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Summary  
 
Hybrid models are those containing continuous and discontinuous behaviour. In 
constructing dynamic systems models, it is frequently desirable to abstract 
rapidly changing, highly nonlinear behaviour to a discontinuity. Bond graphs 
lend themselves to systems modelling by being multi-disciplinary and reflecting 
the physics of the system. One advantage is that they can produce a mathematical 
model in a form that simulates quickly and efficiently. Hybrid bond graphs are a 
logical development which could further improve speed and efficiency. A range 
of hybrid bond graph forms have been proposed which are suitable for either 
simulation or further analysis, but not both. None have reached common usage. 
 
A Hybrid bond graph method is proposed here which is suitable for simulation as 
well as providing engineering insight through analysis. This new method features 
a distinction between structural and parametric switching. The controlled 
junction is used for the former, and gives rise to dynamic causality. A controlled 
element is developed for the latter. Dynamic causality is unconstrained so as to 
aid insight, and a new notation is proposed.  
 
The junction structure matrix for the hybrid bond graph features Boolean terms 
to reflect the controlled junctions in the graph structure. This hybrid JSM is used 
to generate a mixed-Boolean state equation. When storage elements are in 
dynamic causality, the resulting system equation is implicit. 
 
The focus of this thesis is the exploitation of the model. The implicit form 
enables application of matrix-rank criteria from control theory, and control 
properties can be seen in the structure and causal assignment. An impulsive 
mode may occur when storage elements are in dynamic causality, but otherwise 
there are no energy losses associated with commutation because this method 
dictates the way discontinuities are abstracted.  
 
The main contribution is therefore a Hybrid Bond Graph which reflects the 
physics of commutating systems and offers engineering insight through the 
choice of controlled elements and dynamic causality. It generates a unique, 
implicit, mixed-Boolean system equation, describing all modes of operation. This 
form is suitable for both simulation and analysis. 
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Nomenclature  
 

A The A-matrix in the standard Linear Time Invariant system equations 
B The B-matrix in the standard Linear Time Invariant system equations 
BGD Bond graph in preferred derivative causality 
C The C-matrix in the standard Linear Time Invariant system equations 
D The D-matrix in the standard Linear Time Invariant system equations 
D The vector of all input/output variables to the resistance field 

outD      The input vector to the system from the resistance field in static causality  
             (composed of e or f from the dissipative elements) 

oute _D~   The effort input vector to the system from the resistance field in dynamic          

             causality (composed of  e from the dissipative elements) 

outf _D~  The flow input vector to the system from the resistance field in dynamic          

             causality (composed of  f from the dissipative elements) 

inD       The output vector from the system to the resistance field in static   
             causality (composed of e or f to the dissipative elements) 

ine _D~   The effort output vector from the system to the resistance field in dynamic   

             causality (composed of e to the dissipative elements) 

inf _D~   The flow output vector from the system to the resistance field in   

             dynamic causality (composed of f to the dissipative elements) 
d Subscript denoting derivative causality 
E The E-matrix in the standard Linear Time Invariant system equations 
e Generalised effort variable on a bond 
f Generalised flow variable on a bond 
F The matrix characterising the storage field. In the LTI case, this is a 

diagonal matrix of the linear coefficients for storage elements (relating 
the states to their complements) 

G Ground  
G Gain 
i Subscript denoting integral causality 
in Subscript denoting input 
k Number of zero (structurally null) modes 
L The matrix relating the outputs to inputs of the resistance field. In the LTI 

case, this is a diagonal matrix of the linear coefficients for resistance 
elements. 

L The linear coefficient for a single Inertia (I-element)  
M Mass 
MTF Modulated Transformer element 
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integrated by a solver. When rapidly-changing behaviour is described by a 
continuous differential equation, it must be integrated using very small time steps 
in order to achieve any level of accuracy. Replacing rapidly-changing behaviour 
with a discontinuous equation can therefore aid solvability and improve 
computer simulation times.  
 
In addition, a user may find it intuitive to think of certain elements (like an 
electrical switch or hydraulic valve) or phenomena (such as contact, dry friction 
or breakage) as discontinuous. 
 
 

1.2.3 Hybrid Bond Graphs 
 
A hybrid bond graph has the potential to model complex multi-disciplinary 
nonlinear systems by encompassing the advantages of bond graph modelling (as 
a tool for intuitive, acausal, port-based, multi-disciplinary modelling) and hybrid 
modelling (as a method for treating highly nonlinear and discontinuous 
problems). 
 
The standard bond graph notation has been extended by several authors to 
describe highly nonlinear systems (via field elements) and ideal switches. The 
latter is particularly interesting since it gives rise to the Switched or Hybrid Bond 
Graph.  
 
The Switched or Hybrid Bond Graph is achieved using an ideal switch with some 
kind of Boolean modulation or control. A variety of methods for formalising this 
have been proposed in the literature, but no single method has reached common 
usage or inclusion as a standard element in a bond graph software tool. An issue 
which provokes discussion is that of dynamic causality, which occurs when the 
causality assignment differs according to the states of the switches. Another is 
the treatment of variable topology problems such as contact, where the size of the 
mathematical model literally changes. Some methods have been proposed for 
computer simulation, which sacrifice the insight gained from the idealised 
physical bond graph model by using parasitic elements or transferring the model 
to another environment. Other methods have been proposed which give a 
mathematical model for each mode of operation (defined by the states of the 
switches) but cannot yield a simulation, or require additional computation to link 
the models of each mode.   
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1.3 Problem Formulation 
 
The goal of this research is to show how bond graphs could be used to analyse 
aircraft systems such as a landing gear, which are inherently highly nonlinear and 
would normally be abstracted to include discontinuous behaviour. In order to 
achieve this, the existing proposals for a Hybrid Bond Graph had to be reviewed 
to find a method which facilitated simulation as well as reflecting the physics of 
the system and providing some engineering insight.  
 
The following objectives were therefore defined: 
 

1. To propose a method for constructing a Hybrid Bond Graph which 
reflects the physics of the system, and is suitable for analysis and 
simulation purposes.  

 
2. To validate this approach by deriving standard forms of mathematical 

model for the Hybrid Bond Graph, and comparing them to the existing 
literature on mathematical models. 

 
3. To exploit the Hybrid Bond Graph and its causality assignment to derive 

information about the mathematical model.  
 

4. To apply the method to a selection of illustrative case studies. 
 
 
 

1.4 Outline  
 
This thesis falls naturally into three parts: Background, Construction & Analysis 
of Hybrid Bond Graphs, and Case Studies.  
 
The background to the project covers an extensive volume of existing literature, 
detailed in Chapter 2. An overview of hybrid modelling is given, followed by the 
development of switched and hybrid bond graphs. There are several variations on 
the latter, which are discussed with reference to the necessary considerations of 
dynamic / static causality assignment, impulses on commutation, and the 
graphical advantages of bond graphs. Aspects of classical and modern Control 
theory (which will be used in the analysis of bond graph models) are presented, 
along with their use on standard and hybrid bond graphs to date.  
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Figure 1: The Junction Structure of the General Bond Graph 
 

 
 

   (12) 

 
Where X is a vector of state variables, and the subscripts i and d denote integral 
and derivative causality. Z is the complement of the state variables, and D is the 
inputs and outputs (denoted in and out) from the resistance elements. U is the 
external inputs. 
 
Once the bond graph is represented in a matrix format, model equations in more 
familiar forms can be derived from it, as demonstrated by Rosenberg [89] and 
Sueur and Dauphin-Tanguy [97]. The former gives general equations and the 
latter gives the familiar LTI form.  
 
In establishing control properties for bond graphs, the submatrices of S will be 
referred to. These submatrices establish whether relationships exist between the 
storage, resistance and source elements.  
 
 

2.6.6 Use of Canonical Forms from Bond Graphs 
 
A popular analysis in the Bond Graph literature is the use of Kroenecker 
Canonical Form, which can split the system into known and unknown dynamics, 
for which there is an analytical answer [56]. Mosterman uses a pseudo-
Kroenecker form in HyBrSim to reinitialise state variables after commutation 
[45]. It is a useful form because the Dirac pulses manifest. Buisson et al [98] use 
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the use of switching sources and elements in the literature. There is a strong case 
for treating it as parametric switching.  Here the dynamic causal assignment is 
key: disconnecting a voltage or current source can force electrical storage 
elements to discharge, which is consistent with them switching to derivative 
causality. The controlled junction proposed for structural switching clearly shows 
where structure is disconnected and ideal causality assignment changes with 
commutation. 
 
 

3.2.3 The Controlled Junction for Structural Discontinuities 
 
Structural switching activates or deactivates part of a system, and a controlled 
junction can be used to (dis)connect or (de)activate part of the model 
accordingly. Controlled junctions, defined by Mosterman and Biswas [40], are 
recommended by other authors [36, 56] as an intuitive and physically correct 
representation for discontinuities. They were selected here to represent structural 
switching because they clearly show where structure connects and disconnects, 
and breaks the path of power flow. This is not only important from the point of 
view of engineering insight, but the controlled junction lends itself to being 
represented in the junction structure matrix and hence developing hybrid system 
equations. 
 
A controlled junction behaves as a normal 1- or 0-junction when ON and a 
source of zero flow or effort (respectively) when OFF. A controlled 1-junction is 
therefore used to break or inhibit flow (for example, an electrical switch which 
breaks the flow of current) and a controlled 0-junction is used to inhibit effort 
(for example, a clutch or other physical non-contact in a mechanical system). 
This always gives rise to dynamic causality on one of the attached bonds. The 
commonly accepted notation for controlled junctions is X1 and X0, which will 
be used in this paper.  
 
Based on the above description, controlled junctions X1 and X0 can be formally 
defined as 2-port elements with associated Boolean parameters . They are 
initially defined as 2-ports for clarity, and it can be seen that they bear a striking 
resemblance to the Boolean modulated transformer. However, the definition can 
easily be extended to more than 2 ports. The bond graph representations of 
controlled junctions X1 and X0 are as shown in Figure 1, and their defining 
relationships are given by Equations (16) and (17), respectively. 
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a) Full model b) Simplified 
  

Figure 5: An Example System with a Ground. 
 
 
 
 

 

 

a) Full model b) Simplified 
 

Figure 6: An Example System with a Ground and a Controlled Junction. 
 
 

 

3.2.5 A Dynamic Causality Assignment Procedure 
 
Causality in a bond graph is typically assigned using the Sequential Causality 
Assignment Procedure (SCAP) [3]. Using controlled junctions, dynamic causality 
is unavoidable. However, dynamic causality can be minimised (without 
artificially constraining it) in order to generate the smallest possible set of 
equations. Low et al [36] observe that dynamic causality can be minimised when 
a 1-port element is on the junction and propose SCAPH for hybrid bond graphs. 
However, their assertion that static causality can be maintained only applies to 
their method of deleting the controlled junction when it is OFF, potentially 
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(b) The junction shown by null 

sources in the OFF position 
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(c) The causality assignment gained 

when the switch is deleted in the 
OFF position (I remains in integral 

causality) 
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(d) The proposed method for 
showing dynamic causality 

  
Figure 7: An Example of Causality Assignments and their Effect around a 

Controlled Junction  
 

 
 
The causality assignment procedure for the hybrid bond graph proposed in this 
paper starts with a reference mode of operation. This is defined with a maximum 
number of elements in integral causality, and controlled junctions preferably ON. 
This is the mode which should be easiest to simulate. Deviations from this 
reference due to dynamic causality are marked as dashed causal strokes. This 
enables the user to see the effects of commutation on causality, and aids in 
equation generation. The Dynamic Sequential Causality Assignment Procedure 
(DSCAP) to represent all modes of a hybrid bond graph model can be 
summarised in the following procedure. 
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Procedure 1: Dynamic Sequential Causality Assignment Procedure 
(DSCAP) for hybrid bond graph 
 
Step 1)  Assign causality according to SCAP with preferred integral causality, 

stopping when a controlled junction is reached. i.e. start by assigning 
causality to a source element, and propagate causality throughout the  
bond graph as far as any controlled junctions. Repeat for other source 
elements, and then for any storage elements which have not yet been 
assigned causality. If causal conflict occurs in this stage, the model 
should be changed. 

 
The causal assignment from step 1 may dictate whether some switches are ON or 
OFF. 
 
Step 2)  Choose a controlled junction which does not have its causality fully 

assigned. Assign causality around the controlled junctions assuming the 
switch to be ON (as indicated in Table 1) and propagate as far as possible. 
Repeat this stage until all controlled junctions have their causality fully 
assigned.   

 
Step 3)  Finish propagating causality throughout the bond graph to any resistance 

elements or remaining bonds and propagate as far as possible.   
 

Step 4)  Taking each controlled junction in turn, consider the causality 
assignment when it is in the other state to the reference configuration. 
Mark this causality assignment with a dashed causal stroke, and 
propagate throughout the bond graph (Figure 7d). If causal conflict occurs 
in this stage, then the other state of the controlled junction is not allowed. 

 
Remark: Causal propagations in step 2 and step 4 of the algorithm above may 
dictate the state (ON or OFF) of some controlled junctions as a result of the 
assigned state of others. This reveals some constraints in the state of switches 
indicating the allowed configurations or physically feasible modes of operation. 
   
 
Figure 7 shows a simple example of the effect of the causality assignment around 
a controlled junction when ON and OFF. The representation is compared in this 
example with the method of deleting the switch when OFF as proposed by Low 
et al [36].   
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Table 5: Proposed Constituent Equations for Controlled Elements (General 
Case) 
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3.3 Implicit Formulation of the Hybrid Junction Structure Relation 

3.3.1 Pseudo-States and Dynamic Causality 
 
Recall that, for a regular (causally static) bond graph, the inputs and outputs to 
the system from the various elements are used in generating equations. 
Specifically, the inputs to the system from the storage fields (i.e. the outputs of 
the compliance and inertia elements in integral causality) are usually taken as the 
time-derivatives of the state variables. The state variables are consequently 
displacement (for compliance elements) and momentum (for inertia elements). 
When elements are in derivative causality, the state equations are no longer 
independent: there are dependent states associated with the elements in 
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 (34) 
 
The resulting state equation for one mode can be manipulated and analysed for 
the properties of that mode as already described extensively in the literature.  For 
example, it can be put into Smith or Kroenecker Canonical forms to allow 
inspection of the dynamics.  
 
 

3.5.2 Properties of the General Model 
 
Equation (32) is comparable to the upper rows of the implicit state equation 
derived by Buisson et al [98] using switched sources. In their model, the 
additional lower rows relate to the switch states whereas here the switching 
manifests in the submatrices of S.  
 
It follows that structural properties (observability and controllabil ity, asymptotic 
stability, and dynamic properties such as gain and the number of zeros and 
poles), can be functions of structural switching. This is investigated in more 
detail in chapter 4. 
 
 

3.6  Comparison with Switching Sources and the Non-Ideal 
Approach  

 
The Literature Review (Chapter 2) highlighted that the bulk of work to date on 
hybrid bond graph structural analysis has been conducted using switching 
sources. This section compares equation generation from a switched bond graph 
as developed by Buisson et al [98] with the one obtained in this paper and also 
investigates how the ideal controlled junction can be modified to account for 
dissipative effect on commutation.  
 
 

3.6.1 Implicit State Equations 
 
The methods differ significantly in that hybrid bond graphs constructed using 
switching sources are built for an initial (reference) mode, and subsequent modes 
of operation are derived from it. By contrast, the method presented here builds a 
model for all modes, and derives the equations for a single mode after.  
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Chapter 4: Analysis of the Hybrid Bond Graph 
 

4.1  Preliminaries 
 
This chapter identifies the structural properties of the hybrid bond graph with 
dynamic causality.  
 
It is well-documented that system properties can be established from the 
structure of the mathematical model (e.g. matrix-rank criteria) and the structure 
of the bond graph and its causal assignment. However, this work has been 
conducted on regular bond graphs and, to a limited extent, on hybrid bond graphs 
featuring switched sources. It is therefore not directly applicable to the hybrid 
bond graph proposed here, and must be reviewed with special consideration 
given to the dynamic causal assignment.  
 
A number of observations on the dynamic causal assignment and its implications 
with regard to exploitation are made. This leads naturally onto deriving the 
transfer function by inspecting causal paths, and other equation generation such 
as the output equation (to complement the unique implicit system equation and 
give a full LTI Descriptor System). The matrices from this equation will be used 
in the subsequent chapters. 
 
Where storage elements are in dynamic causality, there will be an impulsive 
mode. This is shown to only have a value in one of two types of structural 
discontinuity. State variables do not need to be reinitialised in this model. 
 
The control properties (normally found by matrix-rank criteria) are then 
reviewed, using the matrices of the full LTI Descriptor System to confirm the 
properties indicated by the bond graph. 
 
Variable structure systems and their associated impulse losses are addressed. It is 
demonstrated that the controlled junction yields a switching system with no 
inherent impulsive loss. 
 
Control engineering is a continuously evolving field, and this chapter covers only 
the basics of what may be observed on the bond graph. There is tremendous 
scope for future work on nonlinear models, stability, defining observers, and 
other aspects of dynamic analysis and control. 
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The causality assignment in Figure 17a) results in a static causal path between 
Body 1 and the spring. The equally legitimate causality assignment in Figure 
17b) does not have this static causal path. Instead, there is a causal path between 
the spring and Body 1 only when the controlled junction is OFF. When the 
controlled junction is ON, this path no longer exists but another causal path 
appears between the spring and Body 2. Inspecting the structure and causality of 
the systems (using the notation in Figure 18) yields the equations in Table 8. It 
can be seen that the first set of equations is more elegant and concise. The second 
set still relates the spring to Body 1, but when the controlled junction is ON this 
is done via the algebraic constraint between the bodies.  
 
 
 

 
 

a) Body 2 in Dynamic Causality 
 
 

 
 

b) Body 1 in Dynamic Causality 
 
Figure 17: Hard Contact with a Causal Path (indicated by arrow) affected 

by Causality Assignment 
 
 
 
 

 
 

Figure 18: Notation used in Equation Derivation for the Hard Contact 
Example 
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4.3 Further Equation Derivation 
 
It has already been shown in Chapter 3 that an implicit state equation can be 
found from the Junction Structure Matrix. It was also shown in Section 4.2 that 
the causal assignment can be exploited to give insight to the system. In this 
section, some additional equation derivation activities are carried out to provide 
more information about Hybrid Bond Graph with dynamic causality. 
 
 

4.3.1 Transfer Function Using Shannon-Mason Loop Rule  
 
It is well-documented that causal paths in a bond graph are equivalent to signal 
loops, and a transfer function can therefore be found directly from the causal 
bond graph using Shannon-Mason loop rule [95]. In the hybrid bond graph 
proposed here, commutation clearly affects the causal paths in the model (where 
they cross a controlled junction), and commutation will therefore also clearly 
manifest in the transfer function. By looking at the causal paths present in the 
reference configuration, and then each path of dynamic causality, a transfer 
function for all possible modes of operation can be obtained. Where the paths 
cross a controlled junction, or are induced by a certain combination of operations, 
the relevant Boolean term can be inserted into the expression for gain in the 
transfer function as follows.  
 
 
Property 2: Gain of a Causal Path crossing a Controlled Junction 
 
Where a causal path crosses a controlled junction, the Boolean variable related to 
that controlled junction is a factor of the gain.  
  
 
In constructing the transfer function, causal paths between elements and sources 
are used to generate gain terms in the determinant. Where that path crosses a 
controlled junction, it only exists in the ON state. Multiplying the gain term by 
the Boolean factor ensures it is sent to zero when OFF. An example of this 
situation is shown in Figure 19, where the causal path indicated by the arrow has 

a gain of ICs2 . 
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and the well-known explicit or regular state space equation is generated. For 
models where some storage elements are in derivative or dynamic causality, E is 
singular and the system is an implicit, singular, semistate or descriptor system 
[80]. Hybrid Bond Graphs with storage elements in dynamic causality will 
always generate implicit equations, because the derivative causality cases 
generate algebraic equations with no differential term (and hence a zero term in 
E) and the constraints they represent give off-diagonal coupling terms in E.  
 
The LTI implicit equation gained in Chapter 3 forms one part of a descriptor 
system (equation 38), the other part being given by the output equation (equation 
39).  
 

UXX BAE  (38) 
 

UXY DC  (39) 
 

 
 

The A, B, C, D and E matrices of these equations are used in defining control 
parameters such as controllability and observability, usually using matrix-rank 
criteria [81].  
 
There is no standard output element in the bond graph framework. Some authors 
take an output as being the complementary variable of an input, which is logical 
in systems where source-elements are also used as sinks. A fairly common 
notation is that of Detector-elements (De- or Df-elements) which are essentially 
null sources added to junctions. These act in precisely the same manner as a 
source/sink, and simply have a different notation for clarity. However, output is 
not a property of a system, and the use of detector elements with a power flow 
suggests that sensors are energy-processing.  
 
Consequently, Signal Detectors similar to those in the commercial package 
20Sim are used here, shown in Figure 21. These are not power elements, but take 
a reading from the bond graph via a signal output (marked by a full-arrow), 
usually taken from a common-flow or common-effort junction. There is no 
power flow to or from the detector: it simply takes a flow or effort reading.   
 
Detectors inherently yield outputs that are always efforts and flows, whereas a 
real system may have other output devices such as measured displacements, 
accelerometers or strain gauges, for example. The associated readings can be 
obtained by integrating or differentiating the output signal from a detector 
element. In principle, the output can be any quantity (such as a state) and should 
not be limited to effort or flow variables: the notation (and associated signal 
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integration/differentiation blocks to give other quantities) is proposed for use 
where a detector needs to be recorded on the bond graph. 
 
 

 
 

 

a) The Effort Detector Element b) The Flow Detector Element 
Figure 21: The Detector Element shown taking a Signal from a Bond Graph 

Junction. 
 
 
 
Outputs can be added to the junction structure, shown graphically in Figure 22, 
and hence expressed in terms of the junction structure and system inputs, shown 
in Equation (40): 
 

 (40) 

 
Note that signals are inherently causal (i.e. they have an input and output defined, 
indicated by the direction of the arrow) and an output is always an output. Hence 
detectors are never in dynamic causality and I . Following the same 
derivation as for the implicit state equation, an expression for Din in terms of the 
other elements in the system can be derived: 
 

 (41) 

 
Hence the inD  terms can be eliminated from the system equations. From row 4 of 
(40): 
 

 (42) 

 

Since 1
3333  this can be simplified to: 

 

 (43) 
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Definition 26: LTI Descriptor System for a Hybrid Bond Graph  
 
The LTI Descriptor System is: 

UXY
UXX

DC
BAE  (47) 

 
Where: 

, , , 

 

, . 
 
 
 

4.4  Impulse modes 
 
Recall the implicit equation derived in chapter 3, and compare it to the standard 
implicit equation. 
 

U
X
X

X
X

UXX
 (48) 

 

i.e. , and  

 
 
There is a time-varying term dX��  in the algebraic equations yielded by the 
pseudo-states of the storage elements in derivative causality. This is multiplied 
by zero (by the lower portion of E) to give an algebraic constraint. However, 
where storage elements in derivative causality are coupled to the states (i.e. S12, 
and therefore E12 in the implicit equation, are nonzero), a dX��  term is present and 
the pseudo state is differentiated across the commutation. The pseudo-state is 
nominally assumed to have a zero initial value, and take a non-zero value on 
commutation. This means that there is a step increase in the pseudo-state 
between the initial condition (incrementally before commutation) and the finite 
value it holds at time t (incrementally after commutation). The first row of (48) 
after commutation therefore gives: 
 

 (49) 
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Where:  
 

 and 0 therefore   (50) 

 
Differentiating this step change over zero time yields a mode of infinite 
frequency: this is the impulse mode. 
 
Commutation does not always result in a step change and subsequent impulse 
mode. Recall that the states and pseudo-states are intimately connected: each 
energy-storage element in dynamic causality has both a state variable (active 
when the element is in integral causality) and a pseudo-state (active when it is in 
derivative causality). By considering the type of discontinuity, some observations 
can be made on the relationship between states and pseudo-states. 
 
 
Property 6: Impulses on Type 1 Structural Discontinuities 
 
A type 1 structural discontinuity yields an impulse on initial commutation as two 
subsystems with different dynamic properties become joined and constrained 
(setting a storage element to derivative causality).  
 
When the system returns to its original state on subsequent commutation, there is 
no impulsive mode. 
 
 
For a type 1 structural discontinuity, where bodies are disconnected (OFF) in the 
reference mode and the commutation connects them, the initial value of the 
pseudo-state may indeed be zero if that body was at rest. Alternatively, it may 
have another value if it is controlled by another source or subsystem. There is 
typically an energy loss as the body changes its behaviour suddenly (for example, 
a falling rigid body hitting the ground, or a truck clutch being engaged: both of 
which give an audible loss). In real life - which is continuous - this is a 
measurable dissipation occurring over a finite time (albeit a small one). The 
abstraction to a discontinuity with no resistance is responsible for the impulse 
loss. The equations for an example system are shown in Table 9. 
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Property 7: Impulses on Type 2 Structural Discontinuities 
 
A type 2 structural discontinuity does not yield an impulse on initial 
commutation. In this case, the state of the storage element which switches to 
derivative causality is identical to its value immediately before commutation. 
Hence there is no step change in state variable and no energy loss. 
 
When the system returns to its original state on subsequent commutation, there is 
a step change in state variable. However, this does not manifest as an impulsive 
off diagonal term in the E matrix: it is simply the newly activated iX�� term. This 
term is the output calculated from the state variables and inputs at the current 
time, and there has been no differentiation over a zero time step. Hence there is 
no impulse. 
 
 
In this case, the initial value of the pseudo-state is equal to the [usually finite] 
value of the corresponding state variable immediately before commutation. 
Furthermore, after commutation the pseudo-state is not sent to zero. The 
behaviour of the element may be controlled by some other system, or may tend 
to zero over time (for example, a clutch disconnecting a load which freewheels 
until it finally reaches rest). In this case there is no step change in variable and no 
impulse. However, when commutation occurs again and the disconnected body is 
reconnected to the system (going from zero to a finite value), a step change in 
state variable may then occur. Consider a system with one element in dynamic 
causality, which has just commutated back to the mode in which it is in integral 
causality. Row 1 of the implicit equation (which is now explicit) gives: 
 

 (52) 

 
Here, iX�� is the output, stated in terms of the state variables and input at the 
current time step. Although a step change may have occurred, there is no 
impulsive term in the equation. 
 
Hence each term in E12 potentially represents an impulse mode, but in reality 
there is only an impulse loss where there are type 1 discontinuities. Any 
algorithm for computing impulsive modes must take the variety of possible cases 
into account.  
 
The use of pseudo-states means that the state variable never needs to be 
reinitialised using the algorithms developed by Mosterman [45] or Podgursky 
[55]. In type 1 systems, the pseudo-state variable arises because there is a 
kinematic constraint between two elements, and the pseudo-state of one is equal 
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Impulse controllability has been established by hybrid bond graph practitioners 
such as Rahmani et al. [113] by inspecting the switching sources, which is 
clearly not applicable here as there are none. An equivalent criteria of 
establishing causal paths between controlled junctions and storage elements 
could be stated. However, the impulse modes in the underlying equations no 
longer relate to the switching laws present in the hybrid bond graph with 
switching sources. In this Hybrid Bond Graph, the impulse modes relate solely to 
storage elements in dynamic causality. Impulse controllability, in the classical 
sense, is whether these impulse modes can be controlled by a non-impulsive 
input, verified by the algebraic tests which involve inspecting the ranks of the E, 
A and B matrices. In the discussion of impulse modes (section 4.4) it was noted 
that an impulse does not always occur in the model: it depends on the type of 
discontinuity and commutation.  
 
Recall that impulse modes occur when a storage element is in dynamic causality 
i.e. it switches between integral and derivative causality with commutation. In a 
well-constructed model there would not normally be any elements in static 
derivative causality. 
 
Property 11: Impulse [Infinite] Modes of a Hybrid Bond Graph 
 
The maximum number of impulse modes is given by the number of storage 
elements in dynamic causality: .  
 
 
 
This is an extension of the property for switched bond graphs (using switched 
sources). The number of impulse modes in any single mode of operation is given 
by the number of storage elements in derivative causality. It therefore follows 
that the maximum possible number of impulse modes is given when all possible 
storage elements are in derivative causality, and this is in turn given by the 
storage elements in dynamic causality. Note that this is the maximum for the 
overall model: when some modes are mutually exclusive, there may not be a 
single mode of operation where all impulse modes occur. 
 
Since the impulsive modes only exist when the respective storage element is in 
derivative causality, impulse controllability could be established by a causal path 
(and algebraic relation) between the element and a source (either directly or via 
another element which is controlled) in that mode of operation. Looking at the 
hybrid bond graph, since impulse modes relate to storage elements in dynamic 
causality, this manifests as a causal path (at least part of which will be dashed, i.e. 
dynamic) between a storage element in derivative [dynamic] causality and a 
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Property 15: Structurally Null Modes of a Hybrid Bond Graph 
 
The maximum possible number of structurally null modes is given by the number 
of storage elements which can take integral causality when preferred derivative 
causality is assigned to the bond graph.  
 
This is the number of storage elements in [static] integral causality, plus the 
number of storage elements in dynamic causality in the BGD. 
 

   (53) 
 
 
 
 
This property is a logical extension of the procedure for finding structurally null 
modes in a static bond graph. Recall that placing the bond graph in preferred 
derivative causality yields a mathematical model in an alternative form including 
the inverse of the system matrices (as described in section 2.5.6). When storage 
elements remain in integral causality, it means that A is singular and there are no 
unique solutions to the system of equations. In particular, inspection of the 
characteristic equation reveals that there are k structurally null modes relating to 
the rows of A in which the causal constraints (in the BGD) exist, and these in 
turn relate to the storage elements that remain in integral causality in the BGD. 
The characteristic polynomial for the hybrid system is shown in (54): 
 

  (54) 

 
The k structurally null modes may not be obvious from the Hybrid Bond Graph 
in integral causality. Consider a simple example of two rotating bodies connected 
by a shaft with a clutch fitted. The Hybrid Bond Graph in preferred derivative 
causality is shown in Figure 23. 
 
 

 
 

Figure 23: Example System in Preferred Derivative Causality, with Ideal 
Clutch. 

ON 
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In preferred derivative causality, the reference mode (the mode with most 
elements in derivative causality) occurs with the clutch engaged (ON), in which 
case body 1 is still in integral causality. When the clutch is OFF, body 2 is also 
sent to integral causality. Hence there are two possible structurally null modes, 
with one of them dependent on commutation of the clutch. 
 
 

4.7  Summary 
 
The structural switching and dynamic causality in this proposed hybrid bond 
graph naturally affects structural analysis and exploitation of causal assignment. 
This chapter revisits some of the most common results from these fields with 
respect to the hybrid bond graph.  
 
The dynamic causality assignment has been investigated, and it can be shown 
that there are two types of discontinuities (type 1 and type 2), reflecting the 
algebraic constraints which occur with commutation.  
 
The presence of structural discontinuities can give mixed-Boolean transfer 
function and output equations. These are used in control engineering to 
determine dynamic and control properties so it becomes clear that system 
dynamics (poles and zeros, stability) and controllability / observability can vary 
with commutation. Since matrix-rank criteria can be reflected in the bond graph 
itself, some revised criteria for commonly used control properties are proposed. 
 
Mathematical impulses occur where storage elements are in dynamic causality, 
but these only have magnitude in the case of type-1 discontinuities. In type-2 
discontinuities, there is no step change in the value of a state variable as the 
storage element switches from integral to derivative causality.  
 
Variable structure systems and impulse modes are discussed. An important 
observation is that this hybrid bond graph dictates that discontinuities are 
abstracted to sliding modes. This is an important result because it dispenses with 
the need to reinitialise state variables after commutation or allow for unknown 
impulsive losses. 



http://online.sagepub.com/
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5.2  Power Converter 

5.2.1 Overview  
 
A boost converter is shown in Figure 24, as an example incorporating both 
electrical switches and a mechanical clutch. Buisson et al [98] use this example 
to demonstrate the use of switching sources, as do Edström et al [37] on a 
simplified version. Here, controlled junctions will be used.  
 
 

Load (L3)

+ -

Inductor (L1)

Electrical Reference (G)

P
S

Elec Switch 2

PS

Elec Switch 1

DC Voltage Source (V)

+
-

R
C

DC Motor (L2)

R C

Clutch (Switch 3)

 
 

Figure 24: Schematic Diagram of a Boost Converter Supplying a D.C. 
Motor with Load 

 
 

5.2.2 Hybrid Bond Graph 
 
The bond graph of the power converter is shown in Figure 25. Note that some 
resistance elements have been added (R1 and R2) to model losses in the circuit 
and friction in the moving parts. The full bond graph, incorporating the ground, 
is shown for completeness, and then systematically simplified by removing 
bonds to the ground (which is 0V) where appropriate. The ground still needs to 
be represented and attached to switch 2; it is worth noting that this source and 
controlled junction arrangement is remarkably similar to the switching source in 
principle. 
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The first line gives GV  i.e. the input voltage is equal to 0V (Ground voltage). 
This clearly reflects the short circuit. The forces on the inertia components 
transpire to be zero. 
 
 

5.2.4 Discontinuities on Variables at Commutation 
 
Consider the case where the system is in the reference mode, and then the clutch 
(Switch 3) engages. Recalling the reference configuration: 
 

 (65) 

 
After the clutch connects: 
 

 (66) 

 
The equations are: 
 
Reference Configuration 
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  (67) 

 
Clutch engaged 
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The system changes from having three differential state equations, to having two 
differential equations and an associated algebraic relationship. The equation for 

1Lp��  remains unchanged with commutation. The equation for 2Lp��  becomes a 

function of 2Lp and pseudo-state dLp 3�� in addition to 1Lp , and the algebraic 

relation can be rearranged to give dLp 3  in terms of 2Lp . If the clutch commutes 
back from engaged to disengaged, the state of L3 just after commutation is equal 
to the state just before i.e. 33 LdL pp  and 33 LdL pp ���� , and there is no need to 
reinitialise the state. 
 
In this model, any slippage occurring between fully engaged and fully 
disengaged would be modelled by resistance element R2. Some authors would 
define slippage as an extra mode of operation. Here the controlled junction 
purely represents whether contact has been made or not. Any additional non-
linear dissipation can be modelled using a resistance element, which could itself 
be abstracted to discrete modes of operation (i.e. parametric switching) and 
captured in a controlled element.  
 
 

5.2.5 Structural Analysis of the Power Converter 
 
The order of the model varies, since two of the storage elements are in dynamic 
causality. The reference mode gives the highest order, which in this case is 3. It 
is possible to achieve a mode of operation where the order is only 1.  
 
The rank of the model is 2 or 3, again depending on the mode of operation: this 
is clearly seen if a causally dynamic hybrid bond graph with preferred derivative 
causality is constructed (Figure 27).  Alternatively, the maximum number of 
linearly independent columns in (S11 S13) can be seen to vary between 2 and 3. 
This is because the second column of S13 is linearly independent when switch 3 is 
OFF but not when it is ON. 
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a) Reference Mode for R-Observability 

 

 
b) L1 & L3 in Derivative Causality for Impulse Observability 

 
Figure 29: Adding Detector Elements to the Model in Preferred Integral 

Causality, with Causal Paths marked 
 
 
In order to verify the properties of the model, the output equation can be found 
for the system. The junction structure matrix can be revised to include the 
detector elements: 
 

   (69) 
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Assume we want to find the transfer function between the applied voltage V and 
a flow sensor: the path, marked in orange on Figure 30, has a gain: 
 

21
2

2
1

1
LL IIs

aG  (72) 

 
Note that this path only exists when switch 1 is ON. The first three loops (blue, 
red and green) touch this path, so a reduced graph determinant can be defined by 
eliminating them. 
 

3

23
1 1

LsI
R  (73) 

 
By Shannon-Mason Loop rule: 
 

 (74) 

 

(75) 

 
 
The poles and zeros of the system can be seen to depend on commutation and a 
simplified transfer function can be obtained for any single mode of operation. 
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5.3  Landing Gear Drop Test 

5.3.1 A High-Level Bond Graph of the Landing Gear 
 
The landing gear on the ground compresses under load and cannot be modelled 
as a rigid body. A landing gear is similar in principle to the standard quarter car 
model used extensively in automotive engineering. They usually have an oleo-
pneumatic strut in place of the mechanical suspension (spring and damper 
mounted in parallel) found on a typical car. A spring-mass-damper diagram is 
shown in Figure 31, and a high level model is presented in Figure 32.  
 
A rigid body with mass and weight equal to the effective vertical load and inertia 
effects of the aircraft fuselage is attached to the upper end of the gear. The gear is 
assumed to act as a lumped mass with a centre of gravity coincident with that of 
the wheel. The oleo strut is attached via a [common effort] 0-junction, because it 
is known that there is common effort and a difference in velocities across the 
strut. The behaviour of the tyre and its contact with the ground, and of the oleo 
strut will be covered in sections 5.3.2 and 5.3.3. This model is implemented in 
the commercial software package 20Sim. 
 
 

   
 

a) In-Situ on an Aircraft [128] 
 

b) Spring-Mass-Damper Diagram 
 

Figure 31: A Typical Aircraft Landing Gear 
 
 
 
 
 

Aircraft (Effective 
Load) 

Oleo-Pneumatic Strut 
Subsystem 

Tyre Compliance  
on contact 

Gear Weight effective 
about Wheel 

© Julian Herzog / Wikimedia Commons / GFDL 

xAC 

xG 

x=0 



122 

 

 

��

Oleo Strut

��

Tyre Contact

��

Sf

��

Ground

��

I

��

Gear_Mass

��

1

��

Se

��

Weight_Gear

��

I

��

Aircraft_Inertia

��

1

��

Se

��

Effective_Load

��

0

 
 

Figure 32: A High Level Bond Graph of a Landing Gear 
 
 
 

5.3.2 Structural Discontinuities: Contact with the Ground 
 
Contact is represented here using a controlled junction, in an identical way to the 
contact between bodies discussed in Chapter 4. Contact gives a variable topology 
system, which can lead to dynamic causal assignment and/or a change in the size 
of the underlying equations. It is implemented in this study via a bespoke coded 
element in 20Sim, where the displacement of the gear and ground are compared 
to establish whether contact occurs. The ideal causal assignment for the model 
changes with commutation. In this case, the tyre resistance prevents the dynamic 
causality from propagating throughout the model significantly, which means that  
the model can be simulated with a standard commercial software package. The 
model is shown in Figure 33.  
 


































































