringent1 nature of crystalline cellulose. By illuminating a 

single cell wall with polarised light and subsequently viewing it through a microscope with a 

polarising filter crossed to the polarisation direction of the incident light, it is possible to 

calculate the angle of the microfibrils. This is done by rotating the fibre until the cell wall 

becomes dark, at which point the microfibril angle is that which exists between that of the 

fibre and the incident light polarising filter. A limitation of the method is that the polarised 

light must only be passed through single cell walls. To overcome this, several preparation 

techniques have been developed, such as the cutting of slide mounted tracheids with a fine 

blade (Preston, 1934) or reflecting the incident light using mercury forced into tracheid lumens 

(Page, 1969). 

                                                        
1 A birefringent material is one which refracts an incident light wave in two distinct directions 
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While it is not possible to directly visualise cellulose microfibrils with the use of a light 

microscope, there are several physical and chemical treatments that can be applied to wood 

tracheids to allow for indirect visualisation. A commonly used indirect method is iodine 

staining. Originally utilised by Bailey and Vestal (1937) and developed by Senft and Bendtsen 

(1985) to allow for easier application to a large number of specimens. The method involves 

placement of thin microtomed sections into an iodine-potassium-iodide solution, which are 

then removed and nitric acid added which results in the formation of iodine crystals. These 

crystals have been shown to form within cavities in the cell wall of the S2 layer at the boundary 

with the S1 layer (Donaldson and Frankland, 2004) following the orientation of cellulose 

microfibrils. When viewed through a light microscope the angle of crystals can be used to 

infer the orientation of the microfibrils. Chemical treatments, including the placement of 

specimens in Congo Red (Huang, 1995) and various transition metal salt solutions (Wang et 

al., 2001), have also been used to aid the visualisation of checks formed in the cell wall 

induced by ultrasonic treatment, which follow the angle of S2 layer microfibrils. While good 

results in detecting the microfibril angle were reported in all studies using chemical treatments, 

the methods have also been noted to be time consuming in the preparatory stages and the 

production of results is inconsistent. 

 

The angle of tracheid pit apertures are regarded as being closely aligned with the angle of  

cellulose microfibrils (Donaldson, 2008), so their orientation with respect to that of the 

longitudinal tracheid orientation has been used as a measure of microfibril angle (e.g. Cockrell, 

1974). After the preparation of microtomed timber sections from which measurements are to 

be taken, the recording of results is relatively simple and can be conducted with a normal light 

microscope. Typically, the pit aperture method is only reliable for estimating the fibril angle in 

latewood tracheids (Huang 1997), due to pit apertures having a greater elongation in this 

region and therefore being easier to measure (Donaldson, 2008). This can lead to results 

which are not fully representative, due to the variation in angle that occurs within a growth 

ring from early to latewood. A further potential difficulty related to the use of this method is 

that in some tracheids, pit apertures may not be found in sufficient quantities to allow reliable 

results to be gained (Senft and Bendtsen, 1985). 

 

In work conducted by Donaldson and Xu (2005) and Lacrosse (2010) it was demonstrated 

that with the use of transmission electron microscopy that cellulose microfibrils within the cell 

wall could be directly visualised and their angle measured. The methodology used offered the 

advantage that microfibrils could be assessed in all three secondary cell wall layers, however 
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variation of the cellulose microfibril angle are limited in Douglas-fir. This can be attributed to 

the difficulty in measurement and the long perceived notion that density was the prime 

determinant of wood quality. Of the studies that have been conducted, all focus on variations 

in the S2 layer, due to its high proportion within the cell wall. Utilising a polarizing microscope, 

Erickson and Arima (1974) observed a trend of decreasing microfibril angle in the S2 layer 

within the tangential walls of latewood Douglas-fir tracheids, with average values of 32° near 

the pith, falling to 7° by the 30th growth ring. Fabris (2000) documented a similar decrease 

over the first 33 growth rings in Douglas-fir earlywood tracheids, measuring the angle of 

induced checking on the radial cell wall. While providing insightful data, both of these studies 

were limited by the restrictions of the measurement techniques used. The differences between 

the microfibril angle within Douglas-fir early and latewood have been shown by Ifju and 

Kennedy (1962), Lofty et al. (1973) and Lachenbruch et al. (2010), with the microfibril angle in 

latewood found to be lower in all cases. In the study of 183 mature specimens with a mean age 

of 29 years conducted by Lachenbruch et al., microfibril angles of 16.3° and 11.8° were 

recorded in the earlywood and latewood respectively. However no documented results were 

found regarding the developmental profiles with age of intra-ring microfibril angles. The trend 

of a decreasing microfibril angle with increasing cambial age, and from early to latewood 

within growth rings, has also been documented for other softwood species including Loblolly 

pine (Bendtsen and Senft, 1986), Norway spruce (Lundgren, 2004, Saren et al., 2004), Radiata 

pine (Donaldson, 1992), and Sitka spruce (McLean, 2008). This pattern of a decreasing 

microfibril angle with age has been attributed to the need of young shoots to have a greater 

flexibility and therefore lower stiffness, to enable them to better survive forces due to wind 

and passing animals (Barnett and Jeronimidis, 2003). No documented data was found 

regarding changes in microfibril angle with increasing longitudinal position within Douglas-fir 

trees, however in other species including Loblolly pine (Jordan et al., 2005) and Radiata pine 

(Donaldson, 1992), it was found that for growth rings of an equivalent cambial age a decrease 

in microfibril angle took place with increasing height in the stem. 

 

Due to the limited proportions found within the cell wall and the difficulty in measuring 

properties, fewer studies have been conducted evaluating the angles of microfibrils within the 

S1 and S3 layers. Unlike the systematic variation from pith to bark seen in the S2 layer 

microfibril angle, no such trend is thought to exist within the S1 and S3 layers aside from that 

which occurs within each cell wall in moving from an S to a Z helix (Donaldson, 2008). A 

large range of values for microfibril orientation have been reported in the layers, with potential 

differences due to methodology and species likely. From the values presented a range of 
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references to modulus of elasticity in this work refer to flexural values, unless noted otherwise. 

The modulus of elasticity is influenced by moisture content, with a decrease noted up to the 

fibre saturation point (Dinwoodie, 2000), the presence of knots (Vikram et al., 2011) a sloping 

grain (Pope et al., 2005) and due to variations in anatomical properties, as discussed in Section 

2.7. Due to the fibrous nature of wood, timber is an orthotropic material, meaning that it has 

unique and independent mechanical properties in the longitudinal, radial and tangential 

directions (FPL, 1999), with the longitudinal modulus of elasticity of fibres being that which is 

most closely associated with flexural values, due to the fact that tracheids are typically aligned 

near to parallel with the longitudinal dimension in sawn sections (Barnett and Jeronimidis, 

2003).  

 

No documented data regarding the change in modulus of elasticity with increasing cambial age 

or height was found for Douglas-fir. The results for several other softwood species obtained 

with the use of defect free small clear specimens including Black spruce (Alteyrac et al., 2006), 

Loblolly pine (Bendtsen and Senft, 1986), Maritime pine (Machado and Cruz, 2005), Radiata 

pine (Cown et al., 1999, Tsehaye et al., 2000, Xu and Walker, 2004) and Sitka spruce (McLean, 

2008) have shown that large increases, typically of up to 100 % of values obtained nearest the 

pith, are common within the juvenile wood. Rates of change were noted to reduce 

significantly with greater cambial age into the mature wood. It was found by Barrett and 

Kellogg (1991) in Douglas-fir that as the proportion of juvenile wood in structural sized 

sections increased, the modulus of elasticity decreased. Both Tsehaye et al. (2000) and Xu and 

Walker (2004) studying mechanical properties in Radiata pine identified little change in 

modulus of elasticity with height in the stem. Mean values of modulus of elasticity for 

Douglas-fir trees, determined utilising clear wood specimens, have been published, as 

summarised in Table 2-2. 

 

From the data presented it can be observed that the mean modulus of elasticity values for 

Douglas-fir grown within the United Kingdom are lower than many of the values documented 

in studies conducted on material from other sources. While insightful, the work conducted by 

Lavers (1983) on timber derived from the United Kingdom is limited, in that it does not allow 

for an in-depth understanding of mean property variations with age, and there is no indication 

from where in the stem material was obtained. This limitation also extends to data presented 

for material from other geographic locations, so direct comparisons between locations are not 

possible. 
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within juvenile wood (Ivkovi et al., 2009) and mature wood (Lachenbruch et al., 2010) that 

density is more strongly associated with increases in flexural strength than microfibril angle. It 

was shown for the modulus of elasticity however that, within the juvenile wood, a decreasing 

microfibril angle is a key determinant of rising modulus (Baltunis et al., 2007, Ivkovi et al., 

2009, Via et al., 2009) while in mature wood, density was more strongly associated with any 

continuing increases in the modulus of elasticity (Lachenbruch et al., 2010). Results relating 

compressive strength and anatomical characteristics are scarce. While insightful, these 

previously documented results are of limited use with regard to understanding the interactions 

occurring across the entire stem, due to the fact that in all but the work conducted by Via et 

al. (2009), relationships were only assessed within the juvenile or mature wood. As a result of 

this, it was clearly stated by Lachenbruch et al. (2010) in a study of Douglas-fir mature wood, 

that further research is needed to learn whether the relationships of anatomy to the modulus 

of elasticity and flexural strength differ in juvenile wood from those in the mature wood of 

Douglas-fir. 

2.8 Factors influencing variability in wood properties within 

and between sites 

While the focus of this study is the investigation of within tree variations and interactions 

between Douglas-fir properties, an understanding of the factors within and between sites that 

may induce variability in results may aid in their interpretation. Macdonald and Hubert (2002) 

reviewed several factors influencing timber quality in Sitka spruce, which can be separated into 

three categories; silvicultural practices, site factors and differences relating to genetics. 

Silvicultural practices include initial spacing, thinning and pruning. In studies investigating the 

influence of tree spacing conducted on Douglas-fir grown in Germany (Hein et al., 2008) and 

North America (Fabris, 2000, Briggs et al., 2007) wider spacing had a positive relationship 

with breast height diameter, the diameter of the thickest branch, live crown ratio and crown 

diameter as a result of reduced competition with adjacent trees and hence increased availability 

of light and nutrients. Thinning interventions, in which trees are selectively removed from a 

site, also reduces inter-tree competition. Thinning prior to crown closure has effects similar to 

those seen for wider initial spacings, while post closure thinning, when lower stem branch 

mortality and the transition from juvenile to mature wood production may have already 

occurred, allows for the production of knot free wood in the lower region of the stem 

(Macdonald and Hubert, 2002). The silvicultural intervention of branch removal, known as 

pruning, and its resulting implications on wood quality has also been studied in Douglas-fir. 
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characteristics, have been developed for their prediction. In one of the earliest documented 

studies modelling the behaviour of wood, Price (1929) represented the cellular structure as a 

series of hollow cylinders to explain anisotropic behaviour. The study identified many of the 

features responsible for the variability in behaviour, however as a result of the limited 

knowledge of the fine structure and its properties at the time, no numerical predictions were 

made. One of the first models to adopt the concept of modelling wood cells as a composite 

structure, with microfibrils embedded in a reinforcing matrix, was produced by Barber and 

Meylan (1964). While used for the prediction of anisotropic shrinkage rather than elastic 

properties, and only considering the S2 layer as a flat sided slab, the concepts employed form 

the basis for many of the more advanced models that have been developed since. It was with 

the use of a similar two phase composite model that Cave (1968) demonstrated the 

importance of the cellulose microfibril angle as a controlling factor of cell wall elasticity. Early 

models taking into account the multi layered laminated structure of the cell wall were 

developed by Schniewind (1966) and Mark (1967). Improvements in the availability of 

computational processing, and a greater understanding of the properties of the chemical 

constituents and varying characteristics of each of the cell wall laminates, allowed Salmén and 

De Ruvo (1985) to show the influence of fibril angle variations within the S1 and S3 layers on 

cell wall longitudinal modulus, as well as variations within the S2 layer. This has lead to the 

development of advanced cell wall models, such as that produced by Bergander and Salmén 

(2002), in which the double cell wall of the native wood structure was modelled as a nine 

layered laminate, accounting for differences in thickness, fibril angle and the proportions and 

properties of the chemical constituents for the prediction of elastic behaviour. 

 

One limitation of the models described above when modelling the elastic properties of 

softwoods, is that they do not allow for consideration to be given to other important factors 

which influence these properties in real specimens. These include cell wall thickness, cell 

dimension and the proportions of early, transition and latewood bands. As a result of this, 

multi-scale models that allow these factors to be accounted for have been developed. A good 

example of such a model is that created by Astley et al. (1998), in which composite laminate 

theory and finite element analysis was used to model each cell wall, while cellular geometries 

were generated from transverse micrographs of real cells. A similar multi-scale modelling 

approach was adopted by Persson (2000), utilising both real cell micrographs and a model 

based on hexagonally shaped tracheids, with comparable results achieved between the two 

approaches. A hexagonal honeycomb structure was also adopted by Qing and Mishnaevsky Jr 

(2009). In an alternative approach, Guitard and Gachet (2004) utilised a rectangular structure 
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to represent the tracheid cells for the calculation of elastic properties. In their work Decoux et 

al. (2004) compared both hexagonal and rectangular structures for modelling cellular 

geometries, and found that the results achieved were comparable. In reality, the adoption of 

one specific cell organisational structure is unlikely to be able to fully replicate that which is 

found within a real wood specimen. For this reason the taking of wood micrographs 

represents the best way to truly capture the variable nature of the cellular structure, however 

this also has the disadvantage of the time intensive nature of analysis and replication for each 

individual specimen.  

 

The results generated in many of the models described above have been shown to compare 

favourably to those obtained through testing the elastic properties of single fibres (e.g. Salmén 

and De Ruvo, 1985) and those determined through the testing of larger specimens (e.g. Astley 

et al., 1998). However, in most cases a comprehensive validation of the effectiveness of the 

models in predicting properties was not possible, due to either a lack of data pertaining to the 

exact cellular structure and microstructure of a specimen, or the mechanical properties of 

specimens relating to the assessed anatomical properties. 

2.10 Concluding remarks 

In this review of literature it has been shown that an extensive range of research has been 

conducted into many factors relating to the anatomical and mechanical properties of 

softwoods. For Douglas-fir, the intra- and inter-growth ring variability of some parameters, 

such as density, is relatively well understood. However, limitations in measurement techniques 

have resulted in a poor understanding of the ways in which properties such as microfibril 

angle vary within the stem. It is also the case that while typical means and ranges for 

mechanical properties are widely reported, knowledge of their variability within the stem and 

the potential implications that this may have for utilisation is relatively limited. Few studies 

were found in the literature documenting the properties of Douglas-fir grown within the 

British Isles. Given that the climatic conditions found within the area of focus of this work, 

the South West of England, are typically much drier with a smaller range of annual 

temperatures, it is wrong to assume that the properties reported from locations where the 

species is grown natively will be comparable to those within the study region. 

 

While density has been widely reported to be the best single indicator of wood mechanical 

properties, many of these conclusions were drawn without assessment of microfibril angle. 

The microfibril angle has theoretically been shown to also be an important determinant of the 
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mechanical behaviour of wood, but there is limited experimental data to verify cell wall 

models and show property variations between juvenile and mature wood. Gaining a deeper 

understanding of the interactions that exist between these anatomical and mechanical wood 

properties, and their variations within the stem, therefore presents numerous opportunities for 

improvements in both efficient processing and utilisation of timber. 
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Chapter 3 - Materials and methods 
 

 

3.1 Introduction 

In this chapter descriptions of the methodologies used in the collection and analysis of 

experimental data are given. The techniques employed to select and sample test trees are first 

presented. This is followed by an account of the steps taken in the preparation and analysis of 

specimens utilising the SilviScan-3 system to evaluate anatomical properties, and the flexural 

and compression tests employed to determine mechanical properties. Finally, the various 

statistical techniques employed in the analysis of the experimental data are described. 

3.2 Selection of sample trees 

3.2.1 Sample site selection and characteristics 

In order that the results obtained from this study were relevant to the Douglas-fir resource 

found within the South West of the United Kingdom, sample sites from which to extract test 

trees were split into two categories. The first was those containing trees in the age range of 40 

- 50 years and the second those containing trees > 50 years of age. These age ranges were 

established based on the findings of an assessment of the conifer resource within the South 

West (Forest Research, 2009), which showed that selecting trees within the 40 - 50 year age 

range would capture the current peaks in the Douglas-fir age distributions in both public and 

private estates. An age of 50 - 55 years is also commonly regarded as an optimal felling age for 

Douglas-fir (e.g. Coed Cymru, 2007) when calculated from the perspective of mean annual 

volume increment1. However, as forest management practices develop towards those which 

utilise a mixed age stand structure, as discussed by Macdonald et al. (2010), a greater number 

of trees that have exceeded the optimal felling age calculated using the mean annual increment 

                                                        
1 The mean annual volume increment is the average volume production per year for a forest area, the 
maximum value being a measure of greatest productivity. 








































































































































































































































































































































































































































































































































































































































































