The Ireland-Claisen rearrangement of 3-alkoxypropenol amino esters as an entry to sphingolipid amino acid natural products

Fairhurst, Nathan

Award date:
2012

Awarding institution:
University of Bath

Link to publication
THE IRELAND-CLAISEN REARRANGEMENT OF 3-ALKOXYPROPENOL AMINO ESTERS AS AN ENTRY TO SPHINGOLIPID AMINO ACID NATURAL PRODUCTS

Nathan William George Fairhurst

A thesis submitted for the degree of Doctor of Philosophy

University of Bath

Department of Chemistry

July 2012

COPYRIGHT
Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy or use it or use material from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and maybe photocopied or lent to other libraries for the purpose of consultation.

[Signature] [Date]
Don't ever give up !!!
ABSTRACT

The Ireland-Claisen rearrangement is a powerful synthetic tool which allows predictable
diasterocontrol and chirality transfer in the synthesis of γ,δ-unsaturated carboxylic
acids. Previous work within the Carbery group has developed a novel protocol for the
synthesis of β-alkoxy- and aryloxy-α-amino acids.

Chapter 2 covers the initial volume of work on developing this methodology further to
allow the synthesis of sterically congested α-quaternary carbon centres in β-alkyloxy-
and aryloxy-α-amino acids. Individual substrate optimisation allowed improvement of
both the yields and diastereoselectivity of this rearrangement, along with the isolation of
a key degradation product. A series of heteroproline-based rearrangements laid the
groundwork for remote chirality transfer within this Ireland-Claisen rearrangement.

The principle of self-regeneration of stereocentres is applied in an Ireland-Claisen
context in Chapter 3. Showing exceptional levels of remote stereocontrol the
rearrangement is shown to be general, offering almost exclusively diastereoselectivities
of >99:1. Allylic enol ether amino esters saw yields of 47 – 83% and provided
functional handles allowing for further synthetic manipulations. Carbon substituted
allyl amino esters allowed facile access into β-hydroxy-α-amino acid derivatives of
proteinogenic amino acids leucine and isoleucine (amongst others) with excellent
selectivity.

The synthesis of both enantiomers of mycestericin G in Chapter 4 highlights the
synthetic utility of this methodology, in addition to allowing a revision of absolute
configuration of this natural product. The synthesis of a mycestericin G analogue,
derived from threonine, is also presented.

Finally, Chapter 5 exploits these rearrangement products as chiral diene ligands in
rhodium-catalysed conjugate addition reactions. Both ligand and reaction condition
optimisation led to a range of aryl boronic acids used in the 1,4-addition to 2-
cyclohexenone with yields of 24 – 100% and enantioselectivities of 74 – 93% observed.
CONTENTS

ABSTRACT .. iii
CONTENTS .. iv
ACKNOWLEDGEMENTS .. vii
ABBREVIATIONS ... ix

1. INTRODUCTION 1

1.1 β-Hydroxy-α-Amino Acids ... 1
 1.1.1 Synthesis of β-Hydroxy-α-Amino Acids .. 3
1.2 Sphingosine and Sphingosine-related Metabolites ... 7
 1.2.1 Isolation and Biology of Sphingosine Analogues .. 8
 1.2.2 Synthesis of Sphingosine Analogues ... 10
1.3 Self-Regeneration of Stereocentres .. 16
 1.3.1 Endocyclic Enolates in SRS .. 18
 1.3.2 Bicyclic Enolates in SRS ... 22
 1.3.3 Exocyclic Enolates in SRS ... 24
 1.3.4 α,β-Unsaturated Carbonyl Compounds in SRS ... 28
1.4 Pericyclic Reactions ... 30
 1.4.1 Sigmatropic Rearrangements .. 30
 1.4.2 Claissen Rearrangement .. 31
 1.4.3 Variants of the Claissen Rearrangement .. 36
1.5 Ireland-Claissen Rearrangement .. 39
 1.5.1 Diastereocontrol in the Ireland-Claissen Rearrangement .. 41
 1.5.2 Glycinates in the Ireland-Claissen Rearrangement ... 43
 1.5.3 Quaternary Centres in the Ireland-Claissen Rearrangement .. 46

2. α-QUATERNARY CENTRES IN β-HYDROXY-α-AMINO ACIDS .. 49

2.1 Background .. 49
2.2 Phthaloyl Protected Substrates .. 50
 2.2.1 Retrosynthetic Analysis .. 50
 2.2.2 Forward Synthesis .. 51
 2.2.3 Initial Rearrangement Attempts ... 53
2.2.4 Rearrangement Optimisation ... 54
2.2.5 Optimal Rearrangements .. 59
2.3 Boc-N-Me Protected Substrates ... 61
 2.3.1 Retrosynthetic Analysis ... 61
 2.3.2 Forward Synthesis .. 62
 2.3.3 Rearrangement Attempts ... 64
2.4 Heteroproline Derived Substrates ... 65
 2.4.1 Substrate Genesis .. 65
 2.4.2 Forward Synthesis of Heteroproline Allyl Esters 66
 2.4.3 Rearrangement of Heteroproline Allyl Esters ... 68

3. SRS IN AN IRELAND-CLAISEN REARRANGEMENT 69
 3.1 Concept Development ... 69
 3.2 Reaction Development ... 72
 3.2.1 Forward Synthesis of Chiral Oxazolidine ... 72
 3.2.2 Rearrangement Optimisation .. 73
 3.3 Reaction Scope of Enol Ethers ... 75
 3.3.1 Substrate Synthesis .. 75
 3.3.2 Substrate Rearrangement .. 79
 3.4 Reaction Scope of Crotyl Esters ... 86
 3.4.1 Substrate Synthesis .. 87
 3.4.2 Substrate Rearrangement .. 88
 3.5 Rearrangement Product Derivatisation ... 90
 3.5.1 Derivatisation of Enol Ether Rearrangement Products 90
 3.5.2 Derivatisation of Crotyl Rearrangement Products 97
 3.6 Conclusions .. 98

4. SYNTHESIS OF MYCESTERICIN G ... 100
 4.1 Background .. 100
 4.2 Total Synthesis of Mycestericin G .. 100
 4.2.1 Retrosynthetic Analysis ... 100
 4.2.2 Initial Investigation ... 101
 4.2.3 Completion of the Synthesis of Mycestericin G 104
 4.3 Total Synthesis of Threonine Analogue of Mycestericin G 110
ACKNOWLEDGEMENTS

The last four years have certainly been adventurous. There have been many, many, good times, but also those that I would rather forget. I have often described a PhD as evidence that if you bang your head against a brick wall long enough you will eventually make a hole! Whilst not a particularly fitting tribute for such an achievement, there have been times when my head has certainly felt that way, and it is through these times that having strong support around you is vital.

I must firstly thank Dave Carbery, not only for his emphatic encouragement for me to undertake a PhD in the first place, or even for providing the opportunity for me to undertake his project. The main thanks to Dave have got to be for his constant support and guidance throughout my studies. The many discussions over a cold pint have led to new directions for my chemistry, and the work ethic you have helped me to maintain has undoubtedly been key to getting this far.

Thanks must also go out to my Industrial Supervisor, Rachel Munday, for the long train journeys to discuss my chemistry, and for welcoming me to AstraZeneca for my placement. I thoroughly enjoyed my 3 months spent in Loughborough, and that’s in no small part due to Rachel, and everyone else in the lab providing such a great environment to work.

Closer to home, the Carbery group have been outstanding. I don’t think there could have been a better bunch of people to work with. Without all the banter, and laughter, and at times, downright rudeness, the atmosphere in the lab would have been so dull! You have also all contributed so much in an intellectual capacity too (no, really)! So to Baz, Mo, Jim, Andy, Wez, and more recently Alex, thank you! Deliberately missed from that list are Matthew Crittall, and Steve Heffeman. I felt they both deserved a bit more recognition. I have known Matt as a friend from the beginning of our undergraduate life, and whilst Steve has been sat next to me in labs from day one, it wasn’t until our MChem project that we really became aware of our mutual friends and common ground. They both proved that, given a fine suit, they scrub up quite nicely, and I was proud to have them as Groomsmen at my wedding.
Thanks must also go out to John Lowe, for all his NMR expertise. I’ve lost count of the number of times he has helped solve my NMR problems. Thanks must also go to Mary Mahon, for the XRD analysis she so expertly provides.

My friends and family have been invaluable over the last four years. In particular I’d like to thank my parents, who have always been there for me, supportive and understanding. I cannot express my gratitude to you both enough. And to Jenny; it’s been great having you in Bath for the last few years. I think we have done fairly well in balancing out the taxi duties! It will be weird getting used to not having you on my doorstep to watch the football anymore!

My final thanks must go to my beautiful wife, Linda. Words can’t describe how much being with you has helped make me a better person. You have always been there to love and support me, as I will be there for you. Always and forever.
ABBREVIATIONS

AAA asymmetric allylic alkylation
acac acetylacetonate
Ac acetyl
AIBN azo-bis-isobutynitrile
Ar aryl
Bn benzyl
Boc di-tert-butyl dicarbonate
iBu iso-butyl
nBu n-butyl
sBu sec-butyl
tBu tert-butyl
Bz benzoyl
cat. catalytic
cb. carboxybenzyl
cod cyclooctadiene
CoA coenzyme A
Cy cyclohexyl
DABCO 1,4-diazabicyclo[2.2.2]octane
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DCC \(N,N' \)-dicyclohexylcarbodiimide
DCE dichloroethene
DCM dichloromethane
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
de diastereomeric excess
DIAD diisopropyl azodicarboxylate
DIBAL-H diisobutylaluminium hydride
(\(+\))-DIPT (+)-diisopropyl L-tartrate
(\(-\))-DIPT (-)-diisopropyl D-tartrate
DMAP 4-dimethylaminopyridine
DMF dimethylformamide
DMPU \(N,N' \)-dimethylpropyleneurea
Abbreviations

DMSO dimethyl sulfoxide
dr diastereomeric ratio
DS Dean Stark
DTA D-threonine aldolase
EDCi 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
ee enantiomeric excess
ent- enantiomer
epi- epimer
eq equivalents
Et ethyl
EtOAc ethyl acetate
HIV human immunodeficiency virus
HMPA hexamethylphosphoramide
HPLC high performance liquid chromatography
HRMS high resolution mass spectroscopy
hrs hours
Hz hertz
KHMDS potassium bis(trimethylsilyl)amide
LDA lithium diisopropylamide
LHMDS lithium bis(trimethylsilyl)amide
LiIICA lithium isopropylcyclohexylamide
LTA L-threonine aldolase
m- meta
m-CPBA meta-chloroperoxybenzoic acid
Me methyl
MIC minimum inhibitory concentration
min minute
MOM methoxymethyl ether
MRSA methicillin-resistant *Staphylococcus aureus*
Ms methanesulphonyl
MTBE methyl *tert*-butyl ether
NaMDS sodium bis(trimethylsilyl)amide
Naphth naphthalene
nbd norbornadiene
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBS</td>
<td>N-bromo succinimide</td>
</tr>
<tr>
<td>NCS</td>
<td>N-chloro succinimide</td>
</tr>
<tr>
<td>NEt<sub>3</sub></td>
<td>triethylamine</td>
</tr>
<tr>
<td>NMO</td>
<td>N-methylmorpholine N-oxide</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>Nu</td>
<td>nucleophile</td>
</tr>
<tr>
<td>Nva</td>
<td>norvaline</td>
</tr>
<tr>
<td>o-</td>
<td>ortho</td>
</tr>
<tr>
<td>p-</td>
<td>para</td>
</tr>
<tr>
<td>PLP</td>
<td>pyridoxal phosphate</td>
</tr>
<tr>
<td>PMB</td>
<td>para-methoxybenzyl</td>
</tr>
<tr>
<td>PMP</td>
<td>para-methoxyphenyl</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Phth</td>
<td>phthaloyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium p-toluenesulphonate</td>
</tr>
<tr>
<td>'Pr</td>
<td>iso-propyl</td>
</tr>
<tr>
<td>"Pr</td>
<td>n-propyl</td>
</tr>
<tr>
<td>Py</td>
<td>pyridine</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SAR</td>
<td>structure-activity relationship</td>
</tr>
<tr>
<td>SHMT</td>
<td>serine hydroxymethyltransferase</td>
</tr>
<tr>
<td>SPT</td>
<td>serine palmitoyltransferase</td>
</tr>
<tr>
<td>SRS</td>
<td>self-regeneration of stereocentres</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyldiphenylsilyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>temp</td>
<td>temperature</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethylsulphonyl</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>Tol.</td>
<td>toluene</td>
</tr>
<tr>
<td>Ts</td>
<td>para-toluenesulfonyl</td>
</tr>
<tr>
<td>Val</td>
<td>valine</td>
</tr>
<tr>
<td>VRE</td>
<td>vancomycin-resistant enterococci</td>
</tr>
<tr>
<td>VT</td>
<td>variable temperature</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 β-Hydroxy-α-Amino Acids

Compounds that contain both amine and carboxylic acid functional groups are classed as amino acids. They can vary in the number of carbon linkers between the functional groups, and are typically identified by this linkage; α-amino acids feature the amine and carboxylic acid bonded to the same α-carbon, whilst β-amino acids feature a chain of two carbons separating these groups (Figure 1).

![Figure 1 - α- and β-Amino acids](image)

There are twenty natural proteinogenic amino acids that are found within proteins that are coded for in the genetic code. Proteinogenic means ‘protein-building’, and it is these twenty amino acids that make up the proteins and peptides that are vital for life. Two of these proteinogenic amino acids (threonine and serine, Figure 2) can be further classified as β-hydroxy-α-amino acids.3

![Figure 2 - L-Threonine and L-serine](image)

Threonine is one of eight essential amino acids. These eight amino acids are so called because their synthesis can’t occur within the body, but must be obtained through food or other sources.4-5 Serine meanwhile is considered to be a non-essential amino acid, as, in healthy adults, it can be synthesised in the body via a condensation reaction between glycine and activated formaldehyde. However, this is not the case for patients with poor...
kidney function, where synthesis may not cover serine requirements, and hence supplements are needed.⁴

Natural products in their own right, β-hydroxy-α-amino acids are also found as components of more complex compounds, a significant number of which have noteworthy biological activity.⁶⁻⁷ For example, vancomycin and lysobactin demonstrate considerable antibiotic activity, while cyclosporine acts as an immunosuppressant commonly used clinically to suppress the rejection of transplanted human organs.⁸⁻¹⁰

Of recent interest is lysobactin (Figure 3), a cyclic depsipeptide which features several β-hydroxy-α-amino acid units. First isolated from a species of *Lysobacter* (ATCC53042), lysobactin shows strong antibacterial activity against methicillin-resistant *Staphylococcus aureus* (MRSA).¹²⁻¹³ Although the mode of action for lysobactin is not precisely known, data suggests that it may be due to inhibition of transglycosylation and its preceding steps of cell wall peptidoglycan synthesis. This mode of action is different to that of vancomycin, the usual last resort antibiotic. Indeed, the minimum inhibitory concentrations (MICs) ranged between 0.39 to 0.78 μg/mL for MRSA and vancomycin-resistant enterococci (VRE), greater than 50-fold lower than those reported for vancomycin itself.¹⁴
Chapter 1
Introduction

1.1.1 Synthesis of β-Hydroxy-α-Amino Acids

Due to their biological importance much effort has been directed towards the synthesis of β-hydroxy-α-amino acids. As a result there are many strategies for their synthesis, including Sharpless asymmetric epoxidations15-17, Strecker synthesis18, aza-Claisen rearrangements19, Wittig rearrangements8, and a number of aldol reactions20-24, including some catalysed enzymatically.6-7,25

The aldol reaction has received much attention as an efficient route to asymmetric β-hydroxy-α-amino acids. One of the simplest strategies involves the use of threonine aldolases and serine hydroxymethyl transferas es in the enzyme-catalysed asymmetric aldol reaction. Wong \textit{et al.} were able to exploit L-threonine aldolase (LTA) and D-threonine aldolase (DTA) with the use of pyridoxal phosphate (PLP) coenzyme to activate glycine to react with a range of aldehydes (Scheme 1).6

![Scheme 1 - Enzymatic synthesis of β-hydroxy-α-amino acids based on D- and L-threonine aldolases](image)

The kinetically controlled products from LTA were \textit{erythro}-β-hydroxy-α-L-amino acids from aliphatic aldehydes, and the \textit{threo} isomer with aromatic aldehydes, whilst DTA formed \textit{threo}-β-hydroxy-α-D-amino acids with both aliphatic and aromatic aldehydes. A series of studies with respect to the enzyme’s kinetics, specificity and stability, among others, found that the enzymes were stable with little loss of activity over a period of one week. Overall it was demonstrated that the enzymes accept an extensive range of aldehydes as acceptors, allowing a route to either L- or D-α-amino acids, albeit with an epimeric mixture at the β-carbinol centre.

A group from Eli Lilly demonstrated the enantioselective synthesis of the oral carbacephalosporin antibiotic loracarbef (Lorabid®) from \textit{L-erythro}-2-amino-3-hydroxy-
6-heptenoic acid, synthesised by the serine hydroxymethyltransferase (SHMT) catalyzed condensation between glycine and 4-pentenaldehyde (Scheme 2).\(^{25}\)

![Scheme 2 - SHMT catalyzed synthesis of \(\beta\)-hydroxy-\(\alpha\)-amino acids in the total synthesis of antibiotic loracarbef](image)

The success of enzyme-catalyzed aldol reactions has prompted many groups to examine other forms of catalytic aldol reactions as routes into \(\beta\)-hydroxy-\(\alpha\)-amino acids. One such group is that of Barbas III \textit{et al}., where efficient asymmetric aldol reaction of a glycine aldehyde derivative utilising organocatalysis using L-proline has been developed (Scheme 3).\(^{22}\)

![Scheme 3 - Direct organocatalytic synthesis of enantiometrically enriched \(\beta\)-hydroxy-\(\alpha\)-amino acids](image)

Good yields, high diastereoselectivity and excellent enantioselectivity were seen in this reaction. The use of phthalimidoacetaldehyde 1 was key for the reaction, as it allowed selective reactivity of the enamine intermediate. For analytical purposes the methyl ester was synthesised using trimethylsilyl diazomethane immediately after the oxidation of the aldehyde 2 with sodium chlorite. However, the free amino acid was able to be synthesised by deprotection of the phthalimide with hydrazine as opposed to methylation.

Another highly explored area within aldol based chemistry is using glycinate Schiff bases as donors.
Demonstrated by Molinski et al., addition of isobutyraldehyde to the lithium enolate of 4 produced a mixture of threo-oxazolidine 5a and erythro-imine 5b (Scheme 4). After separation by chromatography, analysis by chiral HPLC showed enantioselectivities of 60% and 56% respectively. These were readily converted to the corresponding β-hydroxyleucines by hydrolysis-hydrogenolysis. These optically active amino acids were required for the configurational analysis of lobocyclamide B, a novel antifungal cyclododecapeptide, isolated from *Lyngbya confervoides* in the Bahamas.

In 1993, Satoshi Omura presented an efficient asymmetric synthesis of all four stereoisomers of 3-hydroxyleucine, utilising a Sharpless asymmetric epoxidation and benzyl isocyanate-induced epoxide opening as the key steps (Scheme 5). The synthetic strategy started with the Sharpless asymmetric epoxidation of 6, affording epoxide 7 in 82% yield and greater than 95% ee. A mixture of regioisomeric oxazolidinones were formed after treatment with benzyl isocyanate and sodium hydride.
After exposure to additional sodium hydride, heterocycle 9 was formed as a single product, and subsequent Jones oxidation yielded carboxylic acid 10. The (2S,3S)-isomer was synthesised by carbamate deprotection and hydrogenolysis of 10. Synthesis of the (2R,3S)-isomer however required two more steps; diazomethane esterification, followed by epimerization and saponification before finishing the synthesis with carbamate deprotection and hydrogenolysis to afford (2R,3S)-3-hydroxyleucine in 50% overall yield. The opposite enantiomers were synthesised through the same methodology, simply replacing (+)-DIPT with (−)-DIPT in the epoxidation of 6.

The Strecker reaction was employed by Cativiela et al. in their synthesis of (2S,3S)- and (2R,3S)-2-amino-3,4-dihydroxybutyric acid (18 and 22 respectively), however they required the use of two alternate routes to obtain the two diastereomers (Scheme 6 and Scheme 7 respectively).18

Schiff base 15 was prepared by condensation between aldehyde 14 and benzyamine, preceding a Strecker reaction to afford 16 in an 88:12 diastereomeric ratio. The diastereomers were readily separable by column chromatography allowing the synthesis to continue. Nitrile hydrolysis with simultaneous O-benzyl deprotection with hydrochloric acid afforded the N-benzyl amino acid after purification by ion-exchange chromatography. Hydrogenolysis in the presence of Pearlman’s catalyst yielded the required (2S,3S)-2-amino-3,4-dihydroxybutyric acid 18, with the absolute configuration and optical purity being confirmed by literature comparison (Scheme 6).
Synthesis of the (2R,3S)- isomer was achieved by diastereoselective cyanide addition to 14 utilising tin tetrachloride as a Lewis acid. Treatment with trifluoromethanesulfonic anhydride, sodium azide and then hydrogenolysis with Pd/C afforded the amino nitrile 21. Following separation of diastereomers by flash chromatography, acid hydrolysis and ion exchange chromatography afforded the (2R,3S)-2-amino-3,4-dihydroxybutyric acid 22 with a specific rotation matching that in the literature (Scheme 7).

1.2 Sphingosine and Sphingosine-related Metabolites

The term sphingolipid was proposed by Herb Carter in 1947 to describe a complex range of lipids in which fatty acids have a simple amide bond to a sphingoid base backbone.26-27 This sphingoid base can be further phosphorylated, acylated, glycosylated or bridged to various headgroups to create the thousands of sphingolipids that have been elucidated to this date. The most common long-chain base is sphingosine, first discovered by Johann Thudichum in 1884 on the hydrolysis of the three lipids sphingomyelin, cerebroside, and cerebrosulfatide.28
Chapter 1

Introduction

Sphingolipids are important components of all mammalian membranes, of which sphingomyelin is the most abundant (Figure 4). The basic structural units of sphingolipids in the human cell typically start from dihydrosphingosine (more commonly known as sphinganine); which is synthesised in nature from serine and palmitoyl-CoA by serine palmitoyltransferase (SPT). From here it can follow a myriad of pathways until the desired sphingolipid is formed.29 Not only do sphingolipids play a structural role, but they are also important in cellular regulation and signal transmission.29-31 It is now known that sphingolipids are involved in almost every type of disease, from being the binding target for bacteria32, to causing the toxicity of fumonisins33-34 (a common food contaminant worldwide) through disruption of de novo sphingolipid biosynthesis. They are known to be used by cells to coordinate cell division and survival in cases of cancer – they even showed chemotherapeutic potential in experimental human clinical trials.35-36 The list continues with implications in Alzheimer’s disease37-39, and also acting as immunosuppressants.40 As such, sphingolipid-based therapeutics is an ever increasing area of interest to researchers who are trying to steer a course through the complex mechanisms – and occasional contradictory findings – presented from such a large number of structurally and metabolically interrelated bioactive species.29

1.2.1 Isolation and Biology of Sphingosine Analogues

Since sphingosine was discovered by Thudichum, a host of related compounds have been isolated. In the early 1970s one such metabolite was discovered almost simultaneously by two research groups. In 1971, Dieter Kluepfel isolated the novel antifungal compound, myriocin 23 (Figure 5), from Myriococcum albomyces, a thermophilic fungus.41-42 They demonstrated that myriocin showed no significant antimicrobial activity, but that it did however, show strong antifungal activity in vitro. Meanwhile, in 1972, Fabrizio Aragozzini reported the isolation of thermozymocidin, a metabolite of the thermophilic mould Mycelia sterilia.43 The structure and properties of thermozymocidin were identical to 23. More recently, the culture broths of Melanconis flavovirens and Isaria sinclairii have also been found to contain 23.44-45 This family of fungi have been used in traditional Chinese medicine as a drug for ‘eternal youth’.46
It was however, Fujita et al. who, on isolating 23, realised its potential as a potent immunosuppressive agent. They found that it suppressed the proliferation of lymphocytes in mouse allergenic mixed lymphocyte reaction, and was 10- to 100-fold more potent than cyclosporine A; an immunosuppressive drug approved for use in the 1980s.

On further analysis of the culture broth of Mycelia sterilia, Fujita et al. were also able to isolate and elucidate the structures of a new class of 7 metabolites which they termed the mycestericins. Mycestericin A 24, B 25, and C 26 were reported to be congruent to 23 with respect to their polar head group, featuring the same hydroxy group substitution and stereochemistry. Mycestericins D 27 through to G 30 lack the secondary γ-hydroxy group, and form two pairs of diastereomers.
Structure activity relationships (SAR) between myriocin 23 and the mycestericins (24-30) using mouse allogenic mixed lymphocyte reaction in vitro were built to evaluate the influence of the structural features of these immunosuppressants. It is from similar SARs that allowed the derivative fingolimod 31 to be identified (Figure 7).

![Figure 7 - Fingolimod](image)

Originally in phase III clinical trials for use in kidney transplants, fingolimod was found to have no advantages over the existing standard of care. However, in two phase III trials, it was seen to reduce the rate of relapses in relapse-remitting multiple sclerosis. Now marketed by Novartis as Gilenya™, it is advertised as the “first once-daily pill for relapsing forms of multiple sclerosis”. Whilst its mode of action in humans is not fully understood, it is believed to sequester lymphocytes in the lymph nodes, reducing the number that can move to the central nervous system which cause the auto-immune responses seen in multiple sclerosis.

1.2.2 Synthesis of Sphingosine Analogues

Soon after the discovery of myriocin, two groups accomplished the synthesis of chiral γ-lactones derived from myriocin. However, it wasn’t until 1982 when Scolastico et al. published the first total synthesis of myriocin. Completed in 15 linear steps D-fructose 32 was utilised as the chiral synthon (Scheme 8). The key aim was to achieve the synthesis of 2-amino-2-deoxy-2-hydroxymethyl-D-mannonic acid 37, from which all the key stereocentres would be installed. Hydrocyanation of fructosyl p-tolylimine 33 afforded two diastereomers, in a 7:2 mixture. Unfortunately the desired (2S)-epimer 35 was the minor component in this mixture. By subjecting (2R)-epimer 34 to an excess of hydrogen cyanide in ethanol-water, partial conversion to the desired diastereomer was achieved.
Hydrolysis with concentrated hydrochloric acid, before removal of the \(N \)-tolyl protecting group by hydrogenolysis afforded key amino acid 37. Schotten-Baumann conditions gave a poor yield of 38, whereas treatment with excess benzoyl chloride in pyridine, followed by methanolysis of the benzoyl ester gave the lactone 38 in 60% yield. Initial attempts to perform a sodium periodate oxidation gave rise to an undesired hemiacetal dimer. To avoid this dimer, 38 was treated with acetone and catalytic sulphuric acid, followed by esterification with benzoyl chloride, before final hydrolysis of the isopropylidene acetal afforded the diol 39. Sodium periodate oxidation, subsequent sodium cyanoborohydride reduction and tosylation yielded the tosyl lactone.
41 necessary for coupling to the lithium divinylcuprate 42. This cuprate was synthesised in 9 steps from 1-morpholinocyclohexene and, with the use of HMPA as a co-solvent, successfully coupled with 41 to afford the protected anhydromyriocin in a relatively low yield of 28%. Final hydrolysis of the benzoyl protecting groups provided synthetic (+)-myriocin 23, indistinguishable from the naturally obtained compound.

Since this initial total synthesis there have been many other attempts to synthesis both (+)-myriocin 23, and it’s enantiomer (−)-myriocin.62 Yoshikawa and co-workers also looked to utilise a natural carbohydrate as an optically pure starting material, opting to start with 2-deoxy-D-glucose, and featuring a modified Darzens reaction as one of their key steps.63-64 Highly diasteroselective aldol reactions were employed by both Nagao and Lee, with the former using D-valine to synthesise a chiral bislactim ether, and the latter using an oxazoline framework as the basis of their approach.65-66 Many approaches have focused on epoxide opening, with Hatakeyama et al. using Katsuki-Sharpless catalytic asymmetric epoxidation to synthesise an enantiomerically pure epoxide, opened using Red-Al®.67 Both Deloisy and Rao have also featured epoxide opening in their formal synthesis of myriocin.68-69 Chida et al. took D-mannose and constructed the quaternary centre using an Overman rearrangement in a 7:1 ratio of diastereomers. The most recent synthesis, by Marsden and Jones features the synthesis of a quaternary (E)-vinylglycine using an asymmetric deconjugative alkylation of a dehydroamino acid, with complete diasteroselective control. The subsequent dihydroxylation also proceeded with excellent diastereoselectivities, yielding a 90:10 mixture of diastereomers. These two key reactions allowed not only the synthesis of (+)-myriocin, but also its analogue 2-epi-myriocin.70

To date there have only been a limited number of total syntheses of the mycestericins (24-30), with the main interest in the diastereomeric pairs mycestericin D/E (27/28) and F/G (29/30). The sole total synthesis of (−)-mycestericin A 24 is by Chida et al. in which the Overman rearrangement is utilised to allow access to the key stereochemistry required (Scheme 9). This methodology is also applied to the synthesis of 14-epi-mycestericin A71-72, myriocin 2373 and other sphingosine analogues such as lactacystin74-75 and sphingofungin E76).
Starting from dimethyl L-tartrate 43 the acetonide 44 was formed over 8 steps, with the penultimate step a Wittig reaction installing the E-alkene as a single isomer. Treatment with trichloroacetonitrile and DBU afforded the trichloroacetimide 45, which was used without any further purification. The subsequent Overman rearrangement proceeded after heating to 140 °C in xylene in the presence of potassium carbonate. After 48 hours the desired trichloroamide 46 was formed in 62% yield, along with its epimer epi-46. The desired compound 46 was then used to complete the total synthesis in a further 15 linear steps.

Whilst there are currently no syntheses for either mycestericin B or C (25 and 26 respectively), (−)-mycestericin D 27 has been synthesised using an L-threonine aldolase catalysed aldol reaction of glycine with 4-benzyloxybutanol (Scheme 10).77-78 This aldol reaction gave mixed ratios of the threo- and erythro-β-hydroxy-α-amino acids depending on the reaction time. The erythro isomer was the major product when reaction times were kept short (90:10 after 5 mins – albeit with a low yield of 18%, compared with 40:60 favouring the threo isomer after 15 hours, in 70% yield). A compromise was made between selectivity and yield settling on a 68:32 erythro:threo ratio, with a 75% yield. In order to affect separation of these diastereoisomers, protection by acetylation of the amino group and subsequent methylation of the carboxylic acid afforded the separable derivatives 48e and 48t. The enantiomerically pure cis-oxazoline 50 was formed in 83% yield, prior to treatment with
paraformaldehyde and DBU, followed by acetylation to stereoselectively produce the desired acetate 51 in 88% yield.

![Diagram of Scheme 10 - L-Threonine aldolase catalysed synthesis of mycestericin D](image)

The synthesis of mycestericin D was completed in 7 steps. The formal synthesis of mycestericin F 29 was also presented, since the catalytic hydrogenation of a natural sample of 27 has been previously reported by Fujita et al. to give mycestericin F 29.50

![Diagram of Scheme 11 - Hatakeyama's approach towards the synthesis of mycestericin E](image)

The first reported total synthesis of the mycestericins E and G (28 and 30) was by Fujita et al. using a stereoselective acylation based on Seebach’s self regeneration of
stereocentres as the key step in forming the quaternary centre. Hatakeyama et al. approached the synthetic challenge of 28 via a cinchona alkaloid-catalysed asymmetric Baylis-Hillman reaction and a Lewis acid-promoted cyclisation of an epoxytrichloroacetimidate 56 as their key steps (Scheme 11). With oxazoline 57 in hand a further 5 steps was required to complete the synthesis of (−)-mycestericin E 28 with an overall yield of 4.7% starting from the achiral aldehyde 52.

Shibasakai et al. used a lanthanum/amide-based ligand system for an asymmetric amination as their key step in the synthesis of diastereomers mycestericin F and G (29 and 30).

After many unsatisfactory attempts at performing the catalytic asymmetric amination, and from previous studies, Shibasaki came to the conclusion that a trans-N-H proton as seen in the lactam type compound 59 was required for a successful reaction. Stable under both acidic and basic conditions, 59 isn’t amenable to β-elimination. Consequently the amination proceeded smoothly at room temperature. Decreasing the temperature to 0 °C further improved the transformation, affording 61 in 96% yield and 96% ee. With the aliphatic tail installed, conditions were found to effect the
diastereoselective reduction to both 63a and 63b, in both cases with complete stereocontrol. The total syntheses were completed by catalytic hydrogenation followed by acid hydrolysis, to afford mycestericin F and G (29 and 30) in 10% and 11% overall yield respectively.

1.3 Self-Regeneration of Stereocentres

One of the foundations of organic chemistry rests on the concept that a reaction involving an achiral molecule with a prochiral trigonal centre at the site of reactivity will result, if none of the reactants or surroundings are chiral, in the formation of a statistical mix of enantiomeric products. That is, a racemic molecule will be produced. Even if the intermediate is radical, or anionic, and has a trigonal-pyrimidal geometry it will be capable of rapid inversion – especially in acyclic systems.80

Take the example of the sec-butyl free radical reacting with chlorine (Scheme 13). The reaction can take place on either side of the molecule, with the relative rates of the two competing reactions the same. Indeed, the two transition states A and B are enantiomeric, leading to identical physical properties; including bond angles, lengths and also the free energies of formation. Because of this, the energy of activation will be identical with a 50:50 mixture of (R)- and (S)-2-chlorobutane (64a and 64b) being formed (Figure 8).83
There are examples which, on the face of it, appear to contradict this rule. The S_{Ni} substitution of a hydroxyl group with chlorine using thionyl chloride is one illustration of this (Scheme 14a). In this case, the ion pair does not completely dissociate before the concomitant loss of sulphur dioxide to allow the nucleophilic attack of the chloride on the same face. There are even examples of enolates, whereby the only centre of chirality is destroyed, which provide exceptions to the rules. Some of these cases can be ascribed to suitably stable enolate intermediates which possess axes of chirality (Scheme 14b), whilst others can form aggregates with chiral components in the reaction mixture.

Scheme 14 - Retention of stereochemistry. a) Decomposition of alkyl chlorosulphites in an S_{Ni} manner. b) Stereoselective trapping of an enolate by a diazooxoketo group with retention of stereochemistry.

Figure 8 - An achiral intermediate gives enantiomeric transition states with equal activation energies
With the aim to incorporate readily available, simple, chiral compounds into complex target molecules, Dieter Seebach developed a method of producing inherently pro-chiral enolates of \(\alpha \)-amino or \(\alpha \)-hydroxy acids which would nonetheless react with electrophiles in a manner that afforded enantiomerically enriched products. This straightforward but widely applicable principle is known as the self-regeneration of stereocentres (SRS) (Scheme 15).

Scheme 15 - The principle of self-regeneration of stereocentres.

SRS follows a highly simple process: the chiral starting material must possess two functional groups capable of forming an acetal (or equivalent functional group), and contain a single chiral centre. Acetal formation must occur stereoselectively, as the original stereogenic centre is lost during the creation of the intermediate trigonal centre. The ensuing reaction with the intermediate is performed diastereoselectively due to the existence of chirality in the temporary acetal moiety. The final stage of the process is removal of the acetal leaving the desired product which has undergone a “dissociative, enantioselective substitution at a centre of chirality without the need for a chiral auxiliary.”

Whilst obviously requiring an auxiliary in the form of the aldehyde, the simplicity and ingenuity of this principle is that it is not a chiral auxiliary, but a common, cheap and readily available aldehyde that simply utilises the original chirality present in the starting material.

1.3.1 Endocyclic Enolates in SRS

The twenty proteinogenic amino acids and their related \(\alpha \)-hydroxy acids, along with other similar natural compounds of this class, provide a substantial set of chiral building blocks which can be utilised in synthesis using SRS.
The acetalisation of \(\alpha \)-amino-, \(\alpha \)-hydroxy- and \(\alpha \)-sulphonylcarboxylic acids generally results in the thermodynamic synthesis of the \textit{cis}-substituted oxazolidinone, dioxolanone and thioxolanone. Furthermore an imidazolidinone can be synthesised from a relevant amino acid amide 65, again under thermodynamic control yielding the \textit{cis}-isomer \textit{cis}-67. However, under kinetic control it is also possible to synthesise the \textit{trans}-imidazolidinone \textit{trans}-67, allowing access to either enantiomeric product from the naturally occurring amino acids (Scheme 16). Pivalaldehyde is the preferred choice of auxiliary, for several reasons. Primarily, the bulky \(t \)-Bu group affords excellent diastereoselectivity in both formation of the acetal and subsequent reactions at the newly created trigonal centre. Secondly, it creates an unobtrusive singlet in the \(^1 \)H NMR spectra which doesn’t overlay with any other key spectral areas, and thirdly, it is a readily available reagent.

With the transient chiral centre now in place the reactive centre can be created. The favoured method for this is using LDA or LHMDS to form the lithium enolate, which can subsequently react with a range of electrophiles (Scheme 17). The imidazolidinone enolates are typically stable at temperatures above 0 °C, whereas those of the dioxolanones must be kept at low temperatures. The high diastereoselectivity of the reactions are due to the bulky \(t \)-Butyl group at the acetal centre shielding one face of the enolate, and therefore preventing any reaction with an electrophile from that face.
Chapter 1

Introduction

Scheme 17 - α-Alkylation of α-amino, α-hydroxy and α-sulphanylcarboxylic acids and their derivatives using SRS

The final step in the process is hydrolysis to furnish the α,α-disubstituted carboxylic acid. Due to the stability of the new stereocentre it is possible to submit the alkylation products to fairly forcing conditions without fear of racemisation.

Whilst typical electrophiles are alkylation reagents, where the only new stereocentre is formed at the trigonal centre, symmetrical ketones have also been used (Scheme 18). However, the enolate generated has also been used in aldol reactions and with unsymmetrical ketones or aldehydes, which introduces a new chiral centre. Seebach found that moderate to high levels of diastereoselectivity were possible for both aromatic and aliphatic aldehydes and unsymmetrical ketones, and that the same pattern observed with alkylations is followed, in that the τ-butyl group controls the facial selectivity.

Scheme 18 – Benzylation and reaction with acetone of a dioxolanone through an endocyclic enolate

The use of SRS with endocyclic enolates has seen use in a variety of total syntheses, the first of which was reported by Seebach et al. in 1983 for the total synthesis of (+)- and (−)-frontalin in 5 linear steps and an overall yield of 73% starting from lactic acid (Scheme 19).
With cis-72 isolated cleanly, the enolate was reacted with iododimethoxypentane 70 to afford the alkylated product 74 as a single diastereomer. The synthesis of (+)-frontalin was completed in a further 2 steps.

There are many more complex and involved syntheses, such as the synthesis of (+)-eremantholide (Figure 9). The first step in the synthesis is the reaction of the same lactic acid enolate 73 with 2,3-dibromopropene, creating a key stereocentre that is maintained throughout the rest of the synthesis, which included a novel use of the Ramberg-Bäcklund sequence to effect a medium-sized ring contraction. SRS is also used in the total synthesis of (+)-indicene N-oxide by Yamada et al. where by a stereochemical illustration was put forward for the outcome of the aldol reaction between the dioxolanone and acetaldehyde (Scheme 20).
In this instance, once 1,3-allylic strain has been minimised, and approach of the acetaldehyde is considered to be opposite to the tert-butyl group, there are two possible transition states. Transition state A features a large steric interaction between the acetaldehyde and the iso-propyl group of the dioxolanone. This interaction is no longer present in transition state B, and as a result is favoured leading to lactone alcohol 79 in a 52% yield. Yamada also saw a small amount of product 80 resulting from approach of the aldehyde on the same face as the bulky tert-butyl group. However, the desired lactone alcohol 79 was isolatable from its diastereomers after repeated chromatography.

Scheme 20 - Diastereoselectivity seen in the synthesis of (+)-indicine N-oxide

1.3.2 Bicyclic Enolates in SRS

Another application of the SRS principle is the formation of a bicyclic acetal, with subsequent enolisation and then either alkylation, or aldol reaction. This approach has been favoured by many, including Seebach, and has been used in the total synthesis of brevianamide B by Williams et al. (Scheme 22), whilst Baldwin et al. used a highly erudite refinement of the SRS principle in the total synthesis of (+)-lactacystin (Scheme 23).97-98

Williams et al. used allylated proline derivative 83, previously reported by Seebach, as the starting point for the synthesis of brevianamide B (Scheme 21).88 The condensation reaction between proline and pivalaldehyde yields a single isomer of the N,O-acetal 82. Subsequent LDA promoted enolisation and reaction with allyl bromide furnished the α-
substituted proline derivative 83 as a single diastereomer. Selectivity is due to approach of the electrophile on the re face, leaving the electrophile cis to the $tert$-butyl group, on the exo side of the 1-aza-3-oxabicyclo[3.3.0]octane system. This is in contrast to the $anti$ selectivity prevalent in the mono-endocyclic enolates discussed previously. This demonstrates the efficiency of the SRS principle, such that it can be used as the formal starting material in the total synthesis of natural products.

![Scheme 21 - Re facial selectivity in the allylation of a bicyclic N,O-acetal](image)

Further derivatisation by Williams led to the formation of allylic chloride 84 that was then subjected to the key stereoselective intramolecular S_N2' cyclisation which provided the remaining stereogenic centre necessary for the completion of brevianamide B.

![Scheme 22 - Total synthesis of (−)-brevianamide B.](image)

Baldwin’s synthesis of lactocystin featured an aldol reaction between isobutyraldehyde and a bicyclic siloxypyrrole. The bicyclic oxazolidine 88 was prepared from (R)-
glutamic acid 87 in three steps following previously reported procedures. Next followed a sophisticated series of elaborations to yield the unsaturated derivative 89 using methylation and selenenylation/ozonolysis. Finally, treatment with TBSOTf and 2,6-lutidine afforded the key siloxypyrrole 90. An aldol reaction led to a 9:1 mixture of diastereomers, however, after chromatography the major isomer 91 was isolated in 55% yield. Further derivitisation led to (+)-lactacystin 92 in an overall yield of 7.5% (from 88).

Scheme 23 – Baldwin’s total synthesis of (+)-lactacystin

1.3.3 Exocyclic Enolates in SRS

All the previous examples of SRS have involved enolates formed within the cyclic structure. However, it is possible, and indeed desirable, to form a system that allows an exocyclic enolate to be created whilst retaining the principles of SRS.

It is practical to protect 2,3-diaminopropanoic acid, serine, cysteine and glyceric acid as seen in Figure 10.
Treatment with a lithium base allows formation of an exocyclic enolate, which, despite the presence of an endocyclic β-leaving group, is relatively stable. This stability isn’t however absolute, and in the case of cysteine the character of the N-acyl group is paraamount to its stability; only the enolate formed for the formyl derivative 96 is stable enough to undergo alkylation (Scheme 24).101-103

![Scheme 24 - a) N-ester derivative undergoes facile β-elimination. b) N-formyl derivative successfully undergoes alkylation](image)

Pattenden \textit{et al.} have made use of these N-formyl thiazolidines in the total synthesis of many natural products, such as didehydromirabazole A 99; a cytotoxic alkaloid, and (S)-desferrithiocin 100; a ferric ion chelator (Figure 11).102, 104-106 One of their targets, thiangazole 101, shows a 100% inhibition of HIV-1 at 4.7 pM, along with no cell toxicity.107 Furthermore, it is able to discriminate between HIV-1 and HIV-2.

![Figure 11 - Didehydromirabazole A, (S)-desferrithiocin and thiangazole](image)
These three natural products are all derived from either (R)- or (S)-2-methylcysteine, or indeed, feature core segments derived from both. It was essential for these total syntheses that a suitable large-scale synthesis of this chiral building block was achieved.

Thiazolidine 102 was derived from (R)-cysteine methyl ester hydrochloride and pivalaldehyde. After formylation, a single diastereomer 103 was formed, allowing for stereoselective alkylation using LDA in the presence of DMPU. This methylated thiazolidine 104 had an exclusive anti relationship between the methyl and tert-butyl groups. Acid hydrolysis furnished the (R)-2-methylcysteine 105, which, for use in the total synthesis was methylated and used as methyl ester 106.

As is seen for the endocyclic enolates, high levels of diastereocontrol are seen in the exocyclic derivatives. The control provided can be explained using stereochemical models (Figure 12).90

![Scheme 25 - Large-scale synthesis of (R)-2-methylcysteine](image)

![Figure 12 - Stereochemical model of exocyclic enolates in SRS](image)
The \(N \)-formyl oxazolidine 107 forms a planar enolate, with the electrophilic attack occurring opposite the bulky tert-butyl group giving rise to the trans-oxazolidine 108. However, the dioxolane ring 109 is puckered on enolisation allowing the tert-butyl group to be equatorial. Now, the dioxolane ring, and the \(S \)-tert-butyl group are shielding the bottom face of the enolate, hence accounting for the more unusual cis-stereochemistry seen in 110.

Whilst there are many examples of the use of alkylations and aldol reactions with exocyclic enolates, their use in total synthesis is more limited. However, Corey et al. demonstrated its potential in the synthesis of lactacystin (Scheme 26).\(^{108}\) \(N \)-Benzylserine was used as the chiral starting material to synthesise oxazolidine 111. This was deprotonated using LDA with the lithium enolate-lithium bromide complex reacting with isobutyraldehyde to afford the enantiomerically pure aldol product 112 in 51% yield after recrystallisation. It is worth noting that, in the absence of lithium bromide, poor yields and selectivities were seen. The synthesis was completed in a further 13 steps with an overall yield of 6.2%.

![Scheme 26 - Corey’s total synthesis of (+)-lactacystin](image-url)
1.3.4 α,β-Unsaturated Carbonyl Compounds in SRS

It is also possible to add new substituents at the position β or γ to the carbonyl in addition to those at the α position seen in the previous sections. The same five membered acetals are prepared using an aldehyde and the prerequisite chiral starting material. These resulting compounds can then be brominated using a radical process that shows a preference for the C-H bond adjacent to the carbonyl group over the acetal centre. Elimination of HBr then leads to an exocyclic double bond in the case of dioxolanones, imidazolidinones and oxazolidinones (Scheme 27a) and endocyclic double bonds for oxazolidine and thiazolidine substrates (Scheme 27b).

These unsaturated compounds are now amenable to a variety of processes, such as the Michael addition of nucleophiles, addition of radicals, and cycloadditions. In some cases, it is also possible to react with electrophiles via the formation of dienolates.

The oxazoline 117 derived from threonine presents the opportunity for reaction at both the β- and the γ-position. Michael addition allows creation of a new quaternary centre as a single diastereomer, in a good yield (Scheme 28).109

\[\text{Scheme 27 - Preparation of chiral α,β-unsaturated carbonyl compounds} \]

\[\text{Scheme 28 - Michael addition of a nucleophile to an α,β-unsaturated carbonyl compound} \]
Rather than react the oxazoline with a nucleophile, it is also possible for it to undergo γ-deprotonation to form the dienolate 119. It will now act as a nucleophile itself and reaction with benzaldehyde proceeds with a high regioselectivity, along with good yields and diastereoselectivity.109

\[\text{Scheme 29 - Dienolate formation and reaction with benzaldehyde} \]

Roush \textit{et al.} have used SRS with a Diels-Alder approach in the total synthesis of (−)-chlorothricolide.110 With proof of principle showing that high diastereoselectivities can be obtained, this was applied to the final synthesis in a challenging tandem inter-intramolecular Diels-Alder reaction under reflux in toluene for 20 hours. HPLC analysis of the reaction mixture showed four predominate cycloadducts, in a ratio of 67:13:10:10. This closely matched the expectations drawn from previous separate attempts; with 93:7 observed for the intramolecular reaction111, and 72:19:9 selectivity for the intramolecular reaction.112

\[\text{Scheme 30 - Tandem inter-intramolecular Diels-Alder reaction in the synthesis of (−)-chlorothricolide} \]
1.4 Pericyclic Reactions

Pericyclic reactions occur through a concerted mechanism via a cyclic transition state. During pericyclic reactions no intermediates are formed, nor is there any change in formal charge. There are four main classes of pericyclic reactions: cycloadditions, electrocyclic reactions, group transfer reactions and sigmatropic rearrangements (Figure 13).

![Figure 13 - Examples of pericyclic reactions](image)

Pericyclic reactions are described according to the change in σ-bonds in the system. Cycloadditions; such as the well known Diels-Alder sees the formation or loss of two σ-bonds, electrocyclic reactions have a change of one σ-bond, whilst sigmatropic rearrangements see the migration of a single σ-bond, with no change in the number of σ-bonds. Group transfer reactions are similar to sigmatropic rearrangements in that σ-bond migration is observed. However, the process is bimolecular, and forms one new σ-bond, and is hence classified as a separate entity.

1.4.1 Sigmatropic Rearrangements

In a sigmatropic reaction a single σ-bond migrates from one location in a molecule to another. They are assigned a numerical [i,j] classification referring to the number of atoms that each sigma terminus has moved. An example of a [3,3] sigmatropic rearrangement is the Cope rearrangement, whilst the rearrangement of 1,3-pentadiene is an example of a [1,5] sigmatropic rearrangement (Figure 14).
The numbering system starts from either side of the bond being broken or formed. In a sigmatropic rearrangement the molecular formula of the starting material is retained, hence complete atom economy is achieved.

1.4.2 Claisen Rearrangement

The Claisen rearrangement was the first example of a [3,3] sigmatropic rearrangement. Published in 1912, Rainer Ludwig Claisen showed that heating an allyl aryl ether \textbf{121} produced allyl phenols \textbf{122} without any intermediates (Scheme 31).114 The Claisen rearrangement is often referred to in the literature as a 3-oxa-Cope rearrangement, despite the fact that the first Cope rearrangement wasn’t reported until 1940, 28 years after Claisen’s seminal paper.115-116 The Claisen rearrangement, as a “suprafacial, concerted, nonsynchronous pericyclic process”, is occasionally considered as an intramolecular S\textsubscript{N}2 alkylation.117

There are two categories of the Claisen rearrangement, the aromatic Claisen rearrangement, the main focus of the seminal paper, and the aliphatic Claisen rearrangement, touched upon briefly in the first paragraph of Claisen’s original paper. It is argued that it is the understated aliphatic Claisen rearrangement which has stimulated more interest from both a synthetic and mechanistic viewpoint. The aliphatic Claisen rearrangement proceeds after heating of an allyl vinyl ether \textbf{123} to around 200 °C, leading to the formation of γ,δ-unsaturated aldehydes \textbf{124}.
Synthetically the Claisen rearrangement has found good use in total syntheses due to its high stereoselectivity, and is used in key steps of such syntheses. The rearrangement can proceed through two conformational types of transition states to produce opposite diastereomers (Scheme 33). As the transition states differ in energy, the ratio of products obtained reflects the transition state geometry. Schmid et al. has examined the stereochemistry (and rate) of the rearrangement, and found that all 4 of the conformational isomers he studied proceeded via the chair-like transition state.\(^{118}\)

Therefore the \(E,E\) and \(Z,Z\) isomers rearrange to yield the \(\text{syn}\) diastereomer, whilst both the \(E,Z\) and \(Z,E\) isomers afford the \(\text{anti}\) diastereomer.

Hurd and Pollack first suggested a cyclic mechanism\(^ {119}\) whilst Gajewski and Conrad used secondary kinetic deuterium isotope effects to suggest an earlier, reactant-like transition state.\(^ {120-121}\) This more recent study suggested that the transition state had more bond-breaking than bond-making character, with the transition state more closely resembling the diradical as opposed to the 1,4-diyl (Scheme 34).
The Claisen rearrangement has found many uses in organic synthesis, with Paquette et al. employing it as their central strategy in the total synthesis of (±)-precapnelladiene 130 (Scheme 35).122

They completed the total synthesis in 11 steps, with an overall yield of 20% achieved starting from 8α-methyl-bicyclo[3.3.0]octan-2-one. Conversion of lactone 125 to enol ether 126 via the Tebbe reagent, followed by the aliphatic Claisen rearrangement proceeded efficiently in 87% yield over the two steps. The synthesis was concluded by forming tosyldiazide 128, before allowing it to decompose under carbenoid conditions based on those developed by Friedman.123 The resultant isomeric mixture
was separable by chromatography on silica gel infused with 2% silver nitrate. Subsequent isomerisation of \textit{129} allowed final isolation of precapnelladiene \textit{130}.

Nature also utilises the aliphatic Claisen rearrangement, in the enzyme-catalysed rearrangement of chorismate \textit{131} into prephenate \textit{132} (Scheme 36); a precursor for the essential amino acids tyrosine and phenylalanine.124 Chorismate mutase is the key enzyme which is responsible for the rate enhancement of approximately one million fold compared to the uncatalysed (yet still facile) rearrangement.125 This reaction, is one of the few pericyclic reactions in biology and has provided a rare opportunity for an understanding to be gained in how such transformations are promoted and accomplished in nature.

![Scheme 36 - Enzyme catalysed rearrangement of chorismate into prephenate](image)

The aromatic Claisen rearrangement (as seen in Scheme 31) sees the rearrangement of allylic aryl ethers to \textit{o}-allylphenols on heating. In this rearrangement an allylic shift is seen for any substituent \textit{\alpha} to the ether oxygen, whereby it will finish \textit{\gamma} to the ring. If a proton is present in the \textit{ortho} position then tautomerisation will follow, with the driving force being re-aromatisation of the ring.126

![Scheme 37 - Secondary Cope rearrangement in the aromatic Claisen rearrangement](image)

If both \textit{ortho} positions on the ring are substituted (\textit{133}), then re-aromatisation in this fashion is not possible. Instead, migration of the allylic group to the \textit{para} position is
observed (135). This second [3,3] sigmatropic rearrangement is an example of the Cope rearrangement (Scheme 37).

As is seen for the aliphatic Claisen rearrangement, the aromatic version also finds widespread use in total syntheses. It was used by Vyvyan et al. in the total synthesis of (±)-heliannuol C and E, both in 7 steps, with overall yields of 15% and 9% respectively.127 The heliannuols, extracted from Helianthus annuus, are a group of phenolic allelochemicals that are active against dicotyledon plant species.128 This gives them the potential to be used in the agricultural industry for germination inhibition of crops such as lettuce and cress.

Scheme 38 - Total synthesis of (±)-heliannuol C and E

Aryl ether 139 required for the aromatic Claisen rearrangement was synthesised in good yield via Mitsunobu etherification (70-98%). The rearrangement itself proceeded regioselectively in high yield (81%) at low temperature. Epoxidation led to a mixture of
inseparable diastereomers with a quantitative yield (~1:1.5 dr), which was then used in both cyclization reactions. The first of these, a regioselective 7-endo-cyclization from treatment of the epoxide with SnCl₄ provided separable benzoepanes, of which 142 was the correct diastereomer. Subsequent deprotection yielded helianuol C 143. Helianuol E 145 was synthesised using a 6-exo-cyclization, to form 144 followed by demethylation. Use of a stronger base led to problems, with migration of the olefin into conjugation with the aromatic ring being observed. The same demethylation seen for helianuol C was employed as the final step.

1.4.3 Variants of the Claisen Rearrangement

Since the initial publication of the Claisen rearrangement there have been many variations reported. Many of these now have their own sub-classes present in the literature. Some key examples of these include:

Meerwein-Eschenmoser Claisen rearrangement

In the Meerwein-Eschenmoser Claisen rearrangement 2-amino allyl vinyl ethers are transformed into γ,δ-unsaturated amides. First discovered in 1961 by Meerwein it was Eschenmoser et al. who first introduced a practical procedure for this rearrangement. In 1964 they described the conversion of allylic and benzylic carbinols to ketene N,O-acetal intermediates, which then underwent facile [3,3] sigmatropic rearrangement. The rearrangement of allenylic carbinol systems has also been reported. The neutral conditions typically required allows the use of sensitive substrates, provided they are thermally stable.

Kozlowski and Linton have recently described the first catalytic enantioselective Meerwein-Eschenmoser Claisen rearrangement, using palladium(II) catalysis (Scheme 39).
Johnson-Claisen rearrangement

The Johnson-Claisen rearrangement is closely related to the Meerwein-Eschenmoser Claisen rearrangement, and proceeds via condensation of an ortho-ester and an allylic or propargylic alcohol. The ketene acetal intermediate rearranges through a [3,3] sigmatropic rearrangement to afford a γ,δ-unsaturated ester.

![Scheme 40 - The Johnson-Claisen rearrangement](image)

Carroll rearrangement

There are two potential pathways through which the Carroll rearrangement can proceed. Both involve the [3,3] sigmatropic rearrangement of β-keto allylic esters into β-ketocarboxylic acids. Subsequent decarboxylation furnishes γ,δ-unsaturated ketones.

![Scheme 41 - The Carroll rearrangement](image)

The first pathway takes place in the presence of base with a high reaction temperature. The intermediate enol reacts in a Claisen rearrangement, with subsequent decarboxylation. The second pathway is milder and proceeds through the use of palladium(0). In this route, an intermediate allyl cation/carboxylic acid anion organometallic complex is formed which undergoes decarboxylation and then addition into the π-allylic system. By introducing suitable chiral ligands, this pathway allows the reaction to proceed in an enantioselective fashion.
Overman rearrangement

The Overman rearrangement involves either the thermal, or transition metal catalysed rearrangement of allylic trichloroacetimidates to afford the corresponding trichloroacetamides.140

![Scheme 42 - The Overman rearrangement](image)

The allylic trichloroacetimidates are easily prepared by treating an allylic alcohol154 with trichloroacetonitrile in the presence of catalytic amounts of base.

Aza-Claisen rearrangement

The aza-Claisen rearrangement sees the replacement of the oxygen atom in a Claisen rearrangement for a nitrogen atom. The rearrangement itself is a thermal process, and both aromatic and aliphatic substrates can be used. In the aromatic rearrangement some product distribution can be seen due to subsequent Cope rearrangement, similar to that seen in the Claisen rearrangement.

![Scheme 43 - The aza-Claisen rearrangement](image)

A major disadvantage of this rearrangement is the harsh conditions required. However, a zwitterionic aza-Claisen variant has been introduced, which allows for a reduction in temperature through the use of ammonium or amide enolates (Scheme 44).141-142
Treatment of allylamine 159 with propionyl chloride results in the formation of an acylammonium salt, which is deprotonated to generate the zwitterionic intermediate 160. Subsequent $[3,3]$ sigmatropic rearrangement generates the desired γ,δ-unsaturated pyrrolidine amide 161 in good yield and excellent diastereoselectivity.

1.5 Ireland-Claisen Rearrangement

Introduced in 1972, the Ireland-Claisen rearrangement is a variant of the Claisen rearrangement. It is a $[3,3]$ sigmatropic rearrangement of silyl ketene acetals formed from the enolization of allylic esters with a lithium dialkylamide base. The resulting products are δ,γ-unsaturated carboxylic acids. As with the Claisen rearrangement, it is used towards the synthesis of a diverse range of natural products. Whilst the first report of an ester enolate rearrangement was in 1937 by Tseou and Wang, this, and other scattered reports were beset with low yields and the need for high reaction temperatures. Hence none had the success and potential synthetic application as the Ireland-Claisen rearrangement.

Ireland and Mueller were able to overcome these previously seen difficulties with the use of a lithium dialkylamide base. This allowed efficient enolization at low temperatures, whilst silylation of the ester enolate suppressed side reactions such as ketene decomposition and Claisen-type condensations. The applicability of the reaction was demonstrated in the synthesis of dihydrojasmone (Scheme 45).
Chapter 1 Introduction

Scheme 45 - Synthesis of dihydrojasmone incorporating the first example of the Ireland-Claisen rearrangement

The synthesis of dihydrojasmone featured in Ireland’s seminal paper saw lactone 165 produced in 70% yield from the allylic ester 162. Subsequent reduction and then base treatment followed to yield the dihydrojasmone 167 with an overall yield of 57%.

The Ireland-Claisen rearrangement is a dynamic tool for the organic chemist due to the number of advantages it possesses. Such benefits include: ease of preparation of the allylic esters, allowing for facile access to the reaction substrates; control of the E/Z geometry of both the alkene and enolate, allowing for a high level of diastereoselectivity (vide infra 1.5.1 Diastereocontrol in the Ireland-Claisen Rearrangement); the high level of chirality transfer seen between the allylic stereocentre of the silyl ketene acetal and the newly formed stereocentres; and the ability to perform the reaction at low temperatures and under basic conditions. In essence, it is a more facile and synthetically viable reaction than the analogous Claisen rearrangement.

Ireland has demonstrated numerous total syntheses of natural products using the Ireland-Claisen rearrangement as one of the key steps. In the synthesis of lasalocid A, two separate Ireland-Claisen rearrangements were employed with great success.
The initial rearrangement installed a tertiary centre α to the furan oxygen. This resultant dihydrofuran 169 was transformed to furanyl pyran 170. The second rearrangement, under the same conditions as previously used, produced the α-carboxyl quaternary centre 171 with good diastereoselectivity and yield. Further elaboration led to ketone 172, which was subsequently used in the aldol reaction with the previously prepared aldehyde 173. Subsequent hydrogenation furnished the desired lasalocid A 174.

1.5.1 Diastereocontrol in the Ireland-Claisen Rearrangement

The Ireland-Claisen rearrangement proceeds via a highly ordered transition state. As a result of this, there is a preferential stereochemical outcome in favour of either syn (threo), or anti (erythro) pentenoic acids from pertinently substituted substrates. Such stereochemistry can be controlled by the geometry of the alkene, and that of the silyl ketene acetal. It is also dependant on the nature of the transition state – namely whether it proceeds via a chair-like or boat-like transition state. It is generally accepted that acyclic allyl silyl ketene acetals favour the chair-like transition state, whilst cyclic variants tend to prefer the boat-like structure.152-153
Whilst the control of the alkene geometry is dealt with during the substrate synthesis, the enolate (and hence silyl ketene acetal) geometry is developed in situ. Ireland reported that the ester enolate could be stereoselectively generated based on the character of the solvent used.154 Subsequent trapping with a silyl agent (in this case TBSCl) produces the silyl ketene acetal. Due to changes in substituent priority between the ester enolate and the silyl ketene acetal, all geometries are assigned with respect to their silyl ketene acetal derivative. When THF was used as solvent, the E-silyl ketene acetal 176 was formed preferentially. However, on using a 23 vol% HMPA/THF mixture the Z-silyl ketene acetal 177 was preferentially obtained with the exception of phenyl acetates (Table 1).

Table 1 - Solvent control of silyl ketene acetals

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
<th>E/Z (THF)</th>
<th>E/Z (23 vol% HMPA, THF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Et</td>
<td>Me</td>
<td>91:9</td>
<td>16:84</td>
</tr>
<tr>
<td>2</td>
<td>Bu</td>
<td>Me</td>
<td>97:3</td>
<td>9:91</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>Bu</td>
<td>95:5</td>
<td>23:77</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Me</td>
<td>29:71</td>
<td>5:95</td>
</tr>
</tbody>
</table>

With the ability to control the conformation of both the alkene and silyl ketene acetal, it is possible to predict the stereochemical outcome of rearrangements of acyclic silyl ketene acetals. As shown by Ireland, the anti 2,3-dimethyl pentenoic acid isomer 184 can be obtained in one of two ways: either by the rearrangement of the E-silyl ketene acetal of E-crotyl propionate 179; or from the Z-silyl ketene acetal of the Z-crotyl propionate 182 with similar levels of diastereoselectivity. The corresponding syn 2,3-dimethyl pentenoic acid isomer 185 can be achieved from the Z-silyl ketene acetal of E-crotyl propionate 180; or from the E-silyl ketene acetal of the Z-crotyl propionate 183. Diastereoselectivities reported by Ireland ranged from 5:1 to 8:1 (Scheme 47).
1.5.2 Glycinates in the Ireland-Claisen Rearrangement

Table 2 - Influence of \(N\)-protecting group on glycinate rearrangements

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>R’</th>
<th>Yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186a</td>
<td>Boc</td>
<td>H</td>
<td>60-65</td>
<td>9:1</td>
</tr>
<tr>
<td>2</td>
<td>186b</td>
<td>Cbz</td>
<td>H</td>
<td>65</td>
<td>4:1</td>
</tr>
<tr>
<td>3</td>
<td>186c</td>
<td>Bz</td>
<td>H</td>
<td>65</td>
<td>5.4:1</td>
</tr>
<tr>
<td>4</td>
<td>186d</td>
<td>TFA</td>
<td>H</td>
<td>58</td>
<td>1.5:1</td>
</tr>
</tbody>
</table>

The Ireland-Claisen rearrangement has been used in the synthesis of \(\alpha\)-amino acids by Bartlett and Barstow.155 They explored a variety of \(N\)-protected crotly glycinates (186a-d) using Ireland’s optimized conditions152 (2.1 eq LDA with 2.1 eq TMSCl added at -75 \(^\circ\)C after 10 mins), and whilst both Cbz and benzoyl derivatives rearranged in
comparable yield, their diastereoselectivity was generally lower than that observed for the Boc analogue (Table 2).

Chiral glycinates have also been utilised in an approach by Saigo and co-workers to achieve absolute asymmetric induction. The use of an aminooindanol auxiliary in allyl glycinate 189 in conjunction with the unusual silylating agent HSiMe₂Cl produced a 98:2 diastereomeric ratio.

It was postulated that the E-silyl ketene acetal 190 formed the chair conformation shown in order to minimise dipolar interactions. The allylic alkene can then rearrange from the less sterically congested face of the oxazolidine to yield the observed product 192. However, based on previous precedent set by related carbamates, it is suggested that chelation favours the formation of a Z-silyl ketene acetal 191. Formation of the least sterically hindered conformation would also lead to the observed product (Scheme 48).

Chelate Enolate Claisen Rearrangement

The ester enolate Claisen rearrangement (the Ireland-Claisen rearrangement) found its success based on its ability to limit side reactions such as enolate decomposition. However, if heteroatoms with free electron pairs (such as oxygen, nitrogen, sulphur) are present as either α- or β-substituted esters then chelation to the enolate metal is
possible, giving rise to five- (193) and six-membered (194) chelate rings respectively with high selectivities with respect to the Z-(O)-enolate formation (irrespective of HMPA addition) (Figure 15).

The formation of the chelate results in the stabilisation of the enolate and therefore allows a direct rearrangement of the metal enolate. Ireland’s silylation and subsequent rearrangement is still possible too, albeit with the geometry set up by the chelated enolate.

When the allylic esters of N-protected amino acids undergo rearrangement, γ,δ-unsaturated amino acids are attained. The first such synthesis was reported by Steglich et al. in 1975 (Scheme 49). When N-benzoyl amino acid allylic esters 195 were treated with dehydrating agents (in this case phosgene) the oxazole intermediate 196 rearranged readily to the resulting allyloxazolinone 197, with ensuing hydrolysis affording the α-alkylated allylic amino acid 198. As a result of the fixed geometry in the oxazole ring, a strong preference for the chair-like transition state is observed, with high diastereoselectivity seen as a consequence.

Kazmaier has been prolific in the area of chelate enolate Ireland-Claisen rearrangements. In 1994 an investigation into the addition of several salts to the rearrangement of N-benzylolxycarbonylglycine crotyl ester 199 was conducted.
Rearrangement of the lithiated glycine allyl esters directly was unsuccessful, since the rearrangement itself occurs at temperatures at which the enolate decomposes. However, addition of metal salts forms stable glycine enolate chelates which do not decompose upon warming to room temperature. Kazmaier found that copper(II) and nickel(II) salts formed such stable chelates that the corresponding enolates were not reactive enough to undergo the rearrangement (Table 3).

Table 3 - Rearrangements of chelate-bridged glycine ester enolates in the presence of metal salts

<table>
<thead>
<tr>
<th>Entry</th>
<th>MX<sub>n</sub></th>
<th>Yield (%)</th>
<th>dr (syn:anti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZnCl<sub>2</sub></td>
<td>90</td>
<td>95:5</td>
</tr>
<tr>
<td>2</td>
<td>CoCl<sub>2</sub></td>
<td>78</td>
<td>93:7</td>
</tr>
<tr>
<td>3</td>
<td>MgCl<sub>2</sub></td>
<td>85</td>
<td>91:9</td>
</tr>
<tr>
<td>4</td>
<td>Al(O'Pr)<sub>3</sub></td>
<td>75</td>
<td>90:10</td>
</tr>
<tr>
<td>5</td>
<td>Ti(O'Pr)<sub>4</sub></td>
<td>50</td>
<td>90:10</td>
</tr>
<tr>
<td>6</td>
<td>Me<sub>2</sub>SiCl<sub>2</sub></td>
<td>50</td>
<td>85:15</td>
</tr>
<tr>
<td>7</td>
<td>Me<sub>3</sub>SiCl</td>
<td>60</td>
<td>83:17</td>
</tr>
</tbody>
</table>

Zinc dichloride (entry 1) proved to afford the best results both with respect to yield and diastereoselectivity. The lower yield obtained with the use of tetraisopropylorthotitanate (entry 5) was reasoned to be caused by the crotyl ester being transesterified by titanium(IV) catalysis. It is worthwhile also noting the advantage that the metal salts provide over the silyl ketene acetals (entries 6 and 7) with increased yields and diastereoselectivity observed.

1.5.3 Quaternary Centres in the Ireland-Claisen Rearrangement

Kazmaier et al. extended their research into the formation of α-amino acids using the chelate version of the Ireland-Claisen rearrangement by investigating the formation of quaternary centres.
There are two potential sites for formation of a new quaternary centre in Kazmaier’s chelate rearrangement protocol; at the \(\alpha \)-carbon (Table 4), and the \(\beta \)-carbon (Table 5).

Table 4 – Synthesis of \(\alpha \)-quaternary carbon centers

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>Yield (%)</th>
<th>de (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cbz</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>TFA</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>84</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>Cbz</td>
<td>Et</td>
<td>Me</td>
<td>H</td>
<td>87</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>Cbz</td>
<td>(^{i})Pr</td>
<td>Me</td>
<td>H</td>
<td>39</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Boc</td>
<td>(^{t})Bu</td>
<td>Me</td>
<td>H</td>
<td>62</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Cbz</td>
<td>CH(_2)Ph</td>
<td>Me</td>
<td>H</td>
<td>63</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>TFA</td>
<td>Ph</td>
<td>H</td>
<td>Me</td>
<td>94</td>
<td>95</td>
</tr>
</tbody>
</table>

\(\alpha \)-Alkylated amino acids, containing quaternary centres are an interesting class of compounds, chiefly because of their activity as enzyme inhibitors.\(^{170}\) Whilst Steglich’s oxazole-based rearrangement is suitable for the synthesis of \(\alpha \)-alkylated amino acids, Kazmaier furthered the chelate-based rearrangement with an investigation into the synthesis of these sterically demanding compounds (Table 4).\(^{163, 167}\) A range of \(N \)-protected amino acids \(203 \) were subjected to Kazmaier’s conditions, and little dependence on the protecting group was found. With the exception of the phenylglycine derivative (entry 7) the yields are lower than found for the original, unsubstituted glycine (entry 1). These results start to show some of the additional substitution that can be applied to the substrates, providing a vast array of potential substitution patterns.

In particular, di-substitution of the olefin provides access to amino acids containing \(\beta \)-quaternary centres; themselves useful building blocks in the synthesis of natural products such as bottromycin A.\(^{171}\) Kazmaier has shown that utilising such olefin substitution does indeed provide \(\beta \)-quaternary centres in moderate to good yield (Table 5).\(^{168}\)
It has also been shown that by coordinating chiral ligands to the metal centre of the intermediate complex it is possible to develop an asymmetric chelate enolate Claisen rearrangement (entries 4-6).169 Both acyclic and cyclic substrates were amenable to the rearrangement with the six-membered ring affording a good ee when a chiral ligand was used (entry 6). Excellent diastereoselectivity was seen with the geranyl ester (entry 4), again with good enantioselectivity when quinine was present. The addition of the quinine results in the formation of a chiral chelated enolate which subsequently undergoes rearrangement imparting enantioselectivity in the product.

These results show that by changing the substitution pattern of the substrate both \(\alpha\) - and \(\beta\)-quaternary centres can be synthesised using the Ireland-Claisen rearrangement and that good diastereoselectivities and enantioselectivities are attainable.
2. α-QUATERNARY CENTRES IN β-HYDROXY-α-AMINO ACIDS

2.1 Background

The use of the Ireland-Claisen rearrangement as the key reaction in the synthesis of β-alkoxy- and aryloxy-α-amino acids has previously been shown by this research group.172-173 The rearrangement provides control of the stereocentres formed \textit{via} the geometries of the enolate and alkene, and the tolerance of a large number of functionalities allows the final product to be used as a building block in the synthesis of natural products and other complex structures.174

The choice of substrate class was derived from two pertinent rearrangements. The first was Ireland’s allylic enol ether \textbf{207} which rearranged to give an \textit{anti}-β-alkoxy acid \textbf{208}\.153 The second rearrangement was reported by Kazmaier, where he demonstrated the rearrangement of allylic amino ester \textbf{209} to the \textit{syn}-allylic amino ester \textbf{210} \textit{via} a chelated zinc enolate.166 Subsequent optimisation followed to secure a reliable and efficient route to a range of β-alkoxy- and β-aryloxy-α-amino acids \textbf{212}.

\begin{center}
\begin{tikzpicture}
\node (207) at (0,0) {\includegraphics[width=0.5\textwidth]{chemfig1.png}};
\end{tikzpicture}
\end{center}

\textbf{Scheme 50 - New Ireland-Claisen route to β-alkoxy- and β-aryloxy-α-amino acids}

It is envisioned that this method can be extended to allow the synthesis of sterically congested α-quaternary carbon centres in β-hydroxy-α-amino acids \textbf{214} (Scheme 51).
This is appealing as the α-substituted β-hydroxy-α-amino acid moieties seen in a number of important natural products, such as lactacystin and salinosporamide A, could be synthesised from simple substrates using this method.

A range of substrates will be synthesised for an investigation into the effect of substituents in the α-position. Furthermore the effect of nitrogen protecting group will also be investigated.

![Scheme 51 - Ireland-Claisen synthesis of α-quaternary centres in β-hydroxy-α-amino acids](image)

2.2 Phthaloyl Protected Substrates

Based on the initial work towards the synthesis of β-hydroxy-α-amino acids the decision to use a phthaloyl protecting group was a natural one.172 It has been shown to be effective under the established conditions, and protects both available sites on the nitrogen simultaneously. With an electron withdrawing nature and the ability for chelation between the carbonyls and the lithium enolate it should aid in the selective silyl ketene acetal formation.

2.2.1 Retrosynthetic Analysis

With a clearly defined aim, and a suitable substrate chosen, it was necessary to establish a suitable route to prepare the substrate. It is therefore necessary to apply a retrosynthesis back to an easily obtainable precursor and then employ the forward synthesis to obtain a suitable quantity of the substrate, and subsequently orchestrate the rearrangement to identify the optimum conditions.
Chapter 2 Results & Discussion

Figure 16 - Retrosynthetic analysis of phthaloyl protected substrate

The retrosynthesis takes us to three readily available commercial compounds, where variation of the R-substituent is achieved through the use of a variety of α-amino acids. Enol ether 218 is prepared via reduction of the vinylogous carbonate 217, which will be subjected to carbodiimide coupling conditions with the phthaloyl protected amino acid to provide a short route into the desired substrate 220.

2.2.2 Forward Synthesis

Enol ether 218a was synthesised by the DIBAL-H reduction of commercially available methyl trans-methoxyacrylate. The methyl ether was chosen due to its simplicity, and the commercial availability of the starting vinylogous carbonate. There have been many papers published reporting this synthesis, however, they all state the sensitivity of the product, noting that it was difficult to store, hard to purify, and that it was normally used in its crude form.153, 175-177

Scheme 52 - Reduction of methyl trans-methoxyacrylate
Numerous methods of quenching the reaction were detailed across the publications; however, quenching at 0 °C with an ethyl acetate and Rochelle’s salt solution afforded us the highest yield.

With the enol ether in hand it was necessary to synthesise a range of protected α-amino acids 219a-g. Commercially available α-amino acids 216a-g were protected by refluxing in toluene with phthalic anhydride 215 under Dean Stark conditions. It was found that reducing the equivalents of phthalic anhydride used by Jurczak et al. to 1.01 helped increase the purity and yield of the resultant products. Attempts to protect serine with phthalimide were, however unsuccessful and resulted in multiple spots by TLC, from which the desired product was unable to be isolated.

Table 6 - Synthesis of N-phthaloyl protected Ireland-Claisen substrates

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Yield of 219 (%)</th>
<th>Yield of 220 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>216a</td>
<td>H</td>
<td>N/A[a]</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>216b</td>
<td>Me</td>
<td>79</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>216c</td>
<td>Et</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>216d</td>
<td>iPr</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>216e</td>
<td>nPr</td>
<td>81</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>216f</td>
<td>tBu</td>
<td>78</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>216g</td>
<td>CH₂OH</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

[a] Commercially available

Carbodiimide promoted coupling of protected α-amino acids 219 with methoxy enol ether 218a lead to the desired substrates 220 in good to excellent yields. Optimised conditions for the coupling reaction proved to be a 2:1 ratio of N-phthaloyl α-amino acid to methoxy enol ether, with 2 equivalents of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl) and triethylamine and a catalytic quantity (≈10
mol%) of DMAP. Increase in the amount of N-phthaloyl α-amino acid used led to a small quantity of its anhydride formed which was inseparable from the desired product 220.

2.2.3 Initial Rearrangement Attempts

With the substrates in hand, the Ireland-Claisen rearrangement was attempted. It was envisaged that the conditions employed for the Ireland-Claisen rearrangement of glycine based systems (Scheme 53) would have the same effect with these α-substituted derivatives.

![Scheme 53 - Rearrangement conditions for non-quaternary centres](image)

This proved to be the case for the alanine derived substrate 220b only. It rearranged in 71% yield with a diastereoselectivity of 24:1. This promising result showed that increasing the size of the group at the α-position (from a proton to a methyl group) had a dramatic effect on the selectivity of the reaction (Table 7 entry 1 and 2).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Conversion (%)[^c]</th>
<th>dr (syn:anti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[^a]</td>
<td>220a</td>
<td>H</td>
<td>100 (74)</td>
<td>11:1</td>
</tr>
<tr>
<td>2[^a]</td>
<td>220b</td>
<td>Me</td>
<td>100 (71)</td>
<td>24:1</td>
</tr>
<tr>
<td>3[^b]</td>
<td>220c</td>
<td>Et</td>
<td>44</td>
<td>2:4:1</td>
</tr>
<tr>
<td>4[^b]</td>
<td>220d</td>
<td>tPr</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>5[^b]</td>
<td>220e</td>
<td>sPr</td>
<td>40</td>
<td>1.1:1</td>
</tr>
<tr>
<td>6[^b]</td>
<td>220f</td>
<td>tBu</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

[^a]: 90 mins
[^b]: 18 hours
[^c]: Product against starting material. Isolated yields in parenthesis.
On increasing the steric bulk around the α-position problems started to arise. Rearrangement of linear 2-aminobutyric derivative $220c$ (entry 3) and norvaline derivative $220e$ (entry 5) showed only moderate conversion, even after extended reaction times of 18 hours. In addition to the disappointing conversions, the diastereoselectivity fell when compared to the glycine ($220a$, entry 1) and alanine ($220b$, entry 2) rearrangements, with $2.4:1$ and $1.1:1$ seen respectively. On attempting rearrangement of branched substrates no product was seen, with starting material returned for both valine derivative $220d$ (entry 4) and leucine derivative $220f$ (entry 6). It can be proposed that the branched substrates sterically crowd the α-position such that either deprotonation, or rearrangement cannot take place. The linear nature of $220c$ and $220e$ are such that whilst affecting the outcome of the reaction, they do not prevent it from occurring.

These results, whilst not showing the same success as seen previously still has the potential to achieve a successful rearrangement. A series of optimisations are necessary to develop the route further.

2.2.4 Rearrangement Optimisation

2.2.4.1 Optimisation for N-Phthaloyl (E)-3-methoxyallyl 2-aminobutanoate

Methoxyallyl 2-aminobutyric acid derived $220c$ showed potential for optimisation when rearranged under the initial conditions, with a 44% conversion and diastereoselectivity of $2.4:1$ observed (Table 8, entry 1). Extending the reaction time led to a slight increase in conversion (entry 2), as did raising the initiation temperature to $-78 \, ^{\circ}\mathrm{C}$ (entry 4). The largest gains were, however, found by increasing the equivalents of LHMDS and TMSCl from 1.3 to 2 (entries 2 and 4 compared to entries 3 and 5). High conversions were observed, with a diastereomeric ratio of $2.7:1$ when conducted at $-78 \, ^{\circ}\mathrm{C}$. After purification this resulted in a yield of 20%. A small amount of the parent amino acid $219c$ was also observed, isolated as its methyl ester, as an additional 2% of the mass returned. The additional mass lost can be postulated to be caused by degradation of the enolate prior to silylation.
Table 8 - Optimisation for N-phthaloyl 2-aminobutyric acid allyl ester

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temp (°C)</th>
<th>TMSCl (eq)</th>
<th>LHMDS (eq)</th>
<th>Time (hrs)</th>
<th>Conversion (%)<sup>[a]</sup></th>
<th>dr (syn:anti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-95</td>
<td>1.3</td>
<td>1.3</td>
<td>3</td>
<td>44</td>
<td>2.4:1</td>
</tr>
<tr>
<td>2</td>
<td>-95</td>
<td>1.3</td>
<td>1.3<sup>[b]</sup></td>
<td>18</td>
<td>56</td>
<td>2.3:1</td>
</tr>
<tr>
<td>3</td>
<td>-95</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>96 (19)</td>
<td>2.4:1</td>
</tr>
<tr>
<td>4</td>
<td>-78</td>
<td>1.3</td>
<td>1.3</td>
<td>18</td>
<td>69</td>
<td>2.4:1</td>
</tr>
<tr>
<td>5</td>
<td>-78</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>95 (20)</td>
<td>2.7:1</td>
</tr>
</tbody>
</table>

^[a] Product against starting material. Isolated yields in parenthesis.
^[b] LHMDS added by hand.

2.2.4.2 Optimisation for N-Phthaloyl (E)-3-methoxyallyl 2-amino-3-methylbutanoate

After the initial rearrangement attempt, an optimisation study was undertaken to improve rearrangement of the valine derived substrate 220d (Table 9).

Table 9 - Optimisation for N-phthaloyl valine allyl ester

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temp (°C)</th>
<th>TMSCl (eq)</th>
<th>LHMDS (eq)</th>
<th>Time (hrs)</th>
<th>Conversion (%)<sup>[a]</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-95</td>
<td>1.3</td>
<td>1.3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-95</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-95</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-95</td>
<td>1.3</td>
<td>1.3</td>
<td>18</td>
<td>50 (11)</td>
</tr>
<tr>
<td>5</td>
<td>-78</td>
<td>1.3</td>
<td>1.3</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>72</td>
<td>100 (12)</td>
</tr>
</tbody>
</table>

^[a] Conversion stated as product against starting material. Isolated yields in parenthesis.

Increasing the amount of base and TMSCl used, to both 2, and 3 equivalents, had no bearing on the outcome of the reaction, with only starting material recovered. On
attempting the rearrangement at -95 °C with 1.3 eq, after 3 hours, when TLC showed no sign of reaction, a further equivalent of LHMDS was added to the reaction mixture at room temperature. This was left to stir overnight, where a conversion of 50% was seen, with an isolated yield of 11% (entry 4). The diastereoselectivity of this reaction was unable to be determined due to the lack of resolution between the diastereomers in the 1H NMR. Further rearrangement attempts were made at -78 °C and 0 °C, and whilst a yield of 12% was seen when four equivalents of LHMDS and TMSCl were used, there was an additional 27% mass of the parent amino acid (isolated as the methyl ester), present as an inseparable mixture.

This investigation into the rearrangement of α-substituted substrates has, so far, only used LHMDS. Since a key element in all Ireland-Claisen rearrangements is the base used a short study was initiated to investigate further.

![Scheme 54 - Effect of base on rearrangement of N-phthaloyl valine allyl ester](image)

The use of KHMDS saw starting material returned, with only a trace amount of product seen after several days of stirring. "nBuLi meanwhile returned only starting material after stirring for 18 hours, without any sign of product whatsoever (Scheme 54). These observations bear some resemblance to the optimisation study previously conducted within the group, on the phthaloyl glycine substrate 220a. In those studies, it was found that switching from LHMDS to NaHMDS or KHMDS resulted in a significant drop in both yields and diastereoselectivity. Furthermore, it was discovered that use of non-ethereal solvents such as toluene led to an intractable mixture of products.179

During the course of these studies, a publication by Collum et al. detailed LHMDS-mediated enolization, including the influence of triethylamine on the E/Z selectivity.180 The conditions detailed in his article have been put to good use in the synthesis of $\beta^{2,3}$-
amino acids within our group, where the standard conditions were failing to provide adequate results (Scheme 55).181

\begin{align*}
\text{NPhth} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{NMe} & \quad \text{Me} \\
\end{align*}

1) LHMDS (3 eq), Et$_3$N (30 eq) \\
2) CH$_2$N$_2$, Et$_2$O

\text{50\%, dr > 25:1}

Scheme 55 - Collum's enolization conditions

Unfortunately, after attempting these conditions in our rearrangement the complex NMR that resulted after work up showed no sign of the desired product, whilst significant quantities of starting material could be discerned (Scheme 56).

\begin{align*}
\text{NPhth} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{NMe} & \quad \text{Me} \\
\end{align*}

1) LHMDS (3 eq), Et$_3$N (30 eq) \\
Tol, -78°C to RT \\
2) CH$_2$N$_2$, Et$_2$O

Scheme 56 - Attempted Collum rearrangement of N-phthaloyl valine allyl ester

Despite many failed rearrangement attempts, we have progressed from a rearrangement protocol which saw no sign of any product, and have been able to optimise these conditions to synthesise the desired α-quaternary β-hydroxy-α-amino acid in 11% yield. However, it appears that the increase in steric bulk is preventing a successful reaction from occurring.

2.2.4.3 Optimisation for N-Phthaloyl (E)-3-methoxyallyl 2-aminopentanoate

Norvaline derivative 220e showed some promise for optimisation, with initial conditions producing a conversion of 40% and an approximate diastereoselectivity of 1.1:1 (Table 10, entry 1). Prolonging the reaction time to 72 hours doubled the conversion, with a small increase in diastereoselectivity (entry 2). A subsequent increase in the equivalents of LHMDS and TMSCl further increased the conversion, and affords a dr almost double that first seen (entry 3). Increasing the temperature to -78 °C led to an improvement in the conversion and isolated yield when compared to the comparative rearrangements at -95 °C (entries 5 and 6 against entry 3).
Chapter 2 Results & Discussion

Table 10 - Optimisation for N-phthaloyl norvaline allyl ester

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temp</th>
<th>TMSCl (eq)</th>
<th>LHMDS (eq)</th>
<th>Time (hrs)</th>
<th>Conversion [%][a]</th>
<th>dr (syn:anti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-95 °C</td>
<td>1.3</td>
<td>1.3</td>
<td>3</td>
<td>40</td>
<td>1.1:1</td>
</tr>
<tr>
<td>2</td>
<td>-95 °C</td>
<td>1.3</td>
<td>1.3[b]</td>
<td>72</td>
<td>80</td>
<td>1.4:1</td>
</tr>
<tr>
<td>3</td>
<td>-95 °C</td>
<td>2</td>
<td>2[b]</td>
<td>72</td>
<td>95 (23)</td>
<td>2:1</td>
</tr>
<tr>
<td>4</td>
<td>-78 °C</td>
<td>1.3</td>
<td>1.3</td>
<td>72</td>
<td>95</td>
<td>1.9:1</td>
</tr>
<tr>
<td>5</td>
<td>-78 °C</td>
<td>2</td>
<td>2</td>
<td>72</td>
<td>100 (41)</td>
<td>3:1</td>
</tr>
<tr>
<td>6</td>
<td>-78 °C</td>
<td>2</td>
<td>2[b]</td>
<td>72</td>
<td>100 (45)</td>
<td>2:1</td>
</tr>
<tr>
<td>7</td>
<td>-78 °C</td>
<td>3</td>
<td>3</td>
<td>72</td>
<td>100</td>
<td>1.9:1</td>
</tr>
</tbody>
</table>

[a] Conversion stated as product against starting material. Isolated yields in parenthesis.
[b] LHMDS added via syringe pump at a rate of 3mL/min

On workup and subsequent purification it becomes apparent that a side product is present. Identified as the parent amino acid (isolated as the methyl ester PhthN-Nva-OMe) it is found to have an Rf highly similar to the desired product 221e, which made purification difficult. Unfortunately this side product was observed in all rearrangement attempts. 19% of PhthN-Nva-OMe was recovered from the rearrangement at -95 °C (entry 3), along with 23% of the desired product. On increasing the temperature, and adding LHMDS dropwise by hand, 41% of product was obtained, along with 24% of PhthN-Nva-OMe (entry 5). Due to the lack of resolved peaks in the 1H NMR it was not possible to obtain an accurate diastereomeric ratio from the crude reaction mixture, nonetheless, the two diastereomers were separable by column chromatography, whereby a ratio of 3:1 was obtained. When a syringe pump was used for the addition, with an addition rate of 3mL/min, 45% of rearranged product was obtained, with a much reduced 11% of PhthN-Nva-OMe (entry 6). This time it was possible to obtain a diastereomeric ratio of 2:1, from the crude 1H NMR.

2.2.4.4 Optimisation for N-Phthaloyl (E)-3-methoxyallyl 2-amino-4-methylpentanoate

All rearrangement attempts of leucine derivative 220f failed to show any sign of desired product. However, along with unreacted starting material, significant quantities of the
parent amino acid **219f** were recovered (isolated as the methyl ester after treatment with diazomethane). These results were seen when using either 2, or 3 equivalents of LHMDS at -78 °C, and with reaction times of both 18 and 48 hours.

![Scheme 57 - Postulated mechanisms for decomposition to parent amino acid](image)

Whilst there is no conclusive evidence for the mechanism for the formation of the parent amino acid, two plausible mechanisms are shown in Scheme 57. Such decomposition was originally seen when a simple N-Boc glycine derivative was being used, under Kazmaier’s chelate enolization conditions (LHMDS and ZnCl₂). The rationale in the chelate example was the dianionic nature of the intermediate enolate (Figure 17). It was argued that the \(C-O_s^* \) orbital is overlapped by two highly electron rich \(\pi \)-systems, which allow a significant level of electron density to be donated into the \(\sigma^* \) orbital.¹⁷³

![Figure 17 - Possible enolate instability under chelate enolization](image)

In our scenario however, the additional substitution present may provide enough electron density to cleave this \(C-O \) single bond. Furthermore, it is likely to help stabilise the ketene intermediate. Presumably this decomposition route occurs rapidly, such that silylation is unable to take place and prevent it.

2.2.5 Optimal Rearrangements

During the course of the investigation into the rearrangement of \(N \)-phthaloyl-\(\alpha \)-substituted-amino acids we have found that as the substituent size is increased the
rearrangement becomes far less facile, up to leucine, whereby no rearrangement is seen, but rather a complete decomposition of the substrate to the parent amino acid. It has been necessary to acquire different conditions for each amino acid, to obtain optimal results (Table 11).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Temp</th>
<th>TMSCl (eq)</th>
<th>LHMDS (eq)</th>
<th>Yield (%)[a]</th>
<th>dr (syn:anti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>220a</td>
<td>H</td>
<td>-95 °C</td>
<td>1.3</td>
<td>1.3</td>
<td>74 (100)</td>
<td>11:1</td>
</tr>
<tr>
<td>2</td>
<td>220b</td>
<td>Me</td>
<td>-95 °C</td>
<td>1.3</td>
<td>1.3</td>
<td>71 (100)</td>
<td>24:1</td>
</tr>
<tr>
<td>3</td>
<td>220c</td>
<td>Et</td>
<td>-78 °C</td>
<td>2</td>
<td>2</td>
<td>20 (95)</td>
<td>2.7:1</td>
</tr>
<tr>
<td>4</td>
<td>220d</td>
<td>iPr</td>
<td>-95 °C</td>
<td>1.3</td>
<td>1.3 & 1</td>
<td>11 (50)</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>220e</td>
<td>"Pr</td>
<td>-78 °C</td>
<td>2</td>
<td>2</td>
<td>45 (100)</td>
<td>2:1</td>
</tr>
<tr>
<td>6</td>
<td>220f</td>
<td>iBu</td>
<td>-78 °C</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

[a] Conversions in parenthesis, stated as product against starting material.

There are two potential reasons for the poor results achieved with the larger groups. The first of these is the inability of the base to deprotonate the α-proton and hence form the silyl ketene acetal. The second is the inability for the rearrangement to take place once the silyl ketene acetal has been formed. The reasoning behind both these possibilities lie with steric crowding; it can be seen that the branched chains (entries 4 and 6) offer poor rearrangements, whilst improved results are obtained with the linear substrates (entries 2, 3 and 5), which would present less steric hindrance around the α-position, hence improving deprotonation, or the ability for the allyl group to approach in order to undergo rearrangement. A 3D representation of the silyl ketene acetal for substrate 220d shows the iso-propyl substituent crowding the key reaction site (Figure 18).
2.3 Boc-N-Me Protected Substrates

It is known, both from within the group and from other Ireland-Claisen rearrangements that the nitrogen protecting group can have a large bearing on the success of the rearrangement. As part of an investigation into derivatives of glycine-based substrates it has been demonstrated that Boc-sarcosine-methoxyallyl ester 224a undergoes rearrangement in 73% yield with a diastereomeric ratio of 2:1 (Scheme 58).\cite{ex1} In the course of this previous study Boc-N-Me-alanine derivative 224b had also been found to rearrange satisfactorily, in 65% yield and a diastereomeric ratio of 9:1.\cite{ex2} Consequently we wanted to attempt the rearrangement with other \(\alpha\)-substituted amino acids.

![Figure 18 - 3D representation of the silyl ketene acetal for \(N\)-phthaloyl valine allyl ester](image)

| 224a R = H
224b R = Me

Scheme 58 - Rearrangement of Boc-N-Me-glycine allyl esters

2.3.1 Retrosynthetic Analysis

With the new series of substrates identified a new route was needed to prepare them. Whilst the synthesis of the allylic enol ether remains the same, protection of the amino acid needs to be established.
The forward route requires the protection to take place in two steps, namely Boc protection of the amino acids, followed by N-methylation.

2.3.2 Forward Synthesis

With the proposed route in place the first step – Boc protection – took place in quantitative yield. N-Boc valine 226d was carried forward in its crude form to the alkylation using methyl iodide and sodium hydride, in DMF. However, despite following a literature procedure, the result was an intractable mixture of starting material and impurities (Scheme 59).183

It was reasoned that the methylation might proceed more successfully if the carboxylic acid was protected as the methyl ester. A new synthesis was therefore designed (Scheme 60 and Scheme 61). Initial esterification proceeded in an excellent yield of 90%. A variety of conditions were investigated for the subsequent Boc protection. Using sodium hydroxide as the base resulted in hydrolysis of the methyl ester, so triethylamine was used instead. By performing the reactions in water, lower yields were seen, in part due to partial water solubility of the product, requiring multiple extractions. Performing the reaction in THF presented a simple workup; concentration in vacuo, and then purification by flash chromatography. The single disadvantage was long reaction times of 96 hours to attain high yields of the Boc protected amino esters 229d and 229e.
The methylation that followed occurred in good yield when using sodium hydride and methyl iodide in DMF. This route avoided the large amounts of both sodium hydride and methyl iodide that were used in the previous unsuccessful attempt. Ensuing hydrolysis with lithium hydroxide afforded the desired Boc-N-Me-valine 227d and Boc-N-Me-norvaline 227e in 96% and 86% yields respectively.

The final stage of the synthesis was carbodiimide promoted coupling of protected amino acids 227d-e with allylic enol ether 218a, which proceeded in good yield for valine derived substrate 231d (Scheme 62). It did however give a disappointing yield of N-Boc-N-Me-norvaline allyl ester 231e. This was however, in part, due to partial decomposition whilst undergoing purification by flash chromatography.
2.3.3 Rearrangement Attempts

Initial efforts concentrated on Boc-\(N\)-Me-valine allyl ester 111a. As was the case with \(N\)-phthaloyl valine, the original conditions resulted only in starting material being recovered.

Table 12 - Optimisation of \(N,N\)-Boc,Me valine allyl ester

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Temp</th>
<th>TMSCl (eq)</th>
<th>LHMDS (eq)</th>
<th>Base</th>
<th>Time (hrs)</th>
<th>Conversion (%)[^{[a]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231d</td>
<td>-95 °C</td>
<td>1.3</td>
<td>1.3</td>
<td>LHMDS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>231d</td>
<td>-78 °C</td>
<td>2</td>
<td>2</td>
<td>LHMDS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>231d</td>
<td>0 °C</td>
<td>2</td>
<td>2</td>
<td>LHMDS</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>231d</td>
<td>-78 °C</td>
<td>2</td>
<td>2</td>
<td>KHMDS</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>231e</td>
<td>-78 °C</td>
<td>2</td>
<td>2 & 1</td>
<td>LHMDS</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

\[^{[a]}\] Conversion stated as product against starting material. Isolated yields in parenthesis.

Increasing the temperature and the equivalents of base and TMSCl had no effect, and switching to the base KHMDS made no difference to the overall result (Table 12).

Since more success had been seen for the rearrangement of the \(N\)-phthaloyl norvaline allyl ester 220e over the valine derivative 220d, it was decided to attempt the rearrangement of the analogous Boc-\(N\)-Me-norvaline allyl ester 231e (Table 12). However, this failed to rearrange at -78 °C with 2 equivalents of LHMDS, and even an additional equivalent of base at room temperature failed to provide any conversion.

Since this series was showing little potential it was decided to focus on other areas of chemistry which showed more signs of promise.
2.4 Heteroproleine Derived Substrates

Earlier attempts to protect serine with phthalimide had been unsuccessful; however, due to its ubiquitous nature it is a highly desirable substrate where the α-substituted serine that results from the rearrangement can be used as a building block for natural products.

![Scheme 63 - Synthetic attempts towards N-phthaloyl serine]

2.4.1 Substrate Genesis

Whilst investigating alternative methods of protecting serine we were drawn to the success seen when rearranging the proline-derived substrate 233. Under modified rearrangement conditions – the same used when rearranging the N-phthaloyl protected substrates 220c and 220e – a highly successful rearrangement was observed (Scheme 64). A single diastereomer was recovered in a near quantitative yield.179

![Scheme 64 - Rearrangement of L-proline methoxyallyl ester]

This observation led us to postulate that serine could be protected with formaldehyde to form a cyclic N,O-acetal, such that structurally it would be very similar to proline (Figure 20). Furthermore, this has the potential to allow cysteine, and threonine to be protected in the same manner, and hence allow more structurally diverse building blocks to be created.
With a clear idea of the substrate required for the Ireland-Claisen rearrangement a synthetic route is needed for its synthesis. As with the retrosyntheses from the previous sections the first retrosynthetic step is disconnection at the acyl bond to provide protected amino acid 237 and enol ether $218a$. Serine $235a$ can be used to synthesise the oxazolidine 236, which, after Boc protection will afford the protected amino acid ready for coupling with $218a$.

2.4.2 Forward Synthesis of Heteroproline Allyl Esters

The retrosynthetic scheme (Scheme 65) can, in practice, be readily shortened. It has previously been demonstrated that N-Boc-4-carboxy-1,3-oxazolidine (4-oxaproline) $237a$ can be synthesised in high yields, in a one-pot procedure.184 Serine is dissolved in an aqueous solution of sodium hydroxide and paraformaldehyde, and left in the fridge overnight. Boc anhydride and a catalytic amount of hydroxylamine hydrochloride are subsequently added at room temperature and left to stir for three hours to furnish the desired oxaproline in excellent yield.
Table 13 - Synthesis of N-Boc heteroprolines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>X</th>
<th>R</th>
<th>Yield of 237 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>235a</td>
<td>O</td>
<td>H</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>235b</td>
<td>S</td>
<td>H</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>235c</td>
<td>O</td>
<td>Me</td>
<td>97</td>
</tr>
</tbody>
</table>

This method was also used with great success with cysteine and threonine, in addition to serine, to afford three newly protected amino acids ready for esterification (Table 13).

Carbodiimide promoted esterification occurred in moderate yield (Table 14); this can be partly explained by the sensitivity of the products. The threonine substrates were particularly sensitive, and where further purification was necessary a short pad of base-treated silica was used (see 3.3.1 Substrate Synthesis for an in-depth discussion on the synthesis of enol ethers 218 and subsequent esterification).

Table 14 - Synthesis of N-Boc heteroproline allyl esters

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>X</th>
<th>R</th>
<th>R₁</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>238a</td>
<td>O</td>
<td>H</td>
<td>Me</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>238b</td>
<td>S</td>
<td>H</td>
<td>Me</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>238c</td>
<td>O</td>
<td>Me</td>
<td>Me</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>238d</td>
<td>O</td>
<td>Me</td>
<td>Et</td>
<td>45</td>
</tr>
</tbody>
</table>
2.4.3 Rearrangement of Heteroproline Allyl Esters

The proline allyl esters that have been previously subjected to the Ireland-Claisen rearrangement have required higher temperatures and more base than the N-phthaloyl glycinate to achieve complete conversion. Due to the similarity of our current substrates to these it was foreseen that similar conditions would be necessary. Initial attempts using 2 equivalents of both LHMDS and TMSCl showed promising signs of reactivity. However, after 18 hours there was still residual starting material. By increasing the number of equivalents to 3 the reaction was able to go to completion.

Table 15 - Rearrangement of heteroproline allyl esters

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>X</th>
<th>R</th>
<th>R¹</th>
<th>Yield (%)</th>
<th>dr (syn:anti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>239a</td>
<td>O</td>
<td>H</td>
<td>Me</td>
<td>50</td>
<td>6:1</td>
</tr>
<tr>
<td>2</td>
<td>239b</td>
<td>S</td>
<td>H</td>
<td>Me</td>
<td>44</td>
<td>12:1</td>
</tr>
<tr>
<td>3</td>
<td>239c</td>
<td>O</td>
<td>Me</td>
<td>Me</td>
<td>47</td>
<td>>99:1</td>
</tr>
<tr>
<td>5</td>
<td>239d</td>
<td>O</td>
<td>Me</td>
<td>Et</td>
<td>70</td>
<td>>99:1</td>
</tr>
</tbody>
</table>

The initial findings show that whilst the yields are moderate to good, the diastereomeric ratios are very positive. Both the serine 239a and cysteine 239b rearrangement products show good diastereoselectivity, whilst the threonine derivatives 239c and 239d rearrange as single diastereomers (Table 15). For compound characterisation variable temperature (VT) NMR was necessary to ensure that the rotameric peaks were not screening any diastereomeric peaks.

Due to the use of enantiomerically pure threonine, the additional methyl group present on the oxazolidine ring creates a chiral centre. This shows that there is the potential for enantiomeric control with this reaction, with transfer of chirality controlled by this stereocentre.
3. SRS IN AN IRELAND-CLAISEN REARRANGEMENT

3.1 Concept Development

The success seen in the rearrangement of threonine allyl esters 239c and 239d led us to the belief that we could induce similar chirality control with serine. However, any such attempts would require – as is the case in the rearrangements of 239c (Figure 21) – the asymmetric transfer to be outside the cyclic transition state.

![Figure 21 - The exopericyclic nature of the directing group in the heteroproline Ireland-Claisen rearrangement](image)

Whilst the transfer of chirality within the cyclic framework is well documented, this is not the case for the consequences of chirality sited outside such a framework. There are scattered examples in the literature that show limited efficacy in asymmetric synthesis. For the subsequent discussion, the stereocentres will be assigned based on their relative location to the silyl ketene acetal. Carbons α to the C1 carbon will be designated C1', α to C5, C5' and so on.

Gilbert et al. showed that the rearrangement of a prenyl cyclopentyl ester with a methyl substituent at C1' gave high facial selectivity (Scheme 66). This selectivity was due to the approach of the prenyl group *anti* to the C1' methyl group in the transition state. The same diastereomer would be achieved regardless of the geometry of the silyl ketene acetal, or rearrangement through either a chair or boat transition state.
Chapter 3 Results & Discussion

Scheme 66 - Influence of a remote stereocentre at C1′

On the use of either E- or Z-crotyl esters (rather than the prenyl ester seen in Scheme 66) the same stereoselectivity was seen at the newly created quaternary centre, however, the diastereoselectivity at C3 was low. This was presumed to be due to a lack of selectivity in the formation of the silyl ketene acetal rather than the rearrangement proceeding through a combination of chair and boat transition states.

Ishizaki *et al.* used the diastereoselective Ireland-Claisen rearrangement of the C5′ triisopropylsilyl ether **242** to afford the *trans*-carboxylic acid **243** with a diastereoselectivity of 10.5:1 (Scheme 67). A range of silyl protecting groups were trialled, with the TIPS group providing the highest level of selectivity. It can be envisaged that attack of the silyl ketene acetal will be anti to the O-silyl group. In this case – whilst a chair transition state is most likely – both the chair and boat transition states would yield the same product.

Scheme 67 - Influence of a remote stereocentre at C5′

Whilst the examples above show a small selection of asymmetric induction from a chiral centre one atom removed from the cyclic transition state there are even fewer examples of selective rearrangements when the remote stereocentre is two atoms exopericyclic. We have already seen one such example (see 1.5.2 Glycinates in the Ireland-Claisen Rearrangement, Scheme 48) where the use of chiral glycinate afforded asymmetric induction. Gould and Kallmerten have also reported an auxiliary-directed glycolate Ireland-Claisen rearrangement where modest selectivities were induced.
They highlighted the synthetic utility of their method in a short synthesis of (R)-(-)-pantolactone.

Their protocol sees two alternative transition states, such that one is favoured over the other. This allows the external auxiliary to direct the facial selectivity of addition to the enolate \(\pi \)-system, allowing for a preferential outcome. In this case, the best diastereoselectivity seen was with the cinnamyl glycolates, which was rationalised due to a favourable \(\pi \)-stacking interaction.

We conceived that it would be possible to apply the principle of self-regeneration of stereocentres with an Ireland-Claisen rearrangement.
3.2 Reaction Development

3.2.1 Forward Synthesis of Chiral Oxazolidine

Seebach has published many papers on the use of pivalaldehyde to protect serine as an \textit{N,O}-acetal, which will install a chiral \textit{tert}-butyl group on the oxazolidine ring.89-90, 189-190 Furthermore, Ghosez \textit{et al.} have demonstrated that it is possible to protect the oxazolidine with a Boc group, rather than the formyl group most commonly used by Seebach.191

During the course of this investigation it was necessary to synthesise both enantiomers in addition to the racemic series. The yields for all three parallel series are shown in the relevant schemes. For a successful cyclisation of serine \textbf{246} with pivalaldehyde, it is necessary to synthesise the serine methyl ester hydrochloride salt \textbf{247}. Condensation with pivalaldehyde proceeded under Dean-Stark conditions to give the desired oxazolidine in a 64\% yield after 24 hours. However, extending the reaction time by a further 24 hours afforded the methyl 2-\textit{tert}-butoxyoxazolidine-4-carboxylate \textbf{248} in 95\% yield, with a diastereomeric ratio of 63:37.

\begin{center}
\includegraphics[width=\textwidth]{Scheme_70.png}

\textbf{Scheme 70 - Oxazolidine Synthesis}
\end{center}

Boc protection as reported by Ghosez \textit{et al.} required the use of an ultrasonic bath at 55 °C. This worked well, yielding a single diastereomer of oxazolidine \textbf{249} in 70\%. However, the practicalities of this method were not ideal, since it was not conducive to scale, due to the limitations in size of our sonicator. To circumnavigate this issue, a solely thermal reaction, with vigorous stirring was attempted. Again, a single diastereomer was isolated, although the yields were variable from reaction to reaction, but were always in the range of 50-70\%. Despite the occasional reduction in yield, this allowed us to bring through larger quantities of starting material.
Ester hydrolysis of 249 affords the free acid in good yield, ready for carbodiimide promoted coupling to enol ether 218a. Esterification proceeds smoothly to synthesise the desired rearrangement substrate 251a in 91% after purification through a short pad of base treated silica.

3.2.2 Rearrangement Optimisation

With the route to the desired substrate 251a in hand, the rearrangement was investigated. The conditions used in the heteroproline rearrangements (2.4.3 Rearrangement of Heteroproline Allyl Esters) were an excellent starting point.

The rearrangement pleasingly proceeds with a high yield, and furthermore, as a single diastereomer (Scheme 73). Polarimetry produces an $\left[\alpha\right]_D$ of -13, showing optical activity that is comparable to similar compounds in the literature (Figure 22).
Before we progressed any further into developing the scope of this rearrangement, we wanted to ensure the rearrangement was fully optimised. For this purpose, a small screen of conditions was conducted.

The findings from this optimisation screen show that our initial conditions (Table 16, entry 5) show complete consumption of starting material, with an isolated yield of 78%. On reducing the number of equivalents of TMSCl and LHMDS there is an increase in the quantity of residual starting material present. This forms an intractable mixture with the desired product, and isn’t amenable to separation by flash chromatography. On lowering the temperature to -95 °C the reaction is stopped, and only trace amounts of product can be seen, whilst large quantities of starting material can be seen in the 1H NMR.
3.3 Reaction Scope of Enol Ethers

With the optimal reaction conditions successfully identified the scope of the rearrangement can be investigated further. The initial rearrangement product $252a$ features a β-methoxy group. It was hoped to establish the generality of this rearrangement, and show that a range of β-alkoxy and β-aryloxy compounds can be synthesised. Included in these will be protecting groups, which should allow easy access to β-hydroxy groups, a more common motif in natural products than their protected derivatives.

3.3.1 Substrate Synthesis

With the chiral oxazolidine synthesis already completed, attention was focused on the enol ether portion of the substrate. For all our previous investigations (E)-3-methoxyprop-2-en-1-ol (or methoxy enol ether) $218a$ has been used due to the commercial availability of its precursor methyl trans-3-methoxycrylate. However, for substitution other than methyl it is necessary to synthesise these vinylogous esters. Work into this synthesis has already been conducted within the laboratory, where several reagents were investigated as catalysts in the 1,4-addition of oxygen nucleophiles to activated acetylenes (Table 17).179

<table>
<thead>
<tr>
<th>Table 17 - 1,4-Addition optimization179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Of these previously reported methods,$^{193-195}$ the DABCO-mediated reaction provided the desired products in good yields, along with short reaction times, and required the simplest purification techniques. For these reasons this was the method of choice.
With a suitable route developed, several alcohols were reacted with methyl propiolate to afford a range of vinylogous esters 217b-p (Table 18).

Table 18 - DABCO catalysed 1,4-addition into methyl propiolate

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OEt</td>
<td>217b</td>
<td>88%</td>
<td>9</td>
<td>O</td>
<td>217j</td>
<td>86%</td>
</tr>
<tr>
<td>2</td>
<td>O’Pr</td>
<td>217c</td>
<td>73%</td>
<td>10</td>
<td>O</td>
<td>217k</td>
<td>93%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>217d</td>
<td>85%</td>
<td>11</td>
<td></td>
<td>217l</td>
<td>62%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>217e</td>
<td>86%</td>
<td>12</td>
<td></td>
<td>217m</td>
<td>91%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>217f</td>
<td>98%</td>
<td>13</td>
<td></td>
<td>217n</td>
<td>86%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>217g</td>
<td>91%</td>
<td>14</td>
<td></td>
<td>217o</td>
<td>36%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>217h</td>
<td>93%</td>
<td>15</td>
<td></td>
<td>217p</td>
<td>81%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>217i</td>
<td>93%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The range of alcohols reacted with methyl propiolate 253 successfully, to afford the desired vinylogous carbonates in good to excellent yields (62-93%). The only low yielding reaction was with cyclohexanol, where 36% yield was observed. Steric effects can be reasonably discounted, since iso-propyl 217c and 217p, both synthesised from secondary alcohols, are formed in good yields.

Having already established the optimum conditions and work-up procedure for the DIBAL-H reduction of these class of vinylogous carbonates using methyl trans-3-methoxyacrylate (Scheme 52), all the vinylogous carbonates were subjected to these reaction conditions (Table 19).
Despite the sensitivity of these compounds generally good yields were seen across the board, and, providing they were stored below 0 °C and under nitrogen gas, storage was possible for several months without decomposition.

Carbodiimide promoted esterification allowed the successful synthesis of the desired allylic oxazolidine esters 251a-p (Table 20). The same optimized conditions were used as have been seen for both the phthalimide protected substrates, and the heteroproline derivatives. In the majority of cases purification was through a short pad of either base treated silica, or basic alumina. However, three of the substrates proved to be particularly sensitive, and were not amenable to further purification. For this reason, the ortho-iodobenzyl-, iso-butyl-, and cyclohexyl- substrates (217m, 217n, 217o respectively) were taken forward into the rearrangement without any purification, and used in their crude form. A fourth, the iso-propyl 217c suffered heavy decomposition on

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMe</td>
<td>218a</td>
<td>77%</td>
<td>9</td>
<td>I</td>
<td>218i</td>
<td>82%</td>
</tr>
<tr>
<td>2</td>
<td>OEt</td>
<td>218b</td>
<td>88%</td>
<td>10</td>
<td>O</td>
<td>218j</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>O’Pr</td>
<td>218c</td>
<td>76%</td>
<td>11</td>
<td>Cl</td>
<td>218k</td>
<td>90%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>218d</td>
<td>71%</td>
<td>12</td>
<td></td>
<td>218l</td>
<td>91%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>218e</td>
<td>83%</td>
<td>13</td>
<td></td>
<td>218m</td>
<td>89%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>218f</td>
<td>53%</td>
<td>14</td>
<td>Me</td>
<td>218n</td>
<td>86%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>218g</td>
<td>64%</td>
<td>15</td>
<td></td>
<td>218o</td>
<td>74%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>218h</td>
<td>95%</td>
<td>16</td>
<td></td>
<td>218p</td>
<td>72%</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
the column, however, it was possible to isolate sufficient pure product to be used in the rearrangement.

Table 20 - Allylic oxazolidine ester synthesis

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMe</td>
<td>251a</td>
<td>91%</td>
</tr>
<tr>
<td>2</td>
<td>OEt</td>
<td>251b</td>
<td>93%</td>
</tr>
<tr>
<td>3</td>
<td>OPr</td>
<td>251c</td>
<td>36%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>251d</td>
<td>75%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>251e</td>
<td>79%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>251f</td>
<td>83%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>251g</td>
<td>84%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>251h</td>
<td>95%</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>251i</td>
<td>72%</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>251j</td>
<td>74%</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>251k</td>
<td>51%</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>251l</td>
<td>60%</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>251m</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>251n</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>251o</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>251p</td>
<td>83%</td>
</tr>
</tbody>
</table>
3.3.2 Substrate Rearrangement

With a wide variety of allylic oxazolidine esters prepared, the scope of the rearrangement could be investigated, following the optimised rearrangement protocol.

Table 21 - Rearrangement scope: alkoxy enol ether variation

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
<th>dr[^{[a]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMe</td>
<td>252a</td>
<td>78%</td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td>OMe</td>
<td>rac-252a[^{[b]}]</td>
<td>81%</td>
<td>>99:1</td>
</tr>
<tr>
<td>3</td>
<td>OMe</td>
<td>ent-252a[^{[c]}]</td>
<td>83%</td>
<td>>99:1</td>
</tr>
<tr>
<td>4</td>
<td>OEt</td>
<td>252b</td>
<td>84%</td>
<td>>99:1</td>
</tr>
<tr>
<td>5</td>
<td>O(^{[\text{ii}]\text{Pr}})</td>
<td>252c</td>
<td>70%</td>
<td>>99:1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>252d</td>
<td>71%</td>
<td>>99:1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>252e[^{[d]}]</td>
<td>76%</td>
<td>>99:1</td>
</tr>
</tbody>
</table>

\[^{[a]}\] Measured by \(^{1}\text{H NMR}\) (500 MHz) analysis of crude reaction mixture. \[^{[b]}\] Oxazolidine derived from D\text{-}L-serine. \[^{[c]}\] Oxazolidine derived from D\text{-}serine. \[^{[d]}\] Isolated as TMS alkyne.

The rearrangement protocol is seen to be general, with yields between 47-84%, and excellent diastereoselectivity seen for all examples. A large variety of O\text{-}functionality has been examined, with simple alkyl substrates (Table 21 entries 1-4) rearranging with the highest yields. Increasing the substitution on these alkyl groups (entry 5) lowers the yield slightly, but importantly doesn’t alter the diastereoselectivity. Functionalised alkyl groups are tolerated well, with the allyl ether 251d rearranging in good yield (entry 6). Rearrangement of the propargyllic substrate 251e results in the silylation of the terminal alkyne, with the TMS alkyne isolated (entry 7). This silylation can be accounted for by the excess levels of both base, and TMSCl present in the reaction mixture.
Table 22 - Rearrangement scope: aryl enol ether variation

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
<th>dr[^a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>77%</td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>68%</td>
<td>>99:1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>73%</td>
<td>>99:1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>58%</td>
<td>>99:1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>73%</td>
<td>>99:1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>73%</td>
<td>>99:1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>72%</td>
<td>>99:1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>75%</td>
<td>>99:1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>70%</td>
<td>93:7</td>
</tr>
</tbody>
</table>

[^a]: Measured by ^1^H NMR (500 MHz) analysis of crude reaction mixture. ^[^b]: Oxazolidine derived from DL-serine. ^[^c]: Oxazolidine derived from D-serine.

The rearrangement can also be successfully applied to aryl and benzyl based enol ethers, which allows easy access to a range of β-aryloxy-α-amino acids. A wide range of hydroxyl protecting groups (Table 22 entries 2, 5-8) can be successfully incorporated into the rearrangement, hence allowing a range of deprotection options. Gratifyingly this rearrangement has also shown good tolerance to O-functional handles (Table 22 entry 4 & Table 23 entry 1), which shows the potential for further synthetic elaboration.
Table 23 - Rearrangement scope: sensitive substrates – 2 step reactions

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
<th>dr$^{[a]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>252m</td>
<td>252m</td>
<td>51%$^{[b]}$</td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td>252n</td>
<td>252n</td>
<td>55%$^{[b]}$</td>
<td>>99:1</td>
</tr>
<tr>
<td>3</td>
<td>252o</td>
<td>252o</td>
<td>47%$^{[b]}$</td>
<td>>99:1</td>
</tr>
</tbody>
</table>

$^{[a]}$ Measured by 1H NMR (500 MHz) analysis of crude reaction mixture.
$^{[b]}$ Yields based on 218m-o.

In the case of the iso-butyl- and cyclohexyl ethers, in addition to the ortho-iodo benzyl ether the yields shown are over two steps; the first being the carbodiimide esterification. Taking into account the yield of ester formation these rearrangements have been shown to rearrange as efficiently as the other examples (70-80%).

The only substrate not to furnish a single diastereomer is dichlorobenzyl ether 252l (Table 22 entry 9). Here, we see a slight drop in diastereoselectivity to 93:7. A potential explanation for this is that the di-substituted nature of the aromatic ring is starting to disfavour the chair transition state (Figure 23).

![Figure 23 - Proposed chair transition state](image)
The absolute and relative stereochemistry obtained in this Ireland-Claisen rearrangement has been confirmed by X-ray diffraction of the iodoaryl ether $252i$ (Figure 24). The sense of stereochemistry observed is consistent with the expected transition state, where the enol ether portion approaches the silylketene acetal anti to the tert-butyl group of the oxazolidine. Furthermore, this approach is consistent with other stereochemical transformations that utilise Seebach’s self-regeneration of stereocentres method.$^{90, 196-202}$

![Figure 24 - ORTEP plot of XRD analysis of $252i$ with proposed Ireland-Claisen rearrangement geometry](image)

Whilst technically isolated as a 1:1 mixture of diastereomers, rearrangement of the substituted methallyl substrate $251p$ proceeds as a single diastereomer with respect to the new stereocentres being formed (Scheme 74).

![Scheme 74 - Rearrangement of racemic enol ether](image)

In an analogous rearrangement, utilising an N-diboc glycine derived substrate, this ether substitution has been used in the formal synthesis of L-(+)-furanomycin (Scheme 75).174 It follows that this would allow $252p$ to present a novel analogue to this natural antibiotic.$^{203-204}$
Diazomethane esterification has been an integral part of the rearrangement protocol, allowing for ease of isolation and characterisation as the methyl ester. However, whilst it is quick, efficient, and easy to incorporate into the experimental procedure there are times when alternative ester groups could be required. A benzyl ester would offer the potential for rapid removal under hydrogenation conditions, and, in conjunction with the benzyl ether 252j allows for global deprotection. As an alternative to diazomethane, benzyl bromide can be used to synthesise this desired ester (Table 24).

Table 24 - Rearrangement scope: benzyl ester synthesis

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Product</th>
<th>Yield</th>
<th>dr<sup>[a]</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>254j</td>
<td>72%</td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>ent-254j<sup>[b]</sup></td>
<td>60%</td>
<td>>99:1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>254k</td>
<td>58%</td>
<td>>99:1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>ent-254k<sup>[b]</sup></td>
<td>60%</td>
<td>>99:1</td>
</tr>
</tbody>
</table>

^[a] Measured by ¹H NMR (500 MHz) analysis of crude reaction mixture.
^[b] Oxazolidine derived from D-serine.

In general, there is a small decrease in yield in forming the benzyl ester when compared to the methyl ester. This suggests that the esterification is not as efficient when using benzyl bromide instead of diazomethane.
Chapter 3 Results & Discussion

With a range of enol ethers demonstrating the reliability of this rearrangement, we wanted to test the limits. All previous examples use E-enol ethers. If the transition state geometry holds, use of a Z-enol ether should give rise to the alternate diastereomer. Whilst the route to the required Z-substrate is broadly similar as seen for the trans olefins, the addition to methyl propiolate is now conducted using a catalytic amount of silver(I) trifluromethanesulfonate (Scheme 76).205 Reduction with DIBAL-H in toluene follows the same procedure used with the E-enol ethers.

Subsequent carbodiimide esterification with the oxazolidine acid 250 proceeded in moderate yield (Scheme 77). Substrate 257 proved to be more sensitive than the trans derivative, and this can account for the lost mass during purification.

The substrate was subjected to the rearrangement conditions, with the expectation that formation of the opposite diastereomer would be seen. However, this was not fully the case. Instead, a mixture of diastereomers were seen, with the major diastereomer the same as observed in the rearrangement of the trans-substrate, in an 80:20 diastereomeric ratio (Scheme 78).
We can hypothesise that the Z-enol ether is now sitting in an axial position in the chair transition state (Figure 25), increasing 1,3-allylic strain, and consequently reducing the rate of the reaction. Due to the high electron density around the enol ether, it is possible that a significant quantity of substrate is undergoing isomerisation to the E-enol ether, which, when formed, reacts faster than its Z-isomer to produce the diastereoselectivity seen.

![Figure 25 - Postulated transition state for the Z-enol ether](image)

To probe how this 1,3-allylic strain effects the rearrangement 1,2,2'-trisubstituted enol ether 261 was synthesised and coupled to the oxazolidine acid 250.

![Scheme 79 - Synthesis of (E)-methyl 3-methoxybut-2-enoate](image)

The trisubstituted vinylogous carbonate 259 was obtained in a 60% yield, along with a small quantity of side product 260 (Scheme 79).

![Scheme 80 - Synthesis of trisubstituted oxazolidine allyl ester](image)

This was then reduced using DIBAL-H to afford the enol ether 261 in excellent yield (Scheme 80). The final step in the substrate synthesis was carbodiimide coupling to afford 262 in a quantitative yield. Due to the stability of the substrate, attempts at
purification were abandoned, and the substrate was taken forward to the rearrangement in a crude form.

Attempts at rearranging this trisubstituted substrate proved ineffective. The standard conditions failed to show any sign of product, with just starting material seen by TLC. Extended reaction times, and increasing the final reaction temperature to 40 °C failed to produce any conversion.

Whilst the rearrangement itself was ultimately unsuccessful, it does allow further insight into the course of the reaction, and help to demonstrate the effect that a Z-substituted olefin has on the reaction; that the 1,3-allylic strain is such that the rearrangement is not favourable. In the case of the Z-enol ether rearrangement (Scheme 78), this helps to corroborate the hypothesis that isomerisation to the E-enol ether after slow rearrangement of the Z-enol ether is the cause of the low level of diastereoselectivity seen.

3.4 Reaction Scope of Crotyl Esters

With a range of enol ether derived substrates (251a-p) successfully rearranged, highlighting the synthetic applicability of this rearrangement protocol, efforts turned to developing this reaction further. It is known that the increased electron density provided by the oxygen in the enol ether helps to promote rearrangement, and increase the rate of rearrangement. Despite this, it was hoped that the rearrangement procedure was robust enough to be applicable to carbon substituted allyl groups. This would present an enantiomeric approach to β-hydroxy-α-amino acid derivatives of proteinogenic amino acids leucine and isoleucine – alongside more unnatural amino acids – from the abundant amino acid serine.
3.4.1 Substrate Synthesis

Featuring the same chiral oxazolidine core, a range of commercially available alcohols were used to synthesise the required allyl esters for the Ireland-Claisen rearrangement. In all previous carbodiimide promoted esterification reactions, two equivalents of the oxazolidine carboxylic acid were used to one equivalent of the enol ether. However, since commercial alcohols are now being used, it was desirable to conserve as much of the synthetically produced acid as possible. For this reason, the equivalents were dropped from 2 to just 1.1 in all cases.210

Table 25 - Synthesis of oxazolidine allylic ester rearrangement substrates

<table>
<thead>
<tr>
<th>Entry</th>
<th>R1</th>
<th>R2</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>265a</td>
<td>84%</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>Me</td>
<td>265b</td>
<td>84%</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>H</td>
<td>265c</td>
<td>97%</td>
</tr>
</tbody>
</table>

All three substrates were successfully synthesised, without the need for further purification, and in excellent yields. Whilst the \(E\)-crotyl alcohol 264b is readily available, the same cannot be said for its isomer \(Z\)-crotyl alcohol. In order to synthesise the \(Z\)-crotyl substrate, a new approach was necessary.

![Scheme 82 – Carbodiimide coupling of oxazolidine and 2-butyln-1-ol](image)
Carbodiimide coupling of 2-butyn-1-ol with the oxazolidine 250 furnished alkyne substrate 265d in good yield (Scheme 82). Whilst this allows entry into the Z-crotyl substrate through hydrogenation using Lindlar’s catalyst (Scheme 83), it also presents an opportunity to test the rearrangement protocol on an alkyne rather than the typical allyl esters seen in Ireland-Claisen rearrangements.

Scheme 83 - Lindlar hydrogenation of 2-butyne oxazolidine ester

3.4.2 Substrate Rearrangement

With the Ireland-Claisen rearrangement substrates prepared they were subjected to the conditions previously optimised for the enol ether based substrates.

Table 26 - Rearrangement scope: carbon substitution

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>R²</th>
<th>Product</th>
<th>Yield</th>
<th>dr [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>266a</td>
<td>57%</td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>266b</td>
<td>44%</td>
<td>>99:1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>266c</td>
<td>26%[b]</td>
<td>>99:1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>266d</td>
<td>56%</td>
<td>>99:1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>266e</td>
<td>0%[b]</td>
<td></td>
</tr>
</tbody>
</table>

[a] Measured by 1H NMR (500 MHz) analysis of crude reaction mixture. [b] Reactions stirred for an additional 72 hours at 65 °C.
It can immediately be seen that the yields are much lower, and reaction times longer, than those for the enol ether rearrangements, which is consistent with the electronic effects predicted. Nonetheless, the rearrangement does work, and single diastereomers are produced in each instance. That is, the reaction is consistent with the approach of the silylketene acetal *anti* to the oxazolidine *tert*-butyl group. The additional stereocentre created in the case of the *E*-crotyl rearrangement is also formed stereoselectively. This indicates that silylketene acetal formation occurs stereroselectively. To achieve any conversion for the 2-methyl propen-ester 266c it was necessary to extend the reaction time by 72 hours in conjunction with heating to 65 °C. The only substrate which does not undergo rearrangement (even after heating) is the *Z*-crotyl ester. This mirrors the results seen in the rearrangements of the *E* - and *Z*-methoxy enol ether substrates (252a and 257), whereby the 1,3-allylic strain appears to significantly retard the rate of reaction. In this case it completely stops any reaction from taking place.

Rearrangement of the alkyne ester presents an intriguing product. Allene 266d formed large translucent crystals which enabled a crystal structure to be obtained allowing confirmation of the stereochemical outcome of the rearrangement (Figure 26). Allenes are a very versatile functional group, and are found in many natural products. Not only can they act as either an electrophile, or a nucleophile, but are also commonly used in cycloaddition reactions.

Figure 26 - XRD analysis of allene 266d
3.5 Rearrangement Product Derivatisation

The products obtained through this rearrangement protocol allow plenty of scope for further synthetic elaboration. Whilst the products obtained from the enol ether containing substrates allow deprotection, in addition to elaboration of the ether functionality, the products obtained from the rearrangement of the carbon substituted allyl esters allow for the synthesis of β-hydroxy-α-amino acid derivatives of some natural proteinogenic amino acids.

3.5.1 Derivatisation of Enol Ether Rearrangement Products

Whilst the potential for synthetic elaboration on the range of compounds 252a-p is quite vast, the initial principle which forms the basis of the self-regeneration of stereocentres methodology is the ability to remove the temporary stereocentre that provided the control of chirality. In this case, this means acid hydrolysis of the oxazolidine with concomitant deprotection of the Boc group (Scheme 84). Gratifyingly, there is no loss of diastereoselectivity under the reaction conditions.

![Scheme 84 - Acid hydrolysis of N-Boc oxazolidine rearrangement product](image)

With successful hydrolysis of the oxazolidine, the principle of SRS has been upheld. That is, a temporary stereocentre has been installed, creation of an achiral sp² reactive site has resulted in a diastereoselective reaction, and removal of the temporary stereocentre has been completed. Knowing that the process has gone full circle a range of synthetic manipulations can be conducted to highlight the potential that these substrates hold.
Chapter 3 Results & Discussion

Reduction of Ester Functionality
The methyl ester that results after diazomethane esterification is amenable to reduction through the use of lithium aluminium hydride to afford the primary alcohol in a quantitative yield. As was observed in the hydrolysis of 252a, there was no loss of diastereoselectivity in the reaction with a single diastereomer seen for the primary alcohol 268.

An attempt was made at the selective DIBAL-H reduction of the oxazolidine methyl ester 252a to the methyl ketone, however after 4 hours at -78 °C there was no indication by TLC analysis of any reduction products. The reaction was allowed to warm to 0 °C where it was stirred for a further 3 hours. There being no sign of any product formation, the reaction mixture was quenched with an ethyl acetate/Rochelle Salt solution and starting material 252a was recovered.

Ring Closing Metathesis
Ring closing metathesis is a key C-C bond forming reaction, which has become an essential tool in the synthesis of natural products over the last quarter of a century. Robert Grubbs has been instrumental in the development of this field, and it was his group which developed a series of air-stable ruthenium-based carbene catalysts that, whilst less active than other systems, exhibit far greater functional group tolerance, allowing for new synthetic applications.
On subjecting the allyl ether 252d to the second generation Hoveyda-Grubbs catalyst in dichloromethane for 24 hours, 2,5-dihydrofuran 270 was obtained in good yield.

Such dihydrofurans and their derivatives can be found in polyether antibiotics and mycotoxins and can therefore be seen to be an important class of compounds.221-225

Enyne Metathesis

Enyne metathesis bears the same mechanistic rationale as alkene metathesis, and can be considered to be a bond reorganisation of an alkene and an alkyne to produce 1,3-dienes.226

Alkyne 252e is the perfect substrate on which to attempt an enyne metathesis. The metathesis was attempted with both Grubbs II and Hoveyda-Grubbs II catalysts,
however unfortunately with the trimethylsiloane group present there is no reaction, and the starting alkyne is the sole compound isolated from the reaction mixture.

It is possible that the presence of the silyl group on the alkyne is preventing the metathesis from taking place. Removal of the silyl group through the use of potassium carbonate in methanol afforded the desired terminal alkyne 272 in excellent yield.

![Scheme 89 - Deprotection of TMS alkyne](image)

In 1998 Mori reported the dramatic effect ethylene can have on the yield of ruthenium catalysed enyne RCM reactions. Furthermore, Smulik and Diver have previously shown that alkynes that undergo poor enyne metathesis perform better when the second generation of Grubbs’ ruthenium catalyst is used.

| Table 27 - Initial optimisation screen for enyne metathesis catalysts |
|---|---|---|---|---|
| Entry | Catalyst | Additive | Yield 273 (%) | Yield 274 (%) |
| 1 | Grubbs I | - | 0 | 0 |
| 2 | Grubbs I | allyl alcohol (5 mol%) | 0 | 0 |
| 3 | Grubbs I | ethylene (1 atm) | trace | trace |
| 4 | Grubbs II | ethylene (1 atm) | 50 | 50 |
| 5 | Hoveyda-Grubbs II | ethylene (1 atm) | 50 | 50 |
| 6[a] | Hoveyda-Grubbs II | ethylene (1 atm) | 50 | 50 |

[a] Reaction complete after 10 hours.
Chapter 3 Results & Discussion

An initial screen of ruthenium catalysts, along with a selection of additives (Table 27) mirrored that seen by Smulik and Diver; that the first generation catalyst showed only a trace amount of conversion, and only when in the presence of ethylene. When the carbene based 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene-substituted ruthenium complex (Grubbs II) was used complete consumption of starting material was seen after 20 hours. However, in addition to seeing the desired 1,3-diene \(\text{273} \), the dimer \(\text{274} \) was also isolated, in a 1:1 mass ratio. The Hoveyda-Grubbs II catalyst showed the ratio and yields between the monomer and dimer as seen with the Grubbs II catalyst, however the rate of the reaction was quicker.

Attempts were made to limit the amount of dimer being produced from the cross-metathesis of the initially formed monomer. Unfortunately, whilst lowering the catalyst loading increased the ratio slightly in favour of the monomer, it left a considerable quantity of starting material present.

Table 28 - Effect of catalyst loading on monomer:dimer ratio

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Loading (x mol%)</th>
<th>Yield 273 (%)</th>
<th>Yield 274 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hoveyda-Grubbs II</td>
<td>5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Hoveyda-Grubbs II</td>
<td>2.5</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Hoveyda-Grubbs II</td>
<td>1.25</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

Heck Reaction

The intramolecular Heck reaction of the ortho-iodophenyoxy rearrangement product \(\text{252i} \) has the potential for three products to be formed; that is for either a 5-endo, 5-exo,
or 6-endo reaction to take place to afford the benzofuran 275, dihydrobenzofuran 276, or the benzopyran 277 structures respectively (Scheme 90).

Scheme 90 - Three possible outcomes from the intramolecular Heck reaction of 252i

The initial attempt at the Heck reaction, conducted at reflux in acetonitrile resulted in several close running spots by TLC. However, by repeating at room temperature a more controlled reaction took place. Whilst a single spot was observed by TLC, the initial ¹H NMR showed there to be a mixture of two products (275 and 276). Fortunately, upon standing in deuterated chloroform for 2 hours, prior to a ¹³C NMR being run, isomerisation had occurred to leave the 5-endo product 275 as the sole product from the reaction, in a quantitative yield (Scheme 91).

Scheme 91 - Synthesis of a benzofuran moiety by a 5-endo Heck reaction

Benzofuran moieties are often found in natural products and can exhibit biological activity of interest to pharmaceutical application.²²⁹-²³⁰ As such, new routes to these, and other heterocyclic compounds provide a constant challenge to the organic chemist.²³¹

Dihydroxylation

Dihydroxylation of para-methoxybenzyl ether ent-254k, using literature conditions²³², occurs with subsequent lactonisation forming either spiro-lactone 278 or 279 in quantitative yield, and as a single diastereomer.
To assess the precise stereochemistry of the dihydroxylation the para-nitrobenzoate ester 280 was synthesised and subjected to single-crystal crystallography to obtain a definitive structure (Figure 28). From this the observed anti configuration of the alkene osmylation relative to the PMB ether could be assigned, and shows that spiro-lactone 278 was the sole product from the dihydroxylation.
3.5.2 Derivatisation of Crotyl Rearrangement Products

Hydrogenation of the rearrangement products enables access to the amino acid side chains that feature on some proteinogenic amino acids.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R^1</th>
<th>R^2</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>281a</td>
<td>87%</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>H</td>
<td>281b</td>
<td>78%</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>Me</td>
<td>281c</td>
<td>66%</td>
</tr>
</tbody>
</table>

All reactions went to completion in under 90 minutes with catalytic palladium on carbon under 1 atmosphere of hydrogen. Hydrogenation of the allene proceeded in just 20 minutes, to selectively afford the Z-alkene 281d in an 80% yield (Scheme 94). Use of a 2D NOESY experiment allowed assignment as the Z- geometry (See 8.2.1 2D-NOE Spectra for 281d). Considerable interest has been shown towards vinyl glycines, due to their use as antibiotics, enzyme inhibitors, as well as synthetic intermediates. Whilst there are many outstanding methods for the synthesis of non-proteinogenic amino acids, vinyl glycines are one highly important class for which many of these techniques cannot generally be applied. Hence the ability to afford the asymmetric synthesis of analogues of this class of compounds is an important development.
With a selection of both saturated and unsaturated protected \(\beta \)-hydroxy-\(\alpha \)-amino esters synthesised, acid hydrolysis is necessary to remove the \(N,O \)-acetal and the Boc protecting group. The same conditions that were seen previously were also applicable to this class of compounds.

Table 30 – Concomitant deprotection of \(N,O \)-acetal and Boc protecting groups

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>(R^1)</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>266a</td>
<td></td>
<td>282a</td>
<td>80%</td>
</tr>
<tr>
<td>2</td>
<td>266b</td>
<td></td>
<td>282b</td>
<td>45%</td>
</tr>
<tr>
<td>3</td>
<td>266d</td>
<td></td>
<td>282c</td>
<td>44%</td>
</tr>
<tr>
<td>4</td>
<td>281a</td>
<td></td>
<td>282d</td>
<td>73%</td>
</tr>
<tr>
<td>5</td>
<td>281b</td>
<td></td>
<td>282e</td>
<td>59%</td>
</tr>
<tr>
<td>6</td>
<td>281c</td>
<td></td>
<td>282f</td>
<td>71%</td>
</tr>
</tbody>
</table>

Acid hydrolysis shows moderate to good yields across the range of substrates. Whilst the methyl ester aids isolation of these compounds, they exhibit partial solubility in aqueous solution, and this presents an area where mass could be lost in the work-up procedure.

3.6 Conclusions

The principle of self-regeneration of stereocentres has been shown to be successfully employed in an Ireland-Claisen rearrangement to allow a highly stereospecific reaction. Not only can this novel protocol be applied to a variety of enol ether based substrates, but also those bearing carbon substitution on the allyl ester. This allows the synthesis of both \(\beta \)-hydroxy-\(\alpha \)-amino acid substituted proteinogenic amino acid derivatives as well as \(\beta,\beta' \)-dihydroxy-\(\alpha \)-amino acid structures that feature in a number of biologically active natural products.
There are a very limited number of Ireland-Claisen rearrangements that feature such remote transfer of chirality.116 A chiral glycinate rearrangement mentioned earlier (Scheme 48) showed good levels of diastereoselectivity, whilst rearrangement of a chiral 2-mesityl-1,3-dioxolane substrate by Parsons et al. showed no selectivity (Scheme 95).238 It can be speculated that this lack of selectivity may be due to poor E/Z control during silylketene acetal formation, or the lack of a ‘relay’ strategy between the two tert-butyl groups present in the oxazolidines featured here.

![Scheme 95 - Parsons' Ireland-Claisen rearrangement of 283](image)

Importantly, aldol reactions performed on an oxazolidine framework similar to that shown in this work, with simple achiral aldehydes, exhibit very low levels of diastereoselectivity (Scheme 96).192 Furthermore, the ability to further functionalise such aldol products is expected to be limited due to the potential for base mediated retro-aldol reaction, in addition to limited nucleophilicity of the alcohol due to the proximity of sterically imposing oxazolidine moiety.

![Scheme 96 - Aldol reaction of simple achiral aldehydes with oxazolidine esters](image)

Shown in this context the power of this rearrangement stands out, offering exceptional stereocontrol through a self-regeneration of stereocentres strategy allowing integration of functional handles with the potential for subsequent stereoselective synthetic elaboration. As such, a range of biologically relevant natural products can now be synthesised through use of this rearrangement protocol.
Chapter 4 Results & Discussion

4. SYNTHESIS OF MYCESTERICIN G

4.1 Background

Rearrangement products 252a-p feature a polar β,β’-dihydroxy-α-amino acid head group (267) of the kind that have been implicated by structure activity relationships as the crucial structural feature in myriocin 23, mycestericin G 30 and other related natural products.

![Mycestericin G and β,β’-dihydroxy-α-amino acid derived from the Ireland-Claisen rearrangement](image)

Figure 29 – Mycestericin G and β,β’-dihydroxy-α-amino acid derived from the Ireland-Claisen rearrangement

The syn stereochemistry obtained in our rearrangement (as confirmed by XRD analysis of 252l) matches that seen in mycestericin G. The challenge posed by the compact stereochemistry and juxtaposition of the polar head and lipophilic tail make this the perfect target to apply the Ireland-Claisen methodology seen in Chapter 3.

4.2 Total Synthesis of Mycestericin G

4.2.1 Retrosynthetic Analysis

Initial examination of mycestericin G shows the potential union of the lipophilic tail, and the chiral head unit via cross-metathesis. The β,β’-dihydroxy-α-amino acid head unit will need to be synthesised from D-serine, to afford the correct enantiomer.
By utilising the benzyl ether, hydrogenation of the olefin to afford the saturated chain seen in mycestericin G should also serve to remove the benzyl protecting group. The key stereochemistry required is introduced in the rearrangement of \textit{ent-251j} to \textit{ent-252j}.

4.2.2 Initial Investigation

Whilst the enantiomer required to complete the synthesis of (–)-mycestericin G is derived from D-serine, initial investigations were conducted using the cheaper, more readily available natural L-serine.

With a key step in the total synthesis the cross-metathesis, the lipophilic tail needs to be synthesised. Fürstner \textit{et al.} have reported a selective iron-catalysed cross-coupling reaction of Grignard reagents with, amongst others, acid chlorides.239 This provided a one step entry into a suitable cross-metathesis partner 286.

![Scheme 97 - Iron catalysed cross-coupling in the synthesis of ketone 286](image)

With the lipophilic coupling partner in hand, the methyl ether rearrangement product \textit{252a} was chosen as a test substrate for the initial explorations of the cross-metathesis.
Table 31 - Initial cross-metathesis exploration

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>Time (hrs)</th>
<th>Conversion (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grubbs I</td>
<td>20</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Grubbs II</td>
<td>20 to 40</td>
<td>24 + 24</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Hoveyda-Grubbs II</td>
<td>40</td>
<td>24</td>
<td>50 (0)</td>
</tr>
</tbody>
</table>

^a Conversion stated as product against starting material. Isolated yields shown in parenthesis

Early efforts proved unsuccessful, with neither Grubbs I nor Grubbs II catalysts showing any signs of product. It was noticed however, that a significant quantity of olefin was undergoing dimerisation, to form the homodimer 289.

Whilst there was an improvement on utilising the Hoveyda-Grubbs II catalyst, with a conversion of 50% seen, this was unable to be isolated due to co-elution of 252a due to a highly similar R_f, in addition to homodimer 289 contaminating most fractions due to partial solubility in the eluent causing a slow release during chromatography.

The tolerance of cross-metathesis reactions on sterically congested olefin moieties has previously been described.²⁴⁰⁻²⁴¹ These reports correlate our observation that the higher activity seen in second generation [Ru]-carbenes often aids the progress of cross-metathesis reactions. However, even the use of the Hoveyda-Grubbs II catalyst proved unable to produce a clean reaction pathway. Grubbs has also demonstrated improved cross-metathesis reactions when using symmetric internal olefins.²⁴² Many cases were reported where a two-step cross-metathesis procedure whereby a terminal olefin was dimerised prior to undergoing the desired cross-metathesis reaction.
With the observation that homodimer 289 formation was facile it was decided to isolate it prior to re-attempting the desired cross-metathesis reaction (Scheme 98).

![Scheme 98 - Synthesis of homodimer 289](image)

The initial attempt utilising the homodimer proved successful, with 48% isolated after 72 hours (Table 32 entry 1). With a set of conditions in hand, an attempt at the cross-metathesis was made using the substrate identified in the retrosynthetic analysis, namely the benzyl ether 252j. Disappointingly, the yield is drastically reduced, and the product is unable to be cleanly isolated. Attempts were made to optimise the cross-metathesis of the benzyl ether, however, on increasing the temperature either in toluene, or, to a lesser extent in dichloroethane, isomerisation of the homodimer is seen, and a multitude of products are seen with varying lengths of carbon in the lipophilic tail.

Table 32 - Cross-metathesis development

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Solvent</th>
<th>Temp (°C)</th>
<th>Time (hrs)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>252a</td>
<td>Me</td>
<td>DCM</td>
<td>40</td>
<td>72</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>252j</td>
<td>Bn</td>
<td>DCM</td>
<td>40</td>
<td>96</td>
<td>22[a]</td>
</tr>
<tr>
<td>3</td>
<td>252j</td>
<td>Bn</td>
<td>Toluene</td>
<td>110</td>
<td>72</td>
<td>0[b]</td>
</tr>
<tr>
<td>4</td>
<td>ent-252j</td>
<td>Bn</td>
<td>DCE</td>
<td>60</td>
<td>72</td>
<td>0[b]</td>
</tr>
</tbody>
</table>

[a] Product unable to be isolated cleanly.
[b] Isomerisation of 289 observed.

From this set of results it can be proposed that the steric bulk of the ether moiety is having a substantial effect on the outcome of the cross-metathesis. If this presumption were to hold true, then a new approach using the free hydroxyl would be expected to undergo metathesis more readily.
To this end, *para*-methoxylbenzyl ether 252k can be deprotected via DDQ-mediated oxidation in excellent yield. Whilst *para*-anisaldehyde 290a, produced as a side product, proved challenging to remove by conventional methods, use as the crude reaction mixture led to no reduction in yields in subsequent synthetic steps.

With the free hydroxyl synthesised it could be subjected to the optimised conditions obtained for the cross-metathesis reaction. Gratifyingly a more efficient cross-metathesis is seen to occur, with the reaction time cut by a third, and a vastly superior yield observed.

4.2.3 Completion of the Synthesis of Mycestericin G

With a proficient cross-metathesis protocol established, a preparative scale synthesis of *ent*-254k was initiated.

With gram quantities of *ent*-254k needed a streamlined procedure was performed with carbodiimide mediated coupling of 250 and 218k, Ireland-Claisen rearrangement and
carboxyl benzylation conducted on a 4 mmol scale without intermediate purification. In addition to shortening the laboratory procedure this served to increase the overall yield across the three synthetic steps.

Scheme 102 - DDQ deprotection of PMB ether ent-254k

DDQ deprotection of the PMB group occurs in excellent yield. As seen in the synthesis of 290 (Scheme 99) p-anisaldehyde is present after initial workup. Removal by sodium borohydride reduction of aldehyde 290a and subsequent flash chromatography results in a slight loss of yield to 74% (See 7.3 Compound Characterisation for further details), however, this additional layer of purification isn’t required since the presence of the aldehyde bears no impact on the result of the ensuing cross-metathesis reaction.

Scheme 103 - Cross-metathesis towards the synthesis of mycestericin G

The cross-metathesis proceeds well (Scheme 103), albeit with a slightly reduced yield when compared to the analogous methyl ester 291. This continues the observations that steric bulk around the olefin serves to reduce the activity, and subsequent performance in the metathesis reaction.

With a successful cross-metathesis the two key structural features – the chiral head group and lipophilic tail – have been amalgamated with just two proposed steps remaining to synthesise mycestericin G. The first step, acidic hydrolysis of oxazolidine ent-293, formed amino diol ent-294 in good yield (Scheme 104).
Chapter 4 Results & Discussion

Final hydrogenolysis of the benzyl ester and alkene however proved problematic. An initial attempt using 5 wt% palladium on carbon under an atmosphere of hydrogen failed to generate any sign of product. However, significant decomposition of the starting material was observed.

For the hydrogenation of a natural sample of mycestericin E, Fujita et al. utilised 200 wt% palladium on carbon to afford mycestericin G. It can be reasoned that by using small catalytic quantities of palladium on carbon any desired hydrogenation is reacting at a far slower rate than decomposition of the starting material. By increasing the catalytic loading to near stoichiometric amounts it was hoped that the desired hydrogenation would occur more rapidly. Whilst trace amounts of mycestericin G could be discerned from the 1H NMR spectrum, decomposition was still the dominating result from the reaction.

To circumnavigate this problem, the order of these transformations was reversed. Oxazolidine ent-293 was now subjected to hydrogenation allowing rapid reduction of the alkene, and cleavage of the benzyl ester in near quantitative yield (Scheme 106).
Acid hydrolysis followed by basification of the subsequent hydrochloride salt afforded mycestericin G as a white powder (Scheme 107).

Whilst all spectroscopic data was in accordance with previously published reports, the optical rotation of the synthetic compound was, however, opposite in sign, but of similar magnitude to that reported for the natural product (Figure 32).50

To further understand and analyse this discrepancy the synthetic sequence was repeated starting from L-serine with the aim of synthesising the opposite enantiomer (Scheme 108).

The spectroscopic data for \textit{ent-30} was identical to that observed for the synthetic sequence derived from D-serine. However, the optical rotation was now not only similar in magnitude, but also of the same sign of rotation as the natural sample of mycestericin G.
Chapter 4 Results & Discussion

This discrepancy can be explained by analysis of the literature of similar sphingosine natural products. Hydrogenation of myriocin 23, forms dihydromyriocin (mycestericin C 26). The key realisation in this transformation is that hydrogenation leads to a reversal in the sense of optical rotation; i.e., myriocin 23 is dextrorotatory, whilst mycestericin C 26 is levorotory (Scheme 109).

Whilst the absolute configuration of mycestericin E 28 has been confirmed through its total synthesis, this is not the case for mycestericin G 30, its saturated derivative. The
same report obtains mycestericin G 30 from synthetic mycestericin E 28, and provides identical spectroscopic data when compared with a natural sample. However, no optical rotation data was reported for this synthetic mycestericin G. As a result, there is no unequivocal evidence that the configuration of the stereocentres in mycestericin E is the same as those in mycestericin G. Furthermore, the optical rotation observed for synthetically obtained mycestericin G in this body of work parallels the switch in sense of rotation between the unsaturated and saturated analogues.

Of particular interest when assessing this inconsistency with the optical rotations is the recent synthesis of mycestericin G by Kumagai and Shibasaki. 82 Synthesis of the originally reported structure resulted with an opposite sense of optical rotation to that in the original isolation paper ([α]_{D}^{20} +12.8 (c 0.05, MeOH)). This discrepancy was attributed to the poor solubility of mycestericin G in methanol.

These findings offer firm credence to a reassignment in the configuration of mycestericin G, such that it is enantiomeric to the original assignment (Figure 33).
4.3 Total Synthesis of Threonine Analogue of Mycestericin G

Drug discovery has long used the process of structure-activity relationships to develop a lead compound into a safer, and more effective clinical agent. Bioisosterism and other structural changes have regularly been used to accomplish the desired enhancement in efficacy, or to reduce levels of toxicity.\(^{243}\)

With the successful synthesis and reassignment of mycestericin G, the heteroproline rearrangements conducted in section 2.4.3 Rearrangement of Heteroproline Allyl Esters offer an efficient route into (2S,3R)-2-amino-3-hydroxy-2-((R)-1-hydroxyethyl)-14-oxoicosanoic acid \(296\); an analogue of mycestericin G with a chiral head group derived from threonine, rather than serine. It can be envisaged that the same synthetic route will be applicable for the mycestericin G analogue.

\[\text{(-)-mycestericin G, enol-30} \quad \text{threonine analogue of mycestericin G, 296} \]

\[\text{L-serine} \quad \text{L-threonine} \]

\(\rho\)-Methoxybenzyl enol ether \(218k\) was coupled with the 5-methyloxazolidine \(237c\) in good yield, to afford the substrate required for the key Ireland-Claisen rearrangement (Scheme 111).
Chapter 4 Results & Discussion

Scheme 111 - Carbodiimide promoted esterification of 5-methyloxazolidine

An efficient rearrangement was seen to occur under the standard conditions used for these oxazolidine class of compounds (Scheme 112). With a single diastereomer observed, in good yield, the contiguous stereocentres of the chiral head group are now installed.

Scheme 112 - Rearrangement of p-methoxybenzyl oxazolidine ester

DDQ deprotection of the PMB group occurs in excellent yield, and, gratifyingly, separation of the anisaldehyde from the desired product is achievable by flash chromatography (Scheme 113).

Scheme 113 - DDQ deprotection

The cross-metathesis suffers from a lower yield when compared to the 2-<i>t</i>-butyl oxazolidine cross-metathesis. As has been observed across the range of substrates used in this cross-metathesis, any increase in steric congestion appears to severely hinder the reaction. In this case, the proximity of the methyl group on the oxazolidine must be hindering the reaction. When followed by a hydrogenation over palladium on carbon, a yield of 34% is obtained over the two steps (Scheme 114).
Acid hydrolysis completes the synthesis, albeit, in a low yield. The poor yield can be explained due to partial solubility of the amino acid in water. The nature of the work up involved basification with aqueous sodium hydroxide, concentration in vacuo and then dissolution of the residue in water, from which the desired product precipitated as a white solid. In the case of mycestericin G, a significant quantity precipitates. The threonine analogue was observed to have a higher affinity to the water, and as a result, a decrease in yield was obtained.

4.4 Conclusion

Both enantiomers of mycestericin G have been synthesised in a concise 10 step synthesis starting from the readily available serine methyl ester hydrochloride salt. The natural product (−)-mycestericin G (ent-30) first isolated from Mycelia sterilia was obtained in an 9.7% overall yield after its enantiomer was first synthesised in 13.5% overall yield. Key steps in the synthesis were the Ireland-Claisen rearrangement (the methodology for which has been previously discussed in Chapter 3), and the cross-metathesis. These steps allowed the synthesis of the chiral head group, and it’s coupling to the lipophilic tail seen in the natural product.

Synthesis of both enantiomers of the natural product, allowed a revision of the stereochemistry to be made. Confidence in this reassignment is augmented by the XRD
analysis obtained from a rearrangement product (Figure 24), which verified the predicted outcome of the Ireland-Claisen rearrangement, along with the optical rotation for mycestericin G seen by Kumagai and Shibasaki.

The synthetic route used in the synthesis has been shown to be applicable not only to mycestericin G, but also allows for synthetic derivations to be made, of which the threonine analogue 296 has successfully been synthesised over 9 linear steps. Whilst increased steric interactions lower the yield of the cross-metathesis, and solubility issues affect the acid hydrolysis a quick, and efficient synthesis is still obtained.
5. CHIRAL DIENE LIGANDS IN CONJUGATE ADDITIONS

5.1 Introduction

Transition metal-catalysed conjugate addition of organometallic reagents to activated alkenes has become a powerful method in organic synthesis.\(^{244}\) Part of the power of this chemistry stems from the ability to tune reactivity with countless ligand and metal combinations.\(^{245}\) In 1997 Miyaura \textit{et al.} published the first report on the rhodium-catalysed conjugate addition of both aryl and alkenyl boronic acids to methyl vinyl ketone (Scheme 116).\(^{246}\)

\[
\text{Me} = \text{PhB(OH)}_2
\]

Scheme 116 - Rhodium-catalysed conjugate addition of phenyl boronic acid and methyl vinyl ketone

In collaboration with Hiyashi \textit{et al.}, the first asymmetric rhodium-catalysed conjugate addition was observed with the addition of a range of electron-donating and electron-withdrawing aryl boronic acids to 2-cyclohexenone (Scheme 117).\(^{247}\) The excellent yields and enantioselectivities observed in this reaction have become the benchmark for rhodium-catalysed conjugate addition.\(^{248}\)

\[
\text{O}
\]

Scheme 117 - First enantioselective rhodium-catalysed conjugate addition

5.1.1 Mechanism of Rhodium-Catalysed Conjugate Additions

The discovery by Miyaura \textit{et al.} that the addition of base accelerated the conjugate addition to α,β-unsaturated amides contributed to the discussion that the active precursor is a hydroxy-rhodium species 305.\(^{249}\) Such a species was confirmed by Hayashi \textit{et al.} in their mechanistic study with 31P NMR spectra.\(^{250}\)
The first step of the mechanism involves the formation of the active rhodium-hydroxyl precursor 305 by loss of ligands (such as acac or Cl). This reactive species then undergoes transmetallation with the desired organoboron reagent to form the aryl-rhodium species 306 (Scheme 118). It is usual to use an excess of organoboron reagent due to a competitive protodeboronation pathway. Coordination and insertion of the unsaturated carbon-carbon double bond leads to the η^3-oxa-π-allylrhodium complex 307. Enantioselectivity in the product is obtained from the facial selectivity of the chiral ligand. Hydrolysis of the rhodium-enolate with water regenerates the active catalyst along with the conjugate-addition product 308.

Rhodium-catalysed conjugate addition reactions aren’t confined solely to organoboron reagents; many other organometallics participate in transmetallation to rhodium. Whilst other organometallic donors can offer different advantages and reaction pathways, they will not be discussed further here, but can be found in a review by Frost et al.251

5.1.2 Chiral Diene Ligands in Rhodium-Catalysed Conjugate Additions

Since these reports, the application and range of organoboron reagents has grown exponentially. In particular, the development of chiral diene ligands have found this
class of ligand to be superior to many other types of chiral ligands, such as bisphosphines. Not only can they show enhanced catalytic activity, but also enantioselectivity, particularly in rhodium-catalysed asymmetric transformations.252

Achiral chelating ligands such as 1,5-cyclooctadiene (cod) and norbornadiene (nbd) were known to be stable ligands in transition metal complexes253, however, it wasn’t until 2003 when a chiral diene ligand was developed by Hayashi et al.254 Derived from norbornadiene in 9 steps, (R,R)-Bn-nbd 309 was successfully utilised in the conjugate addition of arylboronic acids to α,β-unsaturated ketones and esters with high yields and excellent enantioselectivities (Scheme 119).

![Scheme 119 - First use of a chiral diene ligand in a rhodium-catalysed conjugate addition](image)

The 309-rhodium complex is able to recognise the enantioface of the enone due to steric repulsion of the benzyl group on the diene, and the carbonyl moiety. The implication of this is the α-re-face being favoured over the α-si-face for both cyclic and linear enones (Scheme 120).

![Scheme 120 - Enantioselectivity in a rhodium-catalysed conjugate addition](image)
Since this first publication, bicyclic diene frameworks have been further developed.252 Noteworthy amongst these is Carreira’s diene \textbf{311}, readily derived from (−)-carvone in a seven step synthesis (Figure 35).255-256

Despite such bicyclic ligands offering excellent substrate scope and high enantioselectivities, there is a need to increase ligand availability.257 To this end simple chiral dienes have been reported by Du \textit{et al.}, and Trost \textit{et al.} which lack the rigidity of the bicyclic ligands.257-258

Du described a simple chain diene \textbf{312} that achieved moderate enantioselectivities as a starting point for a new and practical direction in the design of future chiral diene ligands. Further modifications by Du saw ligand \textbf{313} achieve higher selectivities, up to 95\% ee.259 Whilst seeing improvements in enantioselectivity, this new ligand requires a longer, six step synthesis from 1,5-hexadiene.

Trost’s aims were specifically to create “a more convenient synthetic approach towards chiral dienes for use in transition metal catalysis”.257 Furthermore he felt it was desirable to produce a structurally diverse library of ligands from a common intermediate. By using palladium-catalysed asymmetric allylic alkylation (Pd-AAA) on \textit{meso-} and \textit{d,\text{-}}divinylethylene carbonate with a variety of nucleophiles, a series of potential ligands were synthesised (Scheme 121).
Ligand 316a prepared from the Pd-AAA using phthalimide gave superior enantioselectivity and yield over the other ligands synthesised, and was subsequently utilised to show the general applicability of this chiral diene ligand (Scheme 122).

5.1.3 Hybrid Olefin Ligands in Rhodium-Catalysed Conjugate Additions

In the attempt to achieve ever higher catalytic activity and selectivity phosphorous/olefin\(^{260-262}\) and nitrogen/olefin\(^{263}\) hybrid ligands have been developed, and successfully utilised in many transition-metal-catalysed asymmetric reactions. However, recent advances have seen a rise in interest in chiral sulphur-containing ligands, due to their availability, high stability, metal affinity, and in particular, S-stereogenic control.\(^{264}\) The use of chiral sulphur-olefin hybrid ligands in rhodium-catalysed conjugate additions was simultaneously reported by Knochel,\(^{265}\) Xu,\(^{266-267}\) and Du,\(^{268}\) with promising activity and selectivity observed (see ligands 317, 318, and 319 respectively, Figure 37).
Du et al. have developed a series of chiral N-tert-butanesulfinyl α,β-unsaturated ketimines through a one step condensation of α,β-unsaturated ketones with tert-butanesulfinamide. Ligand 320, obtained from chalcone showed both the highest reactivity and enantioselectivity in a rhodium-catalysed conjugate addition (Scheme 123).

The diverse range of ligand structures this one step procedure allows, along with the high yields and enantioselectivities shown make this class of ligands highly attractive to a variety of transition-metal-catalysed asymmetric reactions.

5.2 Rhodium-Catalysed Conjugate Addition

5.2.1 Ligand Synthesis

With such interest in new ligand systems for rhodium-catalysed conjugate addition reactions, it was felt that the rearrangement products seen in Chapter 3 can be transformed into chiral diene ligands with just a few functional group interconversions. It was envisaged that reduction of the methyl ester to an aldehyde, followed by a Wittig
reaction would furnish the desired diene in a quick synthetic sequence (Figure 38). Unfortunately, as previously discussed, selective reduction to the aldehyde is not amenable, therefore it is necessary to proceed via the primary alcohol with subsequent oxidation to the aldehyde.

A selection of rearrangement products were chosen to allow a broad range of ligands to be screened in the rhodium-catalysed conjugate addition (Table 33).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>252b</td>
<td>OEt</td>
<td>323a</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>252g</td>
<td>OPMP</td>
<td>323b</td>
<td>89%</td>
</tr>
<tr>
<td>3</td>
<td>266a</td>
<td>H</td>
<td>323c</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>266b</td>
<td>Me</td>
<td>323d</td>
<td>98%</td>
</tr>
</tbody>
</table>

In addition to these four examples based on the tert-butyloxazolidine core, a single example based on the threonine-derived oxazolidine was desired to allow a comparison in the conjugate addition. As was seen with the tert-butyloxazolidine reductions, an excellent yield was obtained (Scheme 124).
Pleasingly, subsequent Swern oxidation proceeded with very good yields across all four tert-butylxazolidine substrates (Table 34). It should be noted, that neither the reduction, nor oxidation steps required purification by flash chromatography, making these operationally simple reactions to perform.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>323a</td>
<td>OEt</td>
<td>325a</td>
<td>78%</td>
</tr>
<tr>
<td>2</td>
<td>323b</td>
<td>OPMP</td>
<td>325b</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>323c</td>
<td>H</td>
<td>325c</td>
<td>75%</td>
</tr>
<tr>
<td>4</td>
<td>323d</td>
<td>Me</td>
<td>325d</td>
<td>82%</td>
</tr>
</tbody>
</table>

The threonine derived methyloxazolidine also oxidised cleanly to obtain the desired aldehyde with an excellent yield (Scheme 125).

The final step of the synthesis is to install the olefin by a Wittig reaction. Initial efforts focused on the ethoxy aldehyde 325a, with a range of conditions attempted before successfully obtaining any sign of the desired diene. Use of either tBuLi or tBuOK at room temperature failed to show any sign of conversion (Scheme 126).
However, on heating to reflux, an 87% yield was gratifyingly obtained. These conditions allowed a successful reaction for all tert-butyloxazolidine aldehydes with high yields for all four substrates (Table 35).

Table 35 - Wittig reaction of tert-butyloxazolidine aldehydes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>325a</td>
<td>OEt</td>
<td>327a</td>
<td>87%</td>
</tr>
<tr>
<td>2</td>
<td>325b</td>
<td>OPMP</td>
<td>327b</td>
<td>74%</td>
</tr>
<tr>
<td>3</td>
<td>325c</td>
<td>H</td>
<td>327c</td>
<td>78%</td>
</tr>
<tr>
<td>4</td>
<td>325d</td>
<td>Me</td>
<td>327d</td>
<td>69%</td>
</tr>
</tbody>
</table>

Methyloxazolidine 326 was also amenable to the Wittig reaction, with the desired diene 328 formed in 73% yield (Scheme 127).
5.2.2 Ligand Screening

With a range of chiral diene ligands now synthesised, the rhodium-catalysed conjugate addition can be attempted. Yu et al. had recently reported the use of an α,β-divinyl tetrahydropyrrole 329 as a chiral chain diene ligand (Scheme 128), and these optimised conditions were used as a starting point in this investigation.270

![Scheme 128 - Yu's α,β-divinyl tetrahydropyrrole in a rhodium-catalysed conjugate addition](image)

An initial reaction using ethoxyallyl ligand 327a (Scheme 129) showed, by TLC, that some starting material was still present after 18 hours. The reaction was subsequently concentrated *in vacuo* where the crude 1H NMR showed no sign of starting material. Indeed, TLC analysis now also showed that there was no starting material present. After purification by flash chromatography, a quantitative yield was obtained with an 83% ee. From this observation, it appeared that any residual starting material was being consumed whilst in the rotary evaporator.

![Scheme 129 - Initial conjugated addition of phenylboronic acid to 2-cyclohexenone, using 327a](image)

To probe this interesting observation further, two additional reactions were conducted. Firstly, an aqueous workup was conducted on the reaction mixture in place of rotary evaporation; whilst the second saw the reaction mixture immediately transferred to the rotary evaporator on addition of 2-cyclohexenone 303. After 18 hours and an aqueous workup, there was still starting material present by TLC. An isolated yield of 64% was obtained, along with a slightly improved ee of 87%. Meanwhile, the second test reaction
Chapter 5 Results & Discussion

saw a near quantitative yield of 98% returned, with a near identical enantioselectivity seen to the initial reaction (that is 84% ee). These results confirm the belief that the reaction is being driven to completion whilst under rotary evaporation. It is worth noting, that on conducting these experiments on the rotary evaporator, if less water was used relative to 1,4-dioxane, then the reactions could fail to go to completion.

To explore this effect further a solvent swap was conducted. The initial coordination of the rhodium and chiral ligand was conducted in dichloromethane, before removal under reduced pressure, and then addition of water, potassium hydroxide and 2-cyclohexenone. An aqueous work up followed, to avoid any further reaction in vacuo. Whilst a quantitative conversion, and isolated yield were obtained, there was no improvement in enantioselectivity (Scheme 130).

With two conditions acquired that allows complete consumption of the starting material, the decision was made to use the more operationally simple procedure, and to immediately place the reaction mixture on the rotary evaporator. With the experimental conditions now chosen, ligands 327a-d, and 328 (Figure 39) were compared in the conjugate addition of phenylboronic acid to 2-cyclohexenone.
It can be seen that both the ethoxyallyl, and allyl substituted ligands (327a and 327c respectively) proceed in quantitative yield, with good enantioselectivity (Table 36, entries 1 and 3). There is a slight drop off in both activity and enantioselectivity with para-methoxyphenyl ligand 327b (entry 2), falling to 49% yield and 68% ee for methyl ligand 327d (entry 4). Threonine derived ligand 328 fails to offer much conversion, with a poor yield of 13%, and a moderate 51% ee (entry 5).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Yield (%)</th>
<th>ee (%)[^{[a]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>327a</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>327b</td>
<td>86</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>327c</td>
<td>100</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>327d</td>
<td>49</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>328</td>
<td>13</td>
<td>51[^{[b]}]</td>
</tr>
</tbody>
</table>

\[^{[a]}\] ee was determined by HPLC (Chiralpak AD column) \[^{[b]}\] Opposite enantiomer (i.e. 304) obtained

5.2.3 Ligand Development

With allyl ligand 327c showing the highest enantioselectivity, along with a quantitative yield, further alkyl based ligands were desired to investigate effects of substitution on the olefin itself. With new ligands 327e and 327f identified, a route was required for their synthesis.
Alkylation of oxazolidine 249 was anticipated to provide the quickest synthetic access to these desired ligands. It was also envisaged that alkylation with allyl bromide would provide an alternative method for the synthesis of ligand 327c.

Following a procedure by Colombo and Giacomo, which reported the alkylation of analogous formyl oxazolidine 330 with a large excess of alkyl halide (Scheme 131),198 a selection of conditions were attempted using allyl bromide as a test electrophile. This showed a significant drop in yield when 4 equivalents of alkylating agent was used, compared to the 15 equivalents used by Colombo et al. However, reducing the number of equivalents to 10, an increase in yield to 81% was observed. Further changes made were to use LHMDS, and the removal of additional additives and co-solvents from the reaction. With these modifications in place a range of electrophiles were reacted with the enolate of oxazolidine 249 (Table 37). With 3-chloro-2-methylprop-1-ene failing to react, the iodoalkane was synthesised using a Finkelstein reaction.271

\[
\begin{align*}
\text{Scheme 131 - Alkylation of formyl oxazolidine 329}
\end{align*}
\]

\[
\text{Table 37 - Alkylation of oxazolidine 249}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>E</th>
<th>R(^1)</th>
<th>R(^2)</th>
<th>x (eq)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>4</td>
<td>266a</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>10</td>
<td>266a</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>15</td>
<td>266a</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Br</td>
<td>H</td>
<td>Me</td>
<td>10</td>
<td>333a</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Cl</td>
<td>Me</td>
<td>H</td>
<td>10</td>
<td>333b</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>Me</td>
<td>H</td>
<td>10</td>
<td>333b</td>
<td>76</td>
</tr>
</tbody>
</table>
With alkylation now successful, addition products 333a-b were subjected to the same functional group interconversions to obtain the desired chiral diene. Both reduction and oxidation steps proceeded smoothly and, without the requirement for column chromatography, allow facile access to aldehydes 327e-f. The Wittig reaction proceeds in similar high yields as seen previously (Scheme 132).

Scheme 132 - Synthetic steps towards chiral diene ligands

With these substituted allyl ligands now synthesised. A comparison could be made against allyl ligand 327c (Table 38, entry 1). Unfortunately, whilst diene ligand 327e shows high enantioselectivity, it fails to improve upon that seen for 327c. Furthermore, the additional substitution appears to limit reactivity, and a moderate yield of 40% is obtained (entry 2). Whilst not appearing to affect the reactivity as severely as diene 327e, 327f suffers a large decrease in enantioselectivity (entry 3).
Table 38 - Additional ligand screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Yield (%)</th>
<th>ee (%)[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>327c</td>
<td>100</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>327e</td>
<td>40</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>327f</td>
<td>78</td>
<td>49</td>
</tr>
</tbody>
</table>

[a] ee was determined by HPLC (Chiralpak AD column)

5.2.4 Reaction Optimisation

With allyl ligand 327c showing excellent enantioselectivity and yields after the ligand screening, further optimisation was conducted to ensure maximum enantioselectivity was being achieved (Table 39).

Table 39 - Reaction optimisation using allyl ligand 327c

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temp</th>
<th>Time</th>
<th>Yield (%)</th>
<th>ee (%)[c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 °C to RT</td>
<td>1 min[a]</td>
<td>100</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>RT</td>
<td>1 min[a]</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>RT</td>
<td>2.5 hrs[b]</td>
<td>17</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>RT</td>
<td>24 hrs[b]</td>
<td>16</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>RT to 100 °C</td>
<td>2.5 hrs[b]</td>
<td>97</td>
<td>82</td>
</tr>
</tbody>
</table>

[a] Reaction transferred immediately to rotary evaporator on addition of 303. [b] Reaction subjected to aqueous work-up. [c] ee was determined by HPLC (Chiralpak AD column)

Most literature reports specify 50 °C as the optimum temperature to allow catalyst/ligand exchange. However, it can be seen that this can be done at room temperature with no loss in yield, and a slight increase in enantioselectivity (entries 1 &
2). Moreover, this removes the need to allow the reaction mixture to cool prior to addition of 2-cyclohexenone 303. It can be seen that under normal reaction conditions (that is, stirring under an inert atmosphere), the reactions proceed sluggishly, even with extended reaction times (entries 3 and 4). However, on heating to 100 °C, it is driven to completion, and a near quantitative yield is obtained (entry 5). Unfortunately, the enantioselectivity is lower than that seen under rotary evaporation.

5.2.5 Reaction Scope

With a suitable chiral diene ligand and optimised set of reaction conditions identified, the scope of the conjugate addition could be investigated.

Generally excellent yields are seen for all substrates, with 4-acetylphenyl 333d the sole exception with a poor yield of 24% (entry 5). The highest enantioselectivities are seen for the smallest substituents (entries 1 and 2), with the largest substituent, 1-naphthalenyl 333c, showing a decrease in selectivity to 73% ee. Whilst the 4-chlorophenyl 333e (entry 6) is afforded in excellent yield, it was not possible to obtain an accurate ee, due to the lack of resolution of the enantiomeric peaks by chiral HPLC.

Table 40 - Scope of rhodium-catalysed conjugate addition

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>ee (%)[^{[a]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>ent-304</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>4-F</td>
<td>334a</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>4-OMe</td>
<td>334b</td>
<td>93</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>1-Naphth</td>
<td>334c</td>
<td>100</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>4-Acetyl</td>
<td>334d</td>
<td>24</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>4-Cl</td>
<td>334e</td>
<td>87</td>
<td>ND[^{[b]}]</td>
</tr>
</tbody>
</table>

\[^{[a]}\] ee was determined by HPLC (Chiralpak AD, OD-H, or OJ column) \[^{[b]}\] Unable to effect resolution of enantiomeric peaks by chiral HPLC
5.3 Conclusions

This short investigation into rhodium-catalysed conjugate addition reactions has afforded a promising series of results. A series of chiral diene ligands have been synthesised based on both tert-butyloxazolidine and methyloxazolidine cores. These have demonstrated excellent enantioselectivity in rhodium-catalysed conjugate addition reactions, with tert-butyloxazolidine allyl ligand 327c showing the highest enantioselectivities. A series of aryl boronic acids have been successfully employed in the conjugate addition to 2-cyclohexenone, showing this catalyst-ligand system to be general, with good to excellent enantioselectivities obtained.

6. CONCLUSIONS & FUTURE WORK

6.1 Conclusions

Efforts towards the synthesis of α-quaternary centres in β-alkoxy-α-amino acids through an Ireland-Claisen rearrangement have shown the considerable effects that substituent size has on the reaction. Nonetheless, a series of individual optimisations allowed formation of the desired β-alkoxy-α-amino acids in 11-74% yield, and with diastereomeric ratios of 2:1 up to 24:1.

![Scheme 133 - Synthesis of α-quaternary β-methoxy-α-amino acids](image)

In the course of this study, attempts had failed to protect serine with phthalic anhydride. However, using the rearrangement of proline methoxyallyl ester 233 as inspiration, serine, threonine and cysteine were protected using formaldehyde to form a series of heteroprolines. These all underwent rearrangement to give good to excellent diastereoselectivities, with moderate to good yields.

![Scheme 134 – Rearrangement of heteroproline allyl esters](image)

Of particular interest was the level of remote transfer of chirality seen in the rearrangements of the threonine derived substrates. The methyl group located on the oxazolidine acts to selectively direct the rearrangement from a single face.

This investigation has sought to combine an Ireland-Claisen rearrangement with the self-regeneration of stereocentres strategy pioneered by Seebach. The difficulties
involved with such remote levels of stereocontrol can be inferred from the relatively
scattered literature reports, with limited efficacy, of asymmetric rearrangements with
chirality outside the cyclic transition state. In this novel rearrangement protocol, the
chiral directing group is two atoms exopericyclic to the developing C-C bond (Figure
41).

Significantly, the rearrangement showed outstanding levels of diastereoselectivity, with
complete transfer of chirality achieved. The generality of this reaction has shown to be
impressive, with both enol ether substrates undergoing facile rearrangement (Scheme
135), and also those bearing carbon substitution on the allyl ester. A range of functional
handles have been incorporated into the products, along with protecting groups,
allowing access to dihydrofurans, benzofurans, spiro-lactones in addition to β,β′-
dihydroxy-α-amino acid derivatives.

When shown in comparison to aldol reactions performed on a similar oxazolidine
framework, the importance of this reaction can be clearly identified. Allowing
considerable improvements in selectivity, along with a wide reaction scope, this
rearrangement shows considerable potential for synthetic utility.
The ability to access chiral β,β'-dihydroxy-α-amino acid head groups with such high selectivity has allowed the total synthesis of the potent immunosuppressant mycestericin G (Figure 42). Both enantiomers of this natural product have been readily synthesised, which, along with XRD analysis of o-iodophenoxy rearrangement product $252i$, allowed for a revision in stereochemistry to that previously reported. Using the synthetic route developed in the synthesis of mycestericin G, the threonine analogue, (2S,3R)-2-amino-3-hydroxy-2-((R)-1-hydroxyethyl)-14-oxoicosanoic acid 296, was also successfully synthesised. A key observation from these syntheses, was the effect steric interactions made on the success of the cross-metathesis.

![Figure 42 - Total synthesis of mycestericin G](image)

Finally, a series of chiral diene ligands were synthesised based around the tert-butylloxazolidine core. From an extensive ligand screen, it was observed that substitution of the allyl olefin reduced either the reactivity, or the enantioselectivity of the conjugate addition, whilst the methyloxazolidine core suffered both from both poor reactivity and a decrease in enantioselectivity. With the allyl ligand $327c$ chosen to explore the substrate scope, excellent enantioselectivities were obtained in the rhodium-catalysed conjugate addition reaction of 2-cyclohexenone with a variety of aryl boronic acids.

6.2 Future Work

There are several viable areas of research that this body of work could continue to explore. Whilst the SRS/Ireland-Claisen methodology has shown its synthetic applicability with the total synthesis of mycestericin G, there are several more natural products that remain a key target.
Chapter 6 Conclusions & Future Work

One particular target, lactacystin (Figure 43), would require further development in two key areas of the rearrangement. Firstly, the effects of internal olefin substitution would need to be probed. It can be seen from the retrosynthetic analysis that rearrangement of a 3-benzyloxy-2-methallyl ester would provide the core chirality required to complete the synthesis of 9-epi-lactacystin (Figure 44). However, no attempts have been made in this body of work to rearrange tri-substituted olefins of that nature. Secondly, to complete the synthesis of lactacystin itself, access to the alternative diastereomer is required. Since use of Z-enol ethers were unsuccessful in our attempts to obtain the alternative diastereomer, it would be desirable to develop a facile route, perhaps through use of a Mitsunobu reaction, to invert the stereochemistry.

The logical continuation of the rhodium-catalysed conjugate addition is to continue to explore the scope of the reaction. Currently, with the sole exception of the 1-naphthaleneboronic acid, only para-substituted arylboronic acids have been investigated. To fully demonstrate the applicability of our catalyst/ligand system, a wide range of ortho-/meta-/para- substituted systems, containing both electron rich, and electron deficient systems need to be examined. Furthermore, it would be desirable to vary the α,β-unsaturated ketone used as the acceptor in this reaction protocol. Not only would this incorporate variation in the cyclic ring size, but also attempt the conjugate addition on an acyclic substrate. There has been limited success to date in the conjugate

![Figure 43 - Lactacystin](image)

![Figure 44 - Retrosynthesis of 9-epi-lactacystin](image)
addition to an acyclic substrate utilising terminal diene ligands, so this would be a useful benchmark for the efficacy of our system.257

Rhodium-catalysed addition reactions of arylborons with aldehydes have recently been shown to be an attractive transformation.272-273 The use of ketones has, however, largely been limited to activated ketones, such as the trifluoromethyl ketones used by Minnaard \textit{et al.} (Scheme 136).

\begin{equation}
\text{R} \text{CF}_3 \text{O} \text{Rh(C}_2\text{H}_4\text{)}_2\text{(acac}} \text{(3-5 mol\%)} \text{ligand (7.5-12.5 mol\%)} \text{ArB(OH)}_2 \text{(3 eq)} \text{MTBE, } \Delta \rightarrow \text{R} \text{CF}_3 \text{HO Ar}
\end{equation}

Scheme 136 - Addition of arylboronic acids to trifluoromethyl ketones

Unactivated ketones, meanwhile, have only been reported to be suitable substrates under special conditions. However, Hu \textit{et al.} have recently reported a rhodium(I)/diene-catalysed addition reaction of arylborons with ketones.273 With 23 examples they have shown this to be a general reaction, with moderate to good enantioselectivities obtained.

\begin{equation}
\text{R}_1\text{R}_2 \text{CHO} + \text{R} \text{B(OH)}_2 \xrightarrow{\text{[RH(C}_2\text{H}_4\text{)}_2\text{Cl}_2} \text{(1.5 mol\%)} \text{chiral diene ligand (3.6 mol\%)} \text{KF (3 eq)} \text{o-Xylene, RT}} \text{HO Ar} \text{R}_1\text{R}_2
\end{equation}

Scheme 137 - Rh(I)/chiral diene-catalysed addition reactions of arylboronic acids with ketones

These literature reports provide a vast scope with which to benchmark our tert-butylloxazolidine diene ligand 327c against, and to hopefully push the boundaries of the current synthetic limitations.
7. EXPERIMENTAL

7.1 General Experimental Information

All reactions were carried out using anhydrous solvents and under an inert atmosphere of nitrogen. All reaction vessels were flame dried before use. Solvents were obtained by passing through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system. All reagents were purchased from commercial suppliers: Acros Organics, Alfa Aesar, Sigma Aldrich or Novabiochem and used without further purification. Triethylamine was freshly distilled prior to use and chlorotrimethylsilane was freshly distilled from 10 % quinoline. All distilled materials were stored under nitrogen in a fridge. All reactions were monitored by thin layer chromatography (TLC) using pre-coated MN Alugram Sil G/UV254 silica gel 60 aluminium backed plates. Plates were developed using standard techniques, UV light followed by a chemical dip, usually KMnO₄ and gentle heating. Flash chromatography was performed on chromatography grade, silica 60Å particle size 35-70 micron from Fisher Scientific using the solvent system as stated.

¹H and ¹³C NMR was performed on Brüker Avance 250 (¹H 250 MHz), Brüker Avance 300 (¹H 300 MHz and ¹³C 75 MHz), Brüker Avance 400 (¹H 400 MHz and ¹³C 100 MHz) and Brüker Avance 500 (¹H 500 MHz and ¹³C 125 MHz) as stated. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) (δ = 0.00). Coupling constants are reported in Hertz (Hz) and signal multiplicity is denoted as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin.), sextet (sex.), septet (sept.), multiplet (m), and broad (br). Mass spectroscopy was performed on a Brüker μTOF using electrospray ionisation (ESI) in either positive or negative ionisation as stated. Infra-red spectroscopy was carried out using a Perkin Elmer Spectrum RX FT-IR system with KBr plates, using a thin film. Melting points were determined using a Bibby Scientific Melting point apparatus Stuart SMP10 digital. X-ray data was collected at 150 K on a Nonius KappaCCD area diffractometer using Mo-Kα radiation (λ = 0.71073 Å) and all structures were solved by direct methods and refined on all F2 data using SHELXL-97 suite of programs. Hydrogen atoms included in idealised positions and refined using the riding model.
7.2 General Experimental Procedures

General Procedure I for the preparation of Vinylogous Carbonates

![Chemical Reaction Diagram]

To a stirred solution of 1,4-diazabicyclo[2.2.2]octane (10 mol%) and alcohol (1.1 eq) in THF (150 ml) at room temperature was added methyl propiolate (1.0 eq) via syringe pump over 10 minutes, before stirring at room temperature for a further 30 minutes. Sodium hydroxide (10% solution, 200 ml) was added and the aqueous was extracted with DCM (4 × 100 ml), combined, washed with brine (3 × 150 ml), dried over Na₂SO₄, filtered and concentrated in vacuo. Product ester was isolated after subsequent purification by flash chromatography.

General Procedure II for the preparation of Synthesis of Enol Ethers

![Chemical Reaction Diagram]

To a stirred solution of trans-methyl 3-alkoxyacrylate (1.0 eq) in toluene (10 mL) at -78 °C was added DIBAL-H (1M in tol., 2.5 eq) at a rate of 1 mL min⁻¹. After addition the reaction was stirred at -78 °C for 4-8 hrs before being poured into an ice-cold solution of saturated Rochelle salt (150 mL) and EtOAc (150 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 75 mL). The organics were combined, dried over Na₂SO₄, filtered and concentrated in vacuo to afford the enol ether without the need for further purification.

General Procedure III for the preparation of N-Phthaloyl Amino Acids

![Chemical Reaction Diagram]
To a stirred solution of amino acid (1.0 eq) and phthalic anhydride (1.01 eq) in toluene was added triethylamine (1.0 eq) and refluxed under Dean-Stark conditions until the heterogeneous mixture went into solution and sufficient water had been evolved (~ 24 hrs). The solution was allowed to cool to room temperature and washed with 10% citric acid (aq) (3 × 75 mL), back extracted with EtOAc (1 × 100 mL), dried and concentrated in vacuo to afford the \(N \)-phthaloyl amino acid without the need for further purification.

General Procedure IV for Carbodiimide Promoted Coupling Reactions

To a stirred solution of \(N \)-protected amino acid (2.0 eq) in DCM was added EDCi.HCl (2.0 eq), triethylamine (2.0 eq), catalytic DMAP (5 mol%) and the enol ether (1.0 eq). The reaction is stirred at room temperature until consumption of enol ether was observed by TLC. The reaction mixture was diluted with DCM (30 mL) before washing with NaHCO₃ (sat) (3 × 50 mL), 10% citric acid (3 × 50 mL), brine (1 × 50 mL) and dried over Na₂SO₄. Concentration in vacuo afforded the enol amino esters without the need for further purification.

General Procedure V for the preparation of Amino Acid Methyl Esters Hydrochloride

To a solution of amino acid (1.0 eq) in MeOH (350 mL) at 0 °C was added thionyl chloride (2.0-7.0 eq) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 18 hours. Solvent was removed in vacuo and crude solid was re-dissolved in acetone (50 mL) and concentrated in vacuo to afford amino acid methyl esters without the need for further purification.
General Procedure VI for the preparation of \(N\)-Boc Heteroprolines\(^{184}\)

A solution of amino acid (1.0 eq) and formaldehyde (37% aq, 1.2 eq) in 2N NaOH (15 mL) was allowed to stand in the fridge overnight. Then NH\(_2\)OH.HCl (0.1 eq), NaOH (0.1 eq) in H\(_2\)O (2.5 mL) and acetone (17.5 mL) was added at 0 °C. Boc\(_2\)O (1.1 eq) was added at room temperature and the reaction mixture stirred for a further 3 hours. The reaction mixture was diluted with water (50 mL) and washed with Et\(_2\)O (1 × 50 mL). The aqueous phase was acidified to pH 3 with 20% citric acid and extracted with EtOAc (3 × 50 mL), dried over Na\(_2\)SO\(_4\) and concentrated *in vacuo* to afford \(N\)-Boc heteroproline.

General Procedure VII for the Ireland-Claisen Rearrangement of Oxazolidine Allyl Esters

To a stirred solution of oxazolidine allyl ester (1.0 eq) in THF at -78 °C was added TMSCl (3.0 eq). After 10 mins LHMDS (1M, 3.0 eq) was added *via* syringe pump at an addition rate of 10 mL hr\(^{-1}\) and the reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1) and extracted with DCM (3 × 15 mL) and EtOAc (1 × 15 mL). The organic layers were dried over Na\(_2\)SO\(_4\) and concentrated *in vacuo* to afford the crude acid. Treatment with diazomethane (according to general procedure VIII) affords the crude amino ester.
General Procedure VIII for the Diazomethane Methylation of Carboxylic Acids

![Chemical structure](image)

To a solution of the crude acid (1.0 eq) in diethyl ether at 0 °C was added an ethereal solution of diazomethane generated from N-nitrosomethyl urea (2.0 eq) and KOH (37%) using sigma aldrich’s mini diazald kit. Once esterification was complete (yellow colour persists), the mix was quenched with glacial acetic acid then basified with NaHCO₃ (sat). The organics were extracted with EtOAc (5 × 15 ml), dried over MgSO₄, filtered and concentrated in vacuo.

General Procedure IX for the Deprotection and Acid Hydrolysis of N-Boc Oxazolidines

![Chemical structure](image)

To a solution of N-Boc oxazolidine (1.0 eq) in MeOH was added 6N HCl (20 eq) and the reaction mixture refluxed until consumption of starting material was observed by TLC. The reaction mixture was allowed to cool to room temperature and concentrated in vacuo to afford the crude hydrochloride salt. This was treated with saturated sodium bicarbonate (20 mL) and extracted with DCM (3 × 10 mL), dried over anhydrous magnesium sulphate and concentrated in vacuo to afford the crude amino esters.

General Procedure X for Rhodium-Catalysed Conjugate Additions

![Chemical structure](image)
A solution of boronic acid (1.5 eq), bis(ethylene)rhodium(I) chloride dimer (2.5 mol%) and ligand (6 mol%) in 1,4-dioxane (0.9 mL) was allowed to stir at room temperature for 15 minutes. 2-Cyclohexenone and potassium hydroxide (aq) (0.075M, 10 mol%) were added and the reaction mixture immediately concentrated in vacuo and purified by flash chromatography to afford the pure arylcyclohexanones.

7.3 Compound Characterisation

\((E)-\text{Methyl 3-ethoxyacrylate (217b)}\)

\[
\begin{align*}
\text{CH}_3\text{O} & \quad \text{C} \quad \text{OEt} \\
& \quad \text{MeO} \\
& \quad \text{Me}
\end{align*}
\]

DABCO (270 mg, 2.38 mmol) in THF (200 mL), ethanol (1.21 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (2.72 g, 88%). \(^1\)H NMR (500MHz, CDCl\textsubscript{3}) \(\delta_H\) 1.31 (3H, t, \(J = 7.0\) Hz), 3.66 (3H, s), 3.88 (2H, q, \(J = 7.0\) Hz), 5.17 (1H, d, \(J = 12.6\) Hz), 7.56 (1H, d, \(J = 12.6\) Hz); \(^{13}\)C NMR (125MHz, CDCl\textsubscript{3}) \(\delta_C\) 14.4, 51.0, 66.7, 96.0, 162.4, 168.3. All analytical data is in accordance with reported literature values.\(^{172}\)

\((E)-\text{Methyl 3-isopropoxyacrylate (217c)}\)

\[
\begin{align*}
\text{CH}_3\text{O} & \quad \text{C} \quad \text{OMe} \\
& \quad \text{MeO} \\
& \quad \text{Me}
\end{align*}
\]

DABCO (270 mg, 2.38 mmol) in THF (200 mL), propan-2-ol (1.57 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 30 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) followed by distillation under vacuum to afford the pure vinylogous carbonate as a colourless oil (2.27 g, 73%). \(^1\)H NMR (500MHz, CDCl\textsubscript{3}) \(\delta_H\) 1.24 (6H, d, \(J = 6.2\) Hz), 3.63 (3H, s), 4.18 (1H, sept, \(J = 6.2\) Hz), 5.18 (1H, d, \(J = 12.5\) Hz), 7.47 (1H, d, \(J = 12.5\) Hz).
Hz); 13C NMR (125MHz, CDCl$_3$) δC 21.9, 50.8, 75.5, 96.8, 161.6, 168.4. All analytical data is in accordance with reported literature values.173

\textit{(E)-Methyl 3-(allyloxy)acrylate (217d)}

\[
\text{MeO} \quad \text{C} \quad \text{O} \quad \text{O} \quad \text{C} \\
\]

DABCO (270 mg, 2.38 mmol) in THF (100 mL), allyl alcohol (1.37 g, 23.6 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 40 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (2.85 g, 85%). 1H NMR (500MHz, CDCl$_3$) δH 3.60 (3H, s), 4.30 (2H, dt, $J = 5.3, 1.5$ Hz), 5.16 (1H, d, $J = 12.6$ Hz), 5.22 (1H, dq, $J = 10.3, 1.5$ Hz), 5.28 (1H, dq, $J = 17.2, 1.5$ Hz), 5.85 (1H, ddt, $J = 17.2, 10.3, 5.3$ Hz), 7.49 (1H, d, $J = 12.6$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 50.9, 71.5, 96.8, 118.7, 131.7, 161.9, 167.9. All analytical data is in accordance with reported literature values.172

\textit{(E)-Methyl 3-(prop-2-ynyloxy)acrylate (217e)}

\[
\text{MeO} \quad \text{O} \quad \text{C} \quad \text{O} \quad \text{C} \\
\]

DABCO (204 mg, 1.82 mmol) in THF (250 mL), propargyl alcohol (1.16 mL, 20.0 mmol) and methyl propiolate (1.62 mL, 18.2 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (2.19 g, 86%). 1H NMR (500MHz, CDCl$_3$) δH 2.60 (1H, t, $J = 2.6$ Hz), 3.71 (3H, s), 4.53 (2H, d, $J = 2.6$ Hz), 5.35 (1H, d, $J = 12.7$ Hz), 7.58 (1H, d, $J = 12.7$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 51.2, 58.1, 76.6, 77.0, 98.3, 160.6, 167.6. All analytical data is in accordance with reported literature values.173
(E)-Methyl 3-phenoxyacrylate (217f)

\[
\begin{align*}
\text{MeO} & \quad \text{O} \\
\quad & \quad \text{O} \\
\end{align*}
\]

DABCO (270 mg, 2.38 mmol) in THF (200 mL), phenol (2.46 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (4.34 g, 98%). \(^1 \)H NMR (500MHz, CDCl\textsubscript{3}) \(\delta \)H 3.74 (3H, s), 5.58 (1H, d, \(J = 12.4 \) Hz), 7.08 (2H, d, \(J = 8.4 \) Hz), 7.21 (1H, t, \(J = 7.5 \) Hz), 7.39 (2H, t, \(J = 7.5 \) Hz), 7.83 (1H, d, \(J = 12.4 \) Hz); \(^{13} \)C NMR (125MHz, CDCl\textsubscript{3}) \(\delta \)C 51.3, 101.8, 118.0, 125.0, 130.0, 155.9, 159.2, 167.6. All analytical data is in accordance with reported literature values.172

(E)-Methyl 3-(4-methoxyphenoxy)acrylate (217g)

\[
\begin{align*}
\text{MeO} & \quad \quad \text{O} \\
\quad & \quad \quad \text{O} \\
\end{align*}
\]

DABCO (270 mg, 2.38 mmol) in THF (200 mL), 4-methoxyphenol (3.25 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (6:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (4.49 g, 91%). \(^1 \)H NMR (500MHz, CDCl\textsubscript{3}) \(\delta \)H 3.73 (3H, s), 3.81 (3H, s), 5.48 (1H, d, \(J = 12.6 \) Hz), 6.89 (2H, m), 7.00 (2H, m), 7.76 (1H, d, \(J = 12.6 \) Hz); \(^{13} \)C NMR (125MHz, CDCl\textsubscript{3}) \(\delta \)C 51.7, 56.1, 101.3, 115.3, 119.8, 149.9, 157.3, 160.8, 168.2. All analytical data is in accordance with reported literature values.172

(E)-Methyl 3-(4-(trifluoromethyl)phenoxy)acrylate (217h)

\[
\begin{align*}
\text{MeO} & \quad \quad \quad \quad \text{O} \\
\quad & \quad \quad \quad \quad \text{O} \\
\end{align*}
\]

\(^1 \)H NMR (500MHz, CDCl\textsubscript{3}) \(\delta \)H 3.73 (3H, s), 3.81 (3H, s), 5.48 (1H, d, \(J = 12.6 \) Hz), 6.89 (2H, m), 7.00 (2H, m), 7.76 (1H, d, \(J = 12.6 \) Hz); \(^{13} \)C NMR (125MHz, CDCl\textsubscript{3}) \(\delta \)C 51.7, 56.1, 101.3, 115.3, 119.8, 149.9, 157.3, 160.8, 168.2. All analytical data is in accordance with reported literature values.172
DABCO (135 mg, 1.19 mmol) in THF (200 mL), 4-(trifluoromethyl)phenol (2.12 g, 13.1 mmol) and methyl propiolate (1.06 mL, 11.9 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (15:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (2.72 g, 93%). Mpt: 60-61 °C; 1H NMR (500MHz, CDCl$_3$) δH 3.74 (3H, s), 5.66 (1H, d, $J = 12.2$ Hz), 7.16 (2H, m), 7.64 (2H, m), 7.80 (1H, d, $J = 12.2$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 51.4, 103.6, 117.8, 122.7, 124.9, 127.4 (q, $J = 3.6$ Hz), 157.2, 158.1, 167.1. All analytical data is in accordance with reported literature values.172

$$\text{(E)-Methyl 3-(2-iodophenoxy)acrylate (217i)}$$

DABCO (116 mg, 1.03 mmol) in THF (200 mL), 2-iodophenol (2.50 g, 11.4 mmol) and methyl propiolate (916 μL, 10.3 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (6:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (2.91 g, 93%). 1H NMR (500MHz, CDCl$_3$) δH 3.74 (3H, s), 5.52 (1H, d, $J = 12.4$ Hz), 6.96 (1H, t, $J = 7.5$ Hz), 7.07 (1H, d, $J = 7.5$ Hz), 7.38 (1H, t, $J = 7.8$ Hz), 7.72 (1H, d, $J = 12.4$ Hz), 7.85 (1H, d, $J = 7.8$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 51.4, 87.8, 102.3, 119.1, 127.0, 130.0, 140.0, 155.1, 159.0, 167.3. All analytical data is in accordance with reported literature values.172

$$\text{(E)-Methyl 3-(benzyloxy)acrylate (217j)}$$

DABCO (110 mg, 0.970 mmol) in THF (40 mL), benzyl alcohol (1.08 g, 9.99 mmol) and methyl propiolate (890 μL, 9.99 mmol) were combined according to general procedure I (reaction time: 40 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) followed by distillation under vacuum to afford the pure vinylogous carbonate as a colourless oil (1.65 g, 86%). 1H NMR (500MHz, CDCl$_3$) δH 3.71 (3H,
Chapter 7 Experimental

\[\delta_{\text{H}} 3.71 (3\text{H}, \text{s}), 3.83 (3\text{H}, \text{s}), 4.84 (2\text{H}, \text{s}), 5.32 (1\text{H}, \text{d}, J = 12.5 \text{ Hz}), 6.92 (2\text{H}, \text{m}), 7.28 (2\text{H}, \text{m}), 7.67 (1\text{H}, \text{d}, J = 12.5 \text{ Hz}); \delta_{\text{C}} 51.1, 55.3, 72.8, 97.0, 114.1, 127.2, 129.6, 159.9, 162.2, 168.1. \]

All analytical data is in accordance with reported literature values.\(^\text{172}\)

\((E)\)-Methyl 3-(4-methoxybenzyloxy)acrylate (217k)

\[
\begin{align*}
\text{MeO} & \quad \text{O} \\
\text{O} & \quad \text{OMe}
\end{align*}
\]

DABCO (270 mg, 2.38 mmol) in THF (200 mL), 4-methoxybenzyl alcohol (3.25 mL, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 30 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (4.92 g, 93%).

\[\delta_{\text{H}} 3.71 (3\text{H}, \text{s}), 3.83 (3\text{H}, \text{s}), 4.84 (2\text{H}, \text{s}), 5.32 (1\text{H}, \text{d}, J = 12.5 \text{ Hz}), 6.92 (2\text{H}, \text{m}), 7.28 (2\text{H}, \text{m}), 7.67 (1\text{H}, \text{d}, J = 12.5 \text{ Hz}); \delta_{\text{C}} 51.1, 55.3, 72.8, 97.0, 114.1, 127.2, 129.6, 159.9, 162.2, 168.1. \]

All analytical data is in accordance with reported literature values.\(^\text{172}\)

\((E)\)-Methyl 3-(2,6-dichlorobenzyloxy)acrylate (217l)

\[
\begin{align*}
\text{MeO} & \quad \text{O} \\
\text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

DABCO (270 mg, 2.38 mmol) in THF (300 mL), 2,6-dichlorobenzyl alcohol (4.63 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 30 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (3.82 g, 62%).

\[\delta_{\text{H}} 3.73 (3\text{H}, \text{s}), 5.16 (2\text{H}, \text{s}), 5.39 (1\text{H}, \text{d}, J = 12.6 \text{ Hz}), 7.25–7.28 (1\text{H}, \text{m}), 7.35 (1\text{H}, \text{s}), 7.37 (1\text{H}, \text{s}), 7.71 (1\text{H}, \text{d}, J = 12.6 \text{ Hz}); \delta_{\text{C}} 51.2, 67.5, 97.1, 128.5, 130.7, 131.0, 137.0, 162.1, 167.9. \]

All analytical data is in accordance with reported literature values.\(^\text{173}\)
(E)-Methyl 3-(2-iodobenzyloxy)acrylate (217m)

DABCO (270 mg, 2.38 mmol) in THF (200 mL), 2-iodobenzyl alcohol (6.12 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (6:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (6.85 g, 91%).

1H NMR (500MHz, CDCl$_3$) δH 3.73 (3H, s), 4.91 (2H, s), 5.37 (1H, d, $J = 12.5$ Hz), 7.04–7.07 (1H, m), 7.36–7.40 (2H, m), 7.71 (1H, d, $J = 12.5$ Hz), 7.87 (1H, d, $J = 8.1$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 51.2, 76.4, 97.4, 97.5, 128.5, 128.8, 130.1, 137.5, 139.5, 161.7, 167.9. All analytical data is in accordance with reported literature values.172

(217n) (E)-Methyl 3-isobutoxyacrylate

DABCO (270 mg, 2.38 mmol) in THF (200 mL), 2-methyl-1-propanol (2.42 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 45 minutes). Purified by flash chromatography (6:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (3.24 g, 86%).

1H NMR (500MHz, CDCl$_3$) δH 0.91 (6H, d, $J = 6.7$ Hz), 1.95 (1H, oct, $J = 6.7$ Hz), 3.56 (2H, d, $J = 6.7$ Hz), 3.64 (3H, s), 5.14 (1H, d, $J = 12.7$ Hz), 7.55 (1H, d, $J = 12.7$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 18.8, 28.0, 50.9, 77.4, 95.8, 162.8, 168.2. All analytical data is in accordance with reported literature values.172

(217o) (E)-Methyl 3-(cyclohexyloxy)acrylate

(217p) (E)-Methyl 3-(cyclohexyloxy)acrylate
DABCO (270 mg, 2.38 mmol) in THF (400 mL), cyclohexanol (2.62 g, 26.2 mmol) and methyl propiolate (2.12 mL, 23.8 mmol) were combined according to general procedure I (reaction time: 1 hour). Purified by flash chromatography (15:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (1.58 g, 36%). FTIR (film/cm-1) \(\nu_{\text{max}} \): 2937, 2861, 1707, 1638, 1619; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta _H \): 1.23–1.56 (6H, m), 1.71–1.76 (2H, m), 1.89–1.93 (2H, m), 3.69 (3H, s), 3.93 (1H, sept, \(J = 4.1 \) Hz), 5.25 (1H, d, \(J = 12.7 \) Hz), 7.56 (1H, d, \(J = 12.7 \) Hz); \(^13\)C NMR (125MHz, CDCl\(_3\)) \(\delta _C \): 23.4, 25.2, 31.8, 51.0, 81.0, 96.8, 161.8, 168.6; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{10}\)H\(_{16}\)O\(_3\)Na 207.0997, found: 207.0994 (M+Na)

\[\text{(E)-Methyl 3-(but-3-en-2-yl)oxyacylate (217p)} \]

\[
\begin{align*}
\text{MeO} & \equiv \text{O} \equiv \text{Me} \\
& \equiv \equiv \equiv \\
\end{align*}
\]

DABCO (204 mg, 1.82 mmol) in THF (200 mL), 3-buten-2-ol (1.44 g, 20.0 mmol) and methyl propiolate (1.62 mL, 18.2 mmol) were combined according to general procedure I (reaction time: 30 minutes). Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless oil (2.30 g, 81%). FTIR (film/cm-1) \(\nu_{\text{max}} \): 2986, 2952, 1708, 1639, 1621; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta _H \): 1.26 (3H, d, \(J = 6.4 \) Hz), 3.56 (3H, s), 4.39 (1H, app. quin, \(J = 6.4 \) Hz), 5.09–5.18 (3H, m), 5.70 (1H, ddd, \(J = 17.1, 10.5, 6.4 \) Hz), 7.40 (1H, d, \(J = 12.5 \) Hz); \(^13\)C NMR (125MHz, CDCl\(_3\)) \(\delta _C \): 20.5, 50.7, 79.4, 97.5, 116.9, 137.5, 161.2, 168.0; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_8\)H\(_{12}\)O\(_3\)Na 179.0684, found: 179.0676 (M+Na)

\[\text{(E)-3-(Methoxy)prop-2-enol (218a)} \]

\[
\begin{align*}
\text{HO} & \equiv \equiv \equiv \\
& \equiv \equiv \equiv \\
\text{Me} & \equiv \equiv \equiv \\
\end{align*}
\]

Methyl trans-3-methoxyacrylate (1.85 mL, 17.2 mmol) was reduced according to general procedure II (reaction time: 4 hours) to afford the product as a yellow oil (1.17 g, 77%). \(^1\)H NMR (500 MHz, d\(_6\)-acetone) \(\delta _H \): 3.35 (1H, t, \(J = 5.7 \) Hz), 3.51 (3H, s), 3.96 (2H, app. t, \(J = 7.0 \) Hz), 4.96 (1H, dt, \(J = 12.7, 7.0 \) Hz), 6.51 (1H, d, \(J = 12.7 \) Hz);
13C NMR (125 MHz, d$_6$-acetone) δC 55.1, 59.1, 102.9, 149.5. All analytical data is in accordance with literature precedence.172

(E)-3-Ethoxyprop-2-en-1-ol (218b)

(E)-methyl 3-ethoxyacrylate (1.59 g, 12.2 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (1.10 g, 88%). 1H NMR (500MHz, DMSO) δH 1.19 (3H, t, $J = 7.1$ Hz), 3.70 (2H, q, $J = 7.1$ Hz), 3.83 (2H, ddd, $J = 5.6, 4.7, 1.3$ Hz), 4.40 (1H, t, $J = 5.6$ Hz), 4.86 (1H, dt, $J = 12.9, 6.9$ Hz), 6.42 (1H, d, $J = 12.9$ Hz); 13C NMR (125MHz, DMSO) δC 15.1, 59.0, 64.6, 104.4, 148.5. All analytical data is in accordance with literature precedence.172

(E)-3-Isopropoxyprop-2-en-1-ol (218c)

(E)-Methyl 3-isopropoxyacrylate (2.08 g, 14.4 mmol) was reduced according to general procedure II (reaction time: 4 hours) to afford the product as a colourless oil (1.41 g, 76%). 1H NMR (500MHz, d$_6$-acetone) δH 1.15 (6H, d, $J = 6.2$ Hz), 3.81 (2H, app. t, $J = 6.5$ Hz), 4.00 (1H, quin, $J = 6.2$ Hz), 4.36 (1H, t, $J = 5.4$ Hz), 4.88 (1H, dt, $J = 12.5, 6.5$ Hz), 6.33 (1H, d, $J = 12.5$ Hz); 13C NMR (125MHz, d$_6$-acetone) δC 22.4, 59.0, 72.3, 105.7, 147.6. All analytical data is in accordance with literature precedence.173

(E)-3-(Allyloxy)prop-2-en-1-ol (218d)

(E)-Methyl 3-(allyloxy)acrylate (1.38 g, 12.1 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a yellow oil (0.78 g, 71%). 1H NMR (500 MHz, d$_6$-DMSO) δH 3.83 (2H, ddd, $J = 7.0, 5.5, 1.2$ Hz), 4.21 (2H, dt, $J = 5.3, 1.7$ Hz), 4.43 (1H, t, $J = 5.5$ Hz), 4.92 (1H, dt, $J = 13.8, 7.0$ Hz), 5.20 (1H, dq, $J =
10.4, 1.7 Hz), 5.31 (1H, dq, J = 17.3, 1.7 Hz), 5.94 (1H, ddt, J = 17.3, 10.4, 5.3 Hz), 6.44 (1H, d, J = 13.8 Hz); 13C NMR (125 MHz, d$_6$-DMSO) δ$_C$ 58.5, 69.9, 105.1, 117.6, 134.3, 148.2. All analytical data is in accordance with literature precedence.$^{172} $

(E)-3-(Prop-2-ynyloxy)prop-2-en-1-ol (218e)

(E)-methyl 3-(prop-2-ynyloxy)acrylate (2.07 g, 14.8 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (1.37 g, 83%). 1H NMR (500MHz, d$_6$-acetone) δ$_H$ 2.60 (1H, dt, J = 2.4, 0.8 Hz), 4.06 (2H, d, J = 7.2 Hz), 4.43 (2H, d, J = 2.4 Hz), 5.17 (1H, dt, J = 12.7, 7.2 Hz), 6.52 (1H, d, J = 12.7 Hz); 13C NMR (125MHz, d$_6$-acetone) δ$_C$ 57.0, 60.1, 75.3, 78.5, 105.4, 148.1. All analytical data is in accordance with literature precedence.173

(E)-3-Phenoxyprop-2-en-1-ol (218f)

(E)-Methyl 3-(phenyloxy)acrylate (1.02 g, 6.79 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (0.60 g, 53%). 1H NMR (500 MHz, d$_6$-acetone) δ$_H$ 3.70 (1H, t, J = 5.4 Hz), 4.11 (2H, app. t, J = 6.6 Hz), 5.49 (1H, dt, J = 12.3, 6.6 Hz), 6.81 (1H, d, J = 12.3 Hz), 7.04 (2H, d, J = 8.4 Hz), 7.08 (1H, t, J = 7.5 Hz), 7.36 (2H, d, J = 7.5 Hz); 13C NMR (125 MHz, d$_6$-acetone) δ: 58.4, 112.5, 116.4, 122.8, 129.7, 143.8, 157.2. All analytical data is in accordance with literature precedence.172

(E)-3-(4-Methoxyphenoxy)prop-2-en-1-ol (218g)
(E)-Methyl 3-(4-methoxyphenoxy)acrylate (1.15 g, 5.52 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (0.64 g, 64%). 1H NMR (500MHz, d$_6$-acetone) δH 4.10 (1H, t, $J = 5.6$ Hz), 4.28 (3H, s), 4.58 (2H, app. t, $J = 5.6$ Hz), 5.88 (1H, dt, $J = 12.2, 6.7$ Hz), 7.22 (1H, d, $J = 12.2$ Hz), 7.42 (2H, m, ArH), 7.48 (2H, m, ArH); 13C NMR (125MHz, d$_6$-acetone) δC 55.0, 58.5, 111.0, 114.7, 117.9, 145.3, 150.9, 155.7. All analytical data is in accordance with literature precedence.172

(E)-3-(4-(Trifluoromethyl)phenoxy)prop-2-en-1-ol (218h)

(E)-Methyl 3-(4-(trifluoromethyl)phenoxy)acrylate (2.55 g, 10.4 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (2.14 g, 95%). 1H NMR (500MHz, d$_6$-acetone) δH 3.76 (1H, br s), 3.96 (2H, dd, $J = 6.5, 1.3$ Hz), 5.43 (1H, dt, $J = 12.0, 6.5$ Hz), 6.66 (1H, dt, $J = 12.0, 1.3$ Hz), 6.98 (2H, m), 7.44 (2H, m); 13C NMR (125MHz, d$_6$-acetone) δC 59.6, 116.0, 117.7, 125.3, 127.6, 128.4 (q, $J = 4.0$ Hz), 143.8, 161.1. All analytical data is in accordance with literature precedence.172

(E)-3-(2-Iodophenoxy)prop-2-en-1-ol (218i)

(E)-Methyl 3-(2-iodophenoxy)acrylate (1.34 g, 4.41 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (1.00 g, 82%). 1H NMR (500MHz, d$_6$-acetone) δH 3.59 (1H, t, $J = 5.7$ Hz), 3.99 (2H, dt, $J = 5.7, 1.4$ Hz), 5.40 (1H, dt, $J = 12.1, 6.6$ Hz), 6.63 (1H, dt, $J = 12.1, 1.4$ Hz), 6.97 (1H, dd, $J = 7.5, 1.4$ Hz), 7.25–7.31 (1H, m), 7.72 (1H, dd, $J = 7.9, 1.4$ Hz); 13C NMR (125MHz, d$_6$-acetone) δC 59.6, 87.4, 115.0, 117.7, 126.2, 131.2, 141.0, 144.9, 157.6. All analytical data is in accordance with literature precedence.172
(E)-3-(Benzylxy)prop-2-enol (218j)

(E)-Methyl 3-(benzylxy)acrylate (2.15 g, 11.2 mmol) was reduced according to general procedure II (reaction time: 4 hours) to afford the product as a colourless oil (1.56 g, 80%). \(^1\)H NMR (500 MHz, d\(_6\)-DMSO) \(\delta_H\) 3.86 (2H, t, \(J = 6.3\) Hz), 4.47 (1H, t, \(J = 5.3\) Hz), 4.75 (2H, s), 5.02 (1H, m), 6.55 (1H, d, \(J = 13.1\) Hz), 7.32–7.39 (5H, m); \(^13\)C NMR (125 MHz, d\(_6\)-DMSO) \(\delta_C\) 58.9, 71.0, 105.4, 126.9, 128.2, 128.8, 137.7, 148.4. All analytical data is in accordance with literature precedence.\(^{172}\)

(E)-3-(4-Methoxybenzylxy)prop-2-en-1-ol (218k)

(E)-Methyl 3-(4-methoxybenzylxy)acrylate (4.88 g, 21.9 mmol) was reduced according to general procedure II (reaction time: 7 hours) to afford the product as a colourless oil (3.82 g, 90%). \(^1\)H NMR (500 MHz, DMSO) \(\delta_H\) 3.75 (3H, s), 3.84 (2H, t, \(J = 5.6\) Hz), 4.45 (1H, t, \(J = 5.6\) Hz), 4.66 (2H, s), 4.98 (1H, dt, \(J = 12.8, 7.1\) Hz), 6.52 (1H, d, \(J = 12.8\) Hz), 6.93 (2H, m), 7.29 (2H, m); \(^13\)C NMR (125 MHz, DMSO) \(\delta_C\) 55.5, 58.9, 70.8, 105.2, 113.9, 128.4, 129.6, 148.4, 159.4. All analytical data is in accordance with literature precedence.\(^{172}\)

(E)-Methyl 3-(2,6-dichlorobenzylxy)acrylate (218l)

(E)-Methyl 3-(2,6-dichlorobenzylxy)acrylate (2.36 g, 9.03 mmol) was reduced according to general procedure II (reaction time: 4 hours) to afford the product as a colourless oil (1.93 g, 91%). Mpt: 80–83 °C; \(^1\)H NMR (500 MHz, d\(_6\)-acetone) \(\delta_H\) 3.46 (1H, t, \(J = 5.9\) Hz), 4.02 (2H, app. t, \(J = 6.8\) Hz), 5.03 (2H, s), 5.34 (1H, dt, \(J = 12.4, 6.8\) Hz), 6.81.
Hz), 6.63 (1H, d, \(J = 12.4 \) Hz), 7.41–7.51 (3H, m); \(^{13}\)C NMR (125MHz, d\(_6\)-acetone) \(\delta_c \) 59.2, 65.5, 104.8, 128.6, 131.0, 132.4, 136.5, 148.2. All analytical data is in accordance with literature precedence.\(^{173}\)

\((E)\)-3-(2-Iodobenzyloxy)prop-2-en-1-ol (218m)

\begin{center}
\includegraphics[width=0.2\textwidth]{image}
\end{center}

\((E)\)-Methyl 3-(2-Iodobenzyloxy)acrylate 1.08 g, 3.72 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (0.88 g, 89%). \(^1\)H NMR (500MHz, d\(_6\)-acetone) \(\delta_H \) 3.44 (1H, t, \(J = 5.3 \) Hz), 4.01 (2H, t, \(J = 7.0 \) Hz), 4.78 (2H, s), 5.14 (1H, dt, \(J = 12.3, 7.0 \) Hz), 6.63 (1H, d, \(J = 12.3 \) Hz), 7.11 (1H, td, \(J = 7.6, 1.7 \) Hz), 7.43–7.50 (2H, m), 7.91 (1H, dd, \(J = 7.6, 1.0 \) Hz); \(^{13}\)C NMR (125MHz, d\(_6\)-acetone) \(\delta_c \) 59.2, 74.6, 97.2, 105.2, 128.4, 129.0, 129.7, 139.3, 139.5, 148.1. All analytical data is in accordance with literature precedence.\(^{172}\)

\((E)\)-3-Isobutoxyprop-2-en-1-ol (218n)

\begin{center}
\includegraphics[width=0.2\textwidth]{image}
\end{center}

\((E)\)-Methyl 3-isobutyloxyacrylate (1.38 g, 10.6 mmol) was reduced according to general procedure II (reaction time: 6 hours) to afford the product as a colourless oil (1.19 mg, 86%). \(^1\)H NMR (500MHz, d\(_6\)-acetone) \(\delta_H \) 0.79 (6H, d, \(J = 6.7 \) Hz), 1.77 (1H, oct, \(J = 6.7 \) Hz), 3.15 (1H, t, \(J = 5.5 \) Hz), 3.32 (2H, d, \(J = 6.7 \) Hz), 3.81 (2H, ddd, \(J = 7.0, 5.5, 1.1 \) Hz), 4.82 (1H, dt, \(J = 12.6, 7.0 \) Hz), 6.35 (1H, d, \(J = 12.6 \) Hz); \(^{13}\)C NMR (125MHz, d\(_6\)-acetone) \(\delta_c \) 19.7, 29.3, 60.7, 76.5, 104.9, 150.3. All analytical data is in accordance with literature precedence.\(^{172}\)

\((E)\)-3-(Cyclohexyloxy)prop-2-en-1-ol (218o)

\begin{center}
\includegraphics[width=0.2\textwidth]{image}
\end{center}

\(| 152 \)
(E)-Methyl 3-(cyclohexyloxy)acrylate (838 mg, 4.55 mmol) was reduced according to general procedure II (reaction time: 4 hours) to afford the product as a yellow oil (525 mg, 74%). FTIR (film/cm-1) ν_{max}: 3338, 2932, 2858, 1669, 1649; 1H NMR (500MHz, d$_6$-acetone) δ_H 1.21–1.56 (6H, m), 1.67–1.77 (2H, m), 1.79–1.91 (2H, m), 3.27 (1H, t, J = 5.6 Hz), 3.71–3.79 (1H, m), 3.91–3.97 (2H, m), 5.01 (1H, dt, J = 12.4, 7.2 Hz), 6.39 (1H, d, J = 12.4 Hz); 13C NMR (125MHz, d$_6$-acetone) δ_C 23.3, 25.3, 31.8, 59.3, 77.4, 105.1, 147.6.

(E)-3-(But-3-en-2-yloxy)prop-2-en-1-ol (218p)

\[
\text{HO} \quad \text{Me} \quad \quad \text{CH} = \quad \text{CH} \quad \quad \text{O}
\]

(E)-Methyl 3-(but-3-en-2-yloxy)acrylate (2.27 g, 14.5 mmol) was reduced according to general procedure II (reaction time: 4 hours) to afford the product as a yellow oil (1.33 g, 72%). FTIR (film/cm-1) ν_{max}: 3393, 2979, 2931, 2872, 1670, 1652; 1H NMR (500MHz, d$_6$-acetone) δ_H 1.26 (3H, d, J = 6.4 Hz), 3.33 (1H, t, J = 5.6 Hz), 3.93 (2H, app. t, J = 6.4 Hz), 4.35 (1H, app. p, J = 6.4 Hz), 5.03 (1H, dt, J = 12.4, 7.1 Hz), 5.13 (1H, dt, J = 10.6, 1.4 Hz), 5.24 (1H, dt, J = 17.3, 1.4 Hz), 5.82 (1H, ddd, J = 17.3, 10.6, 6.4 Hz), 6.37 (1H, d, J = 12.4 Hz); 13C NMR (125MHz, d$_6$-acetone) δ_C 20.2, 59.3, 76.7, 105.7, 114.9, 139.5, 147.4.

2-(1,3-Dioxoisindolin-2-yl)propanoic acid (219b)

\[\text{O} \quad \text{Me} \quad \quad \text{O} \quad \text{N} \quad \text{CH}_2 \text{COOH}\]

DL-Alanine (1.10 g, 12.3 mmol) in toluene (50 mL), phthalic anhydride (1.84 g, 12.4 mmol) and triethylamine (1.74 mL, 12.3 mmol) were combined according to general procedure III (reaction time: 24 hours) to afford the title compound as a white powder (2.13 g, 79%). Mpt: 164-165 °C (lit.274 163 °C); FTIR (film/cm$^{-1}$) ν_{max}: 3050, 2922, 2853, 1780, 1764, 1709; 1H NMR (300MHz, CDCl$_3$) δ_H 1.66 (3H, d, J = 7.4 Hz), 4.98 (1H, q, J = 7.4 Hz), 7.62–7.71 (2H, m), 7.76–7.85 (2H, m), 10.02 (1H, bs); 13C NMR
Chapter 7

Experimental

(75MHz, CDCl₃) δC 15.4, 47.6, 124.0, 132.2, 134.6, 167.8, 176.0; HRMS (ESI, -ve) m/z calc. for C₁₁H₈NO₄ 218.0459, found 218.0452 (M-H).

2-(1,3-Dioxoisooindolin-2-yl)butanoic acid (219c)

![Structure of 2-(1,3-Dioxoisooindolin-2-yl)butanoic acid (219c)](image)

DL-2-Aminobutyric acid (2.76 g, 26.7 mmol) in toluene (100 mL), phthalic anhydride (4.00 g, 27.0 mmol) and triethylamine (3.74 mL, 26.7 mmol) were combined according to general procedure III (reaction time: 24 hours) to afford the title compound as an amorphous solid (4.77 g, 77%). Mpt: 95-96 °C (lit. 95.5-96.5 °C); FTIR (film/cm⁻¹) νmax: 3050, 2976, 2881, 1776, 1713, 1613; ¹H NMR (500MHz, CDCl₃) δH 0.92 (3H, t, J = 7.4 Hz), 2.20–2.33 (2H, m), 4.81 (1H, dd, J = 8.6, 7.1 Hz), 7.67–7.77 (2H, m), 7.80–7.90 (2H, m), 11.47 (1H, bs); ¹³C NMR (125MHz, CDCl₃) δC 10.9, 21.9, 53.5, 123.6, 131.6, 134.3, 167.7, 175.2; HRMS (ESI, +ve) m/z calc. for C₁₂H₁₁NO₄Na 256.0586, found 256.0578 (M+Na).276

(S)-2-(1,3-Dioxoisooindolin-2-yl)-3-methylbutanoic acid (219d)

L-Valine (2.50 g, 21.3 mmol) in toluene (80 mL), phthalic anhydride (3.18 g, 21.5 mmol) and triethylamine (2.98 mL, 21.3 mmol) were combined according to general procedure III (reaction time: 24 hours) to afford the title compound as a white powder (4.93 g, 94%). Mpt: 112-114 °C (lit. 112-113 °C); [α]D²⁰ -38 (c 1, MeOH), lit. 276 -51.4 (c 1, CH₂Cl₂); ¹H NMR (300MHz, CDCl₃) δH 0.92 (3H, d, J = 6.8 Hz), 1.17 (3H, d, J = 6.8 Hz), 2.68–2.85 (1H, m), 4.63 (1H, d, J = 8.5 Hz), 7.71–7.78 (2H, m), 7.84–7.91 (2H, m, ArH), 9.89 (1H, bs, CO₂H); ¹³C NMR (75MHz, CDCl₃) δC 19.9, 21.3, 28.8, 58.0, 124.1, 132.0, 134.7, 168.1, 174.8. All analytical data is in accordance with literature precedence.276
2-(1,3-Dioxoisooindolin-2-yl)pentanoic acid (219e)

![Chemical Structure](image)

DL-Norvaline (5.00 g, 42.6 mmol) in toluene (180 mL), phthalic anhydride (6.36 g, 43 mmol) and triethylamine (5.96 mL, 42.6 mmol) were combined according to general procedure III (reaction time: 24 hours) to afford the title compound as a white powder (8.52 g, 81%). Mpt: 104-106 °C (lit.\(^{277}\) 103-105°C); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3031, 2964, 2870, 1775, 1699, 1612; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_H\): 0.94 (3H, t, \(J = 7.4\) Hz), 1.29–1.41 (2H, m), 2.13–2.21 (1H, m), 2.27–2.37 (1H, m), 4.94 (1H, dd, \(J = 11.1, 4.7\) Hz), 7.74 (2H, dd, \(J = 5.4, 3.1\) Hz), 7.87 (2H, dd, \(J = 5.4, 3.1\) Hz); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_C\): 13.3, 19.5, 30.3, 51.6, 123.6, 131.7, 134.2, 167.6, 175.4; HRMS (ESI, +ve) \(m/z\) calc. for C\(_{13}\)H\(_{13}\)NO\(_4\)Na 270.0742, found 270.0740 (M+Na)\(^{+}\).

(S)-2-(1,3-Dioxoisooindolin-2-yl)-4-methylpentanoic acid (219f)

![Chemical Structure](image)

L-Leucine (2.50 g, 19.1 mmol) in toluene (60 mL), phthalic anhydride (3.10 g, 21.0 mmol) and triethylamine (2.67 mL, 19.1 mmol) were combined according to general procedure III (reaction time: 24 hours) and recrystallised from EtOAc/Hexane to afford the title compound as white crystals (3.88 g, 78%). Mpt: 125-128 °C (lit.\(^{278}\) 124-125 °C); \([\alpha]_D^{20}\) -21 (c 1, MeOH), lit.\(^{279}\) -22.1 (c 1, EtOH); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3037, 2962, 2936, 2874, 1779, 1708, 1611; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_H\): 0.94 (3H, d, \(J = 6.6\) Hz), 0.96 (3H, d, \(J = 6.6\) Hz), 1.45–1.57 (1H, m), 1.96 (1H, ddd, \(J = 14.3, 10.8, 4.9\) Hz), 2.38 (1H, ddd, \(J = 14.3, 10.8, 4.9\) Hz), 5.01 (1H, ddd, \(J = 11.6, 4.4\) Hz), 5.68 (1H, bs), 7.72–7.77 (2H, m), 7.85–7.90 (1H, m); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_C\): 21.0, 23.0, 25.1, 37.0, 50.4, 123.6, 131.7, 134.2, 167.7, 175.1; HRMS (ESI, +ve) \(m/z\) calc. for C\(_{14}\)H\(_{15}\)NO\(_4\)Na 284.0899, found 284.0897 (M+Na)\(^{+}\).
(E)-3-Methoxyallyl 2-(1,3-dioxoisoindolin-2-yl)acetate (220a)

![Chemical structure]

EDCi.HCl (433 mg, 2.26 mmol), triethylamine (319 μl, 2.26 mmol), N-phthaloylglycine (464 mg, 2.26 mmol), DMAP (5 mol%), DCM (30 mL) and (E)-3-(methoxy)prop-2-enol 218a (100 mg, 1.13 mmol) were combined according to general procedure IV (reaction time: 6 hours), to afford the title compound as a white solid (230 mg, 74%). Mpt: 55-58 °C (lit. 172 55-58 °C); 1H NMR (500 MHz, CDCl3) δH 3.58 (3H, s), 4.43 (2H, s), 4.61 (2H, d, J = 8.2 Hz), 4.92 (1H, dt, J = 12.6, 8.2 Hz), 6.65 (1H, d, J = 12.6 Hz), 7.73–7.77 (2H, m), 7.88–7.91 (2H, m); 13C NMR (125 MHz, CDCl3) δC 39.0, 56.2, 64.2, 96.3, 123.6, 132.1, 134.2, 154.0, 167.3, 167.5. All analytical data is in accordance with literature precedence.172

(E)-3-Methoxyallyl 2-(1,3-dioxoisoindolin-2-yl)propanoate (220b)

![Chemical structure]

EDCi.HCl (479 mg, 2.50 mmol), triethylamine (353 μl, 2.50 mmol), phthalyl-DL-alanine 219b (547 mg, 2.50 mmol), DMAP (5 mol%), DCM (30 mL) and (E)-3-(methoxy)prop-2-enol 218a (110 mg, 1.25 mmol) were combined according to the general procedure IV (reaction time: 6 hours), to afford the title compound as a colourless oil (298 mg, 82%); 1H NMR (500 MHz, CDCl3) δH 1.69 (3H, d, J = 7.3 Hz), 3.55 (3H, s), 4.55–4.62 (2H, m), 4.85–4.92 (1H, m), 4.96 (1H, q, J = 7.3 Hz), 6.61 (1H, d, J = 12.6 Hz), 7.72–7.77 (2H, m), 7.85–7.89 (2H, m); 13C NMR (125 MHz, CDCl3) δC 15.3, 47.7, 56.1, 64.1, 96.5, 123.5, 132.0, 134.1, 153.7, 167.4, 169.7. All analytical data is in accordance with literature precedence.172
(E)-3-Methoxyallyl 2-(1,3-dioxoisindolin-2-yl)butanoate (220c)

EDCi.HCl (870 mg, 4.54 mmol), triethylamine (634 μl, 4.54 mmol), phthalyl-DL-2-aminobutyric acid 219c (1.06 g, 4.54 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (200 mg, 2.27 mmol) were combined according to general procedure IV (reaction time: 24 hours), to afford the title compound as a colourless oil (690 mg, 100%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2974, 2840, 1776, 1714, 1654; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_H\) 0.89 (3H, t, \(J = 7.5\) Hz), 2.17–2.28 (2H, m), 3.49 (3H, s), 4.53 (2H, d, \(J = 7.8\) Hz), 4.71 (1H, dd, \(J = 9.7, 6.2\) Hz), 4.83 (1H, dt, \(J = 12.6, 7.8\) Hz), 6.56 (1H, d, \(J = 12.6\) Hz), 7.68–7.73 (2H, m), 7.80–7.84 (2H, m); \(^13\)C NMR (125MHz, CDCl\(_3\)) \(\delta_C\) 10.9, 22.1, 53.9, 56.0, 63.9, 96.5, 123.4, 131.8, 134.1, 153.6, 167.7, 169.3; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{16}\)H\(_{17}\)NO\(_5\)Na 326.1004, found 326.0997 (M+Na)+.

(S,E)-3-Methoxyallyl 2-(1,3-dioxoisindolin-2-yl)-3-methylbutanoate (220d)

EDCi.HCl (774 mg, 4.04 mmol), triethylamine (570 μl, 4.04 mmol), phthalyl-L-valine 219d (1.00 g, 4.04 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (178 mg, 2.02 mmol) were combined according to general procedure IV (reaction time: 24 hours), to afford the title compound as a colourless oil (600 mg, 94%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2967, 2935, 1774, 1715, 1715, 1655; \(^1\)H NMR (300MHz, CDCl\(_3\)) \(\delta_H\) 0.84 (3H, d, \(J = 6.8\) Hz), 1.07 (3H, d, \(J = 6.7\) Hz) 2.61–2.77 (1H, m), 3.45 (3H, s), 4.41–4.56 (3H, m), 4.79 (1H, dt, \(J = 12.6, 7.8\) Hz), 6.51 (1H, d, \(J = 12.6\) Hz), 7.61–7.72 (2H, m), 7.74–7.84 (2H, m); \(^13\)C NMR (75MHz, CDCl\(_3\)) \(\delta_C\) 19.9, 21.3, 29.0, 56.5, 58.3, 64.1, 97.0, 123.9, 132.2, 134.5, 153.9, 168.2, 169.2; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{19}\)NO\(_5\)Na 340.1161, found 340.1157 (M+Na)+.
Chapter 7

Experimental

\[(E)-3\text{-}\text{Methoxyallyl 2-}(1,3\text{-}\text{dioxoisoindolin-2-yl})\text{pentanoate (220e)}\]

![Chemical Structure](image)

EDCI.HCl (1.30 g, 6.80 mmol), triethylamine (950 µl, 6.80 mmol), phthalyl-DL-norvaline 219e (841 mg, 3.40 mmol), DMAP (5 mol%), DCM (60 mL) and (E)-3-\text{(methoxy)prop-2-enol 218a} (300 mg, 3.40 mmol) were combined according to general procedure IV (reaction time: 24 hours), to afford the title compound as a colourless oil (746 mg, 70%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2966, 1776, 1715, 1655; \(^1\)H NMR (300MHz, CDCl₃) \(\delta\)H 0.94 (3H, t, \(J = 7.3\) Hz), 1.23–1.42 (2H, m), 2.09–2.37 (2H, m), 3.55 (3H, s), 4.58 (2H, d, \(J = 8.0\) Hz), 4.81–4.96 (2H, m), 6.60 (1H, d, \(J = 12.6\) Hz), 7.71–7.77 (2H, m), 7.84–7.91 (2H, m); \(^{13}\)C NMR (75MHz, CDCl₃) \(\delta\)C 13.8, 20.0, 31.0, 52.6, 56.3, 64.4, 97.0, 123.9, 132.3, 134.5, 154.0, 168.1, 169.9; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{19}\)NO\(_5\)Na 340.1161, found 340.1155 (M+Na\(^+\)).

\[(S,E)-3\text{-}\text{Methoxyallyl 2-}(1,3\text{-}\text{dioxoisoindolin-2-yl})-4\text{-}methylpentanoate (220f)\]

![Chemical Structure](image)

EDCI.HCl (734 mg, 3.83 mmol), triethylamine (535 µl, 3.83 mmol), phthalyl-L-leucine 219f (500 mg, 1.91 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (1.91 mmol, 169 mg) were combined according to general procedure IV (reaction time: 24 hours), to afford the title product as a colourless oil (475 mg, 75%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2960, 5874, 1776, 1714, 1655; \(^1\)H NMR (500MHz, CDCl₃) \(\delta\)H 0.94 (3H, d, \(J = 6.6\) Hz), 0.96 (3H, d, \(J = 6.6\) Hz), 1.45–1.55 (1H, m), 1.96 (1H, ddd, \(J = 14.3, 11.0, 4.1\) Hz), 2.35 (1H, ddd, \(J = 14.3, 11.0, 4.1\) Hz), 3.56 (3H, s), 4.58 (2H, d, \(J = 7.8\) Hz), 4.85–4.90 (1H, m), 4.91–4.96 (1H, m), 6.61 (1H, d, \(J = 12.6\) Hz), 7.73–7.77 (2H, m), 7.85–7.90 (2H, m); \(^{13}\)C NMR (125MHz, CDCl₃) \(\delta\)C 21.0, 23.2, 25.1, 37.2,
51.0, 56.1, 64.1, 96.6, 123.5, 131.9, 134.1, 153.7, 167.8, 169.8; HRMS (ESI, +ve) m/z calcd. for C\textsubscript{18}H\textsubscript{21}NO\textsubscript{5}Na 354.1317, found 354.1324 (M+Na)

\((\pm)-(\text{syn})\)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-methoxypent-4-enoate (221a)

![Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-methoxypent-4-enoate](image)

To a solution of (\(E\))-3-methoxyallyl 2-(1,3-dioxoisoindolin-2-yl)acetate 220a (280 mg, 1.03 mmol, 1.0 eq) in THF (2.8 mL) at -95 °C was added TMSCl (171 μL, 1.34 mmol, 1.3 eq). After 10 mins LHMDS (1M, 1.34 ml, 1.34 mmol, 1.3 eq) was added \textit{via} syringe pump at an addition rate of 3 mL min-1 and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 90 minutes. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na\textsubscript{2}SO\textsubscript{4} and concentrated \textit{in vacuo} to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (4:1 Pet/EtOAc + 1% NEt\textsubscript{3}) affords the methyl ester as a colourless oil. (220 mg, 74%, dr 11:1). \(^1\)H NMR (500MHz, CDCl\textsubscript{3}) \(\delta\)\textsubscript{H} major diastereomer 3.15 (3H, s), 3.65 (3H, s), 4.47 (1H, app. t, \(J = 8.6\) Hz), 4.81 (1H, d, \(J = 8.6\) Hz), 5.32 (1H, dt, \(J = 10.1, 1.3\) Hz), 5.37(1H, dt, \(J = 17.1, 1.3\) Hz), 5.79 (1H, ddd, \(J = 17.1, 10.1, 1.3\) Hz), 7.63–7.72 (2H, m), 7.75–7.85 (2H, m); \(\delta\)\textsubscript{H} minor diastereomer 3.33 (3H, s), 3.69 (3H, s), 4.61 (1H, t, \(J = 9.1\) Hz), 4.94 (1H, d, \(J = 9.1\) Hz), 5.10 (1H, dt, \(J = 10.7, 1.2\) Hz), 5.20 (1H, dt, \(J = 17.7, 1.2\) Hz), 5.53 (1H, ddd, \(J = 17.7, 10.7, 6.8\) Hz), 7.72 – 7.75 (2H, m), 7.84 – 7.89 (2H, m); \(^13\)C NMR (75MHz, CDCl\textsubscript{3}) \(\delta\)\textsubscript{C} major diastereomer 52.9, 56.1, 57.1, 78.6, 120.3, 124.0, 132.3, 134.6, 135.4, 167.9, 168.2; \(\delta\)\textsubscript{C} minor diastereomer 53.1, 54.0, 57.3, 80.5, 121.2, 124.0, 132.5, 134.2, 134.8, 167.8, 168.1. All analytical data is in accordance with literature precedence.\(^{172}\)

\((\pm)-(\text{syn})\)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-methoxy-2-methylpent-4-enoate (221b)

![Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-methoxy-2-methylpent-4-enoate](image)
To a solution of (E)-3-methoxyallyl 2-(1,3-dioxoisindolin-2-yl)propanoate 220b (220 mg, 0.74 mmol, 1.0 eq) in THF (2.2 mL) at -95 °C was added TMSCl (122 µL, 0.96 mmol, 1.3 eq). After 10 mins LHMDS (1M, 960 µl, 0.96 mmol, 1.3 eq) was added via syringe pump at an addition rate of 3 mL min⁻¹ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 90 minutes. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (6:1 Pet/EtOAc + 1% NEt₃) affords the methyl ester as a colourless oil. (160 mg, 71%, dr 24:1). ¹H NMR (500MHz, CDCl₃) δH major diastereomer 1.84 (3H, s), 3.27 (3H, s), 3.75 (3H, s), 4.48 (1H, dt, J = 7.7, 0.6 Hz), 5.31–5.38 (2H, m), 5.99 (1H, ddd, J = 17.1, 10.3, 7.7 Hz), 7.70–7.74 (2H, m), 7.79–7.83 (2H, m); δH minor diastereomer 1.79 (3H, s), 3.32 (3H, s), 3.77 (3H, s), 4.60 (1H, dt, J = 8.0, 0.8 Hz), 5.26–5.30 (2H, m), 5.73 (1H, ddd, J = 17.1, 10.3, 8.0 Hz), 7.70–7.74 (2H, m), 7.79–7.83 (2H, m); ¹³C NMR (125MHz, CDCl₃) δC major diastereomer 19.3, 52.4, 57.2, 65.6, 83.8, 120.5, 123.2, 131.7, 133.5, 134.0, 168.2, 170.7; δC minor diastereomer 19.3, 52.5, 56.8, 65.2, 83.1, 121.1, 123.4, 131.9, 133.0, 134.2, 168.3, 169.7. All analytical data is in accordance with literature precedence.

(±)-(syn)-Methyl 2-(1,3-dioxoisindolin-2-yl)-3-methoxy-2-ethylpent-4-enoate (221c)

To a solution of (E)-3-methoxyallyl 2-(1,3-dioxoisindolin-2-yl)butanoate 220c (50 mg, 0.165 mmol, 1.0 eq) in THF (0.5 mL) at -78 °C was added TMSCl (42 µL, 0.330 mmol, 2.0 eq). After 10 mins LHMDS (1M, 330 µl, 0.330 mmol, 2.0 eq) was added and reaction mixture allowed to warm to room temperature after 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (8:1 Pet/EtOAc +
1% NEt₃) affords the methyl ester as a colourless oil (10.4 mg, 20%, dr 2:1). FTIR (film/cm⁻¹) ʋ_max: 2997, 2957, 2829, 1784, 1753, 1718; ¹H NMR (500MHz, CDCl₃) δ_H major diastereomer 0.93 (3H, t, 珺 = 7.4 Hz), 2.25–2.35 (1H, m), 2.60 (1H, dq, 珺 = 14.6, 7.4 Hz), 3.31 (3H, s), 3.80 (3H, s), 4.58 (1H, d, 珺 = 8.2 Hz), 5.31–5.38 (2H, m), 5.98 (1H, app. dt, 珺 = 17.3 Hz, 8.2 Hz), 7.70–7.75 (2H, m), 7.79–7.84 (2H, m); δ_H minor diastereomer 0.93 (3H, t, 珺 = 7.4 Hz), 2.13–2.22 (1H, m), 2.49 (1H, dq, 珺 = 14.6, 7.4 Hz), 3.31 (3H, s), 3.80 (3H, s), 4.89 (1H, d, 珺 = 8.2 Hz), 5.32–5.41 (2H, m), 5.67–5.78 (1H, m), 7.69–7.74 (2H, m), 7.75–7.87 (2H, m); ¹³C NMR (125MHz, CDCl₃) δ_C major diastereomer 9.0, 26.5, 52.1, 57.3, 69.0, 84.1, 120.5, 123.2, 131.5, 133.5, 134.0, 168.4, 169.4; HRMS (ESI, +ve) m/z calcd. for C₁₇H₁₉NO₅Na 340.1161, found: 340.1158 (M+Na)⁺.

(±)-(syn)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-2-isopropyl-3-methoxypent-4-enoate (221d)

To a solution of (S,E)-3-methoxyallyl 2-(1,3-dioxoisooindolin-2-yl)-3-methylbutanoate 220d (102 mg, 0.320 mmol, 1.0 eq) in THF (1.0 mL) at -95 °C was added TMSCl (54 μL, 0.420 mmol, 1.3 eq). After 10 mins LHMDS (1M, 420 μL, 0.420 mmol, 1.3 eq) was added and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 90 minutes. LHMDS (0.320 mmol, 320 μL, 1.0 eq) was added and the reaction mixture stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (8:1 Pet/EtOAc + 1% NEt₃) affords the methyl ester as a colourless oil (12 mg, 11%, dr undeterminable). FTIR (film/cm⁻¹) ʋ_max: 2993, 2957, 2822, 1779, 1747, 1720; ¹H NMR (250MHz, CDCl₃) δ_H 0.93 (3H, d, 珺 = 6.9 Hz), 1.04 (3H, d, 珺 = 6.9 Hz), 1.81–1.89 (1H, m), 3.27 (3H, s), 3.80 (3H, s), 4.61 (1H, d, 珺 = 8.8 Hz), 5.24–5.36 (2H, m), 5.77–5.94 (1H, m), 7.65–7.83 (4H, m); ¹³C NMR (75MHz, CDCl₃) δ_C 18.5, 19.2, 30.1, 52.2, 57.3, 72.1, 84.9, 120.8, 123.6, 132.0, 133.8, 134.3,
Chapter 7 Experimental

168.9, 169.3; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{21}$NO$_5$Na 354.1317, found: 354.1319 (M+Na)$^+$.

(\pm)-(syn)-Methyl 2-(1,3-dioxoisindolin-2-yl)-3-methoxy-2-propylpent-4-enoate (221e)

![Chemical Structure](image)

To a solution of (E)-3-methoxyallyl 2-(1,3-dioxoisindolin-2-yl)pentanoate 220e (50 mg, 0.160 mmol, 1.0 eq) in THF (0.5 mL) at -78 °C was added TMSCl (41 μL, 0.320 mmol, 2.0 eq). After 10 mins LHMDS (1M, 320 μl, 0.320 mmol, 2.0 eq) was added via syringe pump at an addition rate of 3 mL min$^{-1}$ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na$_2$SO$_4$ and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (8:1 Pet/EtOAc + 1% NEt$_3$) affords the methyl ester as a colourless oil. (24 mg, 45%, dr 2:1). FTIR (film/cm$^{-1}$) ν_{max}: 2934, 1779, 1743, 1715; 1H NMR (500MHz, CDCl$_3$) δ_H major diastereomer 0.91 (3H, t, $J = 7.3$ Hz), 1.13–1.23 (1H, m), 1.40–1.48 (1H, m), 2.19–2.27 (1H, m), 2.42–2.50 (1H, m), 3.29 (3H, s), 3.79 (3H, s), 4.57 (1H, d, $J = 8.2$ Hz), 5.30–5.37 (2H, m), 5.93–6.02 (1H, m), 7.69–7.74 (2H, m), 7.78–7.82 (2H, m); δ_H minor diastereomer 0.90 (3H, t, $J = 7.3$ Hz), 1.25–1.38 (2H, m), 2.06–2.16 (1H, m), 2.33–2.42 (1H, m), 3.31 (3H, s), 3.78 (3H, s), 4.89 (1H, d, $J = 8.1$ Hz), 5.34–5.40 (2H, m), 5.66–5.74 (1H, m), 7.69–7.74 (2H, m), 7.78–7.82 (2H, m); 13C NMR (125MHz, CDCl$_3$) δ_C major diastereomer 14.2, 21.0, 35.5, 52.1, 57.3, 68.5, 84.3, 100.5, 123.2, 131.5, 133.6, 134.0, 168.3, 169.5; δ_C minor diastereomer 14.2, 17.3, 34.9, 52.4, 56.5, 69.1, 81.4, 120.9, 123.1, 131.7, 132.9, 134.0, 168.7, 169.6; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{21}$NO$_5$Na 354.1317, found: 354.1318 (M+Na)$^+$.
(S)-2-(tert-Butoxycarbonylamino)-3-methylbutanoic acid (226d)

To a solution of L-valine (1.00 g, 8.54 mmol, 1.0 eq) and 1N sodium hydroxide (10.3 mL, 10.3 mmol, 1.2 eq) in dioxane (20 mL) was added Boc₂O (1.86 g, 8.54 mmol, 1.0 eq) in dioxane (10 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 18 hours. Reaction mixture was acidified with 1N HCl and extracted with EtOAc (3 × 50 mL), washed with 1N HCl (1 × 50 mL), dried and concentrated in vacuo to afford the title compound as white crystals (1.86 g, 100%). Mpt: 78-80 °C (lit.280 77-78 °C); [α]D 20° -6 (c 1, acetic acid), lit.280 -5.8 (c 1, acetic acid);

1H NMR (300MHz, CDCl 3) δH 0.87 (3H, d, J = 6.8 Hz), 0.94 (3H, d, J = 6.8 Hz), 1.38 (9H, s), 1.99–2.22 (1H, m), 4.10–4.25 (1H, m), 4.94 (1H, app. d, J = 8.7 Hz), 8.61 (1H, bs); 13C NMR (75MHz, CDCl 3) δC 17.9, 19.4, 27.8, 28.7, 31.4, 67.5, 156.9, 177.3. All analytical data is in accordance with literature precedence.281

L-Valine methyl ester hydrochloride (228d)

L-Valine (5.00 g, 42.7 mmol) in MeOH (350 mL) and thionyl chloride (20.2 mL, 278 mmol, 7.0 eq) were combined according to general procedure V to afford L-valine methyl ester hydrochloride as a white powder (6.40 g, 90%). Mpt: 170 -173 °C (lit.282 173-174 °C); [α]D 20° +24 (c 1, MeOH), lit.283 +24.2 (c 1, MeOH); 1H NMR (500MHz, D₂O) δ: 0.96 (6H, app t, J = 6.9 Hz), 2.23–2.33 (1H, m), 3.79 (3H, s), 3.97 (1H, d, J = 4.7 Hz); 13C NMR (125MHz, D₂O) δ: 16.9, 17.2, 29.3, 53.4, 58.4, 170.4. All analytical data is in accordance with literature precedence.283
DL-Norvaline methyl ester hydrochloride (228e)

DL-Norvaline (6.00 g, 51.2 mmol) in MeOH (350 mL) and thionyl chloride (26.2 mL, 359 mmol, 7.0 eq) were combined according to general procedure V to afford DL-norvaline methyl ester hydrochloride as a white powder (8.55 g, 100%). Mpt: 109 -112 °C (lit. 284 114-115 °C); FTIR (film/cm⁻¹) \(\nu_{\text{max}} \): 3000, 2956, 2875, 1751; \(^1\)H NMR (500MHz, CDCl₃) \(\delta \) H 0.87 (3H, t, \(J = 7.3 \) Hz), 1.27–1.44 (2H, m), 1.77–1.94 (2H, m), 3.77 (3H, s), 4.08 (1H, t, \(J = 6.5 \) Hz); \(^13\)C NMR (125MHz, CDCl₃) \(\delta \) C 12.7, 17.7, 31.7, 52.7, 53.5, 171.0; HRMS (ESI, +ve) \(m/z \) calcd. for C₆H₁₄NO₂ 132.1025, found: 132.1023 (M+H)^+.

(S)-Methyl 2-(tert-butoxycarbonylamino)-3-methylbutanoate (229d)

To a solution of L-valine methyl ester hydrochloride 228d (6.38 g, 38.2 mmol, 1.0 eq) and triethylamine (16 mL, 114.6 mmol, 3.0 eq) in THF (130 mL) was added Boc₂O (10.0 g, 45.8 mmol, 1.2 eq) in THF (20 mL). Reaction mixture was allowed to stir at room temperature for 4 days. The solution was then concentrated \textit{in vacuo}. Purification by flash chromatography (4:1 Pet/EtOAc) affords the title compound as a colourless oil (8.53 g, 97%). \([\alpha]_{D}^{20} -22.5 \) (c 2, MeOH), lit. 285 -21.9 (c 2.2, MeOH); \(^1\)H NMR (300MHz, CDCl₃) \(\delta \) H 0.88 (3H, d, \(J = 6.9 \) Hz), 0.95 (3H, d, \(J = 6.9 \) Hz), 1.44 (9H, s), 2.02–2.20 (1H, m), 3.73 (3H, s), 4.15–4.27 (1H, m), 4.90–5.09 (1H, m); \(^13\)C NMR (75MHz, CDCl₃) \(\delta \) C 18.0, 19.4, 28.7, 31.7, 52.4, 58.9, 80.2, 156.0, 173.3. All analytical data is in accordance with literature precedence. 285
Methyl 2-((tert-butoxycarbonylamino)pentanoate (229e)

![Chemical structure of methyl 2-((tert-butoxycarbonylamino)pentanoate](image)

To a solution of DL-norvaline methyl ester hydrochloride 228e (8.35 g, 50.0 mmol, 1.0 eq) and triethylamine (17.8 mL, 150 mmol, 3.0 eq) in THF (130 mL) was added Boc₂O (13.1 g, 60.0 mmol, 1.2 eq) in THF (20 mL). Reaction mixture was allowed to stir at room temperature for 4 days. The solution was then concentrated in vacuo. Purification by flash chromatography (4:1 Pet/EtOAc) affords the title compound as a colourless oil (11.56 g, 100%). FTIR (film/cm⁻¹) νₘₐₓ: 3361, 2962, 1741, 1716; ¹H NMR (500MHz, CDCl₃) δH 0.93 (3H, t, J = 7.3 Hz), 1.30-1.42 (2H, m), 1.45 (9H, s), 1.55–1.81 (2H, m), 3.73 (3H, s), 4.24–4.34 (1H, m), 4.93-5.07 (1H, m); ¹³C NMR (125MHz, CDCl₃) δC 13.6, 18.6, 27.4, 28.3, 34.9, 52.1, 53.2, 155.4, 173.5; HRMS (ESI, +ve) m/z calcd. for C₁₁H₂₁NO₄Na 254.1368, found: 254.1350 (M+Na)⁺.

(S)-Methyl 2-((tert-butoxycarbonyl(methyl)amino)-3-methylbutanoate (230d)

![Chemical structure of (S)-methyl 2-((tert-butoxycarbonyl(methyl)amino)-3-methylbutanoate](image)

To a solution of N-Boc-L-valine methyl ester 229d (1.61 g, 6.96 mmol, 1.0 eq) and methyl iodide (650 μL, 10.4 mmol, 1.5 eq) in DMF (40 mL) at 0 °C was added sodium hydride (334 mg, 13.9 mmol, 2.0 eq) and the reaction mixture allowed to stir at room temperature overnight. The solution was then quenched with NH₄Cl (sat) (50 mL) and extracted with EtOAc (3 × 50 mL), washed with brine (1 × 50 mL), dried over Na₂SO₄ and concentrated in vacuo. Purification by flash chromatography (6:1 Pet/EtOAc) affords the title compound as a colourless oil (1.16 g, 68 %). [α]ᵢ⁰₂₀D -87.5 (c 2, MeOH), lit.²⁸⁶ -88.1 (c 1.1, MeOH); ¹H NMR (500MHz, CDCl₃) δH rotamer A 0.89 (3H, d, J = 5.8 Hz), 0.96 (3H, d, J = 6.6 Hz), 1.46 (9H, s), 2.12–2.24 (1H, m), 2.83 (3H, app. d, J = 15.2 Hz), 3.70 (3H, s), 4.09 (1H, d, J = 10.3 Hz); δH rotamer B 0.89 (3H, d, J = 5.8 Hz), 0.96 (3H, d, J = 6.6 Hz), 1.46 (9H, s), 2.12–2.24 (1H, m), 2.83 (3H, app. d, J = 15.2 Hz).
Hz), 3.70 (3H, s), 4.46 (1H, d, $J = 10.6$ Hz); 13C NMR (125MHz, CDCl$_3$) δ rotamer A 18.7, 19.7, 28.3, 29.7, 30.3, 51.6, 63.0, 80.0, 155.6, 171.6; δC rotamer B 19.0, 20.0, 27.9, 28.3, 30.7, 51.6, 65.0, 80.2, 156.3, 172.1. All analytical data is in accordance with literature precedence.286

Methyl 2-(tert-butoxycarbonyl(methyl)amino)pentanoate (230e)

![Methyl 2-(tert-butoxycarbonyl(methyl)amino)pentanoate](image)

To a solution of N-Boc-DL-norvaline methyl ester 229e (1.11 g, 4.80 mmol, 1.0 eq) and methyl iodide (448 μL, 7.20 mmol, 1.5 eq) in DMF (60 mL) at 0 °C was added sodium hydride (230 mg, 9.60 mmol, 2.0 eq) and the reaction mixture allowed to stir at room temperature overnight. The solution was then quenched with NH$_4$Cl (sat) (50 mL) and extracted with EtOAc (3 × 50 mL), washed with brine (1 × 50 mL), dried over Na$_2$SO$_4$ and concentrated in vacuo. Purification by flash chromatography (6:1 Pet/EtOAc) affords the title compound as a colourless oil (1.01 g, 86 %). FTIR (film/cm$^{-1}$) ν_{max}: 2964, 2939, 2878, 1744, 1696; 1H NMR (500MHz, CDCl$_3$) δ rotamer A 0.95 (3H, t, $J = 7.2$ Hz), 1.25–1.41 (2H, m), 1.45 (9H, s), 1.61–1.93 (2H, m), 2.78 (3H, s), 3.71 (3H, s), 4.41–4.49 (1H, m); δH rotamer B 0.95 (3H, t, $J = 7.2$ Hz), 1.25–1.41 (2H, m), 1.47 (9H, s), 1.61–1.93 (2H, m), 2.83 (3H, s), 3.71 (3H, s), 4.75–4.83 (1H, m); 13C NMR (125MHz, CDCl$_3$) δC rotamer A 13.6, 19.2, 28.3, 30.3, 30.9, 52.0, 57.3, 79.9, 156.4, 172.6; δC rotamer B 13.6, 19.3, 28.3, 30.8, 31.2, 52.0, 58.8, 80.2, 156.4, 172.8; HRMS (ESI, +ve) m/z calcd. for C$_{12}$H$_{23}$NO$_4$Na 268.1525, found: 268.1501 (M+Na)$^+$.

(S)-2-(tert-Butoxycarbonyl(methyl)amino)-3-methylbutanoic acid (227d)

![Methyl 2-(tert-butoxycarbonyl(methyl)amino)pentanoate](image)

N-Boc-N-Me-L-valine methyl ester 230d (990 mg, 4.04 mmol, 1.0 eq) was added to a solution of LiOH.H$_2$O (509 mg, 12.1 mmol, 3.0 eq) in THF/H$_2$O (30 mL, 1:1) at 0 °C
and allowed to stir for 5 hours. The reaction mixture was acidified to pH 4 with glacial acetic acid and extracted with EtOAc. The organics were washed with brine, dried over MgSO\(_4\) and concentrated \textit{in vacuo} to afford the title compound as a colourless oil without the need for further purification (890 mg, 96%). \([\alpha]_D^{20}\) -89 (c 1, MeOH), lit.\(^{287}\) -85 (c 0.5, EtOH); \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_H\) 0.91 (3H, d, \(J = 6.7\) Hz), 1.02 (3H, d, \(J = 6.7\) Hz), 1.47 (9H, s), 2.14–2.39 (1H, m), 2.87 (3H, s), 4.04–4.17 (1H, m), 9.10 (1H, bs); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_C\) 19.3, 27.4, 28.5, 32.0, 72.2, 79.9, 155.6, 175.8. All analytical data is in accordance with literature precedence.\(^{287}\)

\textbf{2-\textit{(tert-Butoxycarbonyl(methyl)amino)}pentanoic acid (227e)}

\begin{center}
\begin{tikzpicture}
 \node at (0,0) {
 \includegraphics[scale=0.5]{227e}
 };
\end{tikzpicture}
\end{center}

\(N\)-Boc-\(N\)-Me-\textit{DL}-norvaline methyl ester 230e (967 mg, 3.94 mmol, 1.0 eq) was added to a solution of LiOH.H\(_2\)O (496 mg, 11.8 mmol, 3.0 eq) in THF/H\(_2\)O (20 mL, 1:1) at 0 °C and allowed to stir for 5 hours. The reaction mixture was acidified to pH 4 with glacial acetic acid and extracted with EtOAc. The organics were washed with brine, dried over MgSO\(_4\) and concentrated \textit{in vacuo} to afford the title compound as a colourless oil without the need for further purification (911 mg, 100%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3080, 2965, 2935, 2877, 1698, 1673; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_H\) rotamer A 0.97 (3H, t, \(J = 7.4\) Hz), 1.28–1.42 (2H, m), 1.46 (9H, s), 1.69–1.83 (2H, m), 2.82 (3H, s), 4.51 (1H, m); \(\delta_{\text{rotamer B}}\) 0.97 (3H, t, \(J = 7.4\) Hz), 1.28–1.42 (2H, m), 1.48 (9H, s), 1.84–1.99 (2H, m), 2.85 (3H, s), 4.72 (1H, m); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_C\) rotamer A 13.6, 19.4, 28.3, 30.5, 30.9, 58.1, 80.6, 155.7, 176.8; \(\delta_C\) rotamer B 13.6, 20.7, 28.3, 30.5, 31.0, 58.6, 80.6, 156.8, 176.8; HRMS (ESI, -ve) \(m/z\) calcd. for C\(_{11}\)H\(_{20}\)NO\(_4\) 230.2813, found: 230.1373 (M-H)\(^{-}\).
(S,E)-3-Methoxyallyl 2-(tert-butoxycarbonyl(methyl)amino)-3-methylbutanoate (231d)

EDCI.HCl (738 mg, 3.85 mmol), triethylamine (538 μl, 3.85 mmol), (S)-2-(tert-butoxycarbonyl(methyl)amino)-3-methylbutanoic acid 227d (890 mg, 3.85 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (170 mg, 1.92 mmol) were combined according to general procedure IV (reaction time: 24 hours), to afford the title compound as a yellow oil (443 mg, 77%). FTIR (film/cm⁻¹) νmax: 2967, 2936, 1785, 1733, 1694, 1655; ¹H NMR (500MHz, CDCl₃) δH rotamer A 0.90 (3H, d, J = 6.5 Hz), 0.98 (3H, d, J = 6.5 Hz), 1.45 (9H, s), 2.13-2.31 (1H, m), 2.82 (3H, s), 3.57 (3H, s), 4.09 (1H, d, J = 10.5 Hz), 4.54 (2H, d, J = 7.7 Hz), 4.92 (1H, dt, J = 12.6, 7.7 Hz), 6.64 (1H, d, J = 12.6 Hz); δH rotamer B 0.90 (3H, d, J = 6.5 Hz), 0.98 (3H, d, J = 6.5 Hz), 1.45 (9H, s), 2.13-2.31 (1H, m), 2.86 (3H, s), 3.59 (3H, s), 4.43 (1H, d, J = 10.5 Hz), 4.54 (2H, d, J = 7.7 Hz), 4.92 (1H, dt, J = 12.6, 7.7 Hz), 6.64 (1H, d, J = 12.6 Hz); ¹³C NMR (125MHz, CDCl₃) δC rotamer A 16.2, 18.8, 19.7, 27.8, 28.4, 56.1, 62.6, 63.3, 65.1, 66.2, 96.9, 153.2, 171.1; δC rotamer B 17.3, 19.1, 20.0, 27.8, 28.4, 56.1, 62.8, 63.3, 65.1, 66.2, 96.9, 153.5, 171.1; HRMS (ESI, +ve) m/z calcd. for C₁₅H₂₇NO₅Na 324.1787, found: 324.1785 (M+Na)⁺.

(E)-3-Methoxyallyl 2-(tert-butoxycarbonyl(methyl)amino)pentanoate (231e)

EDCI.HCl (755 mg, 3.94 mmol), triethylamine (550 μL, 3.94 mmol), 2-(tert-butoxycarbonyl(methyl)amino)pentanoic acid 227e (911 mg, 3.94 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (174 mg, 1.97 mmol) were combined according to the general procedure IV (reaction time: 24 hours), to afford the title compound as a yellow oil (253 mg, 43%). FTIR (film/cm⁻¹) νmax: 2968,
Experimental

2939, 1788, 1732, 1689, 1656; 1H NMR (500MHz, CDCl$_3$) $\delta_{\text{H rotamer A}}$ 0.90–0.96 (3H, m), 1.25–1.42 (2H, m), 1.48 (9H, s), 1.81–1.97 (2H, m), 2.83 (3H, s), 3.59 (3H, s), 4.55 (2H, d, $J = 7.7$ Hz), 4.76 (1H, dd, $J = 10.9$, 4.8 Hz), 4.88 (1H, m), 6.65 (1H, d, $J = 6.5$ Hz); $\delta_{\text{H rotamer B}}$ 0.90–0.96 (3H, m), 1.25–1.42 (2H, m), 1.45 (9H, s), 1.64–1.80 (2H, m), 2.79 (3H, s), 3.58 (3H, s), 4.44 (1H, dd, $J = 10.9$, 4.8 Hz), 4.51 (2H, d, $J = 7.7$ Hz), 4.88 (1H, m), 6.63 (1H, d, $J = 6.5$ Hz); 13C NMR (125MHz, CDCl$_3$) $\delta_{\text{C rotamer A}}$ 13.5, 19.2, 28.2, 30.3, 30.6, 55.9, 62.9, 77.3, 79.7, 96.7, 153.2, 155.6, 171.8; $\delta_{\text{C rotamer B}}$ 13.5, 19.3, 28.2, 30.4, 31.0, 56.0, 63.0, 77.3, 80.0, 96.8, 153.4, 156.3, 172.1; HRMS (ESI, +ve) m/z calcd. for C$_{15}$H$_{27}$NO$_5$Na 324.1787, found: 324.1773 (M+Na)$^+$.

(S,E)-1-tert-Butyl 2-(3-methoxyallyl) pyrrolidine-1,2-dicarboxylate (233)

![Structure](image)

EDCI.HCl (1.52 g, 7.95 mmol), triethylamine (1.10 ml, 7.95 mmol), Boc-L-Pro-OH (1.71 g, 7.95 mmol), catalytic DMAP and (E)-3-(methoxy)prop-2-enol 218a (350 mg, 3.97 mmol) were combined according to general procedure 3. Purification was achieved by flash chromatography (4:1 Pet/EtOAc + 1% NEt$_3$) to afford the title compound as a colourless oil (736 mg, 65%). $[\alpha]_D^{20}$ -89 (c 1, DCM); FTIR (film/cm$^{-1}$) υ_{max}: 3072, 2976, 2882, 1744, 1698, 1656; 1H NMR (300 MHz, CDCl$_3$) $\delta_{\text{H rotamer A}}$ 1.35 (9H, s), 1.72 – 2.23 (4H, m), 3.23 – 3.55 (2H, m), 3.50 (3H, s), 4.08 – 4.17 (1H, m), 4.44 – 4.55 (2H, m), 4.78 – 4.92 (1H, m), 6.56 (1H, d, $J = 12.6$ Hz); $\delta_{\text{H rotamer B}}$ 1.40 (9H, s), 1.72 – 2.23 (4H, m), 3.23 – 3.55 (2H, m), 3.51 (3H, s), 4.19 – 4.27 (1H, m), 4.44 – 4.55 (2H, m), 4.78 – 4.92 (1H, m), 6.58 (1H, d, $J = 12.6$ Hz); 13C NMR (75 MHz, CDCl$_3$) $\delta_{\text{C rotamer A}}$ 24.0, 28.7, 30.2, 46.7, 56.5, 59.3, 60.8, 80.1, 97.2, 153.7, 154.0, 173.3; $\delta_{\text{C rotamer B}}$ 24.7, 28.8, 31.2, 46.9, 56.5, 59.6, 63.4, 80.2, 97.2, 154.0, 154.2, 173.6; HRMS (ESI, +ve) m/z calcd. for C$_{14}$H$_{23}$NO$_5$Na 308.1474, found 308.1463 (M+Na)$^+$.

| 169 |
anti-1-tert-Butyl 2-methyl 2-(1-methoxyallyl)pyrrolidine-1,2-dicarboxylate (234)

![Chemical Structure](image)

To a solution of \((S,E)-1\)-**tert**-butyl 2-(3-methoxyallyl) pyrrolidine-1,2-dicarboxylate 233 (143 mg, 0.50 mmol, 1.0 eq) in THF (1.5 mL) at -78 °C was added TMSCl (186 μl, 2.00 mmol, 2.0 eq). After 10 mins LHMDS (1M, 2.00 ml, 2.00 mmol, 2.0 eq) was added dropwise and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na2SO4 and concentrated *in vacuo* to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (15:1 Pet/EtOAc + 1% NEt3) affords the methyl ester as a colourless oil. (142 mg, 95%, 2:1 rotamers). FTIR (film/cm⁻¹) *ν*max: 3001.2, 2988.4, 2875.3, 1715.2, 1698.2; ¹H NMR (500 MHz, CDCl₃) δH rotamer A 1.35 (9H, s), 1.30 – 1.67 (4H, m), 3.16 – 3.75 (2H, m), 3.23 (3H, s), 3.60 (3H, s), 4.28 – 4.36 (1H, m), 5.11 – 5.33 (2H, m), 5.88 – 6.06 (1H, m); δH rotamer B 1.37 (9H, s), 1.30 – 1.67 (4H, m), 3.16 – 3.75 (2H, m), 3.25 (3H, s), 3.23 (3H, s), 4.53 – 4.60 (1H, m), 5.11 – 5.33 (2H, m), 5.88 – 6.06 (1H, m); ¹³C NMR (125 MHz, CDCl₃) δC rotamer A 23.3, 28.8, 32.4, 48.8, 52.2, 58.3, 70.2, 79.9, 82.0, 117.3, 135.6, 153.5, 173.7; δC rotamer B 23.9, 30.1, 33.9, 48.9, 52.2, 58.6, 70.8, 80.5, 82.0, 117.3, 135.6, 154.3, 173.7; HRMS (ESI, +ve) *m/z*: calcd. for C₁₅H₂₆NO₅ 300.1811, found 300.1801 (M+H)⁺.

D-(R)-3-((tert-Butoxycarbonyl)oxazolidine-4-carboxylic acid (237a)

![Chemical Structure](image)

D-Serine (3.15 g, 30 mmol), formaldehyde (37% aq, 3.0 mL), 2N NaOH (15 mL, 30 mmol), NH₂OH.HCl (200 mg, 3.0 mmol), NaOH (120 mg, 3.0 mmol), H₂O (2.5 mL), acetone (17.5 mL) and Boc₂O (7.20 g, 33 mmol) were combined according to general procedure VI (reaction time: 24 hours), to afford the title compound as a colourless oil.
which crystallises on standing to an amorphous white solid (6.05 g, 93%). \([\alpha]_D^{20} +70\) (c 1, MeOH), lit. (opp. \textit{ent})184 -81.8 (c 2.6, CHCl\(_3\)); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3100, 2979, 2884, 1752, 1704, 1684; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_{\text{H rotamer A}} 1.42\) (9H, s), 4.18 (2H, bs), 4.30–4.58 (1H, m), 4.78–5.05 (2H, m), 10.75 (1H, bs); \(\delta_{\text{H rotamer B}} 1.44\) (9H, s), 4.18 (2H, bs), 4.30–4.58 (1H, m), 4.78–5.05 (2H, m), 10.75 (1H, bs); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_{\text{C rotamer A}} 28.2, 56.8, 70.1, 79.4, 81.6, 152.3, 174.3; \(\delta_{\text{C rotamer B}} 28.2, 57.2, 71.0, 79.4, 82.0, 153.3, 175.4;\) HRMS (ESI, +ve) \(m/z\) calcd. for C\(_9\)H\(_{15}\)NO\(_5\)Na 240.0848, found: 240.0839 (M+Na)+.

\((R)-3-(\text{tert-Butoxycarbonyl})\text{thiazolidine-4-carboxylic acid (237b)}\)

![Chemical structure](image)

L-Cysteine (30 mmol, 3.63 g), formaldehyde (37% aq, 3.0 mL), NaOH (2N, 30 mmol, 15 mL), NH\(_2\)OH.HCl (200 mg, 3.0 mmol), NaOH (120 mg, 3.0 mmol), H\(_2\)O (2.5 mL), acetone (17.5 mL) and Boc\(_2\)O (7.20 g, 33 mmol) were combined according to general procedure VI (reaction time: 24 hours), to afford the title compound as a colourless oil which crystallises on standing to a white solid (5.41 g, 77%). Mpt: 131-133 °C (lit.288 132-133 °C); \([\alpha]_D^{20} -117\) (c 1, CH\(_2\)Cl\(_2\)), lit.288 -114 (c 1, MeOH); \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_{\text{H rotamer A}} 1.45\) (9H, s), 3.20–3.48 (2H, m), 4.35–4.98 (3H, m), 10.52 (1H, bs); \(\delta_{\text{H rotamer B}} 1.49\) (9H, s), 3.20–3.48 (2H, m), 4.35–4.98 (3H, m), 10.52 (1H, bs); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_{\text{C rotamer A}} 28.3, 33.0, 48.4, 61.4, 81.8, 153.2, 175.1; \(\delta_{\text{C rotamer B}} 29.1, 34.4, 49.0, 61.4, 81.9, 153.9, 176.3.\) All analytical data is in accordance with literature precedence.289

\((4S,5R)-3-(\text{tert-Butoxycarbonyl})-5\text{-methyloxazolidine-4-carboxylic acid (237c)}\)

![Chemical structure](image)
L-Threonine (3.57 g, 30 mmol), formaldehyde (37% aq, 3.0 mL), 2N NaOH (15 mL, 30 mmol), NH₂OH.HCl (200 mg, 3.0 mmol), NaOH (120 mg, 3.0 mmol), H₂O (2.5 mL), acetone (17.5 mL) and Boc₂O (7.20 g, 33 mmol) were combined according to general procedure VI (reaction time: 24 hours), to afford the title compound as a colourless oil (6.76 g, 97%). [α]D²⁰ -103 (c 1, MeOH), lit. ¹⁸⁴ -110.2 (c 2, CHCl₃); ¹H NMR (500MHz, CDCl₃) δ_H rotamer A: 1.37–1.63 (12H, m), 3.83–4.06 (1H, m), 4.28 (1H, bs), 4.69–4.88 (2H, m), 9.47 (1H, bs); δ_H rotamer B 1.37–1.63 (12H, m), 3.83–4.06 (1H, m), 4.28 (1H, bs), 5.08–5.26 (2H, m), 9.47 (1H, bs); ¹³C NMR (125MHz, CDCl₃) δ_C rotamer A 18.4, 28.2, 63.2, 78.3, 78.9, 81.5, 152.2, 173.8; δ_C rotamer B 18.4, 28.2, 63.8, 78.8, 79.4, 82.1, 153.6, 175.5. All analytical data is in accordance with literature precedence.¹⁸⁴

(R,E)-3-tert-Butyl 4-(3-methoxyallyl) oxazolidine-3,4-dicarboxylate (238a)

EDCi.HCl (870 mg, 4.54 mmol), triethylamine (634 µL, 4.54 mmol), (R)-3-(tert-butoxycarbonyl)oxazolidine-4-carboxylic acid 237a (986 mg, 4.54 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (200 mg, 2.27 mmol) were combined according to general procedure IV (reaction time: 18 hours), to afford the title compound as a pale yellow oil (242 mg, 67%). [α]D²⁰ +22 (c 1, CH₂Cl₂); FTIR (film/cm⁻¹) υ_{max}: 2977, 2881, 1747, 1702, 1654; ¹H NMR (500MHz, CDCl₃) δ_H 1.40 (9H, s), 3.51 (3H, s), 4.01 (1H, dd, J = 8.8, 4.0 Hz), 4.10–4.46 (2H, m), 4.46–4.62 (2H, m), 4.77–4.99 (3H, m), 6.60 (1H, d, J = 12.3 Hz); ¹³C NMR (125MHz, CDCl₃) δ_C rotamer A 27.9, 28.2, 56.1, 57.0, 63.7, 70.2, 79.5, 96.4, 152.0, 153.7, 170.5; δ_C rotamer B 27.9, 28.2, 56.1, 57.5, 63.7, 71.1, 80.8, 96.4, 152.4, 153.9, 170.5; HRMS (ESI, +ve) m/z calcd. for C₁₃H₂₁NO₆Na 310.1267, found: 310.1260 (M+Na)⁺.

(R,E)-3-tert-Butyl 4-(3-methoxyallyl) thiazolidine-3,4-dicarboxylate (238b)
EDCi.HCl (782 mg, 4.08 mmol), triethylamine (570 μL, 4.08 mmol), (R)-3-(tert-butoxycarbonyl)thiazolidine-4-carboxylic acid 237b (952 mg, 4.08 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (180 mg, 2.04 mmol) were combined according to general procedure IV (reaction time: 18 hours), purified by flash chromatography (2:1 PET/EtOAc + 1% NEt3) to afford the title compound as a colourless oil (389 mg, 63%). [α]D20 -43 (c 1, CH2Cl2); FTIR (film/cm-1) \(\nu_{\text{max}} \): 2977, 2933, 1747, 1702, 1655; \(\delta_H \) NMR (500MHz, CDCl3) \(\delta_H \) rotamer A 1.36 (9H, s), 3.06–3.32 (2H, m), 3.49 (3H, s), 4.30–4.44 (1H, m), 4.45–4.91 (5H, m), 6.52–6.63 (1H, m); \(\delta_H \) rotamer B 1.41 (9H, s), 3.06–3.32 (2H, m), 3.49 (3H, s), 4.30–4.44 (1H, m), 4.45–4.91 (5H, m), 6.52–6.63 (1H, m); \(\delta_C \) NMR (125MHz, CDCl3) \(\delta_C \) rotamer A 28.2, 33.1, 48.0, 56.0, 61.6, 63.7, 81.0, 96.4, 153.0, 153.5, 170.3; \(\delta_C \) rotamer B 28.2, 34.6, 49.0, 56.0, 61.6, 63.7, 81.0, 96.4, 153.2, 153.8, 170.7; HRMS (ESI, +ve) m/z calcd. for C13H21NO5SNa 326.1038, found: 326.1032 (M+Na)+.

(4S,5R)-3-tert-Butyl 4-((E)-3-methoxyallyl) 5-methyloxazolidine-3,4-dicarboxylate (238c)

EDCi.HCl (870 mg, 4.54 mmol), triethylamine (634 μL, 4.54 mmol), (4S,5R)-3-(tert-butoxycarbonyl)-5-methyloxazolidine-4-carboxylic acid 237c (1.05 g, 4.54 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (200 mg, 2.27 mmol) were combined according to general procedure IV (reaction time: 18 hours), purified by flash chromatography (2:1 PET/EtOAc + 1% NEt3) to afford the title compound as a colourless oil (380 mg, 56%). [α]D20 -70.3 (c 3.2, CH2Cl2); FTIR (film/cm-1) \(\nu_{\text{max}} \): 2978, 2937, 2873, 1748, 1705, 1653; \(\delta_H \) NMR (500MHz, CDCl3) \(\delta_H \) rotamer A 1.32 (9H, s), 1.37 (3H, bs), 3.47 (3H, s), 3.69–3.95 (1H, m), 4.05 (1H, dt, \(J = 12.6, 6.3 \) Hz), 4.38–4.62 (2H, m), 4.62–4.90 (2H, m), 4.91–5.15 (1H, m), 6.50–6.62 (1H, m); \(\delta_H \) rotamer B 1.34 (9H, s), 1.37 (3H, bs), 3.47 (3H, s), 3.69–3.95 (1H, m), 4.05 (1H, dt, \(J = 12.6, 6.3 \) Hz), 4.38–4.62 (2H, m), 4.62–4.90 (2H, m), 4.91–5.15 (1H, m), 6.50–6.62 (1H, m); \(\delta_C \) NMR (125MHz, CDCl3) \(\delta_C \) rotamer A 18.4, 28.1, 56.0, 63.5, 64.0,
Chapter 7 Experimental

78.8, 79.2, 80.6, 96.4, 152.0, 153.6, 170.0; δC rotamer B 18.6, 28.1, 56.0, 63.5, 64.0, 78.8, 79.2, 80.6, 96.4, 152.4, 153.9, 170.2; HRMS (ESI, +ve) m/z calcd. for C14H23NO6Na 324.1423, found: 324.1418 (M+Na)+.

(4S,5R)-3-tert-Butyl 4-((E)-3-ethoxyallyl) 5-methyloxazolidine-3,4-dicarboxylate

(238d)

![Chemical structure](image)

EDCi.HCl (1.15 g, 6.0 mmol), triethylamine (838 μL, 6.0 mmol), (4S,5R)-3-(tert-butoxycarbonyl)-5-methyloxazolidine-4-carboxylic acid 237c (1.39 g, 6.0 mmol), DMAP (5 mol%), DCM (250 mL) and (E)-3-(ethoxy)prop-2-enol 218b (306 mg, 3.0 mmol) were combined according to general procedure IV (reaction time: 2 hours), purified by flash chromatography (2:1 Pet/EtOAc + 1% NEt3) to afford the title compound as a colourless oil (427 mg, 45%). [α]D 20° -67.6 (c 2.9, CHCl3); FTIR (film/cm-1) νmax: 2979, 2936, 2880, 1749, 1703, 1653; 1H NMR (500MHz, CDCl3) δH rotamer A 1.27 (3H, t, J = 7.0 Hz), 1.40 (3H, d, J = 6.2 Hz), 1.42 (9H, s), 3.81 (2H, q, J = 7.0 Hz), 3.83–3.92 (1H, m), 4.08–4.25 (1H, m), 4.49–4.58 (1H, m), 4.60 (1H, app. d, J = 7.7 Hz), 4.73 (1H, d, J = 4.0 Hz), 4.91–5.03 (1H, m), 5.06 (1H, d, J = 4.0 Hz), 6.72 (1H, m); δH rotamer B 1.27 (3H, t, J = 7.0 Hz), 1.40 (3H, d, J = 6.2 Hz), 1.47 (9H, s), 3.81 (2H, q, J = 7.0 Hz), 3.83–3.92 (1H, m), 4.08–4.25 (1H, m), 4.49–4.58 (1H, m), 4.60 (1H, app. d, J = 7.7 Hz), 4.73 (1H, d, J = 4.0 Hz), 4.91–5.03 (1H, m), 5.06 (1H, d, J = 4.0 Hz), 6.72 (1H, m); 13C NMR (125MHz, CDCl3) δC rotamer A 13.9, 17.9, 27.6, 63.3, 63.5, 64.8, 78.4, 79.3, 79.9, 95.9, 151.7, 152.8, 169.7; δC rotamer B 14.1, 18.1, 27.6, 63.3, 64.0, 66.8, 78.6, 79.3, 80.0, 97.4, 152.1, 153.1, 170.0; HRMS (ESI, +ve) m/z calcd. for C15H25NO6Na 338.1580, found: 338.1601 (M+Na)+.
(4S,5R)-3-tert-Butyl 4-((E)-3-(4-methoxybenzyl oxy)allyl) 5-methyloxazolidine-3,4-dicarboxylate (238e)

EDCI·HCl (2.30 g, 12.0 mmol), triethylamine (1.68 mL, 12.0 mmol), (4S,5R)-3-(tert-butoxycarbonyl)-5-methyloxazolidine-4-carboxylic acid 237c (2.78 g, 12.0 mmol), DMAP (5 mol%), DCM (250 mL) and (E)-3-(4-methoxybenzyl oxy)prop-2-en-1-ol 218k (1.17 g, 6.0 mmol) were combined according to general procedure IV (reaction time: 2 hours) to afford the title compound as a yellow oil (1.55 g, 64%). \([\alpha]**D**^20** -55.2 (c 1.45, CHCl3); FTIR (film/cm-1) \(\nu_{max}: 2978, 2936, 2878, 1748, 1704, 1672, 1651; ^1H NMR (500MHz, CDCl3) \(\delta_H\) mixture of rotamers 1.36–1.50 (12H, m), 3.78 (3H, s), 3.79–4.03 (1H, m), 4.07–4.15 (1H, m), 4.46–4.67 (2H, m), 4.68 (2H, s), 4.73–4.85 (1H, m), 4.95–5.24 (2H, m), 6.66 (1H, app. d, \(J = 12.0\) Hz), 6.87 (2H, app. d, \(J = 8.5\) Hz), 7.24 (2H, app. d, \(J = 8.5\) Hz); \(^13C NMR (125MHz, CDCl3) \(\delta_C\) rotamer A 18.5, 28.1, 55.2, 63.5, 64.1, 66.9, 71.3, 78.5, 78.9, 79.3, 80.8, 98.1, 114.0, 129.3, 152.5, 159.6, 170.1; \(\delta_C\) rotamer B 18.6, 28.2, 55.2, 63.6, 64.1, 66.9, 71.3, 78.5, 78.9, 79.3, 80.8, 98.1, 114.0, 129.3, 152.8, 159.6, 170.2; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{21}\)H\(_{29}\)NO\(_7\)Na 430.1842, found: 430.1852 (M+Na)+.

(±)-(anti)-3-tert-Butyl 4-methyl 4-(1-methoxyallyl)oxazolidine-3,4-dicarboxylate (239a)

To a solution of (R,E)-3-tert-butyl 4-(3-methoxyallyl) oxazolidine-3,4-dicarboxylate 238a (50 mg, 0.174 mmol) in THF (0.5 mL) at -78 °C was added TMSCl (67 μL, 0.522 mmol). After 10 mins LHMDS (1M, 522 μl, 0.522 mmol) was added via syringe pump at an addition rate of 3 mL min\(^{-1}\) and reaction mixture allowed to warm to room
temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (8:1 Pet/EtOAc + 1% NEt₃) affords the methyl ester as a colourless oil (26 mg, 50%, dr 6:1). FTIR (film/cm⁻¹) νₘₐₓ: 2981, 2934, 1743, 1698; ¹H NMR (500MHz, CDCl₃) δ_H major diastereomer 1.47 (9H, s), 3.75 (3H, m), 4.70–4.88 (2H, m), 4.28–4.65 (1H, m), 4.70–4.88 (1H, m), 5.07–5.44 (3H, m), 5.90–6.08 (1H, m); δ_H minor diastereomer 1.44 (9H, s), 3.35 (3H, s), 3.78 (3H, s), 4.70–4.88 (2H, m), 4.28–4.65 (1H, m), 4.70–4.88 (1H, m), 5.07–5.44 (3H, m), 5.68–5.78 (1H, m); ¹³C NMR (125MHz, CDCl₃) δ_C major diastereomer 28.3, 52.4, 57.7, 67.7, 72.1, 73.4, 80.7, 81.3, 118.4, 133.7, 151.4, 171.0; δ_C minor diastereomer 28.2, 52.5, 58.0, 68.3, 72.3, 73.1, 80.3, 81.0, 118.4, 133.7, 151.8, 171.7; HRMS (ESI, +ve) m/z calcld. for C₁₄H₂₃NO₆Na 324.1423, found: 324.1422 (M+Na)⁺.

(±)-(anti)-3-tert-Butyl 4-methyl 4-(1-methoxyallyl)thiazolidine-3,4-dicarboxylate (239b)

To a solution of (R,E)-3-tert-butyl 4-(3-methoxyallyl) thiazolidine-3,4-dicarboxylate 238b (75 mg, 0.247 mmol) in THF (0.75 mL) at -78 °C was added TMSCl (95 μL, 0.742 mmol). After 10 mins LHMDS (1M, 742 μl, 0.742 mmol) was added via syringe pump at an addition rate of 3 mL min⁻¹ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (8:1 Pet/EtOAc + 1% NEt₃) affords the methyl ester as a colourless oil (34.4 mg, 44%, dr 12:1). FTIR (film/cm⁻¹) νₘₐₓ: 2979, 2932, 2830, 1741, 1694; ¹H NMR (500MHz, CDCl₃) δ_H major diastereomer 1.47 (9H, s), 3.03
(1H, d, \(J = 12.4 \text{ Hz} \)), 3.33 (3H, s), 3.40–3.58 (1H, m), 3.73 (3H, s), 4.39 (0.5H, bs), 4.42 (1H, d, \(J = 9.1 \text{ Hz} \)), 4.64 (0.5H, bs), 4.75 (0.5H, bs), 4.91 (0.5H, bs), 5.31 (1H, app. d, \(J = 9.5 \text{ Hz} \)), 5.38 (1H, app. d, \(J = 16.8 \text{ Hz} \)), 6.13 (1H, ddd, \(J = 16.8, 9.5, 6.1 \text{ Hz} \)); \(\delta_H \) minor diastereomer 1.44 (9H, s), 3.03 (1H, d, \(J = 12.4 \text{ Hz} \)), 3.38 (3H, s), 3.40–3.58 (1H, m), 3.77 (3H, s), 4.39 (0.5H, bs), 4.42 (1H, d, \(J = 9.1 \text{ Hz} \)), 4.64 (0.5H, bs), 4.75 (0.5H, bs), 4.91 (0.5H, bs), 5.31 (1H, app. d, \(J = 9.5 \text{ Hz} \)), 5.38 (1H, app. d, \(J = 16.8 \text{ Hz} \)), 5.83 (1H, ddd, \(J = 16.8, 9.5, 6.1 \text{ Hz} \)); \(^{13}\text{C} \) NMR (125MHz, CDCl \(_3\) \(\delta_C \) major diastereomer 28.2, 36.5, 51.2, 52.4, 57.8, 72.9, 80.6, 81.8, 118.1, 134.4, 152.3, 171.3; HRMS (ESI, +ve) \(m/z \) calcd. for \(\text{C}_{14}\text{H}_{23}\text{NO}_5\text{SNa} \) \(340.1195 \), found: 340.1188 (M+Na)\(^+\).

\[(4S,5R)-3-\text{tert-Butyl 4-methyl 4-((R)-1-methoxyallyl)-5-methyloxazolidine-3,4-dicarboxylate (239c)}\]

To a solution of \((4S,5R)-3-\text{tert-butyl 4-((E)-3-methoxyallyl) 5-methyloxazolidine-3,4-dicarboxylate 238c} \) (150 mg, 0.500 mmol) in THF (1.5 mL) at -78 °C was added TMSCl (191 \(\mu \text{L}, 1.50 \text{ mmol}). After 10 mins LHMDS (1M, 1.50 mL, 1.50 mmol) was added via syringe pump at an addition rate of 3 \text{ mL min}^{-1} \text{ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 \times 15 mL), EtOAc (1 \times 15 mL), dried over Na\(_2\)SO\(_4\) and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (74 mg, 47%, dr >99:1). [\(\alpha \)]\(_D\)\(^{20}\) -54.0 (c 1, CH\(_2\)Cl\(_2\)); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}: \) 2981, 2942, 2871, 1742, 1705; \(^1\text{H} \) NMR (500MHz, CDCl\(_3\), 328K) \(\delta_H \) rotamer A 1.18 (3H, d, \(J = 3.9 \text{ Hz} \)), 1.46 (9H, s), 3.36 (3H, s), 3.74 (3H, s), 4.20–4.28 (1H, m), 4.39 (1H, app. d, \(J = 4.3 \text{ Hz} \)), 4.67 (1H, d, \(J = 4.0 \text{ Hz} \)), 5.16 (1H, d, \(J = 4.0 \text{ Hz} \)), 5.26–5.35 (1H, m), 5.41 (1H, dd, \(J = 17.4, 1.7 \text{ Hz} \)), 6.10–6.20 (1H, m); \(\delta_H \) rotamer B 1.20 (3H, d, \(J = 3.9 \text{ Hz} \)), 1.48 (9H, s), 3.38 (3H, s), 3.75 (3H, s), 4.20–4.28 (1H, m), 4.62 (1H, app. d, \(J = 4.3 \text{ Hz} \)), 4.70 (1H, d, \(J = 4.0 \text{ Hz} \)), 5.26–5.35 (2H, m), 5.41
(1H, dd, $J = 17.4$, 1.7 Hz), 6.10–6.20 (1H, m); 13C NMR (75MHz, CDCl$_3$) δC rotamer A 15.3, 27.3, 50.8, 57.1, 76.2, 77.7, 78.4, 79.6, 115.9, 127.2, 133.1, 150.3, 169.5; δC rotamer B 15.4, 27.3, 50.9, 57.3, 76.8, 77.9, 78.5, 79.9, 116.2, 128.0, 133.2, 150.8, 169.6; HRMS (ESI, +ve) m/z calcd. for C$_{15}$H$_{25}$NO$_6$Na 338.1580, found: 338.1551 (M+Na)$^+$.

Table 2

![Chemical Structure](image)

(4S,5R)-3-tert-Butyl 4-methyl 4-((R)-1-ethoxyallyl)-5-methyloxazolidine-3,4-dicarboxylate (239d)

To a solution of (4S,5R)-3-tert-butyl 4-((E)-3-ethoxyallyl) 5-methyloxazolidine-3,4-dicarboxylate 238d (191 mg, 0.61 mmol) in THF (4.0 mL) at -78 $^\circ$C was added TMSCl (232 μL, 1.82 mmol). After 10 mins LHMDS (1M, 1.82 mL, 1.82 mmol) was added via syringe pump at an addition rate of 3 mL min$^{-1}$ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na$_2$SO$_4$ and concentrated *in vacuo* to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (140 mg, 70%, dr >99:1). $[\alpha]_D^{20}$ -62.7 (c 1.9, CHCl$_3$); FTIR (film/cm$^{-1}$) ν_{max}: 2977, 2874, 1742, 1704; 1H NMR (500MHz, CDCl$_3$, 328K) δH rotamer A 1.08–1.15 (6H, m), 1.39 (9H, s), 3.33–3.43 (1H, m), 3.51–3.61 (1H, m), 3.68 (3H, s), 4.21 (1H, app. sex, $J = 6.0$ Hz), 4.42–4.48 (1H, m), 4.61 (1H, d, $J = 3.9$ Hz), 5.11 (1H, d, $J = 3.9$ Hz), 5.20 (1H, app. t, $J = 10.8$ Hz), 5.37 (1H, app. dd, $J = 17.2$, 2.3 Hz), 6.11–6.21 (1H, m); δH rotamer B 1.08–1.15 (6H, m), 1.41 (9H, s), 3.33–3.43 (1H, m), 3.51–3.61 (1H, m), 3.69 (3H, s), 4.21 (1H, app. sex, $J = 6.0$ Hz), 4.64 (1H, d, $J = 3.9$ Hz), 4.66–4.70 (1H, m), 5.20 (1H, app. t, $J = 10.8$ Hz), 5.28 (1H, d, $J = 3.9$ Hz), 5.37 (1H, app. dd, $J = 17.2$, 2.3 Hz), 6.11–6.21 (1H, m); 13C NMR (125MHz, CDCl$_3$) δC rotamer A 15.4, 16.3, 28.3, 51.8, 65.8, 70.8, 77.7, 78.8, 79.4, 80.5, 116.5, 134.8, 151.2, 170.5; δC rotamer B 15.4, 16.4, 28.3, 51.9, 66.2, 70.8, 78.0, 78.8, 79.6, 80.8, 116.7, 135.0,
151.7, 170.7; HRMS (ESI, +ve) m/z calcd. for C_{16}H_{27}NO_{6}Na 352.1736, found: 352.1716 (M+Na)^{+}.

DL-Serine methyl ester hydrochloride (rac-247)

<chemistry>
\[
\text{HO} \quad \text{O} \quad \text{OMe}
\]
\[\text{Cl-H} \quad \text{N} \quad \text{O} \quad \text{OMe}
\]
</chemistry>

DL-Serine (20.2 g, 193 mmol) in MeOH (400 mL) and thionyl chloride (28.0 mL, 385 mmol, 2.0 eq) were combined according to general procedure V to afford DL-serine methyl ester hydrochloride as a white powder (29.6 g, 99%). Mpt: 138-141 °C (lit. 290 135-136 °C); ¹H NMR (500MHz, D₂O) δH 3.81 (3H, s), 3.95 (1H, dd, J = 4.0, 12.5 Hz), 4.05 (1H, dd, J = 4.0, 12.5 Hz), 4.24 (1H, app. t, J = 4.0 Hz), 4.69 (3H, s); ¹³C NMR (125MHz, D₂O) δC 53.7, 54.7, 59.2, 168.9. All analytical data is in accordance with literature precedence.²⁹¹

L-Serine methyl ester hydrochloride hydrochloride (247)

<chemistry>
\[
\text{HO} \quad \text{O} \quad \text{OMe}
\]
\[\text{Cl-H} \quad \text{N} \quad \text{O} \quad \text{OMe}
\]
</chemistry>

L-Serine (20.2 g, 193 mmol) in MeOH (400 mL) and thionyl chloride (28.0 mL, 385 mmol, 2.0 eq) were combined according to general procedure V to afford L-serine methyl ester hydrochloride as a white powder (29.8 g, 99%). Mpt: 162-163 °C (lit. 292 162-165 °C); [α]²⁰_D +5 (c 1, MeOH), lit.²⁹³ [α]²⁰_D +5 (c 2, MeOH). All other data as previously stated.

D-Serine methyl ester hydrochloride hydrochloride (ent-247)

<chemistry>
\[
\text{HO} \quad \text{O} \quad \text{OMe}
\]
\[\text{Cl-H} \quad \text{N} \quad \text{O} \quad \text{OMe}
\]
</chemistry>
D-Serine (10.1 g, 96.5 mmol) in MeOH (200 mL) and thionyl chloride (14.0 mL, 193 mmol, 2.0 eq) were combined according to general procedure V to afford D-serine methyl ester hydrochloride as a white powder (14.8 g, 99%). Mpt: 162-165 °C (lit. 294 163-164 °C); [α]_D^20 -5 (c 1, MeOH), lit. [α]_D^20 -5.2 (c 0.4, MeOH). All other data as previously stated.

(±)-Methyl 2-tert-butyloxazolidine-4-carboxylate (rac-248)

![Image](image1)

To a suspension of DL-serine methyl ester hydrochloride rac-247 (7.02 g, 45.1 mmol, 1.0 eq) in pentane (125 mL) was added pivalaldehyde (7.35 mL, 67.7 mmol, 1.5 eq) and triethylamine (6.93 mL, 49.6 mmol, 1.1 eq) and the reaction refluxed at 55 °C for 72 hours under Dean Stark conditions. The resulting mixture was allowed to cool to room temperature, filtered, and the solid washed with pentane. The combined filtrate was concentrated in vacuo to afford the title compound as a pale yellow liquid (7.50 g, 89%, dr 60:40). FTIR (film/cm⁻¹) δ max: 3320, 2957, 2909, 2872, 1740; ¹H NMR (500MHz, CDCl₃) δH major diastereomer 1.00 (9H, s), 2.95 (1H, bs), 3.69–3.79 (1H, m), 3.77 (3H, s), 3.89–4.15 (2H, m), 4.09 (1H, s); δH minor diastereomer 0.92 (9H, s), 2.95 (1H, bs), 3.69–3.79 (1H, m), 3.75 (3H, s), 3.89–4.15 (2H, m), 4.34 (1H, s); ¹³C NMR (125MHz, CDCl₃) δC major diastereomer 25.2, 33.2, 52.5, 59.5, 68.3, 99.9, 172.8; δC minor diastereomer 24.9, 34.5, 52.3, 59.4, 68.9, 99.2, 173.1; HRMS (ESI, +ve) m/z calcd. for C₉H₁₇NO₃Na 210.1106, found: 210.1096 (M+Na)⁺.

(S)-Methyl 2-tert-butyloxazolidine-4-carboxylate (248)

![Image](image2)

To a suspension of L-serine methyl ester hydrochloride 247 (6.0 g, 38.6 mmol, 1.0 eq) in pentane (150 mL) was added pivalaldehyde (6.30 mL, 57.9 mmol, 1.5 eq) and triethylamine (6.0 mL, 42.5 mmol, 1.1 eq) and the reaction refluxed at 55 °C for 72
hours under Dean Stark conditions. The resulting mixture was allowed to cool to room temperature, filtered, and the solid washed with pentane. The combined filtrate was concentrated in vacuo to afford the title compound as a pale yellow liquid (6.84 g, 95%, dr 63:37). All other data as previously stated, and in accordance with literature precedence.296

(R)-Methyl 2-tert-butyloxazolidine-4-carboxylate (ent-248)

\[
\text{O} \quad \text{CO}_2\text{Me}
\]

To a suspension of D-serine methyl ester hydrochloride ent-247 (7.78 g, 50.0 mmol, 1.0 eq) in pentane (150 mL) was added pivalaldehyde (8.14 mL, 75.0 mmol, 1.5 eq) and triethylamine (7.68 mL, 55.0 mmol, 1.1 eq) and the reaction refluxed at 55 °C for 72 hours under Dean Stark conditions. The resulting mixture was allowed to cool to room temperature, filtered, and the solid washed with pentane. The combined filtrate was concentrated in vacuo to afford the title compound as a pale yellow liquid (8.76 g, 94%, dr 60:40). All other data as previously stated, and in accordance with literature precedence.201

(±)-(syn)-3-tert-Butyl 4-methyl 2-tert-butyloxazolidine-3,4-dicarboxylate (rac-249)

\[
\text{O} \quad \text{CO}_2\text{Me}
\]

To a solution of (±)-methyl 2-tert-butyloxazolidine-4-carboxylate rac-248 (4.63 g, 24.7 mmol, 1.0 eq) and NaHCO₃ (5.19 g, 61.8 mmol, 2.5 eq) in MeOH (80 mL) was added Boc₂O (5.37 g, 24.7 mmol, 1.0 eq) and allowed to stir vigorously at 50 °C for 18 hours. The resulting mixture was allowed to cool to room temperature, filtered and the filtrate concentrated in vacuo. The residue was diluted with diethyl ether, washed with brine (1 × 75 mL), dried over MgSO₄ and concentrated in vacuo. Purification by flash chromatography 4:1 Pet/EtOAc afforded the title compound as a colourless liquid (4.67 g, 66%, dr >99:1). FTIR (film/cm⁻¹) \(\nu_{\text{max}} \): 2975, 2908, 1762, 1741, 1704; \(^1\)H NMR (500MHz, CDCl₃) \(\delta_H \): 0.92 (9H, s), 1.46 (9H, s), 3.74 (3H, s), 4.10 (1H, app. t, \(J = 7.2 \)
Hz), 4.26 (1H, app. t, \(J = 7.2\) Hz), 4.68 (1H, bs), 5.01 (1H, s); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta\)C 25.7, 28.2, 37.7, 52.2, 59.7, 68.3, 81.3, 97.6, 155.1, 171.0; HRMS (ESI, +ve) m/z calcd. for C\(_{14}\)H\(_{25}\)NO\(_{5}\)Na 310.1630, found: 310.1626 (M+Na)+.

\((2R,4S)-3\text{-}\text{tert-Butyl 4-methyl 2-tert-butyloxazolidine-3,4-dicarboxylate (249)}\)

\[\text{O} \quad \text{N} \quad \text{CO}_2\text{Me} \]

\(\text{Boc}\)

To a solution of (S)-methyl 2-tert-butyloxazolidine-4-carboxylate \(248\) (a 60:40 mixture of diastereomers) (2.46 g, 13.1 mmol, 1.0 eq) and NaHCO\(_3\) (2.75 g, 32.8 mmol, 2.5 eq) in MeOH (40 mL) was added Boc\(_2\)O (2.85 g, 13.1 mmol, 1.0 eq) and allowed to stir vigorously at 50 °C for 18 hours. The resulting mixture was allowed to cool to room temperature, filtered and the filtrate concentrated \(\text{in vacuo}\). The residue was diluted with diethyl ether, washed with brine (1 × 50 mL), dried over MgSO\(_4\) and concentrated \(\text{in vacuo}\) to afford the crude compound with a dr >98:2. Purification by flash chromatography (4:1 Pet/EtOAc) afforded the title compound as a colourless liquid (2.62 g, 70%, dr >99:1). [\(\alpha\)]\(_D\)\(^{20}\) -30 (c 2, CH\(_2\)Cl\(_2\)), lit.\(^{196}\) [\(\alpha\)]\(_D\)\(^{20}\) -30 (c 0.3, MeOH). All other data as previously stated, and in accordance with literature precedence.\(^{196}\)

\((2S,4R)-3\text{-}\text{tert-Butyl 4-methyl 2-tert-butyloxazolidine-3,4-dicarboxylate (ent-249)}\)

\[\text{O} \quad \text{N} \quad \text{CO}_2\text{Me} \]

\(\text{Boc}\)

To a solution of (R)-Methyl 2-tert-butyloxazolidine-4-carboxylate \(\text{ent-248}\) (a 60:40 mixture of diastereomers) (6.00 g, 32.0 mmol, 1.0 eq) and NaHCO\(_3\) (6.72 g, 80.0 mmol, 2.5 eq) in MeOH (125 mL) was added Boc\(_2\)O (6.95 g, 32.0 mmol, 1.0 eq) and allowed to stir vigorously at 50 °C for 18 hours. The resulting mixture was allowed to cool to room temperature, filtered and the filtrate concentrated \(\text{in vacuo}\). The residue was diluted with diethyl ether, washed with brine (1 × 75 mL), dried over MgSO\(_4\) and concentrated \(\text{in vacuo}\) to afford the crude compound with a dr >98:2. Purification by flash chromatography (4:1 Pet/EtOAc) afforded the title compound as a colourless

| 182 |
liquid (6.41 g, 70%, dr >99:1). $[\alpha]_D^{20} +29$ (c 2.4, CH$_2$Cl$_2$). All other data as previously stated.

(\pm)-(syn)-3-(tert-Butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid (rac-250)

\[
\begin{align*}
\text{O} &\hspace{1cm} \text{CO}_{2}\text{H} \\
\text{Bu}^t &\hspace{1cm} \text{N} \\
\text{Boc}
\end{align*}
\]

To a solution of (\pm)-(syn)-3-butyl 4-methyl 2-tert-butyloxazolidine-$3,4$-dicarboxylate rac-249 (4.16 g, 14.5 mmol, 1.0 eq) in MeOH (29 mL) at 0 °C was added 3N KOH (9.65 mL, 29.0 mmol, 2.0 eq) dropwise and the reaction mixture allowed to stir at room temperature for 4 hours. The solvent was removed in vacuo and the residue diluted with ether, then acidified with 3N HCl till pH 1-2 and then extracted with ether. The combined organics were washed with brine (1 × 50 mL), dried over MgSO$_4$ and concentrated in vacuo to afford the title compound as a white solid (3.55 g, 90%, dr >99:1). FTIR (film/cm$^{-1}$) ν_{max}: 3191, 2981, 2890, 1703; 1H NMR (500MHz, CDCl$_3$) δH 0.92 (9H, s), 1.50 (9H, s), 4.22 (1H, t, $J = 8.8$ Hz), 4.44 (1H, dd, $J = 8.8, 6.5$ Hz), 4.65 (1H, dd, $J = 8.8, 6.5$ Hz), 5.06 (1H, bs); 13C NMR (125MHz, CDCl$_3$) δC 25.6, 28.0, 37.7, 59.3, 67.7, 83.1, 97.3, 156.7, 172.6; HRMS (ESI, +ve) m/z calcd. for C$_{13}$H$_{23}$NO$_5$Na 296.1474, found: 296.1468 (M+Na)$^+$.

$(2R,4S)$-3-(tert-Butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid (250)

\[
\begin{align*}
\text{O} &\hspace{1cm} \text{CO}_{2}\text{H} \\
\text{Bu}^t &\hspace{1cm} \text{N} \\
\text{Boc}
\end{align*}
\]

To a solution of $(2R,4S)$-3-butyl 4-methyl 2-tert-butyloxazolidine-$3,4$-dicarboxylate 249 (5.54 g, 19.3 mmol, 1.0 eq) in MeOH (20 mL) at 0 °C was added 3N KOH (12.9 mL, 38.6 mmol, 2.0 eq) dropwise and the reaction mixture allowed to stir at room temperature for 4 hours. The solvent was removed in vacuo and the residue diluted with ether, then acidified with 3N HCl till pH 1-2 and then extracted with ether. The combined organics were washed with brine (1 × 50 mL), dried over MgSO$_4$ and
in vacuo to afford the title compound as a white solid (4.68 g, 89%, dr >99:1). Mpt: 134-136 °C (lit.191 106-109 °C); [\alpha]\textsubscript{D}20 -98 (c 3.5, CH\textsubscript{2}Cl\textsubscript{2}), lit.191 [\alpha]\textsubscript{D}20 -64 (c 1, CHCl\textsubscript{3}). All other data as previously stated, and in accordance with literature precedence.191

\textbf{(2S,4R)-3-(\textit{tert}-Butoxycarbonyl)-2-\textit{tert}-butyloxazolidine-4-carboxylic acid (\textit{ent}-250)}

![Chemical Structure of (2S,4R)-3-(\textit{tert}-Butoxycarbonyl)-2-\textit{tert}-butyloxazolidine-4-carboxylic acid (\textit{ent}-250)]

To a solution of (2S,4R)-3-\textit{tert}-butyl 4-methyl 2-\textit{tert}-butyloxazolidine-3,4-dicarboxylate \textit{ent}-249 (5.76 g, 20.0 mmol, 1.0 eq) in MeOH (20 mL) at 0 °C was added 3N KOH (14 mL, 40.0 mmol, 2.0 eq) dropwise and the reaction mixture allowed to stir at room temperature for 4 hours. The solvent was removed \textit{in vacuo} and the residue diluted with ether, then acidified with 3N HCl till pH 1-2 and then extracted with ether. The combined organics were washed with brine (1 × 50 mL), dried over MgSO\textsubscript{4} and concentrated \textit{in vacuo} to afford the title compound as a white solid (4.97 g, 91%, dr >99:1). Mpt: 134-135 °C (lit.191 103-105 °C); [\alpha]\textsubscript{D}20 +99 (c 3, CH\textsubscript{2}Cl\textsubscript{2}). All other data as previously stated.

\textbf{(±)-(\textit{syn})-3-\textit{tert}-Butyl 4-((\textit{E})-3-methoxyallyl) 2-\textit{tert}-butyloxazolidine-3,4-dicarboxylate (\textit{rac}-251a)}

![Chemical Structure of (±)-(\textit{syn})-3-\textit{tert}-Butyl 4-((\textit{E})-3-methoxyallyl) 2-\textit{tert}-butyloxazolidine-3,4-dicarboxylate (\textit{rac}-251a)]

EDCi.HCl (2.49 g, 13.0 mmol), triethylamine (1.82 mL, 13.0 mmol), (±)-(\textit{syn})-3-(\textit{tert}-butoxycarbonyl)-2-\textit{tert}-butyloxazolidine-4-carboxylic acid \textit{rac}-250 (3.54 g, 13.0 mmol), DMAP (5 mol%), DCM (125 mL) and (\textit{E})-3-(methoxy)prop-2-enol 218a (9.19 mmol, 810 mg) were combined according to general procedure IV (reaction time: 2 hours) to afford the title compound as a yellow oil without the need for further purification (3.12 g, 99%). FTIR (film/cm-1) \nu\textsubscript{max}: 2961, 2907, 1755, 1705, 1654; 1\text{H
NMR (500MHz, CDCl₃) δ_H 0.93 (9H, s), 1.46 (9H, s), 3.54 (3H, s), 4.15 (1H, app. t, J = 8.4 Hz), 4.23 (1H, dd, J = 8.4, 6.0 Hz), 4.57 (2H, dd, J = 7.8, 3.8 Hz), 4.64 (1H, bs), 4.91 (1H, dt, J = 12.7, 7.8 Hz), 5.02 (1H, s), 6.64 (1H, d, J = 12.7 Hz); ¹³C NMR (125MHz, CDCl₃) δ_C 25.8, 28.2, 37.8, 56.0, 59.8, 63.5, 68.4, 81.2, 96.5, 97.6, 153.7, 155.0, 170.4; HRMS (ESI, +ve) m/z calcd. for C₁₇H₂₉NO₆Na 366.1893, found: 366.1895 (M+Na)⁺.

(2R,4S)-3-tert-Butyl 4-((E)-3-methoxyallyl) 2-tert-butoxazolidine-3,4-dicarboxylate (251a)

[Diagram]

EDCi.HCl (456 mg, 2.38 mmol), triethylamine (335 μL, 2.38 mmol), (2R,4S)-3-((tert-butoxycarbonyl)-2-tert-butoxazolidine-4-carboxylic acid 250 (650 mg, 2.38 mmol), DMAP (5 mol%), DCM (40 mL) and (E)-3-(methoxy)prop-2-enol 218a (140 mg, 1.59 mmol) were combined according to general procedure IV (reaction time: 2 hours). Purified on a short pad of silica (2:1 Pet:EtOAc + 1% NEt₃) to afford the title compound as a colourless oil (495 mg, 91%). [α]D²⁰ -22.5 (c 2, CH₂Cl₂). All other data as previously stated.

(2S,4R)-3-tert-Butyl 4-((E)-3-methoxyallyl) 2-tert-butoxazolidine-3,4-dicarboxylate (ent-251a)

[Diagram]

EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2S,4R)-3-((tert-butoxycarbonyl)-2-tert-butoxazolidine-4-carboxylic acid ent-250 (546 mg, 2.38 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-(methoxy)prop-2-enol 218a (88 mg, 1.59 mmol) were combined according to general procedure IV (reaction time: 2 hours).
Purified on a short pad of silica (2:1 Pet:EtOAc + 1% NEt₃) to afford the title compound as a colourless oil (299 mg, 87%). [α]D²⁰ +22.5 (c 2, CH₂Cl₂). All other data as previously stated.

((2R,4S)-3-tert-Butyl 4-((E)-3-ethoxyallyl) 2-tert-butyloxazolidine-3,4-dicarboxylate (251b)

![Chemical Structure](image)

EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-(ethoxy)prop-2-enol 218b (102 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 1 hour) to afford the title compound as a yellow oil without the need for further purification (331 mg, 93%). [α]D²⁰ -26 (c 1, CH₂Cl₂); FTIR (film/cm⁻¹) υmax: 2976, 2939, 2875, 1755, 1705, 1673, 1653; ¹H NMR (500MHz, d₆-acetone) δH 0.93 (9H, s), 1.25 (3H, d, J = 7.0 Hz), 1.46 (9H, s), 3.79 (2H, q, J = 7.0 Hz), 4.13–4.22 (2H, m), 4.57 (2H, d, J = 7.8 Hz), 4.70 (1H, dd, J = 7.9, 6.2 Hz), 4.92–5.04 (2H, m), 6.70 (1H, d, J = 12.6 Hz); ¹³C NMR (125MHz, d₆-acetone) δC 14.0, 25.4, 27.5, 37.5, 59.8, 63.1, 64.7, 68.2, 80.3, 97.2, 97.4, 152.8, 154.8, 170.1; HRMS (ESI, +ve) m/z calcd. for C₁₈H₃₁NO₆Na 380.2049, found: 380.2040 (M+Na)⁺.

((2R,4S)-3-tert-Butyl 4-((E)-3-isopropoxyallyl) 2-tert-butyloxazolidine-3,4-dicarboxylate

![Chemical Structure](image)

EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-(isopropoxy)prop-2-enol 218c (116 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 20
minutes), purified by flash chromatography (4:1 Pet:EtOAc, Brockmann Grade I Basic Alumina) to afford the title compound as a colourless oil (133 mg, 36%). $[\alpha]_D^{20}$ -19 (c 1, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2978, 2936, 2875, 1751, 1702, 1671, 1652; 1H NMR (500MHz, d$_6$-acetone) δH 0.93 (9H, s), 1.21 (6H, d, $J = 6.2$ Hz), 1.46 (9H, s), 4.08–4.21 (3H, m), 4.56 (2H, d, $J = 8.1$ Hz), 4.70 (1H, app. t, $J = 7.8$ Hz), 4.94–5.03 (2H, m), 6.62 (1H, d, $J = 12.5$ Hz); 13C NMR (125MHz, d$_6$-acetone) δC 21.4, 25.4, 27.5, 37.5, 59.8, 63.2, 68.2, 72.8, 80.2, 97.2, 98.6, 152.0, 154.8, 170.1; HRMS (ESI, +ve) m/z calcd. for C$_{19}$H$_{33}$NO$_6$Na 394.2206, found: 394.2209 (M+Na)$^+$.

(2R,4S)-4-((E)-3-(Allyloxy)allyl) 3-tert-butyloxazolidine-3,4-dicarboxylate (251d)

EDCI.HCl (767 mg, 4.00 mmol), triethylamine (560 μL, 4.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (1.09 g, 4.00 mmol), DMAP (5 mol%), DCM (100 mL) and (E)-3-(allyloxy)prop-2-en-1-ol 218d (228 mg, 2.00 mmol) were combined according to general procedure IV (reaction time: 16 hours) to afford the title compound without the need for further purification as a pale yellow oil (552 mg, 75%). $[\alpha]_D^{20}$ -21 (c 3, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2974, 2936, 1754, 1704, 1673, 1654; 1H NMR (500 MHz, d$_6$-acetone) δH 0.92 (9H, s), 1.44 (9H, s), 4.14 (1H, app. t, $J = 8.5$ Hz), 4.19–4.24 (3H, m), 4.54 (2H, d, $J = 7.9$ Hz), 4.63 (1H, bs), 4.95 (1H, dt, $J = 12.6$, 7.8 Hz), 5.01 (1H, s), 5.22 (1H, dq, $J = 10.6$, 1.4 Hz), 5.29 (1H, dq, $J = 17.3$, 1.4 Hz), 5.89 (1H, ddt, $J = 17.3$, 10.6, 5.4 Hz), 6.57 (1H, d, $J = 12.6$ Hz); 13C NMR (125 MHz, d$_6$-acetone) δC 25.8, 28.2, 37.8, 59.7, 63.5, 68.4, 70.2, 81.2, 97.6, 98.0, 117.9, 132.7, 152.4, 155.0, 170.3; HRMS (ESI, +ve) m/z calcd. for C$_{19}$H$_{31}$NO$_8$Na 392.2049, found: 392.2040 (M+Na)$^+$.

| 187 |
(2R,4S)-3-tert-Butyl 4-((E)-3-(prop-2-ynyloxy)allyl) 2-tert-butylazolidine-3,4-dicarboxylate (251e)

EDCI·HCl (767 mg, 4.00 mmol), triethylamine (560 μL, 4.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butylazolidine-4-carboxylic acid 250 (1.09 g, 4.00 mmol), DMAP (5 mol%), DCM (100 mL) and (E)-3-(prop-2-ynyloxy)prop-2-en-1-ol 218e (224 mg, 2.00 mmol) were combined according to general procedure IV (reaction time: 2 hours). Purified on a short pad of silica (2:1 Pet:EtOAc + 1% Net3) to afford the title compound as a colourless oil (580 mg, 79%). [α]D 20 -21 (c 1, CH₂Cl₂); FTIR (film/cm⁻¹) νmax: 3261, 2975, 2908, 2875, 1754, 1702, 1654; ¹H NMR (500 MHz, d₆-acetone) δH 0.93 (9H, s), 1.46 (9H, s), 3.09 (1H, t, J = 2.4 Hz), 4.13–4.22 (2H, m), 4.50 (2H, d, J = 2.4 Hz), 4.59 (2H, d, J = 7.8 Hz), 4.71 (1H, dd, J = 8.0, 6.2 Hz), 4.99 (1H, s), 5.11 (1H, d, J = 12.5, 7.8 Hz), 6.71 (1H, d, J = 12.5 Hz); ¹³C NMR (125 MHz, d₆-acetone) δC 25.4, 27.5, 37.5, 56.9, 59.8, 62.6, 68.2, 76.4, 78.3, 80.3, 97.2, 99.5, 151.2, 154.8, 170.1; HRMS (ESI, +ve) m/z calcd. for C₁₉H₂₉NO₆Na 390.1893, found: 390.1892 (M+Na)⁺.

(2R,4S)-3-tert-Butyl 4-((E)-3-phenoxyallyl) 2-tert-butylazolidine-3,4-dicarboxylate (251f)

EDCI·HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butylazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-phenoxyprop-2-en-1-ol 218f (150 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 2 hours). Purified by flash chromatography on Brockmann Grade I Basic Alumina (4:1 Pet:EtOAc) to afford the title compound as a colourless oil (337 mg, 83%). [α]D 20 -17 (c 1, CH₂Cl₂); FTIR (film/cm⁻¹) νmax: 2975, 2907, 1756, 1704, 1674, 1592; ¹H NMR (500 MHz, CDCl₃) δH 0.98 (9H, s), 1.49 (9H, s), 4.17 (1H, app. t, J = 8.0 Hz), 4.28 (1H, app.
Chapter 7

Experimental

t, \(J = 8.0 \) Hz), 4.65–4.72 (3H, m), 5.07 (1H, s), 5.39–5.48 (1H, m), 6.83 (1H, d, \(J = 12.2 \) Hz), 7.00 (2H, d, \(J = 7.7 \) Hz), 7.10 (1H, t, \(J = 7.7 \) Hz), 7.33 (2H, app. t, \(J = 7.7 \) Hz), \(^{13} \)C NMR (125 MHz, CDCl\(_3\)) \(\delta \)C 25.9, 28.2, 37.8, 59.9, 62.2, 68.4, 81.2, 97.7, 105.1, 117.3, 123.6, 129.6, 148.7, 155.0, 156.6, 170.2; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{22}\)H\(_{31}\)NO\(_6\)Na 428.2049, found: 428.2051 (M+Na\(^+\)).

(2R,4S)-3-tert-Butyl 4-((E)-3-(4-methoxyphenoxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate (251g)

\[
\begin{align*}
\text{tBu} & \quad \text{N} \\
& \quad \text{O} \\
\end{align*}
\]

EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 \(\mu \)L, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol\%), DCM (50 mL) and (E)-3-(4-methoxyphenoxy)prop-2-en-1-ol 218g (180 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 3 hours). Purified by flash chromatography (4:1 Pet:EtOAc, Brockmann Grade I Basic Alumina) to afford the title compound as a colourless oil (367 mg, 84%). [\(\alpha \)]\(_D\)\(^{20} \) -18 (c 1, CH\(_2\)Cl\(_2\)); FTIR (film/cm\(^{-1}\)) \(\nu \)max: 2968, 2902, 2873, 1755, 1703, 1673, 1505; \(^1 \)H NMR (500 MHz, d\(_6\)-acetone) \(\delta \)H 0.95 (9H, s), 1.47 (9H, s), 3.78 (3H, s), 4.15–4.25 (2H, m), 4.67 (2H, d, \(J = 7.8 \) Hz), 4.74 (1H, dd, \(J = 8.1, 5.9 \) Hz), 5.01 (1H, s), 5.34 (1H, dt, \(J = 12.2, 7.8 \) Hz), 6.91–7.02 (5H, m); \(^{13} \)C NMR (125 MHz, d\(_6\)-acetone) \(\delta \)C 25.5, 27.5, 37.5, 55.0, 59.8, 62.1, 68.2, 80.4, 97.2, 104.0, 114.8, 118.3, 149.8, 150.3, 154.8, 156.1, 170.1; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{23}\)H\(_{33}\)NO\(_7\)Na 458.2139, found: 458.2139 (M+Na\(^+\)).

(2R,4S)-3-tert-Butyl 4-((E)-3-(4-(trifluoromethyl)phenoxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate (251h)

\[
\begin{align*}
\text{tBu} & \quad \text{N} \\
& \quad \text{O} \\
& \quad \text{CF}_3
\end{align*}
\]
EDCi.HCl (766 mg, 4.00 mmol), triethylamine (560 μL, 4.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butylloxazolidine-4-carboxylic acid 250 (1.09 g, 4.00 mmol), DMAP (5 mol%), DCM (100 mL) and (E)-3-(4-(trifluoromethyl)phenoxy)prop-2-en-1-ol 218h (436 mg, 2.00 mmol) were combined according to general procedure IV (reaction time: 2 hours) to afford the title compound without the need for further purification as a pale yellow oil (897 mg, 95%). [α]_D^20 -13 (c 3, CH₂Cl₂); FTIR (film/cm⁻¹) vₘₐₓ: 2972, 2912, 2878, 1757, 1702, 1613; ¹H NMR (500MHz, d₆-acetone) δ 0.95 (9H, s), 1.47 (9H, s), 4.16–4.26 (2H, m), 4.73–4.80 (3H, m), 5.01 (1H, s), 5.62 (1H, dt, J = 12.0, 7.5 Hz), 7.17 (1H, d, J = 12.0 Hz), 7.28 (2H, app. d, J = 8.7 Hz), 7.74 (2H, app. d, J = 8.7 Hz); ¹³C NMR (125MHz, d₆-acetone) δ 25.4, 27.5, 37.5, 59.8, 61.5, 68.1, 80.4, 97.3, 107.8, 116.8, 122.8 (q, J = 121.2 Hz), 124.7 (q, J = 33.2 Hz), 127.3 (q, J = 3.8 Hz), 146.7, 154.8, 159.4, 170.1; HRMS (ESI, +ve) m/z calcd. for C₂₃H₃₀F₃NO₆Na 496.1923, found: 496.1911 (M+Na)^+.

(2R,4S)-3-tert-Butyl 4-((E)-3-(2-iodophenoxy)allyl) 2-tert-butylloxazolidine-3,4-dicarboxylate (251i)

EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butylloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-(2-iodophenoxy)prop-2-en-1-ol 218i (276 mg, 1.00 mmol) were combined according to general procedure (reaction time: 2 hours). Purified by flash chromatography (4:1 Pet:EtOAc, Brockmann Grade I Basic Alumina) to afford the title compound as a colourless oil (370 mg, 72%). [α]_D^20 -17 (c 2, CH₂Cl₂); FTIR (film/cm⁻¹) vₘₐₓ: 2974, 2937, 2912, 2875, 1756, 1702, 1674; ¹H NMR (500MHz, d₆-acetone) δ 0.95 (9H, s), 1.46 (9H, s), 4.16–4.26 (2H, m), 4.72 (2H, dq, J = 7.5, 1.0 Hz), 4.76 (1H, dd, J = 8.2, 5.8 Hz), 5.01 (1H, s), 5.49 (1H, dt, J = 12.1, 7.5 Hz), 6.96 (1H, td, J = 7.5, 1.3 Hz), 7.02 (1H, dt, J = 12.1, 1.0 Hz), 7.13 (1H, dd, J = 8.2, 1.3 Hz), 7.24–7.47 (1H, m), 7.89 (1H, dd, J = 7.5, 1.6 Hz); ¹³C NMR (125MHz, d₆-acetone) δ 25.4, 27.5, 37.5, 59.8, 61.6, 68.2, 80.4, 86.4, 97.2, 106.4, 117.2, 125.6, 130.0, 139.8, 148.1,
Chapter 7

Experimental

154.8, 155.8, 170.1; HRMS (ESI, +ve) m/z calcd. for C_{22}H_{30}INO_{6}Na 554.1016, found: 554.0993 (M+Na)^+.

(±)-(syn)-4-((E)-3-(Benzyloxy)allyl) 3-tert-butyl 2-tert-butyl oxazolidine-3,4-dicarboxylate (rac-251j)

EDCi.HCl (702 mg, 3.66 mmol), triethylamine (511 μL, 3.66 mmol), (±)-(syn)-3-(tert-butoxycarbonyl)-2-tert-butyl oxazolidine-4-carboxylic acid rac-250 (1.00 g, 3.66 mmol), DMAP (5 mol%), DCM (70 mL) and (E)-3-(benzyloxy)prop-2-enol 218j (400 mg, 2.44 mmol) were combined according to general procedure IV (reaction time: 2 hours) to afford the title compound as a yellow oil without the need for further purification (955 mg, 94%). FTIR (film/cm-1) \(\nu_{\text{max}} \): 2974, 2908, 1754, 1703, 1672, 1651; \(^1H \) NMR (500MHz, CDCl\(_3\)) \(\delta_H \) 0.95 (9H, s), 1.47 (9H, s), 4.12–4.19 (1H, m), 4.20–4.30 (1H, m), 4.58 (2H, d, \(J = 7.8 \) Hz), 4.65 (1H, bs), 4.75 (2H, s), 5.01–5.09 (2H, m), 6.69 (1H, d, \(J = 12.6 \) Hz), 7.29–7.39 (5H, m); \(^13C \) NMR (125MHz, CDCl\(_3\)) \(\delta_C \) 25.8, 28.1, 37.9, 59.8, 63.5, 68.4, 71.4, 81.2, 97.6, 98.3, 127.5, 128.2, 128.5, 136.3, 152.6, 155.0, 170.4; HRMS (ESI, +ve) m/z calcd. for C\(_{23}\)H\(_{33}\)NO\(_6\)Na 442.2206, found: 442.2201 (M+Na)^+.

(2R,4S)-4-((E)-3-(Benzyloxy)allyl) 3-tert-butyl 2-tert-butyl oxazolidine-3,4-dicarboxylate (251j)

EDCi.HCl (702 mg, 3.66 mmol), triethylamine (511 μL, 3.66 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyl oxazolidine-4-carboxylic acid 250 (1.00 g, 3.66 mmol), DMAP (5 mol%), DCM (70 mL) and (E)-3-(benzyloxy)prop-2-enol 218j (400 mg, 2.44
mmol) were combined according to general procedure IV (reaction time: 2 hours). Purified on a short pad of silica (2:1 Pet:EtOAc + 1% Net₃) to afford the title compound as a colourless oil (753 mg, 74%). \([\alpha]_{D}^{20} -19 \ (c \ 3, \ \text{CH}_2\text{Cl}_2)\). All other data as previously stated.

\((2S,4R)-4-((E)-3-(\text{Benzyloxy})\text{allyl}) \ 3-\text{tert-butyl} \ 2-\text{tert-butyl} \text{oxazolidine-3,4-dicarboxylate} \ (\text{ent-251j})\)

![Chemical Structure Image]

EDCi.HCl (767 mg, 4.00 mmol), triethylamine (560 \(\mu\)L, 4.00 mmol), \((2S,4R)-3-(\text{tert-butoxycarbonyl})-2-\text{tert-butyl} \text{oxazolidine-4-carboxylic acid} \ (\text{ent-250}) \ (1.09 g, 4.00 mmol), DMAP (5 mol%), DCM (100 mL) and \((E)-3-(\text{benzyloxy})\text{prop-2-enol} \ (218j) \ (328 mg, 2.00 mmol) were combined according to general procedure IV (reaction time: 2 hours). Purified on a short pad of silica (2:1 Pet:EtOAc + 1% Net₃) to afford the title compound as a colourless oil (654 mg, 78%). \([\alpha]_{D}^{20} +19 \ (c \ 2, \ \text{CH}_2\text{Cl}_2)\). All other data as previously stated.

\((2R,4S)-3-\text{tert-Butyl} \ 4-((E)-3-(4\text{-methoxybenzyloxy})\text{allyl}) \ 2-\text{tert-butyl} \text{oxazolidine-3,4-dicarboxylate} \ (251k)\)

![Chemical Structure Image]

EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 \(\mu\)L, 2.00 mmol), \((2R,4S)-3-(\text{tert-butoxycarbonyl})-2-\text{tert-butyl} \text{oxazolidine-4-carboxylic acid} \ (250) \ (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and \((E)-3-(\text{4-methoxybenzyloxy})\text{prop-2-en-1-ol} \ (218k) \ (194 mg, 1.00 mmol) were combined according to the general procedure IV (reaction time: 30 minutes), purified by flash chromatography (4:1 Pet:EtOAc, Brockmann Grade I Basic Alumina) to afford the title compound as a colourless oil (227 mg, 51%). \([\alpha]_{D}^{20} -17.0 \ (c \ 2.0, \ \text{CH}_2\text{Cl}_2)\); FTIR (film/cm⁻¹) \(\nu_{\max}:\) 2959, 2915, 2849, 1753, 1703, 1672, 1653, 1637, 1594, 1457, 1373, 1331, 1268, 1237, 1181, 1101, 1089, 1059, 1030.
1651, 1614, 1515; 1H NMR (500MHz, CDCl$_3$) δH 0.96 (9H, s), 1.48 (9H, s), 3.81 (3H, s), 4.15 (1H, app. t, $J = 7.6$ Hz), 4.22–4.28 (1H, m), 4.59 (2H, d, $J = 7.7$ Hz), 4.66 (1H, app. t, $J = 7.6$ Hz), 4.71 (2H, s), 5.02–5.12 (2H, m), 6.66 (1H, d, $J = 12.6$ Hz), 6.90 (2H, d, $J = 8.5$ Hz), 7.25 (2H, d, $J = 8.5$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 25.8, 28.2, 37.8, 55.2, 59.9, 63.4, 68.4, 71.4, 81.1, 97.7, 98.5, 114.0, 128.6, 129.1, 152.5, 155.0, 159.7, 170.3; HRMS (ESI, +ve) m/z calcd. for C$_{24}$H$_{35}$NO$_7$Na 472.2311, found: 472.2286 (M+Na)$^+$.

(2S,4R)-3-tert-Butyl 4-((E)-3-(4-methoxybenzyl)oxy)allyl 2-tert-butyloxazolidine-3,4-dicarboxylate (ent-251k)

![Chemical structure](image)

EDCI.HCl (612 mg, 3.19 mmol), triethylamine (445 μL, 3.19 mmol), (2S,4R)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid ent-250 (872 mg, 3.19 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-(4-methoxybenzyl)oxy)prop-2-en-1-ol 218k (370 mg, 1.60 mmol) were combined according to general procedure IV (reaction time: 30 minutes). Purified by flash chromatography (2:1 Pet/EtOAc + 1% Et$_3$N) to afford the title compound as a colourless oil (719 mg, 100%). $[\alpha]_D^{20}$ +17.1 (c 2.1, CH$_2$Cl$_2$). All other data as previously stated.

(2R,4S)-3-tert-Butyl 4-((E)-3-(2,6-dichlorobenzyl)oxy)allyl 2-tert-butyloxazolidine-3,4-dicarboxylate (251l)

![Chemical structure](image)

EDCI.HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-methyl 3-(2,6-dichlorobenzyl)oxy)acrylate 218l (233 mg, 1.00 mmol) were combined according to general procedure IV (reaction
Chapter 7 Experimental

time: 50 minutes). Purified by flash chromatography (4:1 Pet:EtOAc) to afford the title compound as a colourless oil (291 mg, 60%). \([\alpha]^{20}_D -15 \) (c 2.0, CH2Cl2); FTIR (film/cm-1) \(\nu_{\text{max}}\): 2975, 2908, 1753, 1703, 1673, 1651, 1583, 1565; \(^1\)H NMR (500MHz, CDCl3) \(\delta\)H 0.95 (9H, s), 1.47 (9H, s), 4.15 (1H, app. t, \(J = 8.0 \) Hz), 4.25 (1H, dd, \(J = 8.0, 6.5 \) Hz), 4.60 (2H, d, \(J = 7.7 \) Hz), 4.67 (1H, app. t, \(J = 8.0 \) Hz), 5.02 (2H, s), 5.04 (1H, s), 5.09–5.17 (1H, m), 6.71 (1H, d, \(J = 12.5 \) Hz), 7.21 (1H, t, \(J = 8.1 \) Hz), 7.33 (2H, d, \(J = 8.1 \) Hz); \(^{13}\)C NMR (125MHz, CDCl3) \(\delta\)C 25.9, 28.2, 37.8, 59.9, 63.1, 66.2, 68.4, 81.1, 97.7, 98.7, 128.4, 130.4, 131.8, 136.9, 152.3, 154.9, 170.3; HRMS (ESI, +ve) \(m/z\) calcd. for \(\text{C}_{23}\text{H}_{31}\text{NCl}_2\text{O}_6\text{Na}\) 510.1426, found: 510.1405 (M+Na)+.

\((2R,4S)-\text{3-\text{tert-Butyl } 4-((E)-3-(2-iodobenzyloxy)allyl) 2-\text{tert-butyloxazolidine-3,4-dicarboxylate (251m)}}\)

\[
\text{EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 \mu L, 2.00 mmol), (2R,4S)-3-(\text{tert-butoxycarbonyl})-2-\text{tert-butyloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol),}}
\]

DMAP (5 mol%), DCM (50 mL) and (E)-3-(2-iodobenzyloxy)prop-2-en-1-ol 218m (290 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 1 hour) to afford the crude title compound as a pale yellow oil (quant.) which was taken forward in its crude form.

\((2R,4S)-\text{3-\text{tert-Butyl 4-((E)-3-isobutoxyallyl) 2-\text{tert-butyloxazolidine-3,4-dicarboxylate (251n)}}}\)

\[
\text{EDCi.HCl (383 mg, 2.00 mmol), triethylamine (280 \mu L, 2.00 mmol), (2R,4S)-3-(\text{tert-butoxycarbonyl})-2-\text{tert-butyloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol),}}
\]

DMAP (5 mol%), DCM (50 mL) and (E)-3-isobutoxyprop-2-en-1-ol 218n (130 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 20
minutes) to afford the crude title compound as a pale yellow oil (quant.) which was taken forward in its crude form.

(2R,4S)-3-tert-Butyl 4-((E)-3-(cyclohexyloxy)allyl) 2-tert-butylloxazolidine-3,4-dicarboxylate (251o)

EDCI.HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butylloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-(cyclohexyloxy)prop-2-en-1-ol 218o (156 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 2 hours) to afford the crude title compound as a yellow oil (quant.) which was taken forward in its crude form.

(2R,4S)-4-((E)-3-(But-3-en-2-yloxy)allyl) 3-tert-butyl 2-tert-butylloxazolidine-3,4-dicarboxylate (251p)

EDCI.HCl (383 mg, 2.00 mmol), triethylamine (280 μL, 2.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butylloxazolidine-4-carboxylic acid 250 (547 mg, 2.00 mmol), DMAP (5 mol%), DCM (50 mL) and (E)-3-(but-3-en-2-yloxy)prop-2-en-1-ol 218p (128 mg, 1.00 mmol) were combined according to general procedure IV (reaction time: 10 minutes) to afford the title compound as a yellow oil (383 mg, 83%). [α]D20 -23 (c 2.0, CH2Cl2); FTIR (film/cm⁻¹) νmax: 2977, 2933, 2872, 1758, 1709, 1672; ¹H NMR (500MHz, d6-acetone) δH 0.94 (9H, s), 1.29 (3H, d, J = 6.5 Hz), 1.46 (9H, s), 4.12–4.21 (2H, m), 4.43 (1H, quin., J = 6.4 Hz), 4.55 (2H, d, J = 7.8 Hz), 4.69 (1H, app. t, J = 7.0 Hz), 4.98–5.06 (2H, m), 5.15 (1H, dd, J = 10.6, 1.0 Hz), 5.26 (1H, dd, J = 17.3, 1.0 Hz), 5.83 (1H, ddd, J = 17.3, 10.6, 6.4 Hz), 6.61 (1H, d, J = 12.4 Hz); ¹³C NMR (125MHz,
\(\delta_c \) 20.2, 25.5, 27.5, 37.5, 59.8, 63.0, 68.2, 77.2, 80.3, 97.2, 99.2, 115.4, 139.0, 151.7, 154.7, 170.1; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{20}\)H\(_{33}\)NO\(_6\)Na 406.2206, found: 406.2212 (M+Na\(^+\)).

\((\pm)-(anti)-3-\text{tert-Butyl 4-methyl 2-\text{tert-butyl-4-(1-methoxyallyl)}oxazolidine-3,4-dicarboxylate (rac-252a)}\)

\((\pm)-(syn)-3-\text{tert-Butyl 4-((E)-3-methoxyallyl)} 2-\text{tert-butyloxazolidine-3,4-dicarboxylate (rac-251a)}\) (500 mg, 1.46 mmol), TMSCl (556 \(\mu \)L, 4.37 mmol), LHMDS (1M, 4.37 mL, 4.37 mmol) and THF (5.0 mL) were combined according to general procedure VII (reaction time: 18 hours). Purified by flash chromatography (8:1 Pet/EtOAc) to afford the methyl ester as a colourless oil (419 mg, 81%, dr >99:1). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}} \): 2979, 2957, 2907, 1743, 1702; \(^1\)H NMR (500MHz, CDCl\(_3\), 328K) \(\delta \)H 0.95 (9H, s), 1.52 (9H, s), 3.29 (3H, s), 3.74 (3H, s), 4.18 (1H, d, \(J = 8.5 \) Hz), 4.35 (1H, d, \(J = 8.5 \) Hz), 4.83 (1H, bs), 5.14 (1H, s), 5.32–5.40 (2H, m), 5.64–5.75 (1H, m); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta \)C 26.1, 28.2, 38.1, 52.3, 56.8, 69.2, 72.3, 78.4, 80.8, 98.0, 120.1, 133.6, 153.8, 171.0; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{18}\)H\(_{31}\)NO\(_6\)Na 380.2049, found: 380.2032 (M+Na\(^+\)).

\((2R,4R)-3-\text{tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-methoxyallyl)}oxazolidine-3,4-dicarboxylate (252a)\)

\((2R,4S)-3-\text{tert-Butyl 4-((E)-3-methoxyallyl)} 2-\text{tert-butyloxazolidine-3,4-dicarboxylate (251a)}\) (476 mg, 1.39 mmol), TMSCl (529 \(\mu \)L, 4.16 mmol), LHMDS (1M, 4.16 mL, 4.16 mmol) and THF (4.75 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (8:1 Pet/EtOAc) affords the
methyl ester as a colourless oil (388 mg, 78%, dr >99:1). $[\alpha]_D^{20}$ -12.0 (c 2.0, CH$_2$Cl$_2$). All other data as previously stated.

(2S,4S)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((R)-1-methoxyallyl)oxazolidine-3,4-dicarboxylate (ent-252a)

(2S,4R)-3-tert-Butyl 4-((E)-3-methoxyallyl) 2-tert-butyloxazolidine-3,4-dicarboxylate ent-251a (247 mg, 0.719 mmol), TMSCl (275 μL, 2.16 mmol), LHMDS (1M, 2.16 mL, 2.16 mmol) and THF (2.5 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (8:1 Pet/EtOAc) affords the methyl ester as a colourless oil (213 mg, 83%, dr >99:1). $[\alpha]_D^{20}$ +12.1 (c 1.9, CH$_2$Cl$_2$). All other data as previously stated.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-ethoxyallyl)oxazolidine-3,4-dicarboxylate (252b)

(2R,4S)-3-tert-Butyl 4-((E)-3-ethoxyallyl) 2-tert-butyloxazolidine-3,4-dicarboxylate 251b (109 mg, 0.305 mmol), TMSCl (116 μL, 0.915 mmol), LHMDS (1M, 915 μL, 0.915 mmol) and THF (1.10 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (15:1 Pet/EtOAc) affords the methyl ester as a colourless oil (95 mg, 84%, dr >99:1). $[\alpha]_D^{20}$ +5 (c 2.0, CH$_2$Cl$_2$); FTIR (film/cm-1) ν_{max}: 2978, 2903, 1743, 1710; 1H NMR (500 MHz, CDCl$_3$, 328K) δH 0.94 (9H, s), 1.16 (3H, t, $J = 7.2$ Hz), 1.49 (9H, s), 3.32 (1H, app. qu, $J = 7.2$ Hz), 3.53 (1H, app. qu, $J = 7.2$ Hz), 3.72 (3H, s), 4.21 (1H, d, $J = 8.3$ Hz), 4.30 (1H, d, $J = 8.3$ Hz), 4.90 (1H, bs), 5.12 (1H, s), 5.29 (1H, d, $J = 10.5$ Hz), 5.34 (1H, d, $J = 17.2$ Hz), 5.67–5.79 (1H, m); 13C NMR (125 MHz, CDCl$_3$, 328K) δC 15.2, 26.2, 28.2, 38.3,
52.0, 64.5, 70.0, 72.2, 77.9, 80.6, 98.3, 119.0, 134.8, 153.6, 171.0; HRMS (ESI, +ve) m/z calcd. for C_{19}H_{33}NO_{6}Na 394.2206, found: 394.2201 (M+Na)^{+}.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-isopropoxyallyl)oxazolidine-3,4-dicarboxylate (252c)

(2R,4S)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-isopropoxyallyl)oxazolidine-3,4-dicarboxylate 252c (77 mg, 0.207 mmol), TMSCl (79 μL, 0.621 mmol), LHMDS (1M, 621 μL, 0.621 mmol) and THF (0.77 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (56 mg, 70%, dr >99:1). [α]_{D}^{20} +12 (c 2.0, CH_{2}Cl_{2}); FTIR (film/cm⁻¹) v_{max}: 2976, 2908, 1744, 1705; ^{1}H NMR (500 MHz, CDCl_{3}, 328K) δ_H 0.97 (9H, s), 1.12 (3H, d, J = 6.1 Hz), 1.14 (3H, d, J = 6.1 Hz), 1.50 (9H, s), 3.68–3.74 (4H, m), 4.26–4.32 (2H, m), 5.03 (1H, bs), 5.13 (1H, s), 5.27 (1H, d, J = 10.6 Hz), 5.40 (1H, d, J = 17.3 Hz), 5.85 (1H, ddd, J = 17.3, 10.6, 6.9 Hz); ^{13}C NMR (125 MHz, CDCl_{3}, 328K) δ_C 22.1, 23.2, 26.5, 28.3, 38.6, 51.9, 70.4, 70.7, 72.3, 76.1, 80.9, 98.3, 118.9, 136.5, 153.1, 171.0; HRMS (ESI, +ve) m/z calcd. for C_{20}H_{35}NO_{6}Na 408.2362, found: 408.2366 (M+Na)^{+}.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(allyloxy)allyl)oxazolidine-3,4-dicarboxylate (252d)

(2R,4S)-3-tert-Butyl 4-((E)-3-(allyloxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate 251d (227 mg, 0.610 mmol), TMSCl (234 μL, 1.84 mmol), LHMDS (1M, 1.84 mL, 1.84 mmol) and THF (2.30 mL) were combined according to general procedure VII
(reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (165 mg, 71%, dr >99:1). [α]_D^{20} +6 (c 2.0, CH2Cl2); FTIR (film/cm-1) \(\nu_{\text{max}}: 2979, 2960, 2909, 1743, 1709; ^1\text{H NMR} \) (500 MHz, CDCl3, 328K) \(\delta_H \) 0.94 (9H, s), 1.48 (9H, s), 3.73 (3H, s), 3.85 (1H, ddt, \(J = 12.6, 5.2, 1.6 \) Hz), 4.01 (1H, dd, \(J = 12.6, 5.2 \) Hz), 4.24 (1H, d, \(J = 8.5 \) Hz), 4.34 (1H, d, \(J = 8.5 \) Hz), 4.99 (1H, bs), 5.10 (1H, dq, \(J = 17.3, 1.4 \) Hz), 5.13 (1H, s), 5.24 (1H, dq, \(J = 10.4, 1.4 \) Hz), 5.32 (1H, app. dt, \(J = 10.4, 1.4 \) Hz), 5.36 (1H, app. dt, \(J = 17.3, 1.4 \) Hz), 5.72 (1H, ddd, \(J = 17.3, 10.4, 6.9 \) Hz), 5.88 (1H, ddt, \(J = 17.3, 10.5, 5.2 \) Hz); \(^{13}\text{C NMR} \) (125 MHz, CDCl3, 328K) \(\delta_C \) 26.2, 28.2, 38.3, 52.0, 69.6, 69.9, 72.3, 77.6, 80.8, 98.3, 115.7, 119.7, 134.3, 134.7, 153.6, 170.9; HRMS (ESI, +ve) m/z calcd. for C\(_{20}\)H\(_{33}\)NO\(_5\)Na 406.2206, found: 406.2200 (M+Na\(^+\)).

\((2R,4R)-3\text{-}\text{tert-Butyl} \ 4\text{-methyl} \ 2\text{-\text{tert-Butyl}}\text{-}4\text{-((S)-1(3-\text{trimethylsilyl})prop-2-ynyloxy)allyloxadizidine-3,4-dicarboxylate (252e)}

(2R,4S)-3-\text{tert-Butyl} 4-((E)-3-(prop-2-ynyloxy)allyl) 2-\text{tert-butyloxazolidine-3,4-dicarboxylate 251e} (100 mg, 0.272 mmol), TMSCl (104 μL, 0.816 mmol), LHMDS (1M, 816 μL, 0.816 mmol) and THF (1.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (94 mg, 76%, dr >99:1). [α]_D^{20} -7 (c 2.0, CH2Cl2); FTIR (film/cm-1) \(\nu_{\text{max}}: 2981, 2959, 2905, 1744, 1707; ^1\text{H NMR} \) (500 MHz, CDCl3, 328K) \(\delta_H \) 0.17 (9H, s), 0.94 (9H, s), 1.52 (9H, s), 3.73 (3H, s), 4.09 (2H, q, \(J = 15.1 \) Hz), 4.20 (1H, d, \(J = 8.4 \) Hz), 4.37 (1H, d, \(J = 8.4 \) Hz), 5.00 (1H, d, \(J = 6.3 \) Hz), 5.14 (1H, s), 5.34 (1H, d, \(J = 10.4 \) Hz), 5.41 (1H, d, \(J = 17.2 \) Hz), 5.65–5.76 (1H, m); \(^{13}\text{C NMR} \) (125 MHz, CDCl3, 328K) \(\delta_C \) -0.3, 26.2, 28.2, 38.2, 52.1, 57.5, 69.8, 72.3, 78.0, 81.0, 91.1, 98.1, 101.8, 120.6, 133.5, 153.6, 170.7; HRMS (ESI, +ve) m/z calcd. for C\(_{23}\)H\(_{39}\)NO\(_6\)SiNa 476.2444, found: 476.2434 (M+Na\(^+\)).
(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-phenoxyallyl)oxazolidine-3,4-dicarboxylate (252f)

(2R,4S)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((4-methoxyphenoxy)allyl) oxazolidine-3,4-dicarboxylate (252g)

(2R,4S)-3-tert-Butyl 4-((E)-3-(4-methoxyphenoxy)allyl) 2-tert-butylazoxazolidine-3,4-dicarboxylate 251f (200 mg, 0.493 mmol), TMSCl (188 μL, 1.48 mmol), LHMDS (1M, 1.48 mL, 1.48 mmol) and THF (2.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (160 mg, 77%, dr >99:1). [α]D 20 +57 (c 2.0, CH2Cl2); FTIR (film/cm-1) νmax: 2979, 2957, 2908, 1743, 1721; 1H NMR (500 MHz, CDCl3, 328K) δH 1.03 (9H, s), 1.14 (9H, s), 3.81 (3H, s), 4.34 (1H, d, J = 8.7 Hz), 4.45 (1H, d, J = 8.7 Hz), 5.29 (1H, s), 5.37 (1H, app. dt, J = 10.9, 1.4 Hz), 5.41 (1H, app. dt, J = 17.4, 1.4 Hz), 5.82 (1H, bs), 6.05 (1H, ddd, J = 17.4, 10.9, 4.5 Hz), 6.88–6.94 (3H, m), 7.19–7.24 (2H, m); 13C NMR (125 MHz, CDCl3, 328K) δC 26.4, 27.7, 38.7, 46.3, 52.3, 70.9, 71.8, 81.2, 98.7, 115.8, 119.3, 121.1, 129.0, 133.7, 153.4, 157.9, 170.9; HRMS (ESI, +ve) m/z calcd. for C23H33NO6Na 442.2206, found: 442.2177 (M+Na)+.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(4-methoxyphenoxy)allyl) oxazolidine-3,4-dicarboxylate (252g)

(2R,4S)-3-tert-Butyl 4-((E)-3-(4-methoxyphenoxy)allyl) 2-tert-butylazoxazolidine-3,4-dicarboxylate 251g (200 mg, 0.459 mmol), TMSCl (176 μL, 1.38 mmol), LHMDS (1M, 1.38 mL, 1.38 mmol) and THF (2.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1
Pet/EtOAc) affords the methyl ester as a colourless oil (141 mg, 68%, dr >99:1). [α]$_D^{20}$ +31 (c 3.0, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2981, 2956, 2836, 1742, 1709, 1506; 1H NMR (500 MHz, CDCl$_3$, 328K) δH 1.01 (9H, s), 1.16 (9H, s), 3.73 (3H, s), 3.79 (3H, s), 4.32 (1H, d, $J = 8.6$ Hz), 4.42 (1H, d, $J = 8.6$ Hz), 5.27 (1H, s), 5.33 (1H, d, $J = 10.8$ Hz), 5.39 (1H, d, $J = 17.4$ Hz), 5.50 (1H, bs), 6.05 (1H, ddd, $J = 17.4$, 10.8, 4.1 Hz), 6.76 (2H, app. d, $J = 9.1$ Hz), 6.84 (2H, app. d, $J = 9.1$ Hz); 13C NMR (125 MHz, CDCl$_3$, 328K) δC 26.4, 27.8, 38.7, 52.2, 55.7, 70.8, 71.8, 77.1, 81.1, 98.6, 114.4, 116.7, 119.3, 134.0, 152.1, 153.4, 154.3, 170.9; HRMS (ESI, +ve) m/z calcd. for C$_{24}$H$_{35}$NO$_7$Na 472.2311, found: 472.2309 (M+Na$^+$).

$(2R,4R)$-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(4-(trifluoromethyl)phenoxy)allyl) oxazolidine-3,4-dicarboxylate (252h)

(2R,4S)-3-tert-Butyl 4-((E)-3-(4-(trifluoromethyl)phenoxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate 251h (150 mg, 0.317 mmol), TMSCl (121 μL, 0.951 mmol), LHMDS (1M, 951 μL, 0.951 mmol) and THF (1.50 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (133 mg, 73%, dr >99:1). [α]$_D^{20}$ +47 (c 2.0, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2980, 2956, 2913, 1741, 1710, 1614; 1H NMR (500 MHz, CDCl$_3$, 328K) δH 1.03 (9H, s), 1.14 (9H, s), 3.82 (3H, s), 4.35 (1H, d, $J = 8.8$ Hz), 4.44 (1H, d, $J = 8.8$ Hz), 5.26 (1H, s), 5.34–5.43 (2H, m), 5.91 (1H, bs), 6.00–6.10 (1H, m), 6.99 (2H, app. d, $J = 8.6$ Hz), 7.50 (2H, app. d, $J = 8.6$ Hz); 13C NMR (125 MHz, CDCl$_3$, 328K) δC 26.4, 27.7, 38.7, 52.4, 70.8, 71.7, 81.4, 98.7, 115.8, 119.6, 123.2, 123.6 (q, $J = 32.7$ Hz), 125.4, 126.6 (q, $J = 3.8$ Hz), 132.9, 153.3, 160.3, 170.6; HRMS (ESI, +ve) m/z calcd. for C$_{24}$H$_{32}$F$_3$NO$_6$Na 510.2079, found: 510.2085 (M+Na$^+$).
(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(2-iodophenoxy)allyl) oxazolidine-3,4-dicarboxylate (252i)

(2R,4S)-3-tert-Butyl 4-((E)-3-(2-iodophenoxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate 251i (166 mg, 0.312 mmol), TMSCl (120 μL, 0.937 mmol), LHMDS (1M, 937 μL, 0.937 mmol) and THF (1.70 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (15:1 Pet/EtOAc) affords the methyl ester as a colourless oil (99 mg, 58%, dr >99:1). [α]D²⁰ +19 (c 3.0, CH₂Cl₂); FTIR (film/cm⁻¹) νmax: 2978, 2958, 2903, 1742, 1704; ¹H NMR (500 MHz, CDCl₃, 328K) δH 0.99 (9H, s), 1.20 (9H, s), 3.82 (3H, s), 4.50 (1H, d, J = 8.6 Hz), 4.55 (1H, d, J = 8.6 Hz), 5.27–5.35 (2H, m), 5.47 (1H, s), 5.86 (1H, ddd, J = 16.6, 10.8, 5.2 Hz), 6.18 (1H, bs), 6.66 (1H, t, J = 7.6 Hz), 6.79 (1H, d, J = 8.3 Hz), 7.13–7.28 (1H, m), 7.75 (1H, d, J = 7.6 Hz); ¹³C NMR (125 MHz, CDCl₃, 328K) δC 26.3, 27.7, 38.1, 52.3, 69.9, 71.8, 81.2, 86.4, 98.4, 113.3, 120.3, 122.6, 128.1, 129.0, 132.2, 139.3, 153.4, 155.5, 170.7; HRMS (ESI, +ve) m/z calcd. for C₂₃H₃₄INO₆Na 568.1172, found: 568.1167 (M+Na)+. X-Ray: Structure deposited with CCDC (CCDC 812147)

(±)-(anti)-3-tert-Butyl 4-methyl 4-(1-(benzyloxy)allyl)-2-tert-butyloxazolidine-3,4-dicarboxylate (rac-252j)

(±)-(syn)-4-((E)-3-(Benzyloxy)allyl) 3-tert-butyl 2-tert-butyloxazolidine-3,4-dicarboxylate rac-251j (232 mg, 0.553 mmol), TMSCl (211 μL, 1.66 mmol), LHMDS (1M, 1.66 mL, 1.66 mmol) and THF (2.30 mL) were combined according to general
procedure VII (reaction time: 18 hours). Purification by flash chromatography (15:1 Pet/EtOAc) affords the methyl ester as a colourless oil (185 mg, 73%, dr >99:1). FTIR (film/cm⁻¹) ν_{max}: 2981, 2958, 2903, 1741, 1708; 1H NMR (500 MHz, CDCl₃, 328K) δ_H

0.97 (9H, s), 1.41 (9H, s), 3.76 (3H, s), 4.30 (1H, d, $J = 8.5$ Hz), 4.36–4.49 (2H, m), 4.54 (1H, d, $J = 8.5$ Hz), 5.12–5.20 (2H, m), 5.35 (1H, d, $J = 10.4$ Hz), 5.41 (1H, d, $J = 17.2$ Hz), 5.78 (1H, ddd, $J = 17.2, 10.4, 7.0$ Hz), 7.22–7.28 (1H, m), 7.29–7.38 (4H, m);

13C NMR (125 MHz, CDCl₃, 328K) δ_C 26.2, 28.1, 38.3, 52.4, 70.1, 70.2, 72.4, 81.0, 97.6, 98.1, 120.3, 126.8, 127.2, 128.4, 134.0, 138.5, 153.7, 171.1; HRMS (ESI, +ve) m/z calcd. for C₂₄H₃₅NO₆Na 456.2362, found: 456.2340 (M+Na)^+.

(2R,4R)-3-tert-Butyl 4-methyl 4-((S)-1-(benzylloxy)allyl)-2-tert-butylloxazolidine-3,4-dicarboxylate (252j)

(2R,4S)-3-tert-Butyl 4-((E)-3-(benzylloxy)allyl) 2-tert-butylloxazolidine-3,4-dicarboxylate 251j (247 mg, 0.589 mmol), TMSCI (225 μL, 1.77 mmol), LHMDS (1M, 1.77 mL, 1.77 mmol) and THF (2.50 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (15:1 Pet/EtOAc) affords the methyl ester as a colourless oil (185 mg, 73%, dr >99:1). $[\alpha]^{20}_D$ ±0 (c 1.0, CH₂Cl₂). All other data as previously stated.

(2S,4S)-3-tert-Butyl 4-methyl 4-((R)-1-(benzylloxy)allyl)-2-tert-butylloxazolidine-3,4-dicarboxylate (ent-252j)
(2S,4R)-3-tert-Butyl 4-((E)-3-(benzyloxy)allyl) 2-tert-butylxazolidine-3,4-dicarboxylate ent-251j (200 mg, 0.480 mmol), TMSCl (183 µL, 1.44 mmol), LHMDS (1M, 1.44 mL, 1.44 mmol) and THF (2.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (15:1 Pet/EtOAc) affords the methyl ester as a colourless oil (149 mg, 72%, dr >99:1). [α]D
20
±0 (c 1.0, CH2Cl2). All other data as previously stated.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(4-methoxybenzyloxy)allyl) oxazolidine-3,4-dicarboxylate (252k)

(2R,4S)-3-tert-Butyl 4-((E)-3-(4-methoxybenzyloxy)allyl) 2-tert-butylxazolidine-3,4-dicarboxylate 251k (118 mg, 0.260 mmol), TMSCl (100 µL, 0.78 mmol), LHMDS (1M, 780 µL, 0.78 mmol) and THF (1.20 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (8:1 Pet/EtOAc) affords the methyl ester as a colourless oil (90 mg, 75%, dr >99:1). [α]D
20
-6.0 (c 2.0, CH2Cl2); FTIR (film/cm-1) νmax: 2981, 2957, 2908, 1743, 1707; 1H NMR (500 MHz, CDCl3, 328K) δH 0.96 (9H, s), 1.44 (9H, s), 3.75 (3H, s), 3.80 (3H, s), 4.28 (1H, d, J = 8.5 Hz), 4.34-4.39 (2H, m), 4.47 (1H, d, J = 11.1 Hz), 5.08-5.18 (2H, m), 5.34 (1H, app. dt, J = 10.5, 1.4 Hz), 5.40 (1H, d, J = 17.2 Hz), 5.78 (1H, ddd, J = 17.2, 10.5, 6.8 Hz), 6.86 (2H, app. d, J = 8.7 Hz), 7.23 (2H, app. d, J = 8.7 Hz); 13C NMR (125 MHz, CDCl3, 328K) δC 26.3, 28.2, 38.3, 52.0, 55.2, 70.3, 72.4, 78.0, 80.9, 98.3, 113.7, 119.8, 128.4, 130.0, 130.7, 134.3, 153.6, 159.0, 171.0; HRMS (ESI, +ve) m/z calcd. for C25H37NO7Na 486.2468, found: 486.2442 (M+Na)+.
(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(2,6-dichlorobenzyloxy)allyl) oxazolidine-3,4-dicarboxylate (252l)

(2R,4S)-3-tert-Butyl 4-((E)-3-(2,6-dichlorobenzyloxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate 251l (215 mg, 0.440 mmol), TMSCl (168 μL, 1.32 mmol), LHMDS (1M, 1.32 mL, 1.32 mmol) and THF (2.20 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (154 mg, 70%, dr 93:7). FTIR (film/cm-1) νmax: 2979, 2957, 2908, 1743, 1707; 1H NMR (500MHz, CDCl3, 328K) δH Major Diastereomer 0.96 (9H, s), 1.48 (9H, s), 3.73 (3H, s), 4.27 (1H, d, J = 8.7 Hz), 4.33 (1H, d, J = 8.7 Hz), 4.76 (1H, d, J = 10.8 Hz), 4.81 (1H, d, J = 10.8 Hz), 5.10–5.19 (2H, m), 5.24 (1H, d, J = 10.3 Hz), 5.38 (1H, d, J = 17.2 Hz), 5.77 (1H, ddd, J = 17.2, 10.3, 7.4 Hz), 7.14 (1H, m), 7.27 (2H, d, J = 5.8 Hz); δH Minor Diastereomer 0.94 (9H, s), 1.43 (9H, s), 3.73 (3H, s), 4.27 (1H, d, J = 8.7 Hz), 4.33 (1H, d, J = 8.7 Hz), 4.76 (1H, d, J = 10.8 Hz), 4.81 (1H, d, J = 10.8 Hz), 5.10–5.19 (2H, m), 5.45 (1H, d, J = 10.3), 5.53 (1H, d, J = 17.2 Hz), 5.77 (1H, ddd, J = 17.2, 10.3, 7.4 Hz), 7.14 (1H, m), 7.36 (2H, d, J = 8.0 Hz); 13C NMR (125MHz, CDCl3, 328K) δC 26.5, 28.3, 38.4, 51.9, 66.1, 70.3, 72.3, 79.3, 80.8, 98.3, 119.9, 129.5, 134.0, 134.3, 136.9, 137.4, 153.2, 170.7; HRMS (ESI, +ve) m/z calcd. for C24H33Cl2NO6Na 524.1583, found: 522.1571 (M+Na)+.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(2-iodobenzyloxy)allyl) oxazolidine-3,4-dicarboxylate (252m)
Crude (2R,4S)-3-tert-butyl 4-((E)-3-(2-iodobenzyloxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate 251m (200 mg, 0.367 mmol), TMSCl (140 μL, 1.10 mmol), LHMDS (1M, 1.10 mL, 1.10 mmol) and THF (2.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (8:1 Pet/EtOAc) affords the methyl ester as a colourless oil (104 mg, 51%, dr >99:1). [α]_D^{20} +5.3 (c 3.0, CH_2Cl_2); FTIR (film/cm⁻¹) ν_max: 2978, 2957, 2912, 1743, 1706; 1H NMR (500 MHz, CDCl_3, 328K) δ_H 0.97 (9H, s), 1.35 (9H, s), 3.77 (3H, s), 4.35 (2H, d, J = 10.5 Hz), 4.44 (1H, d, J = 8.5 Hz), 4.50 (1H, d, J = 11.2 Hz), 5.20 (1H, s), 5.25 (1H, bs), 5.36 (1H, d, J = 10.3 Hz), 5.42 (1H, d, J = 17.2 Hz), 5.80 (1H, ddd, J = 17.2, 10.3, 6.9 Hz), 6.95 (1H, t, J = 7.7 Hz), 7.36 (1H, t, J = 7.7 Hz), 7.52 (1H, d, J = 7.7 Hz), 7.76 (1H, d, J = 7.7 Hz); 13C NMR (125 MHz, CDCl_3, 328K) δ_C 26.2, 28.0, 38.3, 52.2, 70.0, 72.4, 74.5, 78.0, 81.0, 95.8, 98.4, 120.1, 127.9, 128.0, 128.5, 133.7, 138.6, 140.8, 153.6, 170.8; HRMS (ESI, +ve) m/z calcd. for C_{24}H_{34}INO_6Na 582.1329, found: 582.1344 (M+Na)^+.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-isobutoxyallyl)oxazolidine-3,4-dicarboxylate (252n)

Crude (2R,4S)-3-tert-butyl 4-((E)-3-isobutoxyallyl) 2-tert-butyloxazolidine-3,4-dicarboxylate 251n (154 mg, 0.400 mmol), TMSCl (153 μL, 1.20 mmol), LHMDS (1M, 1.2 mL, 1.20 mmol) and THF (1.50 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (88 mg, 55%, dr >99:1). [α]_D^{20} +8 (c 3.0, CH_2Cl_2); FTIR (film/cm⁻¹) ν_max: 2958, 2909, 2874, 1744, 1712; 1H NMR (500 MHz, CDCl_3, 328K) δ_H 0.88 (3H, d, J = 6.7 Hz), 0.90 (3H, d, J = 6.7 Hz), 0.95 (9H, s), 1.49 (9H, s), 1.83 (1H, sept., J = 6.7 Hz), 3.09 (1H, dd, J = 8.2, 6.1 Hz), 3.19 (1H, t, J = 8.2 Hz), 3.72 (3H, s), 4.25 (1H, d, J = 8.5 Hz), 4.31 (1H, d, J = 8.5 Hz), 4.89 (1H, bs), 5.12 (1H, s), 5.29 (1H, d, J = 10.5 Hz), 5.34 (1H, d, J = 17.3 Hz), 5.72 (1H, ddd, J = 17.3, 10.5, 6.8 Hz); 13C NMR (125 MHz, CDCl_3, 328K) δ_C 19.2, 19.5, 26.3, 28.3, 28.7,
38.4, 51.9, 70.0, 72.3, 75.4, 77.7, 80.6, 98.3, 119.2, 134.8, 153.5, 171.0; HRMS (ESI, +ve) m/z calcd. for C_{21}H_{37}NO_6Na 422.2519, found: 422.2509 (M+Na)^+.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(cyclohexyloxy)allyl)oxazolidine-3,4-dicarboxylate (252o)

![Chemical Structure](image)

Crude (2R,4S)-3-tert-butyl 4-((E)-3-(cyclohexyl)allyl) 2-tert-butyl oxazolidine-3,4-dicarboxylate 252o (200 mg, 0.486 mmol), TMSCl (186 μL, 1.46 mmol), LHMDS (1M, 1.46 mL, 1.46 mmol) and THF (2.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (15:1 Pet/EtOAc) affords the methyl ester as a colourless oil (97 mg, 47%, dr >99:1). [α]_D^{20} +20 (c 2.0, CH_2Cl_2); FTIR (film/cm-1) ν_{max}: 2986, 2936, 2860, 1740, 1703; ^1H NMR (500 MHz, CDCl_3, 328K) δ_H 0.98 (9H, s), 1.11–1.35 (5H, m), 1.47–1.53 (10H, s), 1.64–1.76 (2H, m), 1.80–1.93 (2H, m), 3.32–3.40 (1H, m), 3.72 (3H, s), 4.26 (1H, d, J = 8.4 Hz), 4.31 (1H, d, J = 8.4 Hz), 5.06 (1H, bs), 5.13 (1H, s), 5.25 (1H, d, J = 10.6 Hz), 5.39 (1H, d, J = 17.3 Hz), 5.88 (1H, ddd, J = 17.3, 10.6, 3.9 Hz); ^13C NMR (125 MHz, CDCl_3, 328K) δ_C 24.2, 24.3, 25.7, 26.6, 28.3, 32.4, 33.5, 38.7, 51.8, 70.5, 72.3, 80.9, 98.4, 118.6, 136.8, 153.1, 171.0; HRMS (ESI, +ve) m/z calcd. for C_{23}H_{39}NO_6Na 448.2675, found: 448.2671 (M+Na)^+.

(2R,4R)-3-tert-Butyl 4-methyl 4-((S)-1-(but-3-en-2-yloxy)allyl)-2-tert-butyloxazolidine-3,4-dicarboxylate (252p)

![Chemical Structure](image)
(2R,4S)-4-((E)-3-(But-3-en-2- yloxy)allyl) 3-tert-buty 1 2-tert-butyloxazolidine-3,4-dicarboxylate **251p** (200 mg, 0.522 mmol), TMSCl (200 μL, 1.56 mmol), LHMDS (1M, 1.56 mL, 1.56 mmol) and THF (2.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (149 mg, 72%, dr 1:1). FTIR (film/cm⁻¹) νmax: 2979, 2912, 2872, 1744, 1714; ¹H NMR (500MHz, CDCl₃, 328K) δH

Diastereomer A 0.97 (9H, s), 1.20 (3H, d, J = 6.4 Hz), 1.49 (9H, s), 3.71 (3H, s), 4.01 (1H, app. quint., J = 6.4 Hz), 4.25–4.33 (2H, m), 4.95–5.15 (4H, m), 5.23–5.39 (2H, m), 5.72–5.87 (2H, m); δH **Diastereomer B** 0.98 (9H, s), 1.22 (3H, d, J = 6.4 Hz), 1.50 (9H, s), 3.73 (3H, s), 4.01 (1H, app. quint., J = 6.4 Hz), 4.25–4.33 (2H, m), 4.95–5.15 (4H, m), 5.23–5.39 (2H, m), 5.72–5.87 (2H, m); ¹³C NMR (125MHz, CDCl₃, 328K) δC **Diastereomer A** 20.8, 26.5, 28.3, 38.6, 51.8, 70.5, 72.2, 74.4, 75.4, 80.8, 98.3, 114.2, 119.1, 135.3, 140.3, 153.1, 170.9; δC **Diastereomer B** 21.6, 26.6, 28.3, 38.7, 51.9, 70.5, 72.3, 74.4, 75.9, 81.0, 98.4, 115.9, 119.8, 136.1, 141.2, 153.2, 171.0; HRMS (ESI, +ve) m/z calcd. for C₂₁H₃₅NO₆Na 420.2362, found: 420.2347 (M+Na)+.

(2R,4R)-4-Benzyl 3-tert-butyl 4-((S)-1-(benzyloxy)allyl)-2-(tert-butyloxazolidine-3,4-dicarboxylate (254j)

To a solution of (2R,4S)-3-tert-butyl 4-((E)-3-(benzyloxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate **251j** (200 mg, 0.480 mmol) in THF (2.00 mL) at -78 °C was added TMSCl (183 μL, 1.44 mmol). After 10 mins LHMDS (1M, 1.44 mL, 1.44 mmol) was added via syringe pump at an addition rate of 0.5 mL min⁻¹ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Residue dissolved in Acetone (5 mL) and K₂CO₃ (66 mg, 0.48 mmol) and BnBr (143 μL, 1.20 mmol) added and allowed to stir for 12 hours. Partioned between EtOAc (25 mL) and sat. NaHCO₃ (25 mL) and the
organic layer washed with brine (1× 25 mL), dried over Na₂SO₄ and concentrated *in vacuo* to afford the benzyl ester as a colourless oil (175 mg, 72%, dr >99:1). [α]²⁰_D -9.3 (c 3.0, CH₂Cl₂); FTIR (film/cm⁻¹) ν_{max}: 2978, 2905, 2875, 1739, 1705; ¹H NMR (500MHz, CDCl₃, 328K) δ_H 0.94 (9H, s), 1.40 (9H, s), 4.35 (1H, d, J = 8.6 Hz), 4.38–4.47 (2H, m), 4.56 (1H, d, J = 11.4 Hz), 5.12–5.27 (4H, m), 5.32 (1H, d, J = 10.5 Hz), 5.36 (1H, d, J = 17.3 Hz), 5.80 (1H, ddd, J = 17.3, 10.5, 6.9 Hz), 7.22–7.29 (1H, m), 7.29–7.39 (7H, m), 7.40–7.45 (2H, m); ¹³C NMR (125MHz, CDCl₃, 328K) δ_C 26.3, 28.1, 38.4, 67.1, 70.0, 70.6, 72.4, 78.1, 80.9, 98.4, 120.0, 126.9, 127.1, 128.1, 128.2, 128.4, 134.1, 135.5, 138.5, 153.7, 170.2; HRMS (ESI, +ve) m/z calcd. for C₃₀H₄₀NO₆ 510.2856, found: 510.2834 (M+H)⁺.

(2S,4S)-4-Benzyl 3-tert-buty 4-((R)-1-(benzyloxy)allyl)-2-tert-butyloxazolidine-3,4-dicarboxylate (ent-254j)

To a solution of *(2S,4R)-3-tert-buty 4-((E)-3-(benzyloxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate ent-251j* (225 mg, 0.536 mmol) in THF (2.30 mL) at -78 °C was added TMSCl (205 μL, 1.61 mmol). After 10 mins LHMDS (1M, 1.61 mL, 1.61 mmol) was added *via* syringe pump at an addition rate of 0.5 mL min⁻¹ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated *in vacuo* to afford the crude acid. Residue dissolved in Acetone (5 mL) and K₂CO₃ (74 mg, 0.536 mmol) and BnBr (160 μL, 1.34 mmol) added and allowed to stir for 12 hours. Partitioned between EtOAc (25 mL) and sat. NaHCO₃ (25 mL) and the organic layer washed with brine (1× 25 mL), dried over Na₂SO₄ and concentrated *in vacuo* to afford the benzyl ester as a colourless oil (164 mg, 60%, dr >99:1). [α]²⁰_D +9.3 (c 2.7, CH₂Cl₂). All other data as previously stated.
(2R,4R)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((R)-1-(4-methoxybenzyl)oxy)allyl) oxazolidine-3,4-dicarboxylate (254k)

To a solution of (2R,4S)-3-tert-butyl 4-((E)-3-(4-methoxybenzyl)oxy)allyl) 2-tert-butylloxazolidine-3,4-dicarboxylate 251k (1.29 g, 2.87 mmol) in THF (13.0 mL) at -78 °C was added TMSCl (1.10 mL, 8.61 mmol). After 10 mins LHMDS (1M, 8.61 mL, 8.61 mmol) was added via syringe pump at an addition rate of 0.5 mL min⁻¹ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Residue dissolved in Acetone (15 mL) and K₂CO₃ (397 mg, 2.87 mmol) and BnBr (854 μL, 7.18 mmol) added and allowed to stir for 3 hours. Partioned between EtOAc (50 mL) and sat. NaHCO₃ (50 mL) and the organic layer washed with brine (1× 50 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the benzyl ester as a colourless oil (895 mg, 58%, dr >99:1). [α]²⁰D -11.5 (c 2.0, CH₂Cl₂); FTIR (film/cm⁻¹) νmax: 2977, 2961, 2910, 1737, 1706; ¹H NMR (500MHz, CDCl₃, 328K) δH 0.94 (9H, s), 1.42 (9H, s), 3.80 (3H, s), 4.32 (1H, d, J = 8.6 Hz), 4.35–4.41 (2H, m), 4.48 (1H, d, J = 11.0 Hz), 5.12–5.26 (4H, m), 5.31 (1H, d, J = 10.5 Hz), 5.36 (1H, d, J = 17.3 Hz), 5.74–5.84 (1H, m), 6.87 (2H, app. d, J = 8.7 Hz), 7.25 (2H, app. d, J = 8.7 Hz), 7.30–7.44 (5H, m); ¹³C NMR (125MHz, CDCl₃, 328K) δC 26.3, 28.2, 38.4, 55.2, 67.1, 70.1, 70.4, 72.4, 78.1, 80.9, 98.4, 113.7, 119.8, 128.2, 128.4, 128.5, 130.0, 130.7, 134.2, 135.5, 153.7, 159.1, 170.2; HRMS (ESI, +ve) m/z calcd. for C₃₁H₄₂NO₇ 540.2961, found: 540.2986 (M+H)⁺.
(2S,4S)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((R)-1-(4-methoxybenzyl)oxy)allyl) oxazolidine-3,4-dicarboxylate (ent-254k)

To a solution of (2S,4R)-3-tert-butyl 4-((E)-3-(4-methoxybenzyl)oxy)allyl) 2-tert-butyloxazolidine-3,4-dicarboxylate ent-251k (700 mg, 1.56 mmol) in THF (7.0 mL) at -78 °C was added TMSCl (596 μL, 4.68 mmol). After 10 mins LHMDS (1M, 4.68 mL, 4.68 mmol) was added via syringe pump at an addition rate of 0.5 mL min⁻¹ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Residue dissolved in Acetone (15 mL) and K₂CO₃ (216 mg, 1.56 mmol) and B5nBr (464 μL, 3.90 mmol) added and allowed to stir for 3 hours. Partioned between EtOAc (50 mL) and sat. NaHCO₃ (50 mL) and the organic layer washed with brine (1×50 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the benzyl ester as a colourless oil (500 mg, 60%, dr >99:1). [α]D²⁰ +10.6 (c 2.45, CH₂Cl₂). All other data as previously stated.

(Z)-Methyl 3-methoxyacrylate (255)

To solution of silver(I) trifluoromethane sulphonate (385 mg, 1.50 mmol, 10 mol%) in methanol (15 mL) was added methyl propiolate (1.33 mL, 15.0 mmol, 1.0 eq). The reaction mixture was stirred at room temperature for 21 hours and concentrated in vacuo. The residue was taken up in chloroform (50 mL), filtered through celite and the filtrate concentrated in vacuo to afford the pure vinylogous carbonate as a colourless oil (1.62 g, 93%). ¹H NMR (500MHz, CDCl₃) δH 3.66 (3H, s), 3.86 (3H, s), 4.82 (1H, d, J
= 7.1 Hz), 6.44 (1H, d, \(J = 7.1\) Hz); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_c\) 51.0, 62.6, 96.0, 160.2, 165.7. All analytical data is in accordance with literature precedence.\(^{297}\)

\(\text{(Z)-3-Methoxyprop-2-en-1-ol (256)}\)

(Z)-Methyl 3-methoxyacrylate 255 (1.62 g, 14.0 mmol) was reduced according to general procedure II (reaction time 4 hours) to afford the product as a pale yellow oil (699 mg, 57%). \(^1\)H NMR (500MHz, d\(_6\)-acetone) \(\delta_h\) 3.37 (1H, t, \(J = 5.6\) Hz), 3.57 (3H, s), 4.09 (2H, m), 4.52 (1H, q, \(J = 6.6\) Hz), 5.96 (1H, dt, \(J = 6.6, 1.3\) Hz); \(^{13}\)C NMR (125MHz, d\(_6\)-acetone) \(\delta_c\) 55.7, 59.8, 107.5, 147.7. All analytical data is in accordance with literature precedence.\(^{298}\)

\(\text{(2R,4S)-3-tert-Butyl 4-((Z)-3-methoxyallyl) 2-tert-butyloxazolidine-3,4-dicarboxylate (257)}\)

EDCi.HCl (767 mg, 4.00 mmol), triethylamine (560 \(\mu\)L, 4.00 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (1.09 g, 4.00 mmol), DMAP (5 mol%), DCM (100 mL) and (Z)-3-methoxyprop-2-en-1-ol 256 (176 mg, 2.00 mmol) were combined according to general procedure IV (reaction time: 2 hours). Purified on a short pad of silica (2:1 Pet:EtOAc + 1% Net\(_3\)) to afford the title compound as a colourless oil (330 mg, 48%). \([\alpha]_D^{20}\) -19.6 (c 2.3, CHCl\(_3\)); FTIR (film/cm\(-1\)) \(\nu\)max: 2974, 2939, 2909, 2872, 1734, 1705, 1665; \(^1\)H NMR (500MHz, d\(_6\)-acetone) \(\delta_h\) 0.93 (9H, s), 1.46 (9H, s), 3.66 (3H, s), 4.14–4.22 (2H, m), 4.51–4.61 (2H, m), 4.67 (1H, app d, \(J = 7.2\) Hz), 4.71 (1H, t, \(J = 7.2\) Hz), 4.99 (1H, s), 6.23 (1H, d, \(J = 6.1\) Hz); \(^{13}\)C NMR (125MHz, d\(_6\)-acetone) \(\delta_c\) 25.4, 27.5, 37.5, 57.3, 58.3, 59.8, 68.2, 80.3, 97.2, 99.4, 150.8, 154.8, 170.2; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{30}\)NO\(_6\) 344.2073, found: 344.2056 (M+H)\(^+\).
(E)-Methyl 3-methoxybut-2-enoate (259)

\[
\begin{align*}
\text{MeO} & \quad \text{Me} \\
\text{MeO} & \quad \text{Me} \\
\end{align*}
\]

To a stirred solution of methyl acetoacetate (4.00 mL, 37.0 mmol, 1.0 eq) and trimethyl orthoformate (4.12 mL, 37.6 mmol, 1.02 eq) at room temperature was added 3 drops of conc. H₂SO₄ and reaction mixture stirred at room temperature for 24 hours. Partitioned between NaHCO₃ (sat) (50 mL) and DCM and extracted with DCM (3 × 50 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo. Purified by flash chromatography (20:1 Pet/EtOAc) to afford the pure vinylogous carbonate as a colourless liquid (2.87 g, 60%). ¹H NMR (500MHz, CDCl₃) δH 2.30 (3H, s), 3.63 (3H, s), 3.68 (3H, s), 5.03 (1H, s); ¹³C NMR (125MHz, CDCl₃) δC 18.9, 50.8, 55.4, 90.5, 168.4, 173.3. All analytical data is in accordance with literature precedence.²⁰⁶

Methyl 3,3-dimethoxybutanoate (260)

\[
\begin{align*}
\text{MeO} & \quad \text{Me} \\
\text{MeO} & \quad \text{Me} \\
\end{align*}
\]

Undesired side product from synthesis of (E)-methyl 3-methoxybut-2-enoate 259. ¹H NMR (500MHz, CDCl₃) δH 1.47 (3H, s), 2.69 (2H, s), 3.23 (6H, s), 3.70 (3H, s); ¹³C NMR (125MHz, CDCl₃) δC 21.8, 42.1, 48.4, 51.8, 99.8, 170.2. All analytical data is in accordance with literature precedence.²⁹⁹

(E)-3-Methoxybut-2-en-1-ol (261)

\[
\begin{align*}
\text{Me} & \quad \text{MeO} \\
\end{align*}
\]

(E)-Methyl 3-methoxybut-2-enoate 259 (780 mg, 6 mmol) was reduced according to general procedure II (reaction time 4 hours) to afford the product as a colourless oil (484 mg, 79%). ¹H NMR (500MHz, d₆-acetone) δH 1.77 (3H, s), 3.26 (1H, t, J = 5.6 Hz), 3.47 (3H, s), 4.04 (2H, dd, J = 7.4, 5.6 Hz), 4.67 (1H, t, J = 7.4 Hz); ¹³C NMR
(125MHz, d6-acetone) δC 16.3, 54.3, 58.8, 97.8, 157.0. All analytical data is in accordance with literature precedence.300

\((2R,4S)-3\text{-}\text{tert}-\text{Butyl} 4\text{-}(\text{E})\text{-}3\text{-methoxybut-2-enyl})2\text{-}\text{tert}-\text{butyloxazolidine-3,4-dicarboxylate (262)}\)

EDC\text{I.}\text{HCl} (767 mg, 4.00 mmol), triethylamine (560 μL, 4.00 mmol), \((2R,4S)-3\text{-}(\text{tert-butoxycarbonyl})2\text{-}\text{tert}-\text{butyloxazolidine-4-carboxylic acid 250}\) (1.09 g, 4.00 mmol), DMAP (5 mol%), DCM (100 mL) and \((\text{E})\text{-}3\text{-methoxybut-2-en-1-ol 261}\) (204 mg, 2.00 mmol) were combined according to general procedure IV (reaction time: 3 hours) to afford the title compound as a pale yellow oil (quant) which used in its crude form.

\((2R,4S)-4\text{-}\text{Allyl 3\text{-}tert-buty}l 2\text{-}\text{tert}-\text{butyloxazolidine-3,4-dicarboxylate (265a)}\)

Allyl alcohol (58 μL, 0.85 mmol), \((2R,4S)-3\text{-}(\text{tert-butoxycarbonyl})2\text{-}\text{tert}-\text{butyloxazolidine-4-carboxylic acid 250}\) (255 mg, 0.94 mmol), EDC\text{I.}\text{HCl} (180 mg, 0.94 mmol), triethylamine (131 μL, 0.94 mmol), DMAP (5 mol%) and DCM (40 mL) were combined according to general procedure II to afford the title compound as a yellow oil (224 mg, 84%). [α]\text{D}^{30} = -19.5 (c 1.2, CH\text{2Cl2}); FTIR (film/cm\text{-1}) ν\text{max}: 2975, 2906, 2871, 1759, 1704, 1480; 1H NMR (500MHz, CDCl3) δH 0.94 (9H, s), 1.46 (9H, s), 4.18 (1H, t, J = 8.6 Hz), 4.26 (1H, dd, J = 8.6, 6.5 Hz), 4.64 (2H, qd, J = 13.4, 5.7 Hz), 4.70 (1H, bs), 5.04 (1H, s), 5.24 (1H, d, J = 10.5 Hz), 5.34 (1H, dd, J = 17.2, 1.3 Hz), 5.85-5.95 (1H, m); 13C NMR (125MHz, CDCl3) δC 25.8, 28.2, 37.8, 59.7, 65.8, 68.4, 81.3, 97.6, 118.6, 131.6, 155.0, 170.1; HRMS (ESI, +ve) m/z calcd. for C\text{16H}_{27}\text{NO}_5\text{Na} 336.1787, found: 336.1780 (M+Na)\text{+}.
(2R,4S)-4-((E)-But-2-enyl) 3-tert-butyly 2-tert-butyloxazolidine-3,4-dicarboxylate (265b)

Crotyl alcohol (156 μL, 1.83 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (550 mg, 2.01 mmol), EDCi.HCl (386 mg, 2.01 mmol), triethylamine (282 μL, 2.01 mmol), DMAP (5 mol%) and DCM (90 mL) were combined according to general procedure II to afford the title compound as a pale yellow oil (157 mg, 84%). $[\alpha]_D^{20} -23.6$ (c 1.1, CH₂Cl₂); FTIR (film/cm⁻¹) ν_{max}: 2963, 2912, 1758, 1706, 1479; 1H NMR (500MHz, CDCl₃) δ_H 0.94 (9H, s), 1.46 (9H, s), 1.71 (3H, d, $J = 6.6$ Hz), 4.17 (1H, t, $J = 8.5$ Hz), 4.24 (1H, t, $J = 8.5$ Hz), 4.57 (2H, d, $J = 6.5$ Hz), 4.67 (1H, bs), 5.04 (1H, s), 5.58 (1H, dtd, $J = 15.3, 6.6, 1.6$ Hz), 5.81 (1H, dq, $J = 15.3, 6.6$ Hz); 13C NMR (125MHz, CDCl₃) δ_C 17.7, 25.8, 28.2, 37.9, 59.8, 65.9, 68.5, 81.2, 97.6, 124.6, 131.8, 155.0, 170.2; HRMS (ESI, +ve) m/z calcd. for C₁₇H₂₉NO₅Na 350.1943, found: 350.1935 (M+Na)⁺.

(2R,4S)-3-tert-Butyl 4-(2-methylallyl) 2-tert-butyloxazolidine-3,4-dicarboxylate (265c)

2-Methyl-2-propen-1-ol (154 μL, 1.83 mmol), (2R,4S)-3-(tert-butoxycarbonyl)-2-tert-butyloxazolidine-4-carboxylic acid 250 (550 mg, 2.01 mmol), EDCi.HCl (386 mg, 2.01 mmol), triethylamine (282 μL, 2.01 mmol), DMAP (5 mol%) and DCM (90 mL) were combined according to general procedure II to afford the title compound as a yellow oil (250 mg, 97%). $[\alpha]_D^{20} -20.8$ (c 1.3, CH₂Cl₂); FTIR (film/cm⁻¹) ν_{max}: 2976, 1760, 1709, 1480; 1H NMR (500MHz, CDCl₃) δ_H 0.94 (9H, s), 1.47 (9H, s), 1.76 (3H, s), 4.17 (1H, t, $J = 8.6$ Hz), 4.28 (1H, dd, $J = 8.6, 6.2$ Hz), 4.50 (1H, d, $J = 13.1$ Hz), 4.61 (1H, d, $J = 13.1$ Hz), 4.61 (1H, d, $J = 13.1$ Hz).
13.1 Hz), 4.73 (1H, bs), 4.94 (1H, s), 5.01 (1H, s), 5.05 (1H, s); 13C NMR (125MHz, CDCl$_3$) δC 19.4, 25.8, 28.2, 37.8, 59.7, 68.4, 68.5, 81.3, 97.6, 113.4, 139.3, 155.0, 170.1; HRMS (ESI, +ve) m/z calcd. for C$_{17}$H$_{29}$NO$_5$Na 350.1943, found: 350.1932 (M+Na)$^+$.

(2R4S)-4-But-2-ynyl 3-tert-butyl 2-tert-butylloxazolidine-3,4-dicarboxylate (265d)

αD20 $-$19.3 (c 1.4, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2973, 2874, 1764, 1742, 1707, 1480; 1H NMR (500MHz, CDCl$_3$) δH 0.96 (9H, s), 1.48 (9H, s), 1.84 (3H, t, J = 2.4 Hz), 4.20 (1H, t, J = 8.6 Hz), 4.27 (1H, t, J = 8.6 Hz), 4.72 (3H, app. q, J = 2.4 Hz), 5.05 (1H, s); 13C NMR (125MHz, CDCl$_3$) δC 3.6, 25.8, 28.2, 37.9, 53.5, 59.6, 68.4, 72.7, 81.3, 83.6, 97.7, 155.0, 170.0; HRMS (ESI, +ve) m/z calcd. for C$_{17}$H$_{27}$NO$_5$Na 348.1787, found: 348.1768 (M+Na)$^+$.

To a solution of (2R,4S)-4-But-2-ynyl 3-tert-butyl 2-tert-butylloxazolidine-3,4-dicarboxylate 265d (300 mg, 0.92 mmol) in EtOAc (22 mL) was added Lindlar catalyst (5 mol%) and quinoline (5 mol%) and the reaction was stirred at room temperature under an atmosphere of hydrogen for 90 min. The reaction mixture was filtered through
celite and the filtrate concentrated in vacuo. Purification by flash chromatography (4:1 Pet:EtOAc) afforded the title compound as a pale yellow oil (172 mg, 57%). \([\alpha]_D^{20} -27.5\) (c 1.2, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) $\nu$$_{\text{max}}$: 2975, 2939, 2875, 1759, 1706, 1479; 1H NMR (500MHz, CDCl$_3$) $\delta$$_H$ 0.93 (9H, s), 1.45 (9H, s), 1.69 (3H, dd, J = 7.0, 0.8 Hz), 4.20 (1H, t, J = 8.5 Hz), 4.27 (1H, dd, J = 8.5, 6.2 Hz), 4.66 (1H, bs), 4.70 (2H, d, J = 7.0 Hz), 5.03 (1H, s), 5.36-5.44 (1H, m), 5.68-5.76 (1H, m); 13C NMR (125MHz, CDCl$_3$) $\delta$$_C$ 13.1, 25.8, 28.2, 37.8, 59.7, 60.8, 68.5, 81.2, 97.6, 123.7, 130.1, 155.0, 170.3; HRMS (ESI, +ve) m/z calcd. for C$_{17}$H$_{29}$NO$_5$Na 350.1943, found: 350.1936 (M+Na)$^+$.

(2R,4S)-3-tert-Butyl 4-methyl 4-allyl-2-tert-butyloxazolidine-3,4-dicarboxylate (266a)

Synthesis via Ireland-Claisen Rearrangement (Section 3.4.2 Substrate Rearrangement): (2R,4S)-4-Allyl 3-tert-butyl 2-tert-butyloxazolidine-3,4-dicarboxylate 265a (295 mg, 0.941 mmol), TMSCl (360 μL, 2.82 mmol), LiHMDS (1M, 2.82 mL, 2.82 mmol) and THF (3.00 mL) were combined according to general procedure VII (reaction time: 18 hours). Purification by flash chromatography (15:1 Pet/EtOAc) affords the methyl ester as a pale yellow oil (176 mg, 57%).

Synthesis via Alkylation (Section 5.2.3 Ligand Development):

To a solution of (2R,4S)-3-tert-butyl 4-methyl 2-tert-butyloxazolidine-3,4-dicarboxylate 249 (1.44 g, 5 mmol, 1 eq) and allyl bromide (4.33 mL, 50 mmol, 10 eq) in THF (15 mL) at -84 $^\circ$C was added LHMDS (1M in THF, 15 mL, 15 mmol, 3 eq) \textit{via} syringe pump at a rate of 10 mL/hr and allowed to stir at -84 $^\circ$C for 16 hours. Quenched with NH$_4$Cl (sat.) (30 mL), diluted with water (30 mL) and extracted with EtOAc (1 \times 50 mL) and DCM (2 \times 50 mL). The organics were combined, dried over MgSO$_4$ and concentrated in vacuo. Purification by flash chromatography affords the title compound as a colourless oil (1.33 g, 81%).
Chapter 7

Experimental

\([\alpha]_{D}^{20} +11.7 \) (c 1.2, CH\(_2\)Cl\(_2\)); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}} \): 2978, 2905, 1742, 1711, 1641, 1478; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_{\text{H}} \): 0.97 (9H, s), 1.42 (9H, s), 2.68 (1H, dd, \(J = 14.2, 5.8 \) Hz), 3.08 (1H, s), 3.74 (3H, s), 4.05 (1H, d, \(J = 8.5 \) Hz), 4.22 (1H, dd, \(J = 8.5, 1.6 \) Hz), 5.04 (1H, s), 5.08-5.18 (2H, m), 5.75-5.85 (1H, m); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_{\text{C}} \): 26.5, 28.1, 39.3, 39.4, 52.4, 68.6, 75.2, 80.8, 98.0, 119.5, 132.0, 153.1, 172.1; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{17}\)H\(_{29}\)NO\(_5\)Na 350.1943, found: 350.1937 (M+Na)\(^+\).

\((2R,4S)-3\text{-}\text{tert-Butyl 4-methyl 4-((S)-but-3-en-2-yl)-2-tert-butyloxazolidine-3,4-dicarboxylate (266b)}\)

\((2R,4S)-\text{4-((E)-But-2-enyl) 3\text{-}\text{tert-butyl 2-tert-butyloxazolidine-3,4-dicarboxylate 265b}}\)

(327 mg, 1.00 mmol), TMSCl (382 \(\mu \)L, 3.00 mmol), LiHMDS (1M, 3.00 mL, 3.00 mmol) and THF (3.30 mL) were combined according to general procedure VII to afford the title compound as a colourless oil (149 mg, 44%). \([\alpha]_{D}^{20} -7.5 \) (c 1.2, CH\(_2\)Cl\(_2\)); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}} \): 2981, 2953, 2910, 1744, 1709, 1639, 1565, 1478; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta_{\text{H}} \): 1.01 (9H, s), 1.05 (3H, d, \(J = 7.0 \) Hz), 1.51 (9H, s), 3.71 (1H, s), 3.78 (3H, s), 4.16 (1H, d, \(J = 8.9 \) Hz), 4.33 (1H, d, \(J = 8.9 \) Hz), 5.15-5.21 (3H, m), 5.94-6.04 (1H, m); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_{\text{C}} \): 13.0, 26.5, 28.2, 39.2, 52.2, 60.4, 71.3, 71.6, 81.0, 98.2, 116.4, 139.5, 153.5, 172.1; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{18}\)H\(_{31}\)NO\(_5\)Na 364.2100, found: 364.2066 (M+Na)\(^+\).

\((2R,4S)-3\text{-}\text{tert-Butyl 4-methyl 2\text{-}tert-butyl-4-(2-methylallyl)oxazolidine-3,4-dicarboxylate (266c)}\)
Experimental

(2R,4S)-3-tert-Butyl 4-(2-methylallyl) 2-tert-butylazoxodidine-3,4-dicarboxylate 265c (160 mg, 0.49 mmol), TMSCl (187 μL, 1.47 mmol), LiHMDS (1M, 1.47 mL, 1.47 mmol) and THF (1.2 mL) were combined according to general procedure VII to afford the title compound as a colourless oil (43 mg, 26%). [α]D20 +14.5 (c 1.1, CH2Cl2); FTIR (film/cm⁻¹) νmax: 2986, 2956, 2907, 2871, 1743, 1709, 1643, 1478; ¹H NMR (500MHz, CDCl3) δH 1.02 (9H, s), 1.47 (9H, s), 1.81 (3H, s), 2.69 (1H, d, J = 14.1 Hz), 3.13 (1H, bs), 3.77 (3H, s), 4.16 (1H, d, J = 8.6 Hz), 4.22 (1H, dd, J = 8.6, 1.2 Hz), 4.81 (1H, s), 4.96 (1H, s), 5.08 (1H, s); ¹³C NMR (125MHz, CDCl3) δC 23.6, 26.8, 28.2, 39.5, 40.9, 52.4, 68.9, 74.0, 80.9, 97.9, 116.4, 140.8, 153.0, 172.5; HRMS (ESI, +ve) m/z calcd. for C₁₈H₃₁NO₅Na 364.2100, found: 364.2095 (M+Na)⁺.

(2R,4S)-3-tert-Butyl 4-methyl 4-(buta-2,3-dien-2-yl)-2-tert-butylazoxodidine-3,4-dicarboxylate (266d)

(2R,4S)-4-But-2-ynyl 3-tert-butyl 2-tert-butylazoxodidine-3,4-dicarboxylate 265d (200 mg, 0.62 mmol), TMSCl (235 μL, 1.85 mmol), LiHMDS (1M, 1.85 mL, 1.85 mmol) and THF (2.00 mL) were combined according to general procedure VII to afford the title compound as colourless crystals (117 mg, 56%). [α]D20 -54.5 (c 1.1, CH2Cl2); FTIR (film/cm⁻¹) νmax: 2977, 2910, 2871, 1964, 1763, 1737, 1700, 1479; ¹H NMR (500MHz, CDCl3) δH 0.95 (s, 9H), 1.45 (s, 9H), 1.72 (3H, t, J = 3.1 Hz), 3.72 (3H, s), 4.16 (1H, d, J = 9.2 Hz), 4.48 (1H, d, J = 9.2 Hz), 4.71-4.81 (2H, m), 5.23 (1H, s); ¹³C NMR (125MHz, CDCl3) δC 14.3, 26.2, 27.9, 39.1, 51.9, 71.7, 75.7, 77.2, 80.4, 98.4, 99.8, 153.5, 170.3, 206.4; HRMS (ESI, +ve) m/z calcd. for C₁₈H₂₉NO₅Na 362.1943, found: 362.1925 (M+Na)⁺. X-Ray Crystal structure obtained.

(±)-(syn)-Methyl 2-amino-2-(hydroxymethyl)-3-methoxypent-4-enoate (rac-267)
(±)-(anti)-3-tert-Butyl 4-methyl 2-tert-butyl-4-(1-methoxyallyl)oxazolidine-3,4-dicarboxylate rac-252a (65 mg, 0.181 mmol), MeOH (1 mL) and 6N HCl (0.6 mL, 3.62 mmol) were combined according to general procedure IX. Purified by flash chromatography (95:5 DCM:MeOH) to afford the title compound as a colourless oil (16.1 mg, 47%). FTIR (film/cm⁻¹) νmax: 3365, 3310, 2951, 2897, 2826; ¹H NMR (500MHz, CDCl₃) δH 2.24 (3H, s), 3.24 (3H, s), 3.50 (1H, d, J = 10.9 Hz), 3.76 (1H, d, J = 10.9 Hz), 3.79 (3H, s), 3.87 (1H, d, J = 7.9 Hz), 5.35 (1H, ddd, J = 17.3, 1.4, 0.9 Hz), 5.42 (1H, dd, J = 10.3, 1.4 Hz), 5.71–5.81 (1H, m); ¹³C NMR (125MHz, CDCl₃) δC 52.6, 56.7, 65.5, 66.1, 84.7, 121.0, 132.9, 174.6; HRMS (ESI, +ve) m/z calcd. for C₈H₁₅NO₄Na 212.0899, found: 212.0881 (M+Na)⁺.

(2R,3S)-Methyl 2-amino-2-(hydroxymethyl)-3-methoxypent-4-enoate (267)

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-(((S)-1-methoxyallyl)oxazolidine-3,4-dicarboxylate 252a (100 mg, 0.291 mmol), MeOH (2 mL) and 6N HCl (970 μL, 5.82 mmol) were combined according to general procedure IX (reaction time: 8 hours) to afford the title compound as a colourless oil (42 mg, 76%). [α]_D²⁰ -31.3 (c 1.5, CH₂Cl₂). All other data as previously stated.

(2S,3R)-Methyl 2-amino-2-(hydroxymethyl)-3-methoxypent-4-enoate (ent-267)

(2S,4S)-3-tert-Butyl 4-methyl 2-tert-butyl-4-(((R)-1-methoxyallyl)oxazolidine-3,4-dicarboxylate ent-252a (100 mg, 0.291 mmol), MeOH (2 mL) and 6N HCl (970 μL, 5.82 mmol) were combined according to general procedure IX (reaction time: 8 hours) to afford the title compound as a colourless oil (43 mg, 78%). [α]_D²⁰ +31.6 (c 1.9, CH₂Cl₂). All other data as previously stated.
(2R,4R)-tert-Butyl 2-tert-butyl-4-(hydroxymethyl)-4-((S)-1-methoxyallyl) oxazolidine-3-carboxylate (268)

![Chemical structure](image)

To a stirred solution of lithium aluminium hydride in THF (1M, 840 μL, 0.840 mmol, 2.0 eq) at 0 °C was added a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-methoxyallyl)oxazolidine-3,4-dicarboxylate 252a (150 mg, 0.420 mmol, 1.0 eq) in THF (4 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 4 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo to afford the pure title compound without the need for further purification as a colourless oil (138 mg, 100%). [α]D²⁰ +24.6 (c 1.26, CH₂Cl₂); FTIR (film/cm⁻¹) δmax: 3390, 2978, 2935, 2825, 1694, 1664; ¹H NMR (500MHz, CDCl₃) δH 0.97 (9H, s), 1.53 (9H, s), 3.30 (3H, s), 3.47 (1H, d, J = 8.7 Hz), 3.53 (1H, d, J = 11.7 Hz), 3.79 (1H, d, J = 11.7 Hz), 4.20 (1H, d, J = 8.7 Hz), 4.69 (1H, bs), 5.14 (1H, s), 5.40 (1H, d, J = 10.5 Hz), 5.50 (1H, d, J = 17.4 Hz), 5.71–5.81 (1H, m); ¹³C NMR (125MHz, CDCl₃) δC 26.6, 28.2, 38.6, 57.2, 65.9, 69.5, 70.8, 78.9, 82.0, 98.5, 119.5, 134.2, 156.4; HRMS (ESI, +ve) m/z calcd. for C₁₇H₃₁NO₅Na 352.2100, found: 352.2104 (M+Na)⁺.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-2,5-dihydrofuran-2-yl)oxazolidine-3,4-dicarboxylate (270)

![Chemical structure](image)

To a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-(allyloxy)allyl)oxazolidine-3,4-dicarboxylate 252d (69 mg, 0.180 mmol, 1.0 eq) in DCM (500 μL) was added Hoveyda-Grubbs II (5 mol%, 6 mg, 0.009 mmol) and stirred
at room temperature for 24 hours. Reaction mixture concentrated in vacuo and the residue purified by column chromatography (15:1 Pet/EtOAc) to afford the title compound as a colourless oil (47 mg, 73%). $\left[\alpha\right]_D^{20} +4.0$ (c 1.0, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2978, 2957, 2908, 1709; 1H NMR (500MHz, CDCl$_3$) δ_H 0.99 (9H, s), 1.46 (9H, s), 3.78 (3H, s), 4.07 (2H, s), 4.59 (1H, d, $J = 13.1$ Hz), 4.67 (1H, dd, $J = 13.1$, 6.2 Hz), 5.14 (1H, s), 5.66 (1H, bs), 5.97 (1H, d, $J = 5.9$ Hz), 6.08 (1H, d, $J = 5.9$ Hz); 13C NMR (125MHz, CDCl$_3$) δ_C 26.4, 28.2, 39.0, 52.4, 71.2, 71.7, 75.7, 80.8, 85.9, 98.2, 127.8, 129.5, 153.9, 171.7; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{29}$NO$_6$Na 378.1893, found: 378.1883 (M+Na$^+$).

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-1-(prop-2-ynyloxy)allyl) oxazolidine-3,4-dicarboxylate (272)

![Structural formula of the compound](image)

To a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-(prop-2-ynyloxy)allyl) oxazolidine-3,4-dicarboxylate 252e (474 mg, 1.04 mmol, 1.0 eq) in MeOH (10 mL) was added K$_2$CO$_3$ (360 mg, 2.61 mmol, 2.5 eq) and stirred at room temperature for 30 minutes. Reaction mixture filtered and partitioned between brine and DCM, and extracted with DCM (3 × 15 mL), dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo to afford the terminal alkyne as a pale yellow oil (359 mg, 91%). $\left[\alpha\right]_D^{20} -3.0$ (c 2.0, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 3259, 2979, 2960, 2908, 2872, 1743, 1704; 1H NMR (500MHz, CDCl$_3$) δ_H 0.94 (9H, s), 1.52 (9H, s), 2.37 (1H, t, $J = 2.4$ Hz), 3.73 (3H, s), 4.06 (1H, dd, $J = 15.0$, 2.4 Hz), 4.13 (1H, dd, $J = 15.0$, 2.4 Hz), 4.20 (1H, d, $J = 8.5$ Hz), 4.36 (1H, d, $J = 8.5$ Hz), 5.05 (1H, d, $J = 7.0$ Hz), 5.14 (1H, s), 5.36 (1H, d, $J = 10.4$ Hz), 5.42 (1H, d, $J = 17.2$ Hz), 5.71 (1H, ddd, $J = 17.2$, 10.4, 7.0 Hz); 13C NMR (125MHz, CDCl$_3$) δ_C 26.2, 28.2, 38.2, 52.1, 56.4, 69.8, 72.2, 74.2, 77.8, 79.7, 81.0, 98.2, 120.8, 133.3, 153.6, 170.7; HRMS (ESI, +ve) m/z calcd. for C$_{20}$H$_{31}$NO$_6$Na 404.2049, found: 404.2044 (M+Na$^+$).
(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S)-4-vinyl-2,5-dihydrofuran-2-yl)oxazolidine-3,4-dicarboxylate (273)

To a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-(prop-2-ynyloxy)allyl)oxazolidine-3,4-dicarboxylate (40 mg, 0.105 mmol, 1 eq) in DCM (1.75 mL, [0.06M]) under 1 bar ethylene was added Hoveyda-Grubbs II (3.3 mg, 5.24 μmol, 5 mol%) and the resulting solution allowed to stir for 24 hours. Reaction mixture concentrated in vacuo and purified by flash chromatography (10:1 Pet/EtOAc) to afford the title compound 8 as a colourless oil (20 mg, 50%). [α]D 20° +36.5 (c 2.3, CH2Cl2); FTIR (film/cm-1) υmax: 2976, 2963, 2936, 2905, 2875, 1717; 1H NMR (500MHz, CDCl3) δH 1.02 (9H, s), 1.48 (9H, s), 3.78 (3H, s), 4.04–4.11 (2H, m), 4.66–4.73 (1H, m), 4.79–4.86 (1H, m), 5.05 (1H, d, J = 17.7 Hz), 5.18 (1H, s), 5.21 (1H, d, J = 10.8 Hz), 5.75 (1H, bs), 5.95 (1H, s), 6.53 (1H, dd, J = 17.7, 10.8 Hz); 13C NMR (125MHz, CDCl3) δC 26.4, 28.2, 38.9, 52.1, 71.4, 72.1, 74.2, 80.8, 86.0, 98.4, 116.9, 126.2, 129.2, 141.4, 153.8, 171.5; HRMS (ESI, +ve) m/z calcd. for C20H31NO6Na 404.2049, found: 404.2038 (M+Na)+.

(2R,2'R,4R,4'R)-3-tert-Butyl 4-dimethyl 4,4'-(2S,2'S)-4,4'-(E)-ethene-1,2-diyl)bis(2,5-dihydrofuran-4,2-diyl)bis(2-tert-butyloxazolidine-3,4-dicarboxylate) (274)

Unwanted side product from synthesis of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-4-vinyl-2,5-dihydrofuran-2-yl)oxazolidine-3,4-dicarboxylate 273 (20 mg, 50%). [α]D 20° +72.0 (c 2, CH2Cl2); FTIR (film/cm-1) υmax: 2976, 2960, 2912, 2875, 1713; 1H
NMR (500MHz, CDCl₃) δ_H 1.01 (18H, s), 1.47 (18H, s), 3.79 (6H, s), 4.00–4.10 (4H, m), 4.71 (2H, app. dt, J = 11.9, 2.1 Hz), 4.83 (2H, app. ddd, J = 11.9, 5.6, 2.1 Hz), 5.16 (2H, s), 5.74 (2H, bs), 6.02 (2H, s), 6.17 (2H, s); HRMS (ESI, +ve) m/z calcd. for C₃₈H₅₈N₂O₁₂Na 757.3887, found: 757.3874 (M+Na)⁺.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-(3-methylbenzofuran-2-yl)oxazolidine-3,4-dicarboxylate (275)

To a solution of palladium(II) acetate (0.6 mg, 2.66 μmol), triphenylphosphine (0.7 mg, 2.66 μmol), and silver carbonate (22 mg, 79.8 μmol) in MeCN was added (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-(2-iodophenoxy)allyl)oxazolidine-3,4-dicarboxylate 252i (29 mg, 53.2 μmol) and reaction stirred for 18 hours. Concentrated in vacuo and purified by flash chromatography (10:1 Pet/EtOAc) to afford a mixture of 5-endo and 5-exo products. Upon standing in CDCl₃ a single isomer of the 5-endo is obtained as a colourless oil (22 mg, 100%). [α]D²⁰ -1.8 (c 1.1, CH₂Cl₂); FTIR (film/cm⁻¹) ν_max: 2976, 2957, 2909, 2875, 1766, 1741, 1704; ¹H NMR (500MHz, CDCl₃) δ_H 1.02 (9H, s), 1.11 (9H, s), 2.18 (3H, s), 3.92 (3H, s), 4.48 (1H, d, J = 8.9 Hz), 4.74 (1H, d, J = 8.9 Hz), 5.49 (1H, s), 7.21–7.30 (2H, m), 7.39 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 7.5 Hz); ¹³C NMR (125MHz, CDCl₃) δ_C 7.8, 26.2, 27.6, 38.8, 52.8, 68.7, 76.9, 80.4, 98.7, 111.0, 112.0, 119.1, 122.5, 124.4, 130.3, 148.7, 152.8, 153.7, 169.8; HRMS (ESI, +ve) m/z calcd. for C₂₃H₃₂NO₆ 418.2239, found: 418.2239 (M+H)⁺.

(2S,5S,9R)-tert-Butyl 2-tert-butyl-8-(hydroxymethyl)-9-(4-methoxybenzyloxy)-6-oxo-3,7-dioxa-1-azaspiro[4.4]nonane-1-carboxylate (278)
To a solution of (2S,4S)-4-benzyl 3-tert-butyl 2-tert-butyl-4-((R)-1-(4-methoxybenzyl)allyl)oxazolidine-3,4-dicarboxylate ent-254k (40 mg, 74.1 μmol, 1 eq) in water/acetone (0.9 mL, 1:8) was added NMO (20 mg, 0.148 mmol, 2 eq) and a t-BuOH solution of OsO₄ (47 μL, 3.7 μmol, 5 mol%) and allowed to stir at room temperature for 24 hours. Quenched with sat. NaHCO₃ solution and allowed to stir for 10 mins. Extracted with EtOAc (2 × 15 mL), washed with brine (1 × 25 mL), dried over Na₂SO₄ and concentrated in vacuo and purified by flash chromatography (8:1 – 2:1 Pet/EtOAc) to afford the pure title compound as a colourless oil (42 mg, 100%). \([\alpha]_D^{20} +33.7 \ (c \ 1.75, \ \text{CHCl}_3)\); FTIR (film/cm⁻¹) \(\nu_{max}: 3514, 2934, 2873, 1793, 1714, 1693, 1613\); \(^1\)H NMR (500MHz, CDCl₃, 328K) \(\delta H 1.12 \ (9H, s), 1.46 \ (9H, s), 1.72 \ (1H, bs), 3.73 \ (1H, app. d, \(J = 9.7 \) Hz), 3.82 \ (3H, s), 3.91 \ (1H, dd, \(J = 12.7, 2.4 \) Hz), 4.00 \ (1H, bs), 4.13 \ (1H, d, \(J = 8.2 \) Hz), 4.38 \ (1H, app. d, \(J = 10.8 \) Hz), 4.60–4.93 \ (3H, m), 5.21 \ (1H, bs), 6.90 \ (2H, d, \(J = 8.7 \) Hz), 7.26 \ (2H, d, \(J = 8.7 \) Hz); \(^1^3\)C NMR (125MHz, CDCl₃, 328K) \(\delta C 26.7, 28.1, 39.4, 55.2, 60.9, 69.1, 73.2, 75.4, 79.7, 82.5, 97.4, 114.1, 117.6, 129.1, 129.8, 152.4, 159.9, 171.9\); HRMS (ESI, +ve) \(m/z\) calcd. for C₂₄H₃₆NO₈ 466.2441, found: 466.2452 (M+H)⁺.

To a solution of (2S,5S,9R)-tert-butyl 2-tert-butyl-8-(hydroxymethyl)-9-(4-methoxybenzyl)oxy)-6-oxo-3,7-dioxa-1-azaspiro[4.4]nonane-1-carboxylate 278 (34 mg, 59.2 μmol, 1 eq) in DCM (10 mL) at room temperature was added DMAP (5 mol%), NEt₃ (13 μL, 88.9 μmol, 1.5 eq) and 4-nitrobenzoyl chloride (11 mg, 59.2 μmol, 1 eq) and the reaction mixture stirred overnight. Quenched with water. Extracted with DCM (2 × 10 mL) and the organics washed with 1M HCl (1 × 25 mL), sat. NaHCO₃ (1 × 25 mL), brine (1 × 25 mL), dried over MgSO₄ and concentrated in vacuo and purified by
flush chromatography (2:1 Pet/EtOAc) to afford a white solid (23 mg, 64%). Recrystallised using DCM/Petrol 60-80 °C to afford clear crystals. Mpt: 173-174 °C; \([\alpha]_D^{20} +70.1 \text{ (c 0.87, CHCl}_3\); FTIR (film/cm-1) \(\nu_{\text{max}}\): 2965, 2936, 2909, 2878, 1798, 1728, 1687, 1611; \(^1\)H NMR (400 MHz, CDCl\(_3\), 328K) \(\delta_H\) 1.17 (9H, s), 1.51 (9H, s), 3.80 (3H, s), 4.20 (1H, d, \(J = 8.2 \text{ Hz}\)), 4.24 (1H, m), 4.37 (1H, d, \(J = 11.2 \text{ Hz}\)), 4.49 (1H, app. d, \(J = 7.5 \text{ Hz}\)), 4.66 (1H, dd, \(J = 12.4, 2.5 \text{ Hz}\)), 4.71–4.83 (2H, m), 4.89–5.43 (2H, m), 6.85 (2H, app. d, \(J = 8.0 \text{ Hz}\)), 7.26 (2H, d, \(J = 8.0 \text{ Hz}\)), 8.29 (4H, bs); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta_C\) 26.9, 28.2, 39.3, 55.2, 62.6, 68.7, 69.8, 73.3, 74.1, 82.6, 97.2, 114.1, 117.6, 123.3, 128.8, 129.8, 131.1, 134.8, 150.9, 152.4, 159.9, 164.2, 171.4; MS (ESI, +ve) \(m/z\) calcd. for C\(_{31}\)H\(_{38}\)N\(_2\)O\(_{11}\)Na 637.2373, found: 637.2388 (M+Na\(^+\).

\((2R,4S)-3\text{-}t\text{ert}-\text{Butyl 4-methyl 2-}\text{ert}-\text{butyl-4-propyloxazolidine-3,4-dicarboxylate (281a)}\)

\[
\begin{align*}
&\begin{array}{c}
\text{Bu} \\
\text{N} \\
\text{Me}
\end{array} & \\
&\text{O} & \\
&\text{Me} \\
&\text{Boc}
\end{align*}
\]

A mixture of \((2R,4S)-3\text{-}t\text{ert}-\text{Butyl 4-methyl 4-allyl-2-}\text{ert}-\text{butyloxazolidine-3,4-dicarboxylate 266a (192 mg, 0.59 mmol, 1 eq) and 10 mol% Pd/C (10 mg, 5 wt%) in MeOH (22 mL) was hydrogenated at atmospheric pressure for 90 minutes. Reaction mixture filtered through celite® and concentrated in vacuo to afford the title compound as a pale yellow oil (168 mg, 87%).} \([\alpha]_D -7.5 \text{ (c 1.2, CH}_2\text{Cl}_2\); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2967, 2874, 1742, 1709; \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_H\) 0.89 (3H, t, \(J = 7.3 \text{ Hz}\)), 0.95 (9H, s), 1.04-1.10 (1H, m), 1.40 (9H, s), 1.44-1.50 (1H, m), 1.89 (1H, td, \(J = 13.3, 4.3 \text{ Hz}\)), 2.33 (1H, bs), 3.70 (3H, s), 3.94 (1H, d, \(J = 8.6 \text{ Hz}\)), 4.21 (1H, dd, \(J = 1.5, 8.6 \text{ Hz}\)), 5.08 (1H, s); \(^13\)C NMR (125MHz, CDCl\(_3\)) \(\delta_C\) 14.2, 16.3, 26.2, 27.9, 37.4, 39.4, 52.2, 68.9, 76.0, 80.5, 98.3, 153.4, 172.7; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{31}\)NO\(_5\)Na 352.2100, found: 352.2106 (M+Na\(^+\)).
Experimental

(2R,4S)-3-tert-Butyl 4-methyl 4-((sec-butyl)-2-(tert-butyl)oxazolidine-3,4-dicarboxylate (281b)

A mixture of (2R,4S)-3-tert-butyl 4-methyl 4-((S)-but-3-en-2-yl)-2-tert-butyloxazolidine-3,4-dicarboxylate 266b (175 mg, 0.51 mmol, 1 eq) and 10 mol% Pd/C (9 mg, 5 wt%) in MeOH (20 mL) was hydrogenated at atmospheric pressure for 90 minutes. Reaction mixture filtered through celite® and concentrated in vacuo to afford the title compound as a pale yellow oil (90 mg, 51%). \([\alpha]_D^0-9.2 \text{ (c } 1.2, \text{ CH}_2\text{Cl}_2); \text{FTIR (film/cm}^{-1}\text{) } \nu_{\max}: 2963, 2912, 2877, 1743, 1707, 1478; \text{ } ^1\text{H NMR (500MHz, CDCl}_3\text{) } \delta_{\text{H}} 0.87 \text{ (3H, d, } J = 6.7 \text{ Hz), 0.91-1.01 \text{ (12H, m), 1.39-1.49 \text{ (11H, m), 2.68 \text{ (1H, bs), 3.73 \text{ (3H, s), 4.04 \text{ (1H, d, } J = 8.8 \text{ Hz), 4.33 \text{ (1H, d, } J = 8.8 \text{ Hz), 5.08 \text{ (1H, s); } ^1\text{C NMR (125MHz, CDCl}_3\text{) } \delta_{\text{C}} 13.1, 13.5, 26.5, 26.9, 28.1, 37.2, 39.0, 52.2, 71.1, 72.4, 80.7, 97.8, 153.5, 172.7; } \text{HRMS (ESI, +ve) } m/z \text{ calcd. for C}_{18}\text{H}_{33}\text{NO}_5\text{Na 366.2256, found: 366.2231 (M+Na)^+}.}

(2R,4S)-3-tert-Butyl 4-methyl 2-(tert-butyl)-4-isobutyloxazolidine-3,4-dicarboxylate (281c)

A mixture of (2R,4S)-3-tert-butyl 4-methyl 2-tert-butyl-4-(2-methylallylo)xazolidine-3,4-dicarboxylate 266c (85 mg, 0.25 mmol, 1 eq) and 10 mol% Pd/C (5 mg, 5 wt%) in MeOH (9 mL) was hydrogenated at atmospheric pressure for 90 minutes. Reaction mixture filtered through celite® and concentrated in vacuo to afford the title compound as a pale yellow oil (56 mg, 66%). \([\alpha]_D^0-3.6 \text{ (c } 1.1, \text{ CH}_2\text{Cl}_2); \text{FTIR (film/cm}^{-1}\text{) } \nu_{\max}: 2958, 2915, 2873, 1744, 1706, 1478; \text{ } ^1\text{H NMR (500MHz, CDCl}_3\text{) } \delta_{\text{H}} 0.91 \text{ (3H, d, } J = 6.6 \text{ Hz), 0.97-1.03 \text{ (12H, m), 1.44 \text{ (9H, s), 1.69-1.75 \text{ (1H, m), 1.90 \text{ (1H, dd, } J = 14.2, 5.7
(2R,4S)-3-tert-Butyl 4-methyl 4-((Z)-but-2-en-2-yl)-2-tert-butyloxazolidine-3,4-dicarboxylate (281d)

A mixture of (2R,4S)-3-tert-butyl 4-methyl 4-(buta-2,3-dien-2-yl)-2-tert-butyloxazolidine-3,4-dicarboxylate 266d (41 mg, 0.121 mmol, 1 eq) and 10 mol% Pd/C (4 mg, 10 wt%) in MeOH (2 mL) was hydrogenated at atmospheric pressure for 20 minutes. Reaction mixture filtered through celite® and concentrated in vacuo. Purified by flash chromatography (20:1 Pet/EtOAc) to afford the title compound as a colourless oil (33 mg, 80%). [α]D -71.1 (c 1.35, CHCl3); FTIR (film/cm-1) νmax: 2976, 2960, 2933, 2875, 1760, 1732, 1698; 1H NMR (500 MHz, CDCl3) δH 0.93 (9H, s), 1.44 (9H, s), 1.57 (3H, dd, J = 7.5, 1.4 Hz), 1.71 (3H, app. t, J = 1.4 Hz), 3.76 (3H, s), 4.23 (1H, d, J = 9.1 Hz), 4.58 (1H, d, J = 9.1 Hz), 5.34 (1H, s), 5.46 (1H, qd, J = 7.5, 1.4 Hz); 13C NMR (125 MHz, CDCl3) δC 13.8, 22.6, 26.2, 28.2, 39.0, 52.2, 70.8, 77.8, 80.4, 98.8, 124.2, 133.4, 153.5, 172.8; HRMS (ESI, +ve) m/z calcd. for C18H32NO5 342.2280, found: 342.2287 (M+H)+.

(R)-Methyl 2-amino-2-(hydroxymethyl)pent-4-enoate (282a)

(2R,4S)-3-tert-Butyl 4-methyl 4-allyl-2-tert-butyloxazolidine-3,4-dicarboxylate 266a (110 mg, 0.336 mmol), MeOH (1.6 mL) and 6N HCl (1.12 mL, 6.72 mmol) were combined according to general procedure IX to afford the title compound as a colourless oil (43 mg, 80%). [α]D -5.6 (c 0.8, CH2Cl2); FTIR (film/cm-1) νmax: 3367,
2954, 2254, 1733, 1642, 1594; 1H NMR (500MHz, CDCl$_3$) δH 2.23 (1H, dd, $J =$ 13.7, 7.4 Hz), 2.47 (1H, dd, $J =$ 13.7, 7.4 Hz), 2.55 (3H, bs), 3.49 (1H, d, $J =$ 10.7 Hz), 3.73 (3H, s), 3.78 (1H, d, $J =$ 10.7 Hz), 5.12 (1H, d, $J =$ 5.8 Hz), 5.15 (1H, s), 5.59-5.69 (1H, m); 13C NMR (125MHz, CDCl$_3$) δC 40.4, 52.4, 62.3, 67.8, 120.0, 131.6, 175.7; HRMS (ESI, +ve) m/z calcld. for C$_7$H$_{13}$NO$_3$Na 182.0793, found: 182.0781 (M+Na)$^+$.

$(2R,3S)$-Methyl 2-amino-2-(hydroxymethyl)-3-methylpent-4-enooate (282b)

\[
\text{HO} \quad \text{Me} \quad \begin{array}{c}
\text{HO} \\
\text{H}_2\text{N} \\
\text{CO}_2\text{Me}
\end{array}
\]

$(2R,4S)$-3-tert-Butyl 4-methyl 4-((S)-but-3-en-2-yl)-2-tert-butyloxazolidine-3,4-dicarboxylate (266b) (110 mg, 0.322 mmol), MeOH (1.5 mL) and 6N HCl (1.07 mL, 6.44 mmol) were combined according to general procedure IX to afford the title compound as a yellow oil (25 mg, 45%). [α]$_D$ -49 (c 1.1, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2970, 2957, 2253, 1730, 1595; 1H NMR (500MHz, CDCl$_3$) δH 0.97 (3H, d, $J =$ 7.0 Hz), 2.22 (3H, bs), 2.56 (1H, quint, $J =$ 7.3 Hz), 3.52 (1H, d, $J =$ 10.8 Hz), 3.77 (3H, s), 3.83 (1H, d, $J =$ 10.8 Hz), 5.06-5.16 (2H, m), 5.72 (1H, ddd, $J =$ 19.0, 10.6, 8.8 Hz); 13C NMR (125MHz, CDCl$_3$) δC 14.8, 42.9, 52.4, 65.2, 67.1, 117.2, 137.9, 175.4; HRMS (ESI, +ve) m/z calcld. for C$_8$H$_{15}$NO$_3$Na 196.0950, found: 196.0939 (M+Na)$^+$.

(R)-Methyl 2-amino-2-(hydroxymethyl)-3-methylpenta-3,4-dienoate (282c)

\[
\text{HO} \quad \text{Me} \quad \begin{array}{c}
\text{HO} \\
\text{H}_2\text{N} \\
\text{CO}_2\text{Me}
\end{array}
\]

$(2R,4S)$-3-tert-Butyl 4-methyl 4-(buta-2,3-dien-2-yl)-2-tert-butyloxazolidine-3,4-dicarboxylate (266d) (100 mg, 0.295 mmol), MeOH (1.5 mL) and 6N HCl (1.17 mL, 5.90 mmol) were combined according to general procedure IX to afford the title compound as a yellow oil (22 mg, 44%). [α]$_D$ -32 (c 0.7, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 3365, 2954, 2252, 1957, 1731, 1584; 1H NMR (500MHz, CDCl$_3$) δH 1.73 (3H, t, $J =$ 3.4 Hz), 2.59 (3H, bs), 3.60 (1H, d, $J =$ 10.7 Hz), 3.78 (3H, s), 3.98 (1H, d, $J =$ 10.7 Hz) 4.82-
4.92 (2H, m); 13C NMR (125MHz, CDCl$_3$) δC 14.6, 52.7, 63.4, 66.0, 78.2, 99.9, 173.7, 205.6; HRMS (ESI, +ve) m/z calcd. for C$_8$H$_{13}$NO$_3$Na 194.0793, found: 194.0778 (M+Na)$^+$.

(R)-Methyl 2-amino-2-(hydroxymethyl)pentanoate (282d)

![Methyl 2-amino-2-(hydroxymethyl)pentanoate](image)

(2R,4S)-3-tert-Butyl 4-methyl 2-tert-butyl-4-propyloxazolidine-3,4-dicarboxylate 281a (110 mg, 0.334 mmol), MeOH (1.6 mL) and 6N HCl (1.32 mL, 6.68 mmol) were combined according to general procedure IX to afford the title compound as a yellow oil (39 mg, 73%). [α]$_D$ -25.7 (c 0.7, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 3358, 3304, 2960, 2876, 1737, 1564; 1H NMR (500MHz, CDCl$_3$) δH 0.92 (3H, t, $J = 7.3$ Hz), 1.14-1.22 (1H, m), 1.34-1.42 (1H, m), 1.48 (1H, td, $J = 13.0, 4.4$ Hz), 1.69 (1H, bs), 2.19 (3H, bs), 3.47 (1H, d, $J = 8.9$ Hz), 3.76 (3H, s), 3.82 (1H, bs); 13C NMR (125MHz, CDCl$_3$) δC 14.2, 16.9, 38.1, 52.5, 63.1, 67.7, 175.6; HRMS (ESI, +ve) m/z calcd. for C$_7$H$_{15}$NO$_3$Na 184.0950, found: 184.0943 (M+Na)$^+$.

(2R,3S)-Methyl 2-amino-2-(hydroxymethyl)-3-methylpentanoate (282e)

![Methyl 2-amino-2-(hydroxymethyl)-3-methylpentanoate](image)

(2R,4S)-3-tert-Butyl 4-methyl 4-(sec-butyl)-2-(tert-butyl)oxazolidine-3,4-dicarboxylate 281b (75 mg, 0.218 mmol), MeOH (1.5 mL) and 6N HCl (867 µL, 4.37 mmol) were combined according to general procedure IX to afford the title compound as a yellow oil (23 mg, 59%). [α]$_D$ -43.6 (c 1.1, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 3301, 2965, 2939, 2878, 1730, 1596; 1H NMR (500MHz, CDCl$_3$) δH 0.87 (3H, d, $J = 6.9$ Hz), 0.92 (3H, t, $J = 7.2$ Hz), 0.98-1.04 (1H, m), 1.52-1.58 (1H, m), 1.64-1.70 (1H, m), 2.48 (3H, bs), 3.57 (1H, d, $J = 10.7$ Hz), 3.75 (3H, s), 3.87 (1H, d, $J = 10.7$ Hz); 13C NMR (125MHz, CDCl$_3$) δC 12.3, 13.5, 23.4, 40.4, 52.3, 66.3, 66.5, 175.8; HRMS (ESI, +ve) m/z calcd. for C$_9$H$_{17}$NO$_3$Na 198.1106, found: 198.1077 (M+Na)$^+$.
(R)-Methyl 2-amino-2-(hydroxymethyl)-4-methylpentanoate (282f)

$$\text{HO}$$

$$\text{Me}$$

$$\text{Me}$$

$$\text{CO}_2\text{Me}$$

$$(2R,4S)$-3-tert-Butyl 4-methyl 2-(tert-butyl)-4-isobutyloxazolidine-3,4-dicarboxylate 281c (56 mg, 0.163 mmol), MeOH (0.8 mL) and 6N HCl (647 μL, 3.26 mmol) were combined according to general procedure IX to afford the title compound as a pale yellow oil (20 mg, 71%). [α]D -36 (c 1.0, CH2Cl2); FTIR (film/cm⁻¹) νmax: 3367, 3302, 2955, 2873, 1732, 1598; ¹H NMR (500MHz, CDCl3) δH 0.84 (3H, d, J = 6.5 Hz), 0.94 (3H, d, J = 6.5 Hz), 1.47 (1H, dd, J = 13.9, 5.0 Hz), 1.61-1.75 (2H, m), 2.41 (3H, bs), 3.41 (1H, d, J = 10.4 Hz), 3.74 (3H, s), 3.77 (1H, d, J = 10.4 Hz); ¹³C NMR (125MHz, CDCl3) δC 22.8, 23.9, 24.4, 44.6, 52.3, 62.3, 69.1, 176.6; HRMS (ESI, +ve) m/z calcd. for C₈H₁₇NO₃Na 198.1106, found: 198.1113 (M+Na)⁺.

Heptadec-16-en-7-one (286)

To the orange/red solution of Fe(acac)₃ (110 mg, 0.300 mmol, 3 mol%) in THF (100 mL) at -78 °C was added hexyl magnesium bromide (2.0M, 6.50 mL, 13.0 mmol) and the solution turned dark brown. The reaction mixture was allowed to stir for 30 minutes before undecanoyl chloride (2.15 mL, 10.0 mmol) was added via syringe and stirred at -78 °C for 1 hour. Quenched with NH₄Cl (sat.) (75 mL) and allowed to warm to room temperature and extracted with Et₂O (3 × 75 mL), dried over MgSO₄ and concentrated in vacuo to afford the crude ketone. Purification by flash chromatography (20:1 Pet/EtOAc) affords the title compound as a white solid (2.44 g, 97%). Mpt: 32-34 °C (lit. 33-34 °C); FTIR (film/cm⁻¹) νmax: 2957, 2918, 2848, 1698; ¹H NMR (500MHz, CDCl3) δH 0.88 (3H, t, J = 6.5 Hz), 1.28 (14H, s), 1.35–1.43 (2H, m), 1.51–1.61 (4H, m), 2.04 (2H, q, J = 6.8 Hz), 2.38 (4H, t, J = 7.4 Hz), 4.93 (1H, d, J = 10.1 Hz), 4.99 (1H, d, J = 17.2 Hz), 5.76–7.86 (1H, m); ¹³C NMR (125 MHz, CDCl₃) δC 14.0, 22.5, 23.8, 23.9, 28.9 (×2), 29.0, 29.2, 29.3 (×2), 31.6, 33.8, 42.8 (×2), 114.1, 139.1, 211.6;
(E)-Dotriacont-16-ene-7,26-dione (289)

To a solution of heptadec-16-en-7-one 286 (250 mg, 1 mmol, 2 eq) in DCM (5 mL) was added Grubbs II (11 mg, 0.0125 mmol, 2.5 mol%) and heated at reflux for 3 days. Reaction mixture concentrated in vacuo and the residue purified by flash chromatography (20:1 Pet/EtOAc) to afford the title compound as a white solid (197 mg, 83%). Mpt: 66-67 °C; FTIR (film/cm⁻¹) \(\nu_{\text{max}} \): 2956, 2918, 2848, 1699; \(^1 \)H NMR (500 MHz, CDCl₃) \(\delta_H \): 0.88 (6H, t, \(J = 6.9 \) Hz), 1.22–1.36 (32H, m), 1.52–1.61 (8H, m), 1.92–2.00 (4H, m), 2.36–2.41 (8H, m), 5.36–5.39 (2H, m); \(^{13} \)C NMR (125 MHz, CDCl₃) \(\delta_C \): 14.0, 22.5, 23.8, 23.9, 28.9, 29.1, 29.3 (×3), 29.4, 29.6, 31.6, 32.6, 42.8, 130.3, 211.7; MS (ESI, +ve) \(m/z \) calcd. for C₃₂H₆₀O₂Na 499.4491, found: 499.4474 (M+Na)+.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S,E)-1-methoxy-12-oxooctadec-2-enyl) oxazolidine-3,4-dicarboxylate (288a)

To a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-methoxyallyl)oxazolidine-3,4-dicarboxylate 252a (64 mg, 0.178 mmol) and (E)-dotriacont-16-ene-7,26-dione 289 (85 mg, 0.178 mmol) in DCM (500 µL) was added Hoveyda-Grubbs II (6 mg, 0.009 mmol, 5 mol%) and heated at reflux for 72 hours. Reaction mixture concentrated in vacuo and the residue purified by flash chromatography (15:1 Pet/EtOAc) to afford the title compound as a colourless oil (51 mg, 48%). \([\alpha]_D^{20} \) -12.5 (c 0.8, CH₂Cl₂); FTIR (film/cm⁻¹) \(\nu_{\text{max}} \): 2957, 2932, 2858, 1740, 1702; \(^1 \)H NMR (500MHz, CDCl₃) \(\delta_H \): 0.87–0.98 (12H, m), 1.24–1.42 (16H, m), 1.51
(9H, s), 1.54–1.63 (4H, m), 2.06 (2H, q, J = 6.8 Hz), 2.38 (4H, t, J = 7.4 Hz), 3.24 (3H, s), 3.71 (3H, s), 4.15 (1H, d, J = 8.3 Hz), 4.41 (1H, d, J = 8.3 Hz), 4.79 (1H, d, J = 6.5 Hz), 5.13 (1H, s), 5.21 (1H, dd, J = 15.5, 6.5 Hz), 5.76 (1H, dt, J = 15.5, 6.8 Hz); 13C NMR (125MHz, CDCl3) δC 13.8, 22.4, 23.8 (×2), 26.1, 28.2, 28.9, 29.1 (×2), 29.2 (×3), 31.5, 32.2, 38.1, 42.7 (×2), 52.0, 56.1, 69.6, 72.7, 78.8, 80.6, 98.1, 125.3, 137.4, 153.8, 171.0, 211.0; MS (ESI, +ve) m/z calcd. for C_{33}H_{59}NO_{7}Na 604.4189, found: 604.4131 (M+Na)^+.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S,E)-1-(benzyloxy)-12-oxooctadec-2-enyl) oxazolidine-3,4-dicarboxylate (288j)

![Chemical structure of 288j](image)

To a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-benzyloxyallyl)oxazolidine-3,4-dicarboxylate 252j (87 mg, 0.200 mmol) and (E)-dotriacont-16-ene-7,26-dione 289 (76 mg, 0.160 mmol) in DCM (500 μL) was added Hoveyda-Grubbs II (6 mg, 0.010 mmol, 5 mol%) and heated at reflux for 4 days. Reaction mixture concentrated in vacuo and the residue purified by flash chromatography (15:1 Pet/EtOAc) to afford the title compound as a colourless oil (29 mg, 22%). N.B. Unable to isolate cleanly due to co-elution of 252j and 288j. Furthermore, due to poor solubility of 289, and poor consumption during the reaction, this co-elutes across entire column despite large Rf difference.

(2R,4R)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((S)-1-hydroxyallyl)oxazolidine-3,4-dicarboxylate (290)

![Chemical structure of 290](image)

To a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-(4-methoxybenzyloxy)allyl)oxazolidine-3,4-dicarboxylate 252k (185 mg, 0.400 mmol, 1
eq) in DCM/H₂O (18:1, 4.0 mL) was added DDQ (114 mg, 0.50 mmol, 1.25 eq) and stirred at room temperature for 2 hours. The precipitate formed was removed by filtration, and the filtrate was concentrated in vacuo to afford the crude allylic alcohol. Purified by flash chromatography (8:1 Pet/EtOAC) to afford the title compound (106 mg, 77% NMR corrected yield*). FTIR (film/cm⁻¹) v_max: 3352, 2972, 2877, 1761, 1735, 1680; ¹H NMR (500 MHz, CDCl₃) δ_H 0.94 (9H, s), 1.46 (9H, s), 3.83 (3H, s), 4.05 (1H, d, J = 9.7 Hz), 4.48 (1H, d, J = 9.7 Hz), 4.54 (1H, app. dt, J = 11.2, 1.8 Hz), 5.19 (1H, s), 5.33 (1H, dt, J = 10.7, 1.8 Hz), 5.52 (1H, dt, J = 17.1, 1.8 Hz), 5.83 (1H, bs), 5.95 (1H, ddd, J = 17.1, 10.7, 4.0 Hz); HRMS (ESI, +ve) m/z calcd. for C₁₇H₂₉NO₆Na 366.1893, found: 366.1885 (M+Na)⁺.

(2R,4R)-3-tert-Butyl 4-methyl 2-tert-butyl-4-((S,E)-1-hydroxy-12-o xo octadec-2-enyl)oxazolidine-3,4-dicarboxylate (291)

To a solution of (2R,4R)-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-hydroxyallyl)oxazolidine-3,4-dicarboxylate 290 (45 mg, 0.103 mmol) and (E)-dotriacont-16-ene-7,26-dione 289 (49 mg, 0.103 mmol) in DCM (500 μL) was added Hoveyda-Grubbs II (3.2 mg, 0.0052 mmol, 5 mol%) and heated at reflux for 30 hours. Reaction mixture concentrated in vacuo and the residue purified by column chromatography (15:1 to 4:1 Pet/EtOAc) to afford the title compound as a colourless oil (48 mg, 83%). [α]D²⁰ -10.7 (c 0.75, CH₂Cl₂); FTIR (film/cm⁻¹) v_max: 3377, 2954, 2857, 1762, 1737, 1714, 1686; ¹H NMR (500MHz, CDCl₃) δ_H 0.88 (3H, t, J = 6.9 Hz), 0.94 (9H, s), 1.24–1.34 (14H, m), 1.34–1.43 (2H, m), 1.49 (9H, s), 1.53–1.60 (4H, m), 2.02–2.09 (2H, m), 2.39 (4H, t, J = 7.5 Hz), 3.82 (3H, s), 4.00 (1H, d, J = 9.4 Hz), 4.46 (2H, app. d, J = 9.4 Hz), 5.17 (1H, s), 5.46 (1H, dd, J = 15.4, 5.3 Hz), 5.70 (1H, bs), 5.83–5.91 (1H, m); ¹³C NMR (125MHz, CDCl₃) δ_C 14.0, 22.5, 23.8, 26.6, 28.2, 28.9 (∗2), 29.1, 29.2, 29.3 (∗2), 29.4, 31.6, 32.4, 39.3, 42.8 (∗2), 52.6, 74.2, 75.1, 77.8, 82.2,

* p-Anisaldehyde still present. Used in cross-metathesis in this crude form.
99.4, 125.2, 135.0, 155.5, 171.2, 211.7; MS (ESI, +ve) m/z calcd. for C_{32}H_{57}NO_7Na 590.4032, found: 590.4039 (M+Na)^+.

(2R,4R)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((S)-1-(4-methoxybenzyloxy)allyl) oxazolidine-3,4-dicarboxylate (254 by Preparative Scale Synthesis)

To a stirred solution of L-Boc oxazolidine carboxylic acid 250 (2.19 g, 8.00 mmol, 2 eq) in DCM (125 mL) was added EDCi.HCl (1.53 g, 8.00 mmol, 2 eq), triethylamine (1.12 mL, 8.00 mmol, 2 eq), catalytic DMAP (5 mol%) and (E)-3-(4-methoxybenzyloxy)prop-2-en-1-ol 218k (925 mg, 4.00 mmol, 1 eq). The reaction was stirred at room temperature for 2 hours then washed with NaHCO_3 (sat) (3 × 50 mL), 10% citric acid (1 × 50 mL), brine (1 × 50 mL) and dried over Na_2SO_4. Concentration in vacuo affords the crude oxazolidine ester (1.80g, quant).

To a stirred solution of the crude oxazolidine ester (1.80 g, 4.00 mmol, 1 eq) in THF (18.0 mL) at -78 °C was added TMSCl (1.53 mL, 12.0 mmol, 3 eq). After 10 mins LHMDS (1M, 12.0 mL, 12.0 mmol, 3 eq) was added via syringe pump at an addition rate of 10 mL hr^{-1} and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1) and extracted with DCM (3 × 50 mL), dried over Na_2SO_4 and concentrated in vacuo to afford the crude acid. Residue dissolved in acetone (35.0 mL), and K_2CO_3 (552 mg, 4.00 mmol, 1 eq) and BnBr (1.19 mL, 10.0 mmol, 2.5 eq) added and reaction mixture stirred for 4 hours. Partitioned between EtOAc and NaHCO_3 (sat) and washed with NaHCO_3 (sat) (3 × 50 mL), brine (1 × 50 mL) and dried over Na_2SO_4. Concentration in vacuo affords the crude ester. Purification by flash chromatography (10:1 Pet/EtOAc) affords the title compound ent-254k as a colourless oil (1.70 g, 79%, dr >99:1). All data as previously stated.
(2S,4S)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((R)-1-(4-methoxybenzyl)oxy)allyl) oxazolidine-3,4-dicarboxylate (ent-254k by Preparative Scale Synthesis)

To a stirred solution of d-Boc oxazolidine carboxylic acid ent-250 (2.19 g, 8.00 mmol, 2 eq) in DCM (125 mL) was added EDCi.HCl (1.53 g, 8.00 mmol, 2 eq), triethylamine (1.12 mL, 8.00 mmol, 2 eq), catalytic DMAP (5 mol%) and (E)-3-(4-methoxybenzyl)oxy)prop-2-en-1-ol 218k (925 mg, 4.00 mmol, 1 eq). The reaction was stirred at room temperature for 2 hours then washed with NaHCO₃ (sat) (3 × 50 mL), 10% citric acid (1 × 50 mL), brine (1 × 50 mL) and dried over Na₂SO₄. Concentration in vacuo affords the crude oxazolidine ester (1.80 g, quant).

To a stirred solution of the crude oxazolidine ester (1.80 g, 4.00 mmol, 1 eq) in THF (18.0 mL) at -78 °C was added TMSCl (1.53 mL, 12.0 mmol, 3 eq). After 10 mins LHMDS (1M, 12.0 mL, 12.0 mmol, 3 eq) was added via syringe pump at an addition rate of 10 mL hr⁻¹ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1) and extracted with DCM (3 × 50 mL), dried over Na₂SO₄ and concentrated in vacuo to afford the crude acid. Residue dissolved in acetone (35.0 mL), and K₂CO₃ (552 mg, 4.00 mmol, 1 eq) and BnBr (1.19 mL, 10.0 mmol, 2.5 eq) added and reaction mixture stirred for 4 hours. Partitioned between EtOAc and NaHCO₃ (sat) and washed with NaHCO₃ (sat) (3 × 50 mL), brine (1 × 50 mL) and dried over Na₂SO₄. Concentration in vacuo affords the crude ester. Purification by flash chromatography (10:1 Pet/EtOAc) affords the title compound ent-254k as a colourless oil (1.75 g, 81%, dr >99:1). All data as previously stated.
(2R,4R)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((S)-1-hydroxyallyl)oxazolidine-3,4-dicarboxylate (292)

To a solution of (2R,4R)-4-benzyl 3-tert-butyl 2-tert-butyl-4-((S)-1-(4-methoxybenzyloxy)allyl)oxazolidine-3,4-dicarboxylate 254k (393 mg, 0.728 mmol, 1 eq) in DCM/H2O (18:1, 6.1 mL) was added DDQ (207 mg, 0.910 mmol, 1.25 eq) and stirred at room temperature for 2 hours. The precipitate formed was removed by filtration, and the filtrate was concentrated in vacuo to afford the crude allylic alcohol (390 mg, 89% NMR corrected yield†). Residue dissolved in MeOH (5 mL) and added dropwise to an ice-cold solution of sodium borohydride (82 mg, 2.18 mmol, 3 eq) in MeOH (20 mL) and reaction allowed to stir at 0 °C for 2 hours. Partitioned between water and DCM and the aqueous extracted with DCM (3 × 25 mL). The organics were combined and washed with brine, dried over Na2SO4 and concentrated in vacuo. Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure title compound as a colourless oil (225 mg, 74%). [α]D20 -33.8 (c 2.1, CH2Cl2); FTIR (film/cm-1) νmax: 3349, 2973, 2910, 2876, 1760, 1734, 1682; 1H NMR (500 MHz, CDCl3) δH 0.89 (9H, s), 1.47 (9H, s), 4.06 (1H, d, J = 9.7 Hz), 4.48 (1H, d, J = 9.7 Hz), 4.57–4.62 (1H, m), 5.19 (1H, s), 5.22 (1H, d, J = 12.4 Hz), 5.31–5.37 (2H, m), 5.54 (1H, dt, J = 17.0, 1.8 Hz), 5.89 (1H, bs), 5.96 (1H, ddd, J = 17.0, 10.7, 4.0 Hz), 7.29–7.39 (3H, m), 7.39–7.43 (2H, m); 13C NMR (125 MHz, CDCl3) δC 26.6, 28.1, 28.1, 39.3, 67.4, 74.0, 75.2, 78.2, 82.4, 99.4, 118.0, 128.2, 128.3, 128.5, 133.6, 135.4, 155.5, 170.2; HRMS (ESI, +ve) m/z calcd. for C23H33NO6Na 442.2206, found: 442.2207 (M+Na)+.

(2S,4S)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((R)-1-hydroxyallyl)oxazolidine-3,4-dicarboxylate (ent-292)

† p-Anisaldehyde still present. Subsequent sodium borohydride reduction to 4-methoxybenzyl alcohol allows purification by flash chromatography.
To a solution of (2S,4S)-4-benzyl 3-tert-butyl 2-tert-butyl-4-((R)-1-(4-methoxybenzyl)allyl)oxazolidine-3,4-dicarboxylate *ent-254k* (562 mg, 1.04 mmol, 1 eq) in DCM/H2O (18:1, 8.0 mL) was added DDQ (295 mg, 1.30 mmol, 1.25 eq) and stirred at room temperature for 2 hours. The precipitate formed was removed by filtration, and the filtrate was concentrated *in vacuo* to afford the crude allylic alcohol (390 mg, 89% NMR corrected yield†). Residue dissolved in MeOH (5 mL) and added dropwise to an ice-cold solution of sodium borohydride (118 mg, 3.12 mmol, 3 eq) in MeOH (30 mL) and reaction allowed to stir at 0 °C for 2 hours. Partitioned between water and DCM and the aqueous extracted with DCM (3 × 25 mL). The organics were combined and washed with brine, dried over Na2SO4 and concentrated *in vacuo*. Purified by flash chromatography (10:1 Pet/EtOAc) to afford the pure title compound as a colourless oil (324 mg, 74%). \([\alpha]_D^{20} +32.5 \ (c \ 2.1, \ CH_2Cl_2)\); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3349, 2973, 2910, 2876, 1760, 1734, 1682; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta_{\text{H}}\): 0.89 (9H, s), 1.47 (9H, s), 4.06 (1H, d, \(J = 9.7\) Hz), 4.48 (1H, d, \(J = 9.7\) Hz), 4.57–4.62 (1H, m), 5.19 (1H, s), 5.22 (1H, d, \(J = 12.4\) Hz), 5.31–5.37 (2H, m), 5.54 (1H, dt, \(J = 17.0, 1.8\) Hz), 5.89 (1H, bs), 5.96 (1H, ddd, \(J = 17.0, 10.7, 4.0\) Hz), 7.29–7.39 (3H, m), 7.39–7.43 (2H, m); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta_{\text{C}}\): 26.6, 28.1, 39.3, 67.4, 74.0, 75.2, 78.2, 82.4, 99.4, 118.0, 128.2, 128.3, 128.5, 133.6, 135.4, 155.5, 170.2; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{23}\)H\(_{33}\)NO\(_6\)Na 442.2206, found: 442.2207 (M+Na\(^+\)).

(2R,4R)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((S,E)-1-hydroxy-12-oxooctadec-2-enyl)oxazolidine-3,4-dicarboxylate (293)

![Structure](image)

To a solution of *(2R,4R)-4-benzyl 3-tert-butyl 2-tert-butyl-4-((S)-1-hydroxyallyl)oxazolidine-3,4-dicarboxylate 254k* (324 mg, 0.772 mmol, 1 eq) and *(E)-dotriacont-16-ene-7,26-dione 289* (368 mg, 0.772 mmol, 1 eq) in DCM (1.0 mL) was added Hoveyda-Grubbs II (24.2 mg, 0.0386 mmol, 5 mol%) and heated at reflux for 24 hours. Reaction mixture concentrated *in vacuo* and the residue purified by flash chromatography.

† *p*-Anisaldehyde still present. Subsequent sodium borohydride reduction to 4-methoxybenzyl alcohol allows purification by flash chromatography.
chromatography (15:1 Pet/EtOAc) to afford the title compound as a colourless oil (328 mg, 66%). \([\alpha]^{20}\)D -12.3 (c 2.2, CH2Cl2); FTIR (film/cm-1) \(\nu_{\text{max}}\): 3378, 2957, 2929, 2854, 1760, 1731, 1707, 1683; \(^1\)H NMR (500 MHz, CDCl3) \(\delta_H\) 0.82–0.92 (12H, m), 1.22–1.33 (14H, m), 1.33–1.42 (2H, m), 1.47 (9H, s), 1.52–1.61 (4H, m), 2.00–2.08 (2H, m), 2.38 (4H, t, \(J = 7.4\) Hz), 4.00 (1H, d, \(J = 9.5\) Hz), 4.46 (1H, d, \(J = 9.4\) Hz), 4.51 (1H, bs), 5.16 (1H, s), 5.20 (1H, d, \(J = 12.1\) Hz), 5.31 (1H, d, \(J = 12.1\) Hz), 5.47 (1H, dd, \(J = 15.4, 5.2\) Hz), 5.77 (1H, bs), 5.83–5.92 (1H, m), 7.28–7.37 (3H, m), 7.37–7.42 (2H, m); \(^{13}\)C NMR (125 MHz, CDCl3) \(\delta_C\) 14.0, 22.5, 23.8, 26.5 (\(\times 2\)), 28.2, 28.9 (\(\times 2\)), 29.0, 29.3 (\(\times 2\)), 29.4, 31.6, 32.4, 39.2, 42.8 (\(\times 2\)), 67.3, 74.1, 75.1, 77.3, 77.8, 82.1, 99.4, 125.1, 128.2, 128.4, 134.0, 135.5, 155.4, 170.6, 211.6; MS (ESI, +ve) \(m/z\) calcd. for \(\text{C}_{38}\text{H}_{62}\text{NO}_{7}\) 644.4526, found: 644.4533 (M+H)+.

(2S,4S)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((R,E)-1-hydroxy-12-oxooctadec-2-enyl)oxazolidine-3,4-dicarboxylate (ent-293)

![Chemical Structure of (2S,4S)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((R,E)-1-hydroxy-12-oxooctadec-2-enyl)oxazolidine-3,4-dicarboxylate](image)

To a solution of (2S,4S)-4-benzyl 3-tert-butyl 2-tert-butyl-4-((R)-1-hydroxyallyl)oxazolidine-3,4-dicarboxylate ent-293 (125 mg, 0.297 mmol, 1 eq) and (E)-Dotriacont-16-ene-7,26-dione 289 (142 mg, 0.297 mmol, 1 eq) in DCM (1.0 mL) was added Hoveyda-Grubbs II (9.3 mg, 0.0149 mmol, 5 mol%) and heated at reflux for 24 hours. Reaction mixture concentrated in vacuo and the residue purified by flash chromatography (15:1 Pet/EtOAc) to afford the title compound as a colourless oil (144 mg, 75%). \([\alpha]^{20}\)D +12.0 (c 2, CH2Cl2). All other data as previously stated.

(2S,3R,E)-Benzyl 2-amino-3-hydroxy-2-(hydroxymethyl)-14-oxoicos-4-enoate (ent-294)

![Chemical Structure of (2S,3R,E)-Benzyl 2-amino-3-hydroxy-2-(hydroxymethyl)-14-oxoicos-4-enoate](image)
(2S,4S)-4-Benzyl 3-tert-butyl 2-tert-butyl-4-((R,E)-1-hydroxy-12-oxooctadec-2-enyl)oxazolidine-3,4-dicarboxylate ent-293 (73 mg, 0.113 mmol, 1.0 eq), MeOH (2.0 mL) and 6N HCl (378 μL, 2.27 mmol, 20 eq) were combined according to general procedure IX (reaction time: 6 hours) to afford the title compound as a pale yellow oil (40.4 mg, 75%). [α]D 0 +16.0 (c 1, CH2Cl2); FTIR (film/cm-1) νmax: 3359, 2926, 2854, 1739, 1711, 1587; 1H NMR (500MHz, CDCl3) δH 0.89 (3H, t, J = 6.7 Hz), 1.22–1.38 (16H, m), 2.01 (2H, q, J = 7.0 Hz), 2.39 (4H, t, J = 7.4 Hz), 2.93 (4H, bs), 3.65 (1H, d, J = 11.2 Hz), 3.89 (1H, d, J = 11.2 Hz), 4.28 (1H, d, J = 7.4 Hz), 5.23 (2H, s), 5.45 (1H, dd, J = 15.4, 7.4 Hz), 5.73 (1H, dt, J = 15.4, 7.0 Hz), 7.31–7.41 (5H, m); 13C NMR (125MHz, CDCl3) δC 14.0, 22.5, 23.8 (×2), 28.9 (×2), 29.0, 29.2 (×2), 29.3, 31.6, 32.2, 42.8 (×2), 65.0, 66.5, 67.4, 75.0, 126.3, 128.2, 128.5, 128.6, 135.4, 136.3, 173.6, 211.9; HRMS (ESI, +ve) m/z calcd. for C28H45NO5Na 498.3195, found: 498.3173 (M+Na)+.

(2R,4R)-3-(tert-Butoxycarbonyl)-2-tert-butyl-4-((S)-1-hydroxy-12-oxooctadecyl)oxazolidine-4-carboxylic acid (295)

A mixture of (2R,4R)-4-benzyl 3-tert-butyl 2-tert-butyl-4-((S,E)-1-hydroxy-12-oxooctadec-2-enyl)oxazolidine-3,4-dicarboxylate 293 (120 mg, 0.186 mmol) and 10 mol% Pd/C (12 mg, 10 wt%) in EtOH (5.0 mL) was hydrogenated at atmospheric pressure for 1 hours. Reaction mixture filtered through celite® and concentrated in vacuo to afford the title compound as a pale yellow oil (103 mg, 100%). [α]D 0 -35.0 (c 2, CH2Cl2); FTIR (film/cm-1) νmax: 3408, 2954, 2926, 2855, 1760, 1712, 1679, 1615; 1H NMR (500 MHz, CDCl3) δH 0.88 (3H, t, J = 6.9 Hz), 0.94 (9H, s), 1.21–1.41 (20H, m), 1.47–1.66 (15H, m), 2.39 (4H, t, J = 7.5 Hz), 4.05 (1H, d, J = 9.7 Hz), 4.27 (1H, d, J = 9.6 Hz), 4.58 (1H, d, J = 9.7 Hz), 5.20 (1H, s); 13C NMR (125 MHz, CDCl3) δC 14.0, 22.5, 23.9 (×2), 26.4, 28.1, 28.9, 29.2, 29.3, 29.4 (×4), 31.5 (×2), 31.6, 39.0, 42.8 (×2), 72.4, 73.5, 74.2, 84.0, 98.6, 157.3, 171.4, 211.9; HRMS (ESI, +ve) m/z calcd. for C31H56NO7 554.4057, found: 554.4051 (M-H)+.
(2S,4S)-3-(tert-Butoxycarbonyl)-2-tert-butyl-4-((R)-1-hydroxy-12-oxooctadecyl)oxazolidine-4-carboxylic acid (ent-295)

A mixture of (2S,4S)-4-benzyl 3-tert-butyl 2-tert-butyl-4-((R,E)-1-hydroxy-12-oxooctadec-2-enyl)oxazolidine-3,4-dicarboxylate ent-293 (100 mg, 0.155 mmol) and 10 mol% Pd/C (10 mg, 10 wt%) in EtOH (5.0 mL) was hydrogenated at atmospheric pressure for 1 hours. Reaction mixture filtered through celite® and concentrated in vacuo to afford the title compound as a pale yellow oil (84 mg, 98%). \([\alpha]_D^{20} +34.2 \) (c 1.87, CH\(_2\)Cl\(_2\)). All other data as previously stated.

(2S,3R)-2-Amino-3-hydroxy-2-(hydroxymethyl)-14-oxoicosanoic acid (−)-Mycestericin G (30)

To a solution of (2S,4S)-3-tert-butoxycarbonyl)-2-tert-butyl-4-((R)-1-hydroxy-12-oxooctadecyl)oxazolidine-4-carboxylic acid ent-295 (47 mg, 84.6 μmol, 1.0 eq) in MeOH (1.5 mL) was added 6N HCl (250 μL, 1.69 mmol, 20 eq) and the reaction mixture refluxed for 18 hours. Reaction mixture was allowed to cool to room temperature and concentrated in vacuo to afford the crude hydrochloride salt. Residue dissolved in MeOH (2.5 mL) and neutralised to pH 5-6 with 2N NaOH and concentrated in vacuo before the residue dissolved in water (5 mL) and the white precipitate filtered to afford (−)-mycestericin G 30 (13.9 mg, 43%). Mpt: 188-190 °C (lit.\(^{50}\) 190-191.5 °C); \([\alpha]_D^{20} +13.3 \) (c 0.3, MeOH), lit.\(^{50}\) \([\alpha]_D^{20} -6.81 \) (c 0.106, MeOH); FTIR (film/cm-1) \(\nu_{\text{max}}: 3384, 3084, 2920, 2851, 1707, 1595; ^1H NMR (500 MHz, MeOD) \(\delta_H 0.90 \) (3H, t, \(J = 6.9 \) Hz), 1.23–1.45 (20H, m), 1.54 (4H, app. quint, \(J = 7.0 \) Hz), 1.58–1.70 (2H, m), 2.44 (4H, t, \(J = 7.3 \) Hz), 3.82 (1H, d, \(J = 11.3 \) Hz), 3.84 (1H, bs), 3.94 (1H, d, \(J = 11.3 \) Hz); \(^{13}C\) NMR (125 MHz, MeOD) \(\delta_C 13.0, 22.2, 23.5 \) (×2), 25.9, 28.6, 28.9, 29.1, 29.2 (×2),
29.3 (×2), 31.3, 31.4, 42.1 (×2), 61.1, 68.5, 70.9, 172.6, 213.0; HRMS (ESI, -ve) m/z calcd. for C_{21}H_{40}NO_{5} 386.2906, found: 386.2913 (M-H)^{−}.

(2R,3S)-2-Amino-3-hydroxy-2-(hydroxymethyl)-14-oxoicosanoic acid ((+) - Mycestericin G) (ent-5)

To a solution of (2R,4R)-3-tert-butoxycarbonyl)-2-tert-butyl-4-((S)-1-hydroxy-12-oxooctadecyl)oxazolidine-4-carboxylic acid (103 mg, 0.186 mmol) in MeOH (3.0 mL) was added 6N HCl (620 μL, 3.72 mmol) and the reaction mixture refluxed for 18 hours. Reaction mixture was allowed to cool to room temperature and concentrated in vacuo to afford the crude hydrochloride salt. Residue dissolved in MeOH (2.5 mL) and neutralised to pH 5-6 with 2N NaOH and concentrated in vacuo before the residue dissolved in water (5 mL) and the white precipitate filtered to afford crude mycestericin G. Passed through a column of amberlite IRC-76 ion exchange resin (MeOH) and purified by flash chromatography (10:3:1 CHCl_{3}/MeOH/H_{2}O, bottom layer used) to afford pure mycestericin G (25 mg, 35%). Mpt: 188-189 °C; [α]_{D}^{20} -14.0 (c 1.2, MeOH). All other data as previously stated.

<table>
<thead>
<tr>
<th>position</th>
<th>synthetic sample</th>
<th>isolated sample (reported)50</th>
</tr>
</thead>
<tbody>
<tr>
<td>H20 (CH\textsubscript{3})</td>
<td>0.90 (3H, t, \textit{J} = 6.9 Hz)</td>
<td>0.90 (3H, t, \textit{J} = 6.6 Hz)</td>
</tr>
<tr>
<td>H5-11, H17-19 (CH\textsubscript{2})</td>
<td>1.23–1.45 (20H, m)</td>
<td>1.30 (20H, m)</td>
</tr>
<tr>
<td>H4</td>
<td>not observed, seen with neighbouring multiplet</td>
<td>1.36 (1H, m)</td>
</tr>
<tr>
<td>H12, H16 (CH\textsubscript{2})</td>
<td>1.54 (4H, app. quint, \textit{J} = 7.0 Hz)</td>
<td>1.54 (4H, quint, \textit{J} = 6.5 Hz)</td>
</tr>
<tr>
<td>H4</td>
<td>1.58–1.70 (2H, m)</td>
<td>1.62 (1H, m)</td>
</tr>
<tr>
<td>H13, H15 (CH\textsubscript{2})</td>
<td>2.44 (4H, t, \textit{J} = 7.3 Hz)</td>
<td>2.44 (4H, t, \textit{J} = 7.1 Hz)</td>
</tr>
<tr>
<td>H21</td>
<td>3.82 (1H, d, \textit{J} = 11.3 Hz)</td>
<td>3.81 (1H, \textit{J} = 11.1 Hz)</td>
</tr>
<tr>
<td>H3</td>
<td>3.84 (1H, bs)</td>
<td>3.83 (1H, m)</td>
</tr>
<tr>
<td>H21</td>
<td>3.94 (1H, d, \textit{J} = 11.3 Hz)</td>
<td>3.93 (1H, d, \textit{J} = 11.1 Hz)</td>
</tr>
<tr>
<td>[α]_{D}^{20}</td>
<td>-15.0 (c 1.2, MeOH)</td>
<td>-6.81 (c 0.106, MeOH)</td>
</tr>
</tbody>
</table>
No previous 13C data has been reported for either the naturally isolated sample, or any synthetic sample.

(4S,5R)- 4-Benzyl 3-tert-butyl 4-((R)-1-(4-methoxybenzoyloxy)allyl)-5-methyloxazolidine-3,4-dicarboxylate (297)

To a solution of (4S,5R)-3-tert-butyl 4-((E)-3-(4-methoxybenzoyloxy)allyl) 5-methyloxazolidine-3,4-dicarboxylate 238e (885 mg, 1.97 mmol) in THF (8.9 mL) at -78 °C was added TMSCl (752 μL, 5.91 mmol). After 10 mins LHMDS (1M, 5.91 mL, 5.91 mmol) was added via syringe pump at an addition rate of 3 mL min$^{-1}$ and reaction mixture allowed to warm to room temperature after a period of 30 mins, and stirred for 18 hours. The reaction was quenched by the addition of 1N HCl and brine solution (1:1, 5 mL) and extracted with DCM (3 × 15 mL), EtOAc (1 × 15 mL), dried over Na$_2$SO$_4$ and concentrated in vacuo to afford the crude acid. Treatment with diazomethane according to general procedure VIII and purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (723 mg, 68%, dr >99:1). [α]2_0D -30.7 (c 2.15, CHCl$_3$); FTIR (film/cm$^{-1}$) ν_{max}: 2979, 2935, 2868, 1738, 1699; 1H NMR (500MHz, CDCl$_3$, 328K) $\delta_{\text{H rotamer A}}$ 1.14 (3H, d, $J = 6.4$ Hz), 1.37 (9H, s), 3.81 (3H, s), 4.34 (1H, quin, $J = 6.1$ Hz), 4.37–4.43 (1H, m), 4.50–4.57 (1H, m), 4.70 (1H, app. d, $J = 4.2$ Hz), 4.73 (1H, app. d, $J = 4.2$ Hz), 5.10–5.39 (4H, m), 5.48 (1H, app. dd, $J = 17.4$, 1.8 Hz), 6.19–6.31 (1H, m), 6.86–6.92 (2H, m), 7.25 (2H, app. d, $J = 8.5$ Hz), 7.29–7.44 (5H, m); $\delta_{\text{H rotamer B}}$ 1.18 (3H, d, $J = 6.4$ Hz), 1.42 (9H, s), 3.82 (3H, s), 4.34 (1H, quin, $J = 6.1$ Hz), 4.37–4.43 (1H, m), 4.50–4.57 (1H, m), 4.73 (1H, app. d, $J = 4.2$ Hz), 4.97 (1H, app. d, $J = 4.2$ Hz), 5.10–5.39 (4H, m), 5.48 (1H, app. dd, $J = 17.4$, 1.8 Hz), 6.19–6.31 (1H, m), 6.86–6.92 (2H, m), 7.25 (2H, app. d, $J = 8.5$ Hz), 7.29–7.44 (5H, m); 13C NMR (125MHz, CDCl$_3$) $\delta_{\text{C rotamer A}}$ 16.3, 28.3, 55.3, 66.7, 70.9, 72.0, 76.7, 77.9, 79.5, 80.6, 113.7, 117.2, 128.1, 128.4 (\times2), 129.2, 130.2, 134.4, 135.1, 151.3, 159.1, 169.9; $\delta_{\text{C rotamer B}}$ 16.3, 28.4, 55.3, 66.8, 71.0, 72.2, 77.3, 77.9, 79.8, 81.0,
113.9, 117.5, 128.3, 128.4, 128.6, 129.3, 130.6, 134.6, 135.6, 151.8, 159.3, 170.0; HRMS (ESI, +ve) m/z calcd. for C\textsubscript{28}H\textsubscript{36}NO\textsubscript{7} 498.2492, found: 498.2508 (M+H)+.

(4R,5R)-4-Benzyl 3-tert-butyl 4-((R)-1-hydroxyallyl)-5-methyloxazolidine-3,4-dicarboxylate (298)

To a solution of (4S,5R)-4-benzyl 3-tert-butyl 4-((R)-1-(4-methoxybenzyloxy)allyl)-5-methyloxazolidine-3,4-dicarboxylate \(297\) (475 mg, 0.955 mmol, 1 eq) in DCM/H\textsubscript{2}O (18:1, 9.0 mL) was added DDQ (270 mg, 1.19 mmol, 1.25 eq) and stirred at room temperature for 3 hours. The precipitate formed was removed by filtration, and the filtrate was concentrated \textit{in vacuo} and purified by flash chromatography (10:1 – 8:1 Pet/EtOAc) to afford the title compound as a colourless oil (347 mg, 96%). \([\alpha]_D^{20} +31.5\) (c 2.0, CHCl\textsubscript{3}); FTIR (film/cm-1) \(\nu_{\text{max}}: 3345, 2980, 2936, 2884, 1740, 1683;\) \(^1\)H NMR (500MHz, CDCl\textsubscript{3}) \(\delta\)H 1.27 (3H, d, \(J = 6.4\) Hz), 1.45 (9H, s), 4.06 (1H, q, \(J = 6.4\) Hz), 4.47 (1H, app. t, \(J = 8.4\) Hz), 4.73 (1H, d, \(J = 3.7\) Hz), 5.06 (1H, d, \(J = 3.7\) Hz), 5.22 (1H, d, \(J = 12.5\) Hz), 5.26–5.39 (3H, m), 5.82 (1H, d, \(J = 10.3\) Hz), 5.89 (1H, ddd, \(J = 17.3, 10.3, 7.1\) Hz), 7.30–7.42 (5H, m); \(^{13}\)C NMR (125MHz, CDCl\textsubscript{3}) \(\delta\)C 15.6, 28.2, 67.4, 73.4, 74.5, 79.5, 80.3, 82.1, 118.7, 128.2, 128.3, 128.5, 135.4, 135.7, 154.3, 168.4; HRMS (ESI, +ve) m/z calcd. for C\textsubscript{20}H\textsubscript{27}NO\textsubscript{6}Na 400.1736, found: 400.1743 (M+Na)+.

(4R,5R)-3-(tert-Butoxycarbonyl)-4-((R)-1-hydroxy-5-oxoheptyl)-5-methyloxazolidine-4-carboxylic acid (299)

To a solution of (4R,5R)-4-benzyl 3-tert-butyl 4-((R)-1-hydroxyallyl)-5-methyloxazolidine-3,4-dicarboxylate \(298\) (200 mg, 0.530 mmol, 1 eq) and \((E)\)-Dotriacont-16-ene-7,26-dione \(289\) (253 mg, 0.530 mmol, 1 eq) in DCM (1.5 mL) was
added Hoveyda-Grubbs II (16.6 mg, 26.5 μmol, 5 mol%) and heated at reflux for 24 hours. Reaction mixture concentrated \textit{in vacuo} and some residual impurities removed by flash chromatography (10:1 Pet/EtOAc) to afford the crude allylic alcohol as a pale yellow oil.

Allylic alcohol (123 mg, 0.204 mmol, 1.0 eq) and 10 mol% Pd/C (12 mg, 10 wt%) in EtOH (5.0 mL) was hydrogenated at atmospheric pressure for 1 hours. Reaction mixture filtered through celite® and concentrated \textit{in vacuo}. Purified by flash chromatography (8:1 – 2:1 Pet/EtOAc) to afford the title compound as a colourless oil (88 mg, 34%, 8:1 mix of rotamers). $[\alpha]_{D}^{20} +18.1$ (c 2.65, CHCl$_3$); FTIR (film/cm$^{-1}$) ν_{max}: 3156, 2927, 2856, 1707, 1684; 1H NMR (500MHz, CDCl$_3$) δH major rotamer 0.88 (3H, t, $J = 6.9$ Hz), 1.21–1.36 (20H, m), 1.39 (3H, d, $J = 6.4$ Hz), 1.48 (9H, s), 1.50–1.61 (5H, m), 1.62–1.73 (1H, m), 2.38 (4H, t, $J = 7.5$ Hz), 3.92 (1H, d, $J = 9.6$ Hz), 4.07 (1H, q, $J = 6.4$ Hz), 4.79 (1H, d, $J = 3.7$ Hz), 5.06 (1H, d, $J = 3.7$ Hz), 5.65 (1H, bs), 8.88 (1H, bs); δH minor rotamer 0.88 (3H, t, $J = 6.9$ Hz), 1.21–1.36 (20H, m), 1.39 (3H, d, $J = 6.4$ Hz), 1.45 (9H, s), 1.50–1.61 (5H, m), 1.62–1.73 (1H, m), 2.38 (4H, t, $J = 7.5$ Hz), 3.92 (1H, d, $J = 9.6$ Hz), 4.33 (1H, q, $J = 5.9$ Hz), 4.71 (1H, d, $J = 3.5$ Hz), 5.37 (1H, d, $J = 3.5$ Hz), 5.65 (1H, bs), 8.88 (1H, bs); 13C NMR (125MHz, CDCl$_3$) δC mixture of rotamers 14.0, 16.0, 16.4, 22.5, 23.8, 23.9, 26.1, 27.0, 28.2, 28.3, 28.9, 29.3, 29.4 (× 3), 29.5 (× 3), 29.6 (× 2), 31.6, 32.2, 42.8, 71.9, 72.2, 72.8, 75.1, 77.2, 79.5, 79.9, 80.0, 82.1, 82.7, 152.5, 154.3, 172.0, 212.0; HRMS (ESI, +ve) m/z calcd. for C$_{28}$H$_{51}$NO$_7$Na 536.3563, found: 536.3567 (M+Na)$^+$.

\textbf{(2S,3R)-2-Amino-3-hydroxy-2-((R)-1-hydroxyethyl)-14-oxoicosanoic acid (296)}

![Chemical structure of (2S,3R)-2-Amino-3-hydroxy-2-((R)-1-hydroxyethyl)-14-oxoicosanoic acid](attachment:image)

To a solution of (4R,5R)-3-(\textit{tert}-butoxycarbonyl)-4-\textit{((R)-1-hydroxy-5-oxoheptyl)-5-methyloxazolidine-4-carboxylic acid} 299 (53 mg, 0.103 mmol, 1.0 eq) in MeOH (1.5 mL) was added 6N HCl (350 μL, 2.06 mmol, 20 eq) and the reaction mixture refluxed for 2 hours. Reaction mixture was allowed to cool to room temperature and concentrated \textit{in vacuo} to afford the crude hydrochloride salt. Residue dissolved in
MeOH (2.5 mL) and neutralised to pH 5-6 with 2N NaOH and concentrated in vacuo before the residue dissolved in water (5 mL) and the white precipitate filtered. Filtrate concentrated in vacuo and purified by flash chromatography (10:3:1 CHCl₃/MeOH/H₂O; bottom layer used) to afford the title compound as a white amorphous solid (5.0 mg, 12%). \([\alpha]_{D}^{20} +24.0 \text{ (c 0.25, MeOH)}; \text{FTIR (film/cm-1) } \nu_{\text{max}}: 3308, 2920, 2851, 1710, 1640; \text{ }^1\text{H NMR (500 MHz, MeOD) } \delta_{\text{H}} 0.92 (3\text{H, t, } J = 7.0 \text{ Hz}), 1.24 (3\text{H, d, } J = 6.6 \text{ Hz}), 1.27–1.48 (20\text{H, m}), 1.52–1.60 (4\text{H, m}), 1.61–1.79 (2\text{H, m}), 2.46 (4\text{H, t, } J = 7.3 \text{ Hz}), 3.14 (1\text{H, s}), 3.90 (1\text{H, d, } J = 10.3 \text{ Hz}), 4.40 (1\text{H, q, } J = 6.6 \text{ Hz}); \text{ }^{13}\text{C NMR (125MHz, CDCl₃) } \delta_{\text{C}} 13.0, 17.2, 22.2, 23.3, 23.5 (\times 2), 25.9, 28.6, 28.9, 29.2 (\times 2), 29.3, 29.4, 31.4 (\times 2), 32.0, 42.1, 65.4, 70.2, 71.1, 172.1, 213.0; \text{HRMS (ESI, +ve) } m/z \text{ calcd. for C}_{22}\text{H}_{44}\text{NO}_{5} 402.3219, \text{found: 402.3218} (\text{M+H})^+.

\((2R,4R)-\text{tert-Butyl 2-tert-butyl-4-((S)-1-ethoxyallyl)-4-(hydroxymethyl)oxazolidine-3-carboxylate (323a)}\)

To a stirred solution of lithium aluminium hydride (16 mg, 0.415 mmol, 2.0 eq) in THF (0.4 mL) at 0 °C was added a solution of \((2R,4R)-3-\text{tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-ethoxyallyl)oxazolidine-3,4-dicarboxylate 252b}\) (77 mg, 0.207 mmol, 1.0 eq) in THF (2.0 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (71 mg, 100%). \([\alpha]_{D}^{20} +39.4 \text{ (c 1.6, CH₂Cl₂)}; \text{FTIR (film/cm-1) } \nu_{\text{max}}: 3396, 2978, 2936, 2878, 1695, 1665; \text{ }^1\text{H NMR (500MHz, CDCl₃) } \delta_{\text{H}} 0.95 (9\text{H, s}), 1.20 (3\text{H, t, } J = 7.0 \text{ Hz}), 1.52 (9\text{H, s}), 3.24 (1\text{H, dq, } J = 9.1, 7.0 \text{ Hz}), 3.42 (1\text{H, d, } J = 8.5 \text{ Hz}), 3.50 (1\text{H, d, } J = 11.8 \text{ Hz}), 3.61 (1\text{H, dq, } J = 9.1, 7.0 \text{ Hz}), 3.79 (1\text{H, d, } J = 11.8 \text{ Hz}), 4.21 (1\text{H, d, } J = 8.5 \text{ Hz}), 4.79 (1\text{H, bs}), 5.10 (1\text{H, s}), 5.35 (1\text{H, app. dt, } J = 10.5, 1.5 \text{ Hz}), 5.50 (1\text{H, d, } J = 17.3 \text{ Hz}), 5.80 (1\text{H, ddd, } J = 17.3, 10.5, 6.2 \text{ Hz}); \text{ }^{13}\text{C NMR (125MHz, CDCl₃) } \delta_{\text{C}} |
15.6, 26.6, 28.2, 38.8, 65.2, 65.9, 69.5, 70.9, 76.6, 82.1, 98.5, 118.8, 134.9, 156.5; HRMS (ESI, +ve) m/z calcd. for C_{18}H_{33}NO_{5} 344.2437, found: 344.2424 (M+H)^{+}.

\[(2R,4R)\text{-}\text{tert-Butyl 2-tert-butyl-4-}(\text{hydroxymethyl})-4-((S)-1-((4-methoxyphenoxy)allyl)oxazolidine-3-carboxylate (323b)}\]

To a stirred solution of lithium aluminium hydride (16 mg, 0.428 mmol, 2.0 eq) in THF (0.4 mL) at 0 °C was added a solution of \((2R,4R)\text{-3-tert-butyl 4-methyl 2-tert-butyl-4-((S)-1-methoxyphenoxyallyl)oxazolidine-3,4-dicarboxylate 252g (96 mg, 0.214 mmol, 1.0 eq)}\) in THF (2.0 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO_{4}, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (80 mg, 89%). \([\alpha]^{20}_{D} +59.4 (c 2.39, \text{CH}_{2}\text{Cl}_{2}); \text{FTIR (film/cm-1)} \nu_{\text{max}}: 3381, 2977, 2960, 2875, 1661; \text{^1H NMR (500MHz, CDCl}_{3}\text{)} \delta_{\text{H}} 0.96 (9H, s), 1.16 (9H, s), 3.51 (1H, d, J = 9.0 Hz), 3.58 (1H, t, J = 11.5 Hz), 3.74 (3H, s), 3.88 (1H, d, J = 12.1 Hz), 4.36 (1H, d, J = 9.0 Hz), 5.20 (1H, bs), 5.38 (1H, d, J = 10.8 Hz), 5.51 (1H, app. dt, J = 17.4, 1.6 Hz), 5.54–5.64 (2H, m), 6.00 (1H, ddd, J = 17.4, 10.8, 4.2 Hz), 6.74–6.79 (2H, m), 6.81–6.85 (2H, m); \text{^13C NMR (125MHz, CDCl}_{3}\text{)} \delta_{\text{C}} 26.5, 27.7, 38.9, 55.7, 65.9, 69.8, 70.9, 75.7, 82.5, 98.8, 114.4, 116.5, 119.1, 133.7, 152.6, 154.0, 156.3; HRMS (ESI, +ve) m/z calcd. for C_{23}H_{36}NO_{6} 422.2543, found: 422.2546 (M+H)^{+}.

\[(2R,4R)\text{-\text{tert-Butyl 4-allyl-2-tert-butyl-4-}(\text{hydroxymethyl})oxazolidine-3-carboxylate (323c)}\]
To a stirred solution of lithium aluminium hydride (23 mg, 0.610 mmol, 2.0 eq) in THF (0.6 mL) at 0 °C was added a solution of (2R,4S)-3-tert-butyl 4-methyl 4-allyl-2-tert-butyl-4-tert-butyloxazolidine-3,4-dicarboxylate 266a (100 mg, 0.305 mmol, 1.0 eq) in THF (2.8 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO4, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (91 mg, 100%). [α]D20 +17.5 (c 3.03, CH2Cl2); FTIR (film/cm⁻1) νmax: 3397, 2976, 2932, 1699, 1666; 1H NMR (500MHz, CDCl3, 328K) δH 0.95 (9H, s), 1.45 (9H, s), 2.47 (1H, dd, J = 14.0, 6.0 Hz), 2.84 (1H, dd, J = 14.0, 8.8 Hz), 3.55 (1H, app. t, J = 9.3 Hz), 3.75 (1H, d, J = 8.6 Hz), 3.82 (1H, d, J = 11.5 Hz), 3.96 (1H, d, J = 8.9 Hz), 5.05 (1H, s), 5.10–5.18 (2H, m), 5.78–5.88 (1H, m); 13C NMR (125MHz, CDCl3) δC 26.7, 28.1, 36.2, 38.9, 66.8, 67.9, 73.4, 82.1, 97.9, 119.1, 133.1, 155.9; HRMS (ESI, +ve) m/z calcd. for C16H30NO4 300.2175, found: 300.2178 (M+H)$^+$.

(2R,4R)-tert-Butyl 4-((S)-but-3-en-2-yl)-2-tert-butyl-4-(hydroxymethyl)oxazolidine-3-carboxylate (323d)

To a stirred solution of lithium aluminium hydride (33 mg, 0.862 mmol, 2.0 eq) in THF (0.9 mL) at 0 °C was added a solution of (2R,4S)-3-tert-butyl 4-methyl 4-allyl-2-tert-butyl-4-tert-butyloxazolidine-3,4-dicarboxylate 266b (147 mg, 0.431 mmol, 1.0 eq) in THF (12.5 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 4 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO4, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (131 mg, 98%). FTIR (film/cm⁻1) νmax: 3397, 2975, 2916, 1699, 1666; 1H
NMR (500MHz, CDCl₃) \(\delta^H \): 0.96 (9H, s), 0.98 (3H, d, \(J = 7.0 \) Hz), 1.51 (9H, s), 3.51 (2H, bs), 3.60 (1H, d, \(J = 11.6 \) Hz), 3.79 (1H, d, \(J = 11.6 \) Hz), 4.01 (1H, d, \(J = 9.2 \) Hz), 4.83–5.50 (1H, bs), 5.05 (1H, s), 5.13 (1H, d, \(J = 10.4 \) Hz), 5.24 (1H, d, \(J = 17.3 \) Hz), 5.86 (1H, ddd, \(J = 17.3, 10.4, 6.8 \) Hz); \(^{13}C\) NMR (125MHz, CDCl₃) \(\delta^C \): 12.7, 26.7, 28.1, 35.4, 39.0, 66.5, 70.1, 70.3, 82.0, 98.2, 116.5, 139.3, 155.7; HRMS (ESI, +ve) \(m/z \) calcd. for \(C_{17}H_{31}NO_4Na \): 336.2151, found: 336.2153 (M+Na)⁺.

**

(2R,4R)-tert-Butyl 4-((E)-but-2-enyl)-2-tert-butyl-4-(hydroxymethyl)oxazolidine-3-carboxylate (323e)

To a stirred solution of lithium aluminium hydride (130 mg, 3.42 mmol, 2.0 eq) in THF (12.5 mL) at 0 °C was added a solution of (2R,4S)-3-tert-butyl 4-methyl 4-((E)-but-2-enyl)-2-tert-butyloxazolidine-3,4-dicarboxylate 333a (584 mg, 1.71 mmol, 1.0 eq) in THF (12.5 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 4 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (536 mg, 100%, 5:1 mix of rotamers). FTIR (film/cm⁻¹) \(\nu_{\text{max}} \): 3388, 2973, 2934, 2911; \(^1\)H NMR (500MHz, CDCl₃) \(\delta^H \): major rotamer 0.94 (9H, s), 1.48 (9H, s), 1.69 (3H, d, \(J = 5.9 \) Hz), 2.36–2.53 (1H, m), 2.76 (1H, bs), 3.51 (1H, bs), 3.68 (1H, bs), 3.81 (1H, d, \(J = 11.0 \) Hz), 3.96 (1H, d, \(J = 8.8 \) Hz), 5.02 (1H, s), 5.21–5.70 (3H, m); \(\delta^H \) minor rotamer 0.94 (9H, s), 1.48 (9H, s), 1.69 (3H, d, \(J = 5.9 \) Hz), 2.36–2.53 (1H, m), 2.88 (1H, bs), 3.51 (1H, bs), 3.68 (1H, bs), 3.81 (1H, d, \(J = 11.0 \) Hz), 3.89 (1H, d, \(J = 8.8 \) Hz), 5.09 (1H, s), 5.21–5.70 (3H, m); \(^{13}C\) NMR (125MHz, CDCl₃) \(\delta^C \): 18.1, 26.7, 28.1, 34.9, 38.9, 66.7, 68.0, 73.5, 82.0, 97.9, 125.4, 129.8, 156.0; HRMS (ESI, +ve) \(m/z \) calcd. for \(C_{17}H_{31}NO_4Na \): 336.2151, found: 336.2157 (M+Na)⁺.
(2R,4R)-tert-Butyl 2-tert-butyl-4-(hydroxymethyl)-4-(2-methylallyl)oxazolidine-3-carboxylate (323f)

To a stirred solution of lithium aluminium hydride in THF (2.4M, 560 μL, 1.32 mmol, 2.0 eq) at 0 °C was added a solution of (2R,4S)-3-tert-butyl 4-methyl 2-tert-butyl-4-(2-methylallyl)oxazolidine-3,4-dicarboxylate 333b (226 mg, 0.662 mmol, 1.0 eq) in THF (6.0 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 1 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (169 mg, 82%). [α]D²⁰ +25.5 (c 2.2, CHCl₃); FTIR (film/cm⁻¹) νmax: 3382, 2969, 2928, 1697, 1665; ¹H NMR (500MHz, CDCl₃) δH 0.95 (9H, s), 1.48 (9H, s), 1.81 (3H, s), 2.39 (1H, d, J = 13.8 Hz), 2.87 (1H, app. d, J = 8.1 Hz), 3.51 (1H, bs), 3.65 (1H, bs), 3.84 (1H, d, J = 11.3 Hz), 4.09 (1H, d, J = 9.0 Hz), 4.40 (1H, s), 4.93 (1H, s), 5.03 (1H, bs), 5.40 (1H, bs); ¹³C NMR (125MHz, CDCl₃) δC 23.6, 26.9, 28.2, 38.6, 39.0, 67.7, 67.9, 72.4, 82.2, 97.6, 116.1, 141.8, 155.8; HRMS (ESI, +ve) m/z calcd. for C₁₇H₃₂NO₄ 314.2331, found: 314.2323 (M+H)+.

(4S,5R)-tert-Butyl 4-((R)-1-ethoxyallyl)-4-(hydroxymethyl)-5-methyloxazolidine-3-carboxylate (324)

To a stirred solution of lithium aluminium hydride (57 mg, 1.51 mmol, 2.0 eq) in THF (1.5 mL) at 0 °C was added a solution of (4S,5R)-3-tert-butyl 4-methyl 4-((R)-1-ethoxyallyl)-5-methyloxazolidine-3,4-dicarboxylate 239d (249 mg, 0.756 mmol, 1.0 eq)
in THF (7.0 mL) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. Reaction mixture poured into an ice-cold solution of saturated Rochelle salt (15 mL) and EtOAc (10 mL). The biphasic mixture was stirred vigorously at room temperature for 2 hours before extracting with EtOAc (3 × 25 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (192 mg, 84%, 10:1 mix of rotamers). [α]D²⁰ -36.2 (c 2.35, CHCl₃); FTIR (film/cm⁻¹) vₓ max: 3378, 2976, 2931, 2875, 1673; ¹H NMR (500MHz, CDCl₃) δH major rotamer 1.14 (3H, t, J = 7.0 Hz), 1.20 (3H, d, J = 6.6 Hz), 1.47 (9H, s), 3.28–3.38 (1H, m), 3.49–3.62 (1H, m), 3.75 (2H, bs), 4.38 (1H, q, J = 6.6 Hz), 4.61 (1H, d, J = 3.9 Hz), 4.71 (1H, bs), 4.80 (1H, d, J = 6.3 Hz), 4.91 (1H, d, J = 3.9 Hz), 5.29 (1H, d, J = 10.6 Hz), 5.42 (1H, d, J = 17.3 Hz), 5.75 (1H, ddd, J = 17.3, 10.6, 6.5 Hz); δH minor rotamer 1.14 (3H, t, J = 7.0 Hz), 1.20 (3H, d, J = 6.6 Hz), 1.50 (9H, s), 3.28–3.38 (1H, m), 3.49–3.62 (1H, m), 3.75 (2H, bs), 4.46 (1H, q, J = 6.6 Hz), 4.53 (1H, d, J = 3.9 Hz), 4.71 (1H, bs), 4.80 (1H, d, J = 6.3 Hz), 4.85 (1H, d, J = 3.9 Hz), 5.29 (1H, d, J = 10.6 Hz), 5.42 (1H, d, J = 17.3 Hz), 5.53 (1H, ddd, J = 17.3, 10.6, 6.5 Hz); ¹³C NMR (125MHz, CDCl₃) δC major rotamer 15.4, 15.6, 28.3, 64.6, 64.8, 68.2, 76.3, 76.8, 79.2, 81.0, 118.5, 134.2, 154.5; δC minor rotamer 15.3, 16.9, 29.6, 59.9, 63.2, 66.3, 76.3, 77.2, 82.5, 85.7, 119.4, 133.7, 154.5; HRMS (ESI, +ve) m/z calcd. for C₁₅H₂₇NO₅Na 324.1787, found: 324.1768 (M+Na)⁺.

(2R,4R)-tert-Butyl 2-tert-butyl-4-((S)-1-ethoxyallyl)-4-formyloxazolidine-3-carboxylate (325a)

DMSO (78 μL, 1.10 mmol, 5.4 eq) in DCM (400 μL) was added dropwise to a solution of oxalyl chloride (47 μL, 0.551 mmol, 2.7 eq) in DCM (1.0 mL) at -78 °C and stirred for 30 minutes. (2R,4R)-tert-butyl 2-tert-butyl-4-((S)-1-ethoxyallyl)-4-(hydroxymethyl)oxazolidine-3-carboxylate 323a (70 mg, 0.204 mmol, 1 eq) in DCM (1.2 mL) was added dropwise to the reaction mixture and stirred for a further 15
minutes. NEt₃ (182 μL, 1.31 mmol, 6.4 eq) in DCM (400 μL) was added dropwise and the reaction mixture allowed to warm to room temperature and stirred for 2 hours. Reaction mixture diluted with DCM (15 mL) and washed with water (3 × 10 mL) and NaHCO₃ (sat) (3 × 10 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (54 mg, 78%). [α]D²⁰ -15.2 (c 1.05, CH₂Cl₂); FTIR (film/cm⁻¹) νmax: 2978, 2937, 2906, 2876, 1724, 1695; ¹H NMR (500MHz, CDCl₃) δH 0.94 (9H, s), 1.20 (3H, t, J = 7.0 Hz), 1.51 (9H, s), 3.30 (1H, app. quin., J = 7.0 Hz), 3.61 (1H, app. t, J = 7.0 Hz), 4.06–4.23 (2H, m), 4.87 (1H, bs), 5.16 (1H, s), 5.34 (1H, d, J = 10.6 Hz), 5.38 (1H, d, J = 17.3 Hz), 5.71 (1H, bs), 9.73 (1H, s); ¹³C NMR (125MHz, CDCl₃) δc 15.4, 26.4, 28.2, 38.8, 64.8, 67.3, 74.8, 78.6, 81.6, 97.9, 119.4, 134.2, 154.2, 197.3; HRMS (ESI, +ve) m/z calcd. for C₁₈H₃₁NO₅Na 364.2094, found: 364.2113 (M+Na)⁺.

(2R,4R)-tert-Butyl 2-tert-butyl-4-formyl-4-(((S)-1-(4-methoxyphenoxy)allyl) oxazolidine-3-carboxylate (325b)

DMSO (64 μL, 0.897 mmol, 5.4 eq) in DCM (400 μL) was added dropwise to a solution of oxalyl chloride (39 μL, 0.448 mmol, 2.7 eq) in DCM (1.0 mL) at -78 °C and stirred for 30 minutes. (2R,4R)-tert-butyl 2-tert-butyl-4-(hydroxymethyl)-4-(((S)-1-(4-methoxyphenoxy)allyl)oxazolidine-3-carboxylate 323b (70 mg, 0.166 mmol, 1 eq) in DCM (1.2 mL) was added dropwise to the reaction mixture and stirred for a further 15 minutes. NEt₃ (148 μL, 1.31 mmol, 6.4 eq) in DCM (400 μL) was added dropwise and the reaction mixture allowed to warm to room temperature and stirred for 2 hours. Reaction mixture diluted with DCM (15 mL) and washed with water (3 × 10 mL) and NaHCO₃ (sat) (3 × 10 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (55 mg, 80%). [α]D²⁰ +46.5 (c 2.0, CH₂Cl₂); FTIR (film/cm-
1) \(\nu_{\text{max}}: 2977, 2939, 2912, 2876, 1726, 1694; \) \(^1\text{H NMR} \) (500 MHz, CDCl\(_3\), 328 K) \(\delta \)H

1.01 (9H, s), 1.20 (9H, s), 3.75 (3H, s), 4.19 (1H, d, \(J = 9.2 \) Hz), 4.37 (1H, d, \(J = 9.2 \) Hz), 5.28–5.44 (3H, m), 5.60 (1H, bs), 5.95 (1H, ddd, \(J = 16.2, 10.8, 4.2 \) Hz), 6.78 (2H, app. d, \(J = 9.2 \) Hz), 6.86 (2H, app. d, \(J = 9.2 \) Hz), 9.80 (1H, s); \(^{13}\text{C NMR} \) (125 MHz, CDCl\(_3\), 328 K) \(\delta \)C 26.4, 27.8, 38.9, 55.7, 67.8, 74.7, 77.1, 82.0, 98.4, 114.6, 116.8, 119.3, 133.5, 152.1, 153.7, 154.5, 196.8; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{23}\)H\(_{33}\)NO\(_6\)Na 442.2200, found: 442.2219 (M+Na\(^+\)).

\((2R,4S)\)-tert-Butyl 4-allyl-2-\textit{tert}-butyl-4-formyloxazolidine-3-carboxylate (325c)

[Structural diagram]

DMSO (110 \(\mu \)L, 1.55 mmol, 5.4 eq) in DCM (400 \(\mu \)L) was added dropwise to a solution of oxalyl chloride (67 \(\mu \)L, 0.776 mmol, 2.7 eq) in DCM (1.0 mL) at -78 °C and stirred for 30 minutes. \((2R,4R)\)-\textit{tert}-butyl 4-allyl-2-\textit{tert}-butyl-4-(hydroxymethyl)oxazolidine-3-carboxylate 323c (86 mg, 0.287 mmol, 1 eq) in DCM (1.2 mL) was added dropwise to the reaction mixture and stirred for a further 15 minutes. NEt\(_3\) (257 \(\mu \)L, 1.84 mmol, 6.4 eq) in DCM (400 \(\mu \)L) was added dropwise and the reaction mixture allowed to warm to room temperature and stirred for 2 hours. Reaction mixture diluted with DCM (15 mL) and washed with water (3 \(\times \) 10 mL) and NaHCO\(_3\) (sat) (3 \(\times \) 10 mL). The organic layer was dried over Na\(_2\)SO\(_4\), filtered and concentrated \textit{in vacuo} to afford the pure title compound as a colourless oil without the need for further purification (64 mg, 75%). \([\alpha]_D^{20} +36.5 \) (c 2.0, CH\(_2\)Cl\(_2\)); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}: 2977, 2935, 2875, 1719, 1697; \) \(^1\text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \)H 0.97 (9H, s), 1.45 (9H, s), 2.56 (1H, app. d, \(J = 9.0 \) Hz), 2.90 (1H, s), 3.93 (1H, d, \(J = 9.1 \) Hz), 4.14 (1H, d, \(J = 9.1 \) Hz), 5.11 (1H, s), 5.14–5.20 (2H, m), 5.75–5.87 (1H, m), 9.75 (1H, s); \(^{13}\text{C NMR} \) (125 MHz, CDCl\(_3\)) \(\delta \)C 26.5, 28.1, 36.2, 39.3, 71.3, 71.9, 81.7, 97.7, 119.9, 131.4, 153.6, 199.2; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{16}\)H\(_{27}\)NO\(_4\)Na 320.1838, found: 320.1835 (M+Na\(^+\)).
(2R,4S)-tert-Butyl 4-((S)-but-3-en-2-yl)-2-tert-butyl-4-formyloxazolidine-3-carboxylate (325d)

DMSO (98 μL, 1.38 mmol, 5.4 eq) in DCM (400 μL) was added dropwise to a solution of oxalyl chloride (59 μL, 0.689 mmol, 2.7 eq) in DCM (1.0 mL) at -78 °C and stirred for 30 minutes. (2R,4R)-tert-buty l 4-((S)-but-3-en-2-yl)-2-tert-butyl-4-(hydroxymethyl)oxazolidine-3-carboxylate 323d (80 mg, 0.255 mmol, 1 eq) in DCM (1.2 mL) was added dropwise to the reaction mixture and stirred for a further 15 minutes. NEt₃ (228 μL, 1.63 mmol, 6.4 eq) in DCM (400 μL) was added dropwise and the reaction mixture allowed to warm to room temperature and stirred for 2 hours. Reaction mixture diluted with DCM (15 mL) and washed with water (3 × 10 mL) and NaHCO₃ (sat) (3 × 10 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (65 mg, 82%). [α]D⁰⁺-60.5 (c 2.0, CH₂Cl₂); FTIR (film/cm⁻¹) νmax: 2976, 2913, 2871, 1713, 1697; ¹H NMR (500MHz, CDCl₃) δH 0.93 (9H, s), 1.03 (3H, d, J = 6.9 Hz), 1.49 (9H, s), 3.59 (1H, bs) 3.99 (1H, d, J = 9.4 Hz), 4.21 (1H, d, J = 9.4 Hz), 5.11–5.16 (2H, m), 5.17 (1H, s), 5.72 (1H, bs), 9.75 (1H, s); ¹³C NMR (125MHz, CDCl₃) δC 12.4, 26.4, 28.1, 36.9, 39.2, 68.2, 73.0, 81.7, 97.7, 117.5, 137.9, 153.6, 198.3; HRMS (ESI, +ve) m/z calcd. for C₁₇H₂₉NO₄Na 334.1994, found: 334.1982 (M+Na)⁺.

(2R,4S)-tert-Butyl 4-((E)-but-2-enyl)-2-tert-butyl-4-formyloxazolidine-3-carboxylate (325e)

DMSO (656 μL, 9.23 mmol, 5.4 eq) in DCM (2.67 mL) was added dropwise to a solution of oxalyl chloride (397 μL, 4.62 mmol, 2.7 eq) in DCM (6.67 mL) at -78 °C
and stirred for 30 minutes. (2R,4R)-tert-butyl 4-((E)-but-2-ethyl)-2-tert-butyl-4-(hydroxymethyl)oxazolidine-3-carboxylate 323e (536 mg, 1.71 mmol, 1 eq) in DCM (8.0 mL) was added dropwise to the reaction mixture and stirred for a further 15 minutes. NEt₃ (1.53 mL, 10.9 mmol, 6.4 eq) in DCM (2.67 mL) was added dropwise and the reaction mixture allowed to warm to room temperature and stirred for 2 hours. Reaction mixture diluted with DCM (25 mL) and washed with water (3 × 20 mL) and NaHCO₃ (sat) (3 × 20 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (434 mg, 81%, 6:1 mix of rotamers). FTIR (film/cm⁻¹) υmax: 2973, 2934, 2875, 1718, 1698; ¹H NMR (500MHz, CDCl₃) δH major rotamer 0.98 (9H, s), 1.48 (9H, s), 1.70 (3H, app. dq, J = 6.4, 1.2 Hz), 2.51 (1H, app. d, J = 8.7 Hz), 2.85 (1H, bs), 3.94 (1H, d, J = 9.0 Hz), 4.15 (1H, d, J = 9.0 Hz), 5.11 (1H, s), 5.38–5.47 (1H, m), 5.55–5.64 (1H, m), 9.79 (1H, s); δH minor rotamer 0.99 (9H, s), 1.47 (9H, s), 1.66 (3H, app. dq, J = 6.4, 1.2 Hz), 2.51 (1H, app. d, J = 8.7 Hz), 2.85 (1H, bs), 3.88 (1H, d, J = 9.0 Hz), 4.15 (1H, d, J = 9.0 Hz), 5.18 (1H, s), 5.38–5.47 (1H, m), 5.66–5.73 (1H, m), 9.79 (1H, s); ¹³C NMR (125MHz, CDCl₃) δC 13.1, 18.2, 26.5, 28.1, 39.3, 71.5, 81.6, 97.7, 122.6, 123.5, 130.6, 153.7, 200.0; HRMS (ESI, +ve) m/z calcd. for C₁₇H₂₉NO₄Na 334.1994, found: 334.1996 (M+Na)⁺.

(2R,4S)-tert-Butyl 2-tert-butyl-4-formyl-4-(2-methylallyl)oxazolidine-3-carboxylate (325f)

DMSO (202 μL, 2.84 mmol, 5.4 eq) in DCM (800 μL) was added dropwise to a solution of oxalyl chloride (122 μL, 1.42 mmol, 2.7 eq) in DCM (2.0 mL) at -78 °C and stirred for 30 minutes. (2R,4R)-tert-butyl 2-tert-butyl-4-(hydroxymethyl)-4-(2-methylallyl)oxazolidine-3-carboxylate 323f (165 mg, 0.526 mmol, 1 eq) in DCM (2.4 mL) was added dropwise to the reaction mixture and stirred for a further 15 minutes. NEt₃ (470 μL, 3.37 mmol, 6.4 eq) in DCM (800 μL) was added dropwise and the reaction mixture allowed to warm to room temperature and stirred for 2 hours. Reaction
mixture diluted with DCM (25 mL) and washed with water (3 × 20 mL) and NaHCO₃ (sat) (3 × 20 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (116 mg, 71%). [α]D²⁰ +37.7 (c 2.15, CHCl₃); FTIR (film/cm⁻¹) νmax: 2976, 2936, 2875, 1717, 1695; ¹H NMR (500MHz, CDCl₃) δH 0.98 (9H, s), 1.46 (9H, s), 1.78 (3H, s), 2.54 (1H, d, J = 14.2 Hz), 2.87 (1H, bs), 4.01 (1H, d, J = 9.3 Hz), 4.08 (1H, d, J = 9.3 Hz), 4.49 (1H, s), 4.95 (1H, s), 5.11 (1H, s), 9.74 (1H, s); ¹³C NMR (125MHz, CDCl₃) δC 23.5, 26.7, 28.1, 38.4, 39.3, 70.1, 71.9, 81.8, 97.4, 116.4, 140.4, 153.4, 199.2; HRMS (ESI, +ve) m/z calcd. for C₁₇H₂₉NO₄Na 334.1994, found: 334.1987 (M+Na)⁺.

(4S,5R)-tert-Butyl 4-((R)-1-ethoxyallyl)-4-(hydroxymethyl)-5-methyloxazolidine-3-carboxylate (326)

DMSO (219 μL, 3.08 mmol, 5.4 eq) in DCM (800 μL) was added dropwise to a solution of oxalyl chloride (132 μL, 1.54 mmol, 2.7 eq) in DCM (2.0 mL) at -78 °C and stirred for 30 minutes. (4S,5R)-tert-butyl 4-((R)-1-ethoxyallyl)-4-(hydroxymethyl)-5-methyloxazolidine-3-carboxylate 324 (172 mg, 0.571 mmol, 1 eq) in DCM (2.4 mL) was added dropwise to the reaction mixture and stirred for a further 15 minutes. NEt₃ (510 μL, 3.65 mmol, 6.4 eq) in DCM (800 μL) was added dropwise and the reaction mixture allowed to warm to room temperature and stirred for 2 hours. Reaction mixture diluted with DCM (25 mL) and washed with water (3 × 20 mL) and NaHCO₃ (sat) (3 × 20 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to afford the pure title compound as a colourless oil without the need for further purification (143 mg, 84%, 4:3 mix of rotamers). FTIR (film/cm⁻¹) νmax: 2977, 2933, 2871, 1736, 1699; ¹H NMR (500MHz, CDCl₃) δH major rotamer 1.16 (3H, t, J = 6.9 Hz), 1.24 (3H, d, J = 4.4 Hz), 1.48 (9H, s), 3.39 (1H, q, J = 7.1 Hz), 3.57–3.66 (1H, m), 4.31–4.39 (1H, m), 4.68 (1H, d, J = 4.3 Hz), 4.71 (1H, d, J = 3.9 Hz), 5.17–5.44 (3H, m), 6.00–6.13 (1H, m), 9.56 (1H, s); δH minor rotamer 1.18 (3H, t, J = 6.9 Hz), 1.23 (3H, d, J
= 4.4 Hz), 1.44 (9H, s), 3.37 (1H, q, J = 7.1 Hz), 3.57–3.66 (1H, m), 4.31–4.39 (1H, m), 4.42 (1H, d, J = 4.3 Hz), 4.76 (1H, d, J = 3.9 Hz), 5.17–5.44 (3H, m), 6.00–6.13 (1H, m), 9.49 (1H, s); 13C NMR (125MHz, CDCl$_3$) δC major rotamer 15.4, 16.1, 28.3, 65.4, 72.6, 76.0, 78.4, 79.7, 81.0, 117.1, 134.3, 152.0, 199.4; δC minor rotamer 15.4, 16.0, 28.2, 65.7, 72.5, 77.4, 79.6, 79.9, 81.7, 117.2, 134.2, 151.3, 198.8; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{25}$NO$_5$Na 322.1630, found: 322.1614 (M+Na)$^+$.

(2R, 4R)-tert-Butyl 2-tert-butyl-4-((S)-1-ethoxyallyl)-4-vinyloxazolidine-3-carboxylate (327a)

![Structural formula of 327a]

To a solution of methyltriphenylphosphonium bromide (22 mg, 61.5 μmol, 1.5 eq) in THF (0.5 mL) at 0 °C was added n-butyl lithium (1.6M in hexane, 38 μL, 61.5 μmol, 1.5 eq) and the solution turned a dark yellow. After 15 minutes a solution of (2R, 4R)-tert-butyl 2-tert-butyl-4-((S)-1-ethoxyallyl)-4-formyloxazolidine-3-carboxylate 325a (14 mg, 41.0 μmol, 1 eq) in THF (0.5 mL) was added and stirred at reflux for 16 hours. The reaction mixture was allowed to cool to room temperature before concentrated in vacuo and purified by flash chromatography (20:1 Pet/EtOAc) to afford the title compound as a colourless oil (12.1 mg, 87%). $[\alpha]_D^{20}$ -19.1 (c 0.47, CH$_2$Cl$_2$); FTIR (film/cm$^{-1}$) ν_{max}: 2976, 2932, 2905, 2875, 1694; 1H NMR (500MHz, CDCl$_3$) δH 0.94 (9H, s), 1.19 (3H, t, J = 7.0 Hz), 1.51 (9H, s), 3.28 (1H, bs), 3.56 (1H, bs), 3.94 (1H, d, J = 8.6 Hz), 4.29 (1H, d, J = 8.6 Hz), 4.76 (1H, bs), 5.09–5.36 (5H, m), 5.70 (1H, ddd, J = 17.0, 10.7, 6.5 Hz), 6.10 (1H, bs); 13C NMR (125MHz, CDCl$_3$) δC 15.4, 26.7, 28.2, 38.8, 64.4, 70.2, 71.0, 78.9, 80.4, 97.9, 115.9, 118.9, 135.1, 137.5, 154.3; HRMS (ESI, +ve) m/z calcd. for C$_{19}$H$_{34}$NO$_4$ 340.2488, found: 340.2485 (M+H)$^+$.

| 257 |
Experimental

(2R,4R)-tert-Butyl 2-tert-butyl-4-((S)-1-(4-methoxyphenoxy)allyl)-4-vinyloxazolidine-3-carboxylate (327b)

![Chemical Structure](image)

To a solution of methyltriphenylphosphonium bromide (60 mg, 0.168 mmol, 1.5 eq) in THF (1.5 mL) at 0 °C was added *n*-butyl lithium (1.6M in hexane, 105 μL, 0.168 mmol, 1.5 eq) and the reaction turned a dark yellow. After 15 minutes a solution of *(2R,4R)-tert-butyl 2-tert-butyl-4-((S)-1-(4-methoxyphenoxy)allyl)-4-formyloxazolidine-3-carboxylate* 325b (47 mg, 0.112 mmol, 1 eq) in THF (1.5 mL) was added and stirred at reflux for 16 hours. The reaction mixture was allowed to cool to room temperature before concentrated *in vacuo* and purified by flash chromatography (20:1 Pet/EtOAc) to afford the title compound as a colourless oil (34 mg, 74%). $[\alpha]_{D}^{20} +10.8$ (c 0.74, CHCl₃); FTIR (film/cm⁻¹) ν_{max}: 2975, 2934, 2906, 2875, 1695; 1H NMR (500MHz, CDCl₃, 328K) δ_{H} 0.98 (9H, s), 1.20 (9H, s), 3.74 (3H, s), 4.07 (1H, d, $J = 8.7$ Hz), 4.46 (1H, d, $J = 8.7$ Hz), 5.24–5.40 (5H, m), 4.58 (1H, bs), 5.88 (1H, ddd, $J = 16.1$, 10.8, 4.7 Hz), 6.13–6.31 (1H, m), 6.73–6.79 (2H, m), 6.81–6.86 (2H, m); 13C NMR (125MHz, CDCl₃, 328K) δ_{C} 26.7, 27.9, 38.8, 55.8, 69.9, 71.5, 77.1, 80.7, 98.4, 114.5, 116.6, 116.8, 119.1, 133.9, 137.3, 152.4, 153.9, 154.1; HRMS (ESI, +ve) m/z calcd. for C₂₄H₃₅NO₅ 417.2515, found: 417.2519 (M+H)$^+$.

(2R,4R)-tert-Butyl 4-allyl-2-tert-butyl-4-vinyloxazolidine-3-carboxylate (327c)

![Chemical Structure](image)

To a solution of methyltriphenylphosphonium bromide (106 mg, 0.298 mmol, 1.5 eq) in THF (1.5 mL) at 0 °C was added *n*-butyl lithium (1.6M in hexane, 186 μL, 0.298 mmol, 1.5 eq) and the reaction turned a dark yellow. After 15 minutes a solution of *(2R,4S)-tert-butyl 4-allyl-2-tert-butyl-4-formyloxazolidine-3-carboxylate* 325c (59 mg, 0.198...
mmol, 1 eq) in THF (1.5 mL) was added and stirred at reflux for 16 hours. The reaction mixture was allowed to cool to room temperature before concentrated in vacuo and purified by flash chromatography (20:1 Pet/EtOAc) to afford the title compound as a colourless oil (45 mg, 78%). \([\alpha]_{D}^{20} +12.4 (c 2.25, \text{CHCl}_3)\); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}: 2976, 2909, 2872, 1699\); \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta_{H} 0.95 (9\text{H}, s), 1.46 (9\text{H}, s), 2.39 (1\text{H}, dd, J = 13.9, 6.1 \text{ Hz}), 3.09 (1\text{H}, bs), 4.00 (1\text{H}, d, J = 8.8 \text{ Hz}), 4.07 (1\text{H}, d, J = 8.8 \text{ Hz}), 5.06–5.20 (5\text{H}, m), 5.77–5.87 (1\text{H}, m), 6.18 (1\text{H}, bs); \(^{13}\)C NMR (125MHz, CDCl\(_3\)) \(\delta_{C} 26.7, 28.3, 39.1, 40.2, 66.6, 76.4, 80.4, 97.8, 113.9, 118.8, 133.0, 140.7, 154.3\); HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{29}\)NO\(_3\)Na 318.2045, found: 318.2042 (M+Na\(^+\)).

\((2R,4S)-\text{tert-Butyl 4-((S)-but-3-en-2-yl)-2-tert-butyl-4-vinylazolidine-3-carboxylate (327d)} \)

To a solution of methyltriphenylphosphonium bromide (112 mg, 0.314 mmol, 1.5 eq) in THF (1.5 mL) at 0 °C was added \(n\)-butyl lithium (1.6M in hexane, 196 \(\mu\)L, 0.314 mmol, 1.5 eq) and the reaction turned a dark yellow. After 15 minutes a solution of \((2R,4S)-\text{tert-butyl 4-((S)-but-3-en-2-yl)-2-tert-butyl-4-formylazolidine-3-carboxylate 325d} \) (65 mg, 0.209 mmol, 1 eq) in THF (1.5 mL) was added and stirred at reflux for 18 hours. The reaction mixture was allowed to cool to room temperature before concentrated in vacuo and purified by flash chromatography (20:1 Pet/EtOAc) to afford the title compound as a colourless oil (44 mg, 69%). \([\alpha]_{D}^{20} -52.6 (c 1.35, \text{CH}_2\text{Cl}_2)\); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}: 2975, 2936, 2875, 1698\); \(^1\)H NMR (500MHz, CDCl\(_3\), 328K) \(\delta_{H} 0.96 (9\text{H}, s), 1.01 (3\text{H}, d, J = 6.9 \text{ Hz}), 1.51 (9\text{H}, s), 3.39 (1\text{H}, bs), 4.02 (1\text{H}, d, J = 8.8 \text{ Hz}), 4.08 (1\text{H}, d, J = 8.8 \text{ Hz}), 5.03–5.13 (3\text{H}, m), 5.15–5.21 (2\text{H}, m), 5.79 (1\text{H}, ddd, J = 17.2, 10.5, 6.5 \text{ Hz}), 6.20–6.33 (1\text{H}, m); \(^{13}\)C NMR (125MHz, CDCl\(_3\), 328K) \(\delta_{C} 13.1, 26.7, 28.3, 39.1, 40.6, 69.1, 71.6, 80.3, 97.9, 114.3, 116.1, 139.2, 139.9, 154.0\); HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{18}\)H\(_{31}\)NO\(_3\)Na 332.2202, found: 332.2203 (M+Na\(^+\)).
(2R,4R)-tert-Butyl 4-((E)-but-2-enyl)-2-tert-butyl-4-vinyloxazolidine-3-carboxylate (327e)

To a solution of methyltriphenylphosphonium bromide (629 mg, 1.76 mmol, 1.5 eq) in THF (7.5 mL) at 0 °C was added n-butyl lithium (1.6M in hexane, 1.10 mL, 1.76 mmol, 1.5 eq) and the reaction turned a dark yellow. After 15 minutes a solution of (2R,4S)-tert-butyl 4-((E)-but-2-enyl)-2-tert-butyl-4-formyloxazolidine-3-carboxylate 325e (365 mg, 1.17 mmol, 1 eq) in THF (7.5 mL) was added and stirred at reflux for 3 hours. The reaction mixture was allowed to cool to room temperature before concentrated in vacuo and purified by flash chromatography (20:1 Pet/EtOAc) to afford the title compound as a colourless oil (267 mg, 74%, 7:1 mix of rotamers). $[\alpha]_{D}^{20} +30.7$ (c 1.4, CHCl$_3$); FTIR (film/cm$^{-1}$) ν_{max}: 2975, 2937, 2908, 2872, 1699; 1H NMR (500MHz, CDCl$_3$) δ_H major rotamer 0.93 (9H, s), 1.44 (9H, s), 1.66 (3H, d, J = 6.6 Hz), 2.27–2.37 (1H, m), 2.95 (1H, bs), 3.97 (1H, d, J = 8.8 Hz), 4.03 (1H, dd, J = 8.8, 1.2 Hz), 5.01–5.18 (3H, m), 5.35–5.45 (1H, m), 5.48–5.57 (1H, m), 6.16 (1H, bs); δ_H minor rotamer 0.94 (9H, s), 1.44 (9H, s), 1.63 (3H, d, J = 6.6 Hz), 2.27–2.37 (1H, m), 2.95 (1H, bs), 3.92 (1H, d, J = 8.8 Hz), 4.03 (1H, dd, J = 8.8, 1.2 Hz), 5.01–5.18 (3H, m), 5.35–5.45 (1H, m), 5.57–5.65 (1H, m), 6.16 (1H, bs); 13C NMR (125MHz, CDCl$_3$) δ_C major rotamer 18.1, 26.7, 28.3, 39.1, 39.7, 66.7, 76.5, 80.2, 97.7, 113.7, 125.2, 129.4, 140.8, 154.2; δ_C minor rotamer 13.1, 26.7, 28.3, 39.1, 39.7, 66.7, 76.5, 80.3, 97.7, 113.8, 124.5, 127.1, 140.6, 154.2; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{31}$NO$_3$Na 332.2202, found: 332.2209 (M+Na$^+$).

(2R,4R)-tert-Butyl 2-tert-butyl-4-(2-methylallyl)-4-vinyloxazolidine-3-carboxylate (327f)
To a solution of methyltriphenylphosphonium bromide (198 mg, 0.554 mmol, 1.5 eq) in THF (3.0 mL) at 0 °C was added n-butyl lithium (1.6M in hexane, 346 μL, 0.554 mmol, 1.5 eq) and the reaction turned a dark yellow. After 15 minutes a solution of (2R,4S)-tert-butyl 2-tert-butyl-4-formyl-4-(2-methylallyl)oxazolidine-3-carboxylate \(325f\) (115 mg, 0.369 mmol, 1 eq) in THF (3.0 mL) was added and stirred at reflux for 2 hours. The reaction mixture was allowed to cool to room temperature before concentrated in vacuo and purified by flash chromatography (10:1 Pet/EtOAc) to afford the title compound as a colourless oil (80 mg, 70%). \([\alpha]_D^{20} +2.3 (c 3.45, \text{CHCl}_3)\); FTIR (film/cm-1) \(\nu_{\text{max}}:\) 2975, 2930, 2872, 1698; \(^1\text{H NMR}\) (500MHz, CDCl\(_3\)) \(\delta_H 0.96 (9\text{H, s}), 1.48 (9\text{H, s}), 1.80 (3\text{H, s}), 2.35 (1\text{H, d}, J = 13.6 \text{ Hz}), 3.04 (1\text{H, bs}), 4.03 (1\text{H, d}, J = 8.7 \text{ Hz}), 4.13 (1\text{H, d}, J = 8.7 \text{ Hz}), 4.78 (1\text{H, s}), 4.93 (1\text{H, s}), 5.09 (1\text{H, d}, J = 17.7 \text{ Hz}), 5.10 (1\text{H, bs}), 5.14 (1\text{H, d}, J = 11.0 \text{ Hz}), 6.21 (1\text{H, bs}); \(^{13}\text{C NMR}\) (125MHz, CDCl\(_3\)) \(\delta_C 23.8, 27.0, 28.3, 39.1, 43.0, 66.6, 74.8, 80.5, 97.4, 113.7, 115.8, 141.1, 142.0, 153.9; \text{HRMS\text{\(\text{ESI, +ve}\) \(m/z\) calcd. for C\(_{18}\)H\(_{31}\)NO\(_3\)Na 332.2202, found: 332.2193 (M+Na)\(^+\).}

\((4S,5R)-\text{tert-Butyl 4-((R)-1-ethoxyallyl)-5-methyl-4-vinylazolidine-3-carboxylate (328)}\)

\[
\begin{align*}
\text{Me} & \quad \text{OEt} \\
& \quad \text{N} \quad \text{Boc}
\end{align*}
\]

To a solution of methyltriphenylphosphonium bromide (215 mg, 0.602 mmol, 1.5 eq) in THF (3.0 mL) at 0 °C was added n-butyl lithium (1.6M in hexane, 376 μL, 0.602 mmol, 1.5 eq) and the reaction turned a dark yellow. After 15 minutes a solution of (4S,5R)-tert-butyl 4-((R)-1-ethoxyallyl)-4-(hydroxymethyl)-5-methyloxazolidine-3-carboxylate \(326\) (120 mg, 0.401 mmol, 1 eq) in THF (3.0 mL) was added and stirred at reflux for 16 hours. The reaction mixture was allowed to cool to room temperature before concentrated in vacuo and purified by flash chromatography (10:1 Pet/EtOAc) to afford the title compound as a colourless oil (87 mg, 73%, 5:2 mix of rotamers). \([\alpha]_D^{20} +67.9 (c 1.40, \text{CHCl}_3)\); FTIR (film/cm-1) \(\nu_{\text{max}}:\) 2977, 2936, 2857, 1710, 1692; \(^1\text{H NMR}\) (500MHz, CDCl\(_3\)) \(\delta_H\) major rotamer 1.10–1.18 (6\text{H, m}), 1.45 (9\text{H, s}), 3.26–3.38 (1\text{H, m}), 3.48–3.61 (1\text{H, m}), 4.30–4.42 (1\text{H, m}), 4.63–4.67 (1\text{H, m}), 4.97 (1\text{H, d}, J = 3.3 \text{ Hz}),
5.13–5.39 (5H, m), 5.60–5.76 (2H, m); $\delta^H_{\text{minor rotamer}}$ 1.10–1.18 (6H, m), 1.43 (9H, s), 3.26–3.38 (1H, m), 3.48–3.61 (1H, m), 4.30–4.42 (1H, m), 4.63–4.67 (1H, m), 4.73 (1H, d, $J = 3.3$ Hz), 5.13–5.39 (5H, m), 5.60–5.76 (2H, m); 13C NMR (125MHz, CDCl$_3$) $\delta^C_{\text{major rotamer}}$ 15.4, 16.7, 28.4, 64.3, 68.9, 77.6, 79.1, 79.3, 79.5, 116.6, 119.4, 132.8, 134.8, 151.4; $\delta^C_{\text{minor rotamer}}$ 15.4, 16.8, 28.4, 64.7, 68.6, 78.7, 79.6, 80.0, 80.8, 116.3, 119.5, 133.5, 135.0, 152.2; HRMS (ESI, +ve) m/z calcd. for C$_{16}$H$_{27}$NO$_4$Na 320.1838, found: 320.1856 (M+Na)$^+$.

(2R,4S)-3-tert-Butyl 4-methyl 4-((E)-but-2-enyl)-2-tert-butyloxazolidine-3,4-dicarboxylate (333a)

![Chemical structure of (2R,4S)-3-tert-Butyl 4-methyl 4-((E)-but-2-enyl)-2-tert-butyloxazolidine-3,4-dicarboxylate (333a)](image)

To a solution of (2R,4S)-3-tert-butyl 4-methyl 2-tert-butyloxazolidine-3,4-dicarboxylate 249 (1.44 g, 5 mmol, 1 eq) and crotyl bromide (5.14 mL, 50 mmol, 10 eq) in THF (15 mL) at -84 °C was added LHMDS (1M in THF, 15 mL, 15 mmol, 3 eq) via syringe pump at a rate of 10 mL/hr and allowed to stir at -84 °C for 16 hours. Quenched with NH$_4$Cl (sat.) (30 mL), diluted with water (30 mL) and extracted with EtOAc (1 × 50 mL) and DCM (2 × 50 mL). The organics were combined, dried over MgSO$_4$ and concentrated in vacuo. Purification by flash chromatography affords the title compound as a colourless oil (1.54 g, 90%, 6:1 mix of rotamers). $\lbrack \alpha \rbrack^2_{D0} +26.7$ (c 1.35, CHCl$_3$); FTIR (film/cm$^{-1}$) ν_{max}: 2961, 2911, 2881, 1743, 1708; 1H NMR (500MHz, CDCl$_3$) $\delta^H_{\text{major rotamer}}$ 0.98 (9H, s), 1.44 (9H, s), 1.67 (3H, dd, $J = 6.3$, 1.0 Hz), 2.62 (1H, app. d, $J = 15.1$ Hz), 3.01 (1H, bs), 3.75 (3H, s), 4.05 (1H, d, $J = 8.5$ Hz), 4.22 (1H, dd, $J = 8.5$, 1.5 Hz), 5.04 (1H, s), 5.36–5.47 (1H, m), 5.51–5.59 (1H, m); $\delta^H_{\text{minor rotamer}}$ 0.99 (9H, s), 1.43 (9H, s), 1.64 (3H, dd, $J = 6.3$, 1.0 Hz), 2.74 (1H, app. d, $J = 15.1$ Hz), 3.01 (1H, bs), 3.76 (3H, s), 3.99 (1H, d, $J = 8.5$ Hz), 4.24 (1H, dd, $J = 8.5$, 1.5 Hz), 5.11 (1H, s), 5.36–5.47 (1H, m), 5.60–5.69 (1H, m); 13C NMR (125MHz, CDCl$_3$) $\delta^C_{\text{major rotamer}}$ 18.1, 26.5, 28.2, 37.9, 39.4, 52.3, 68.8, 75.3, 80.7, 98.0, 124.2, 130.2, 153.2, 172.4; $\delta^C_{\text{minor rotamer}}$ 13.1, 26.5, 28.2, 37.9, 39.4, 52.3, 68.8, 75.3, 80.8, 98.0, 123.4, 127.9, 153.2, 172.5; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{31}$NO$_5$Na 364.2100, found: 364.2116 (M+Na)$^+$.

Chapter 7 Experimental

5.13–5.39 (5H, m), 5.60–5.76 (2H, m); $\delta^H_{\text{minor rotamer}}$ 1.10–1.18 (6H, m), 1.43 (9H, s), 3.26–3.38 (1H, m), 3.48–3.61 (1H, m), 4.30–4.42 (1H, m), 4.63–4.67 (1H, m), 4.73 (1H, d, $J = 3.3$ Hz), 5.13–5.39 (5H, m), 5.60–5.76 (2H, m); 13C NMR (125MHz, CDCl$_3$) $\delta^C_{\text{major rotamer}}$ 15.4, 16.7, 28.4, 64.3, 68.9, 77.6, 79.1, 79.3, 79.5, 116.6, 119.4, 132.8, 134.8, 151.4; $\delta^C_{\text{minor rotamer}}$ 15.4, 16.8, 28.4, 64.7, 68.6, 78.7, 79.6, 80.0, 80.8, 116.3, 119.5, 133.5, 135.0, 152.2; HRMS (ESI, +ve) m/z calcd. for C$_{16}$H$_{27}$NO$_4$Na 320.1838, found: 320.1856 (M+Na)$^+$.

(2R,4S)-3-tert-Butyl 4-methyl 4-((E)-but-2-enyl)-2-tert-butyloxazolidine-3,4-dicarboxylate (333a)
(2R,4S)-3-tert-Butyl 4-methyl 2-tert-butyl-4-(2-methylallyl)oxazolidine-3,4-dicarboxylate (333b)

To a solution of (2R,4S)-3-tert-butyl 4-methyl 2-tert-butyl-4-vinylloxazolidine-3-carboxylate 249 (1.44 g, 5 mmol, 1 eq) and crotyl bromide (5.14 mL, 50 mmol, 10 eq) in THF (15 mL) at -84 °C was added LHMDS (1M in THF, 15 mL, 15 mmol, 3 eq) via syringe pump at a rate of 10 mL/hr and allowed to stir at -84 °C for 16 hours. Quenched with NH₄Cl (sat.) (30 mL), diluted with water (30 mL) and extracted with EtOAc (1 × 50 mL) and DCM (2 × 50 mL). The organics were combined, dried over MgSO₄ and concentrated in vacuo. Purification by flash chromatography affords the title compound as a colourless oil (1.54 g, 90%). [α]D20 +11.5 (c 1.92, CHCl₃); FTIR (film/cm⁻¹) υmax: 2975, 2957, 2908, 2878, 1743, 1708; 1H NMR (500MHz, CDCl₃) δH 0.99 (9H, s), 1.45 (9H, s), 1.79 (3H, s), 2.66 (1H, d, J = 14.2 Hz), 3.12 (1H, bs), 3.75 (3H, s), 4.14 (1H, d, J = 8.2 Hz), 4.20 (1H, d, J = 8.2 Hz), 4.79 (1H, s), 4.93 (1H, s), 5.06 (1H, s); 13C NMR (125MHz, CDCl₃) δC 23.6, 26.7, 28.2, 39.5, 40.9, 52.4, 68.9, 74.0, 80.9, 97.8, 116.4, 140.8, 152.9, 172.4; HRMS (ESI, +ve) m/z calcd. for C₁₈H₃₁NO₅Na 364.2100, found: 364.2102 (M+Na)+.

(R)-3-Phenylcyclohexanone (ent-304)

Phenylboronic acid (60 mg, 0.50 mmol), bis(ethylene)rhodium(I) chloride dimer (3.2 mg, 8.25 μmol), (2R,4R)-tert-butyl 4-allyl-2-tert-butyl-4-vinylloxazolidine-3-carboxylate 327c (5.8 mg, 19.8 μmol), 2-cyclohexenone (32 μL, 0.330 mmol) and KOH (0.075M in water, 0.45 mL, 33 μmol) were combined according to General Procedure X. Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a
colourless oil (58 mg, 100%, 88% ee). Chiral HPLC analysis performed using Chiralpak AD column (hexane/2-propanol, 99:1, 0.5 mL/min, 214 nm); \(t_R: 23.3 \) min (minor), 27.8 min (major). \([\alpha]_D^{20} +16.0 \) (c 1.88, CHCl₃), lit.\(^{268}\) \([\alpha]_D^{20} +17.2 \) (c 1.0, CHCl₃, 94% ee); \(^1\)H NMR (500MHz, CDCl₃) \(\delta_H 1.74–1.93 \) (2H, m), 2.07–2.14 (1H, m), 2.17 (1H, ddd, \(J = 13.0, 6.3, 3.2 \) Hz), 2.35–2.65 (4H, m), 3.03 (1H, tt, \(J = 11.8, 3.9 \) Hz), 7.22–7.28 (3H, m), 7.35 (2H, app. t, \(J = 7.5 \) Hz); \(^13\)C NMR (125MHz, CDCl₃) \(\delta_C 25.6, 32.8, 41.2, 44.8, 49.0, 126.6, 126.7, 128.7, 144.4, 211.0 \). All analytical data in accordance with reported literature values.\(^{268}\)

\[(R)-3-(4-Fluorophenyl)cyclohexanone (334a)\]

\[
\begin{align*}
\text{O} & \quad \text{F} \\
\text{C}_\text{H} &
\end{align*}
\]

4-Fluorophenyl boronic acid (70 mg, 0.50 mmol), bis(ethylene)rhodium(I) chloride dimer (3.2 mg, 8.25 \(\mu \)mol), (2\(R\),4\(R\))-tert-butyl 4-allyl-2-tert-butyl-4-vinyloxazolidine-3-carboxylate \(327\)c (5.8 mg, 19.8 \(\mu \)mol), 2-cyclohexenone (32 \(\mu \)L, 0.330 mmol) and KOH (0.075M in water, 0.45 mL, 33 \(\mu \)mol) were combined according to General Procedure X. Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (60 mg, 95%, 91% ee). Chiral HPLC analysis performed using Chiralpak AD column (hexane/2-propanol, 97:3, 1 mL/min, 214 nm); \(t_R: 9.6 \) min (minor), 12.0 min (major). \([\alpha]_D^{20} +12.4 \) (c 2.5, CHCl₃), lit.\(^{268}\) \([\alpha]_D^{20} +16.0 \) (c 1.05, CHCl₃, 93% ee); \(^1\)H NMR (500MHz, CDCl₃) \(\delta_H 1.71–1.90 \) (2H, m), 2.01–2.11 (1H, m), 2.11–2.21 (1H, m), 2.32–2.43 (1H, m), 2.43–2.54 (2H, m), 2.54–2.63 (1H, m), 2.94–3.08 (1H, m), 6.97–7.06 (2H, m), 7.14–7.23 (2H, m); \(^13\)C NMR (125MHz, CDCl₃) \(\delta_C 25.4, 32.9, 41.1, 44.0, 49.1, 115.4 \) (d, \(J = 21.4 \) Hz), 128.0 (d, \(J = 8.0 \) Hz), 140.1 (d, \(J = 3.0 \) Hz), 161.5 (d, \(J = 243.7 \) Hz), 210.6. All analytical data in accordance with reported literature values.\(^{268}\)
(R)-3-(4-Methoxyphenyl)cyclohexanone (334b)

![Chemical structure](image)

4-Methoxyphenyl boronic acid (76 mg, 0.50 mmol), bis(ethylene)rhodium(I) chloride dimer (3.2 mg, 8.25 μmol), (2R,4R)-tert-butyl 4-allyl-2-tert-butyl-4-vinyloxazolidine-3-carboxylate 327c (5.8 mg, 19.8 μmol), 2-cyclohexenone (32 μL, 0.330 mmol) and KOH (0.075M in water, 0.45 mL, 33 μmol) were combined according to General Procedure X. Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (62 mg, 93%, 84% ee). Chiral HPLC analysis performed using Chiralcel OJ column (hexane/2-propanol, 97:3, 0.8 mL/min, 214 nm); \(t_R \): 26.4 min (major), 31.5 min (minor). \([\alpha]_D^{20} +13.8 \ (c \ 2.4, \ CHCl_3), \) lit.\(^{268}\) \([\alpha]_D^{20} +14.0 \ (c \ 0.95, \ CHCl_3, 93\% \ ee)\); \(^1\)H NMR (500MHz, CDCl\(_3\)) \(\delta \)H 1.73–1.89 (2H, m), 2.04–2.11 (1H, m), 2.12–2.20 (1H, m), 2.33–2.64 (4H, m), 2.99 (1H, tt, \(J = 11.8, \) 3.9 Hz), 3.81 (3H, s), 6.89 (2H, app. d, \(J = 8.6 \) Hz), 7.16 (2H, app. d, \(J = 8.6 \) Hz); \(^13\)C NMR (125MHz, CDCl\(_3\)) \(\delta \)C 25.5, 33.0, 41.2, 44.0, 49.2, 55.3, 114.0, 127.5, 136.6, 158.3, 211.2. All analytical data in accordance with reported literature values.\(^{268}\)

(R)-3-(Naphthalen-1-yl)cyclohexanone (334c)

![Chemical structure](image)

1-Naphthaleneboronic acid (86 mg, 0.50 mmol), bis(ethylene)rhodium(I) chloride dimer (3.2 mg, 8.25 μmol), (2R,4R)-tert-butyl 4-allyl-2-tert-butyl-4-vinyloxazolidine-3-carboxylate 327c (5.8 mg, 19.8 μmol), 2-cyclohexenone (32 μL, 0.330 mmol) and KOH (0.075M in water, 0.45 mL, 33 μmol) were combined according to General Procedure X. Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (74 mg, 100%, 73% ee). Chiral HPLC analysis performed using Chiralcel OD-H column (hexane/2-propanol, 90:10, 0.8 mL/min, 214 nm); \(t_R \): 17.4 min (major),
24.7 min (minor). $[\alpha]_D^{20} +31.0$ (c 2.97, CHCl₃), lit.²⁵⁹ $[\alpha]_D^{20} +48.4$ (c 1.05, CHCl₃, 82% ee); 1H NMR (500MHz, CDCl₃) δH 1.88–2.09 (2H, m), 2.16–2.32 (2H, m), 2.42–2.84 (4H, m), 3.88 (1H, app. t, $J = 11.3$ Hz), 7.42 (1H, d, $J = 7.4$ Hz), 7.45–7.59 (3H, m), 7.78 (1H, d, $J = 8.1$ Hz), 7.90 (1H, d, $J = 8.1$ Hz), 8.06 (1H, d, $J = 8.1$ Hz); 13C NMR (125MHz, CDCl₃) δC 25.6, 32.3, 39.4, 41.5, 48.6, 122.5, 122.7, 125.6, 125.7, 126.2, 127.3, 129.1, 130.9, 134.0, 140.1, 211.2. All analytical data in accordance with reported literature values.²⁵⁹

(R)-3-(4-Acetylphenyl)cyclohexanone (334d)

![Chemical Structure](image)

4-Acetylphehnylboronic acid (82 mg, 0.50 mmol), bis(ethylene)rhodium(I) chloride dimer (3.2 mg, 8.25 μmol), (2R,4R)-tert-butyl 4-allyl-2-tert-butyl-4-vinyloxazolidine-3-carboxylate 327c (5.8 mg, 19.8 μmol), 2-cyclohexenone (32 μL, 0.330 mmol) and KOH (0.075M in water, 0.45 mL, 33 μmol) were combined according to General Procedure X. Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (17 mg, 24%, 79% ee). Chiral HPLC analysis performed using Chiralpak AD column (hexane/2-propanol, 90:10, 0.6 mL/min, 214 nm); t_R: 33.73 min (major), 39.5 min (minor). $[\alpha]_D^{20} +5.9$ (c 0.85, CHCl₃), lit.²⁵⁷ $[\alpha]_D^{20} -7.3$ (c 1.0, CHCl₃, 92% ee for S-isomer); 1H NMR (500MHz, CDCl₃) δH 1.74–1.97 (2H, m), 2.04–2.25 (2H, m), 2.35–2.69 (7H, m), 3.03–3.16 (1H, m), 7.33 (2H, app. d, $J = 8.0$ Hz), 7.94 (2H, app. d, $J = 8.0$ Hz); 13C NMR (125MHz, CDCl₃) δC 25.4, 26.6, 32.4, 41.1, 44.6, 48.4, 126.9, 128.9, 135.8, 149.7, 197.7, 210.3. All analytical data in accordance with reported literature values.²⁵⁷
(R)-3-(4-Chlorophenyl)cyclohexanone (334e)

![Chemical structure](image)

4-Chlorophenylboronic acid (78 mg, 0.50 mmol), bis(ethylene)rhodium(I) chloride dimer (3.2 mg, 8.25 μmol), (2R,4R)-tert-butyl 4-allyl-2-tert-butyl-4-vinyloxazolidine-3-carboxylate 327e (5.8 mg, 19.8 μmol), 2-cyclohexenone (32 μL, 0.330 mmol) and KOH (0.075M in water, 0.45 mL, 33 μmol) were combined according to General Procedure X. Purification by flash chromatography (10:1 Pet/EtOAc) affords the methyl ester as a colourless oil (60 mg, 87%). Chiral HPLC analysis performed using Chiralpak AD, Chiralcel OD, OD-H or OJ columns unable to afford resolution of enantiomeric peaks. $[\alpha]_{D}^{20} +8.2$ (c 2.45, CHCl₃), lit. $[\alpha]_{D}^{20} +12.0$ (c 0.20, CHCl₃, 99% ee); 1H NMR (500MHz, CDCl₃) δH 1.70–1.90 (2H, m), 2.01–2.23 (2H, m), 2.32–2.63 (4H, m), 2.92–3.07 (1H, m), 7.16 (2H, app. d, $J = 8.3$ Hz), 7.30 (2H, app. d, $J = 8.3$ Hz); 13C NMR (125MHz, CDCl₃) δC 25.4, 32.7, 41.1, 44.1, 48.8, 128.0, 128.8, 132.4, 142.8, 210.5. All analytical data in accordance with reported literature values. 301
8. APPENDICES

8.1 X-Ray Crystallography Data

8.1.1 X-Ray Data for 252i

Table 1 - Crystal data and structure refinement for 252i

<table>
<thead>
<tr>
<th>Identification code</th>
<th>p10dc3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C47 H66 Cl2 I2 N2 O12</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1175.72</td>
</tr>
<tr>
<td>Temperature</td>
<td>240(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.54184 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>Space group</td>
<td>P61</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 10.9498(2) Å</td>
<td>α = 90°</td>
</tr>
<tr>
<td>b = 10.9498(2) Å</td>
<td>β = 90°</td>
</tr>
<tr>
<td>c = 77.5761(19) Å</td>
<td>γ = 120°</td>
</tr>
<tr>
<td>Volume</td>
<td>8055.1(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>6</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.454 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>10.588 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>3588</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.20 x 0.20 x 0.12 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.42 to 67.47°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-11<=h<=13; -12<=k<=13; -92<=l<=92</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>61225</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>9351 [R(int) = 0.0644]</td>
</tr>
<tr>
<td>Reflections observed (>2σ)</td>
<td>8819</td>
</tr>
<tr>
<td>Data Completeness</td>
<td>0.998</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.00000 and 0.42759</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>9351 / 30 / 628</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.037</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0498 wR2 = 0.1255</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0533 wR2 = 0.1283</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.015(5)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.875 and -0.970 eÅ⁻³</td>
</tr>
</tbody>
</table>

Notes:

The asymmetric unit consists of two molecules of the target compound, plus a disordered region of solvent. The latter was modeled as two dichloromethane fragments, present in a 60:40 ratio. C-Cl, Cl…Cl and some ADP restraints were applied in the solvent region, in order to assist convergence.
Table 2 - Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 252I.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)</td>
<td>9800(1)</td>
<td>15856(1)</td>
<td>-239(1)</td>
<td>66(1)</td>
</tr>
<tr>
<td>I(1A)</td>
<td>6571(1)</td>
<td>3144(1)</td>
<td>9(1)</td>
<td>60(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>10641(1)</td>
<td>6294(10)</td>
<td>1115(1)</td>
<td>122(3)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>10214(1)</td>
<td>8438(13)</td>
<td>973(1)</td>
<td>168(4)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>10314(9)</td>
<td>6631(6)</td>
<td>939(1)</td>
<td>142(2)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>12195(6)</td>
<td>9262(6)</td>
<td>824(1)</td>
<td>109(2)</td>
</tr>
<tr>
<td>O(1)</td>
<td>9164(5)</td>
<td>11140(5)</td>
<td>-50(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>9789(5)</td>
<td>12070(5)</td>
<td>-626(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>7799(4)</td>
<td>11731(5)</td>
<td>-495(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>11263(6)</td>
<td>10358(6)</td>
<td>-426(1)</td>
<td>58(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>11899(5)</td>
<td>10844(5)</td>
<td>-149(1)</td>
<td>52(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>11289(5)</td>
<td>14281(4)</td>
<td>-360(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>6879(4)</td>
<td>2295(5)</td>
<td>377(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>O(2A)</td>
<td>8048(5)</td>
<td>4947(5)</td>
<td>591(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(3A)</td>
<td>9262(5)</td>
<td>6221(4)</td>
<td>358(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>O(4A)</td>
<td>9776(5)</td>
<td>3659(5)</td>
<td>806(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(5A)</td>
<td>10283(4)</td>
<td>2144(5)</td>
<td>678(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>O(6A)</td>
<td>10757(4)</td>
<td>3609(4)</td>
<td>293(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>9316(5)</td>
<td>11358(5)</td>
<td>-344(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>N(1A)</td>
<td>9644(4)</td>
<td>4518(5)</td>
<td>454(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>8285(6)</td>
<td>10863(7)</td>
<td>-199(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>10525(7)</td>
<td>12294(6)</td>
<td>-89(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>10771(5)</td>
<td>11994(6)</td>
<td>-277(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>7202(7)</td>
<td>9295(7)</td>
<td>-196(1)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>7930(9)</td>
<td>8399(8)</td>
<td>-211(1)</td>
<td>66(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6449(10)</td>
<td>9005(11)</td>
<td>-20(1)</td>
<td>87(3)</td>
</tr>
<tr>
<td>C(7)</td>
<td>6122(9)</td>
<td>8900(9)</td>
<td>-340(1)</td>
<td>83(3)</td>
</tr>
<tr>
<td>C(8)</td>
<td>9045(6)</td>
<td>11761(6)</td>
<td>-501(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>7228(7)</td>
<td>12049(7)</td>
<td>-652(1)</td>
<td>52(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>8197(9)</td>
<td>13533(8)</td>
<td>-708(1)</td>
<td>66(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>6975(11)</td>
<td>10973(9)</td>
<td>-790(1)</td>
<td>75(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5857(9)</td>
<td>11897(13)</td>
<td>-584(1)</td>
<td>84(3)</td>
</tr>
<tr>
<td>C(13)</td>
<td>11310(6)</td>
<td>10957(6)</td>
<td>-295(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>12591(9)</td>
<td>10019(9)</td>
<td>-159(1)</td>
<td>69(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>11854(6)</td>
<td>13359(5)</td>
<td>-370(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>13287(7)</td>
<td>14007(7)</td>
<td>-282(1)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>14353(13)</td>
<td>14123(14)</td>
<td>-358(2)</td>
<td>109(4)</td>
</tr>
<tr>
<td>C(18)</td>
<td>11803(6)</td>
<td>15427(6)</td>
<td>-466(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>11288(7)</td>
<td>16341(6)</td>
<td>-436(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>11710(9)</td>
<td>17522(7)</td>
<td>-538(1)</td>
<td>57(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>12697(9)</td>
<td>17812(7)</td>
<td>-666(1)</td>
<td>61(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>13209(7)</td>
<td>16940(7)</td>
<td>-696(1)</td>
<td>53(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>12789(7)</td>
<td>15744(7)</td>
<td>-596(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(1A)</td>
<td>10702(5)</td>
<td>4863(6)</td>
<td>317(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(2A)</td>
<td>9487(5)</td>
<td>2454(6)</td>
<td>354(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(3A)</td>
<td>9081(5)</td>
<td>3040(5)</td>
<td>509(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(4A)</td>
<td>12225(6)</td>
<td>6059(7)</td>
<td>360(1)</td>
<td>51(2)</td>
</tr>
<tr>
<td>C(5A)</td>
<td>12757(7)</td>
<td>5712(10)</td>
<td>525(1)</td>
<td>70(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>C(6A)</td>
<td>13160(7)</td>
<td>6104(10)</td>
<td>211(1)</td>
<td>72(2)</td>
</tr>
<tr>
<td>C(7A)</td>
<td>12318(8)</td>
<td>7488(9)</td>
<td>378(2)</td>
<td>90(3)</td>
</tr>
<tr>
<td>C(8A)</td>
<td>8894(6)</td>
<td>5214(6)</td>
<td>478(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(9A)</td>
<td>8693(8)</td>
<td>7205(8)</td>
<td>369(1)</td>
<td>58(2)</td>
</tr>
<tr>
<td>C(10A)</td>
<td>7125(10)</td>
<td>6408(10)</td>
<td>337(2)</td>
<td>88(3)</td>
</tr>
<tr>
<td>C(11A)</td>
<td>9468(13)</td>
<td>8195(10)</td>
<td>218(1)</td>
<td>86(3)</td>
</tr>
<tr>
<td>C(12A)</td>
<td>9059(10)</td>
<td>7974(9)</td>
<td>534(1)</td>
<td>69(2)</td>
</tr>
<tr>
<td>C(13A)</td>
<td>9761(5)</td>
<td>3000(6)</td>
<td>681(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(14A)</td>
<td>10808(8)</td>
<td>1945(9)</td>
<td>841(1)</td>
<td>58(2)</td>
</tr>
<tr>
<td>C(15A)</td>
<td>7457(5)</td>
<td>2180(6)</td>
<td>538(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(16A)</td>
<td>7017(6)</td>
<td>695(7)</td>
<td>583(1)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(17A)</td>
<td>6314(7)</td>
<td>-399(8)</td>
<td>481(1)</td>
<td>63(2)</td>
</tr>
<tr>
<td>C(18A)</td>
<td>5592(5)</td>
<td>2220(6)</td>
<td>375(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(19A)</td>
<td>5212(6)</td>
<td>2576(7)</td>
<td>221(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(20A)</td>
<td>3931(8)</td>
<td>2549(9)</td>
<td>207(1)</td>
<td>62(2)</td>
</tr>
<tr>
<td>C(21A)</td>
<td>3058(8)</td>
<td>2197(12)</td>
<td>344(1)</td>
<td>80(3)</td>
</tr>
<tr>
<td>C(22A)</td>
<td>3412(7)</td>
<td>1819(11)</td>
<td>498(1)</td>
<td>75(2)</td>
</tr>
<tr>
<td>C(23A)</td>
<td>4681(7)</td>
<td>1833(9)</td>
<td>514(1)</td>
<td>59(2)</td>
</tr>
<tr>
<td>C(1S)</td>
<td>9570(30)</td>
<td>6691(13)</td>
<td>1001(5)</td>
<td>145(6)</td>
</tr>
<tr>
<td>C(2S)</td>
<td>11081(16)</td>
<td>8366(7)</td>
<td>987(2)</td>
<td>114(4)</td>
</tr>
</tbody>
</table>
Table 3 - Bond lengths [Å] and angles [°] for 252i

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)-C(19)</td>
<td>2.101(6)</td>
<td>I(1A)-C(19A)</td>
<td>2.090(6)</td>
</tr>
<tr>
<td>Cl(1)-C(1S)</td>
<td>1.690(2)</td>
<td>Cl(2)-C(1S)</td>
<td>1.690(2)</td>
</tr>
<tr>
<td>Cl(3)-C(2S)</td>
<td>1.690(2)</td>
<td>Cl(4)-C(2S)</td>
<td>1.688(2)</td>
</tr>
<tr>
<td>O(1)-C(2)</td>
<td>1.424(8)</td>
<td>O(1)-C(1)</td>
<td>1.434(7)</td>
</tr>
<tr>
<td>O(2)-C(8)</td>
<td>1.204(7)</td>
<td>O(3)-C(8)</td>
<td>1.348(7)</td>
</tr>
<tr>
<td>O(3)-C(9)</td>
<td>1.485(7)</td>
<td>O(4)-C(13)</td>
<td>1.194(8)</td>
</tr>
<tr>
<td>O(5)-C(13)</td>
<td>1.340(7)</td>
<td>O(5)-C(14)</td>
<td>1.442(8)</td>
</tr>
<tr>
<td>O(6)-C(18)</td>
<td>1.363(7)</td>
<td>O(6)-C(15)</td>
<td>1.427(7)</td>
</tr>
<tr>
<td>O(7)-C(18A)</td>
<td>1.369(6)</td>
<td>O(7)-C(15A)</td>
<td>1.431(6)</td>
</tr>
<tr>
<td>O(2A)-C(8A)</td>
<td>1.203(7)</td>
<td>O(3A)-C(8A)</td>
<td>1.337(7)</td>
</tr>
<tr>
<td>O(3A)-C(9A)</td>
<td>1.492(7)</td>
<td>O(4A)-C(13A)</td>
<td>1.203(7)</td>
</tr>
<tr>
<td>O(5A)-C(13A)</td>
<td>1.320(7)</td>
<td>O(5A)-C(14A)</td>
<td>1.448(7)</td>
</tr>
<tr>
<td>O(6A)-C(2A)</td>
<td>1.413(6)</td>
<td>O(6A)-C(1A)</td>
<td>1.416(7)</td>
</tr>
<tr>
<td>N(1)-C(8)</td>
<td>1.379(7)</td>
<td>N(1)-C(3)</td>
<td>1.476(7)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.492(7)</td>
<td>N(1A)-C(8A)</td>
<td>1.383(7)</td>
</tr>
<tr>
<td>N(1A)-C(1A)</td>
<td>1.475(7)</td>
<td>N(1A)-C(3A)</td>
<td>1.477(7)</td>
</tr>
<tr>
<td>C(1)-C(4)</td>
<td>1.522(9)</td>
<td>C(1)-H(1)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.548(7)</td>
<td>C(2)-H(2A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(2)-H(2B)</td>
<td>0.9800</td>
<td>C(3)-C(13)</td>
<td>1.525(7)</td>
</tr>
<tr>
<td>C(3)-C(15)</td>
<td>1.545(7)</td>
<td>C(4)-C(7)</td>
<td>1.522(11)</td>
</tr>
<tr>
<td>C(4)-C(6)</td>
<td>1.546(10)</td>
<td>C(4)-C(5)</td>
<td>1.548(11)</td>
</tr>
<tr>
<td>C(5)-H(5A)</td>
<td>0.9700</td>
<td>C(5)-H(5B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(5)-H(5C)</td>
<td>0.9700</td>
<td>C(6)-H(5A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(6)-H(6B)</td>
<td>0.9700</td>
<td>C(6)-H(6C)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(7)-H(7A)</td>
<td>0.9700</td>
<td>C(7)-H(7B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(7)-H(7C)</td>
<td>0.9700</td>
<td>C(9)-C(10)</td>
<td>1.494(11)</td>
</tr>
<tr>
<td>C(9)-C(11)</td>
<td>1.513(11)</td>
<td>C(9)-C(12)</td>
<td>1.520(11)</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.9700</td>
<td>C(10)-H(10B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(10)-H(10C)</td>
<td>0.9700</td>
<td>C(11)-H(11A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(11)-H(11B)</td>
<td>0.9700</td>
<td>C(11)-H(11C)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(12)-H(12A)</td>
<td>0.9700</td>
<td>C(12)-H(12B)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(12)-H(12C)</td>
<td>0.9700</td>
<td>C(14)-H(14A)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(14)-H(14B)</td>
<td>0.9700</td>
<td>C(14)-H(14C)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.521(9)</td>
<td>C(15)-H(15)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.254(15)</td>
<td>C(16)-H(16)</td>
<td>0.9400</td>
</tr>
<tr>
<td>C(17)-H(17A)</td>
<td>0.9400</td>
<td>C(17)-H(17B)</td>
<td>0.9400</td>
</tr>
<tr>
<td>C(18)-C(23)</td>
<td>1.391(8)</td>
<td>C(18)-C(19)</td>
<td>1.391(8)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.381(9)</td>
<td>C(20)-C(21)</td>
<td>1.386(11)</td>
</tr>
<tr>
<td>C(20)-H(20)</td>
<td>0.9400</td>
<td>C(21)-C(22)</td>
<td>1.348(11)</td>
</tr>
<tr>
<td>C(21)-H(21)</td>
<td>0.9400</td>
<td>C(22)-C(23)</td>
<td>1.389(10)</td>
</tr>
<tr>
<td>C(22)-H(22)</td>
<td>0.9400</td>
<td>C(23)-H(23)</td>
<td>0.9400</td>
</tr>
<tr>
<td>C(1A)-C(4A)</td>
<td>1.555(8)</td>
<td>C(1A)-H(1A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(2A)-C(3A)</td>
<td>1.533(7)</td>
<td>C(2A)-H(2A1)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(2A)-H(2A2)</td>
<td>0.9800</td>
<td>C(3A)-C(13A)</td>
<td>1.536(7)</td>
</tr>
<tr>
<td>C(3A)-C(15A)</td>
<td>1.556(6)</td>
<td>C(4A)-C(7A)</td>
<td>1.523(11)</td>
</tr>
<tr>
<td>C(4A)-C(6A)</td>
<td>1.527(10)</td>
<td>C(4A)-C(5A)</td>
<td>1.532(11)</td>
</tr>
<tr>
<td>C(5A)-H(5A1)</td>
<td>0.9700</td>
<td>C(5A)-H(5A2)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(5A)-H(5A3)</td>
<td>0.9700</td>
<td>C(6A)-H(6A1)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(6A)-H(6A2)</td>
<td>0.9700</td>
<td>C(6A)-H(6A3)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(7A)-H(7A1)</td>
<td>0.9700</td>
<td>C(7A)-H(7A2)</td>
<td>0.9700</td>
</tr>
<tr>
<td>C(7A)-H(7A3)</td>
<td>0.9700</td>
<td>C(9A)-C(12A)</td>
<td>1.476(11)</td>
</tr>
<tr>
<td>Bond/Distance</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>C(9A)-C(10A)</td>
<td>1.508(11)</td>
<td>C(9A)-C(11A)</td>
<td>1.531(13)</td>
</tr>
<tr>
<td>C(10A)-H(10D)</td>
<td>0.970</td>
<td>C(10A)-H(10E)</td>
<td>0.970</td>
</tr>
<tr>
<td>C(10A)-H(10F)</td>
<td>0.970</td>
<td>C(11A)-H(11D)</td>
<td>0.970</td>
</tr>
<tr>
<td>C(10A)-H(10G)</td>
<td>0.970</td>
<td>C(11A)-H(11E)</td>
<td>0.970</td>
</tr>
<tr>
<td>C(12A)-H(12D)</td>
<td>0.970</td>
<td>C(12A)-H(12E)</td>
<td>0.970</td>
</tr>
<tr>
<td>C(12A)-H(12F)</td>
<td>0.970</td>
<td>C(14A)-H(14D)</td>
<td>0.970</td>
</tr>
<tr>
<td>C(14A)-H(14E)</td>
<td>0.970</td>
<td>C(14A)-H(14F)</td>
<td>0.970</td>
</tr>
<tr>
<td>C(15A)-C(16A)</td>
<td>1.490(8)</td>
<td>C(15A)-H(15A)</td>
<td>0.990</td>
</tr>
<tr>
<td>C(16A)-C(17A)</td>
<td>1.316(10)</td>
<td>C(16A)-H(16A)</td>
<td>0.940</td>
</tr>
<tr>
<td>C(17A)-H(17C)</td>
<td>0.940</td>
<td>C(17A)-H(17D)</td>
<td>0.940</td>
</tr>
<tr>
<td>C(18A)-C(23A)</td>
<td>1.383(8)</td>
<td>C(18A)-C(19A)</td>
<td>1.389(9)</td>
</tr>
<tr>
<td>C(19A)-C(20A)</td>
<td>1.391(8)</td>
<td>C(20A)-C(21A)</td>
<td>1.355(12)</td>
</tr>
<tr>
<td>C(20A)-H(20A)</td>
<td>0.940</td>
<td>C(21A)-C(22A)</td>
<td>1.382(14)</td>
</tr>
<tr>
<td>C(21A)-H(21A)</td>
<td>0.940</td>
<td>C(22A)-C(23A)</td>
<td>1.388(10)</td>
</tr>
<tr>
<td>C(22A)-H(22A)</td>
<td>0.940</td>
<td>C(23A)-H(23A)</td>
<td>0.940</td>
</tr>
<tr>
<td>C(15)-C(1)-C(13)</td>
<td>108.0(4)</td>
<td>C(8)-O(3)-C(9)</td>
<td>120.5(5)</td>
</tr>
<tr>
<td>C(13)-O(5)-C(14)</td>
<td>116.3(5)</td>
<td>C(18)-O(6)-C(15)</td>
<td>119.6(4)</td>
</tr>
<tr>
<td>C(18A)-O(7)-C(15A)</td>
<td>119.3(4)</td>
<td>C(8A)-O(3A)-C(9A)</td>
<td>119.8(5)</td>
</tr>
<tr>
<td>C(13A)-O(5A)-C(14A)</td>
<td>116.1(5)</td>
<td>C(2A)-O(6A)-C(1A)</td>
<td>108.9(4)</td>
</tr>
<tr>
<td>C(8)-N(1)-C(3)</td>
<td>120.8(4)</td>
<td>C(8)-N(1)-C(1)</td>
<td>126.4(4)</td>
</tr>
<tr>
<td>C(3)-N(1)-C(1)</td>
<td>110.5(4)</td>
<td>C(8A)-N(1A)-C(1A)</td>
<td>124.0(4)</td>
</tr>
<tr>
<td>C(8A)-N(1A)-C(3A)</td>
<td>121.9(4)</td>
<td>C(1A)-N(1A)-C(3A)</td>
<td>109.4(4)</td>
</tr>
<tr>
<td>O(1)-C(1)-C(4)</td>
<td>116.2(5)</td>
<td>O(1)-C(1)-H(1)</td>
<td>110.2</td>
</tr>
<tr>
<td>N(1)-C(1)-H(1)</td>
<td>110.2</td>
<td>C(4)-C(1)-H(1)</td>
<td>110.2</td>
</tr>
<tr>
<td>O(1)-C(2)-C(3)</td>
<td>103.3(4)</td>
<td>O(1)-C(2)-H(2A)</td>
<td>111.1</td>
</tr>
<tr>
<td>C(3)-C(2)-H(2A)</td>
<td>111.1</td>
<td>O(1)-C(2)-H(2B)</td>
<td>111.1</td>
</tr>
<tr>
<td>C(3)-C(2)-H(2B)</td>
<td>111.1</td>
<td>H(2A)-C(2)-H(2B)</td>
<td>109.1</td>
</tr>
<tr>
<td>N(1)-C(3)-C(13)</td>
<td>110.2(4)</td>
<td>N(1)-C(3)-C(15)</td>
<td>114.7(4)</td>
</tr>
<tr>
<td>C(13)-C(3)-C(15)</td>
<td>106.3(4)</td>
<td>N(1)-C(3)-C(2)</td>
<td>99.7(4)</td>
</tr>
<tr>
<td>C(13)-C(3)-C(2)</td>
<td>114.7(5)</td>
<td>C(15)-C(3)-C(2)</td>
<td>111.4(4)</td>
</tr>
<tr>
<td>C(1)-C(4)-C(7)</td>
<td>111.5(6)</td>
<td>C(1)-C(4)-C(6)</td>
<td>106.2(6)</td>
</tr>
<tr>
<td>C(7)-C(4)-C(6)</td>
<td>109.3(7)</td>
<td>C(1)-C(4)-C(5)</td>
<td>110.9(6)</td>
</tr>
<tr>
<td>C(7)-C(4)-C(5)</td>
<td>109.7(7)</td>
<td>C(6)-C(4)-C(5)</td>
<td>109.1(7)</td>
</tr>
<tr>
<td>C(4)-C(5)-H(5A)</td>
<td>109.5</td>
<td>C(4)-C(5)-H(5B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(5A)-C(5)-H(5B)</td>
<td>109.5</td>
<td>C(4)-C(5)-H(5C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(5A)-C(5)-H(5C)</td>
<td>109.5</td>
<td>H(5B)-C(5)-H(5C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4)-C(6)-H(6A)</td>
<td>109.5</td>
<td>C(4)-C(6)-H(6B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(6A)-C(6)-H(6B)</td>
<td>109.5</td>
<td>C(4)-C(6)-H(6C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(6A)-C(6)-H(6C)</td>
<td>109.5</td>
<td>H(6B)-C(6)-H(6C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4)-C(7)-H(7A)</td>
<td>109.5</td>
<td>C(4)-C(7)-H(7B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(7A)-C(7)-H(7B)</td>
<td>109.5</td>
<td>C(4)-C(7)-H(7C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(7A)-C(7)-H(7C)</td>
<td>109.5</td>
<td>H(7B)-C(7)-H(7C)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(2)-C(8)-O(3)</td>
<td>124.5(5)</td>
<td>O(2)-C(8)-N(1)</td>
<td>125.6(5)</td>
</tr>
<tr>
<td>O(3)-C(8)-N(1)</td>
<td>109.9(4)</td>
<td>O(3)-C(9)-C(10)</td>
<td>109.9(6)</td>
</tr>
<tr>
<td>O(3)-C(9)-C(11)</td>
<td>109.4(5)</td>
<td>C(10)-C(9)-C(11)</td>
<td>113.2(7)</td>
</tr>
<tr>
<td>O(3)-C(9)-C(12)</td>
<td>101.5(6)</td>
<td>C(10)-C(9)-C(12)</td>
<td>110.2(7)</td>
</tr>
<tr>
<td>C(11)-C(9)-C(12)</td>
<td>111.9(7)</td>
<td>C(9)-C(10)-H(10A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10B)</td>
<td>109.5</td>
<td>H(10A)-C(10)-H(10B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10C)</td>
<td>109.5</td>
<td>H(10A)-C(10)-H(10C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(10B)-C(10)-H(10C)</td>
<td>109.5</td>
<td>C(9)-C(11)-H(11A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9)-C(11)-H(11B)</td>
<td>109.5</td>
<td>H(11A)-C(11)-H(11B)</td>
<td>109.5</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(9)-C(11)-H(11C)</td>
<td>109.5</td>
<td>H(11A)-C(11)-H(11C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(11B)-C(11)-H(11C)</td>
<td>109.5</td>
<td>C(9)-C(12)-H(12A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9)-C(12)-H(12B)</td>
<td>109.5</td>
<td>H(12A)-C(12)-H(12B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(12B)-C(12)-H(12C)</td>
<td>109.5</td>
<td>O(4)-C(13)-O(5)</td>
<td>123.9(5)</td>
</tr>
<tr>
<td>O(4)-C(13)-C(3)</td>
<td>124.1(5)</td>
<td>O(5)-C(14)-H(14B)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(5)-C(14)-H(14A)</td>
<td>109.5</td>
<td>H(14A)-C(14)-H(14C)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(6)-C(15)-O(5)</td>
<td>123.9(5)</td>
<td>H(14B)-C(14)-H(14C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(16)-C(15)-H(15)</td>
<td>109.9</td>
<td>O(6)-C(15)-O(5)</td>
<td>123.9(5)</td>
</tr>
<tr>
<td>C(16)-C(15)-H(16)</td>
<td>119.0</td>
<td>O(6)-C(15)-C(3)</td>
<td>124.1(5)</td>
</tr>
<tr>
<td>C(17)-C(16)-C(15)</td>
<td>122.0(9)</td>
<td>C(3)-C(15)-H(15)</td>
<td>109.9</td>
</tr>
<tr>
<td>C(17)-C(16)-H(16)</td>
<td>119.0</td>
<td>C(16)-C(17)-H(17A)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(16)-C(17)-H(17B)</td>
<td>120.0</td>
<td>O(6)-C(18)-C(19)</td>
<td>115.8(5)</td>
</tr>
<tr>
<td>O(6)-C(18)-C(23)</td>
<td>125.4(5)</td>
<td>C(20)-C(19)-C(18)</td>
<td>120.9(6)</td>
</tr>
<tr>
<td>C(23)-C(18)-C(19)</td>
<td>118.8(5)</td>
<td>C(18)-C(19)-H(11)</td>
<td>118.6(4)</td>
</tr>
<tr>
<td>O(6A)-C(1A)-N(1A)</td>
<td>104.8(4)</td>
<td>C(19)-C(20)-C(19)</td>
<td>120.9(6)</td>
</tr>
<tr>
<td>N(1A)-C(1A)-C(4A)</td>
<td>116.0(5)</td>
<td>O(6A)-C(1A)-H(1A)</td>
<td>109.5</td>
</tr>
<tr>
<td>N(1A)-C(1A)-H(1A)</td>
<td>109.5</td>
<td>C(4A)-C(1A)-H(1A)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(6A)-C(2A)-C(3A)</td>
<td>104.4(4)</td>
<td>O(6A)-C(2A)-C(3A)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(3A)-C(2A)-H(2A1)</td>
<td>110.9</td>
<td>O(6A)-C(2A)-H(2A2)</td>
<td>110.9</td>
</tr>
<tr>
<td>C(3A)-C(2A)-H(2A2)</td>
<td>110.9</td>
<td>H(2A1)-C(2A)-H(2A2)</td>
<td>108.9</td>
</tr>
<tr>
<td>N(1A)-C(3A)-C(13A)</td>
<td>100.5(4)</td>
<td>N(1A)-C(3A)-C(13A)</td>
<td>109.8(4)</td>
</tr>
<tr>
<td>C(2A)-C(3A)-C(15A)</td>
<td>115.0(4)</td>
<td>N(1A)-C(3A)-C(15A)</td>
<td>115.4(4)</td>
</tr>
<tr>
<td>C(2A)-C(3A)-C(15A)</td>
<td>109.9(4)</td>
<td>C(13A)-C(3A)-C(15A)</td>
<td>106.5(4)</td>
</tr>
<tr>
<td>C(7A)-C(4A)-C(6A)</td>
<td>109.9(7)</td>
<td>C(7A)-C(4A)-C(5A)</td>
<td>109.7(8)</td>
</tr>
<tr>
<td>C(6A)-C(4A)-C(5A)</td>
<td>107.9(6)</td>
<td>C(7A)-C(4A)-C(1A)</td>
<td>112.2(5)</td>
</tr>
<tr>
<td>C(6A)-C(4A)-C(1A)</td>
<td>106.7(6)</td>
<td>C(5A)-C(4A)-C(1A)</td>
<td>110.3(5)</td>
</tr>
<tr>
<td>C(4A)-C(5A)-H(5A1)</td>
<td>109.5</td>
<td>C(4A)-C(5A)-H(5A2)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(5A1)-C(5A)-H(5A2)</td>
<td>109.5</td>
<td>C(4A)-C(5A)-H(5A3)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(5A1)-C(5A)-H(5A3)</td>
<td>109.5</td>
<td>H(5A2)-C(5A)-H(5A3)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4A)-C(6A)-H(6A1)</td>
<td>109.5</td>
<td>C(4A)-C(6A)-H(6A2)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(6A)-C(6A)-H(6A2)</td>
<td>109.5</td>
<td>C(4A)-C(6A)-H(6A3)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(6A1)-C(6A)-H(6A3)</td>
<td>109.5</td>
<td>H(6A2)-C(6A)-H(6A3)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4A)-C(7A)-H(7A1)</td>
<td>109.5</td>
<td>C(4A)-C(7A)-H(7A2)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(7A1)-C(7A)-H(7A2)</td>
<td>109.5</td>
<td>C(4A)-C(7A)-H(7A3)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(7A1)-C(7A)-H(7A3)</td>
<td>109.5</td>
<td>H(7A2)-C(7A)-H(7A3)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(2A)-C(8A)-O(3A)</td>
<td>125.7(5)</td>
<td>O(2A)-C(8A)-C(7A)</td>
<td>112.3(5)</td>
</tr>
<tr>
<td>O(3A)-C(8A)-N(1A)</td>
<td>110.3(5)</td>
<td>C(12A)-C(9A)-C(10A)</td>
<td>111.4(5)</td>
</tr>
<tr>
<td>C(12A)-C(9A)-C(10A)</td>
<td>112.3(5)</td>
<td>O(3A)-C(9A)-C(10A)</td>
<td>109.8(6)</td>
</tr>
<tr>
<td>C(12A)-C(9A)-C(11A)</td>
<td>111.4(7)</td>
<td>O(3A)-C(9A)-C(11A)</td>
<td>108.8(6)</td>
</tr>
<tr>
<td>C(10A)-C(9A)-C(11A)</td>
<td>110.6(8)</td>
<td>C(9A)-C(10A)-H(10E)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9A)-C(10A)-H(10E)</td>
<td>109.5</td>
<td>H(10D)-C(10A)-H(10F)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9A)-C(10A)-H(10F)</td>
<td>109.5</td>
<td>C(9A)-C(11A)-H(11D)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(10E)-C(10A)-H(10F)</td>
<td>109.5</td>
<td>H(11D)-C(11A)-H(11E)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9A)-C(11A)-H(11E)</td>
<td>109.5</td>
<td>H(11D)-C(11A)-H(11F)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9A)-C(11A)-H(11F)</td>
<td>109.5</td>
<td>H(11D)-C(11A)-H(11F)</td>
<td>109.5</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>H(11E)-C(11A)-H(11F)</td>
<td>109.5</td>
<td>C(9A)-C(12A)-H(12D)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9A)-C(12A)-H(12E)</td>
<td>109.5</td>
<td>H(12D)-C(12A)-H(12F)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9A)-C(12A)-H(12F)</td>
<td>109.5</td>
<td>H(12D)-C(12A)-H(12F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(12E)-C(12A)-H(12F)</td>
<td>109.5</td>
<td>O(4A)-C(13A)-O(5A)</td>
<td>123.8(5)</td>
</tr>
<tr>
<td>O(4A)-C(13A)-C(3A)</td>
<td>122.8(5)</td>
<td>O(5A)-C(13A)-C(3A)</td>
<td>113.3(4)</td>
</tr>
<tr>
<td>O(5A)-C(13A)-H(14D)</td>
<td>109.5</td>
<td>O(5A)-C(13A)-H(14E)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(12D)-C(12A)-H(12E)</td>
<td>109.5</td>
<td>O(5A)-C(13A)-H(14F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(12E)-C(12A)-H(12F)</td>
<td>109.5</td>
<td>H(14E)-C(14A)-H(14F)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(4A)-C(13A)-C(3A)</td>
<td>122.8(5)</td>
<td>O(7)-C(15A)-C(16A)</td>
<td>112.8(5)</td>
</tr>
<tr>
<td>C(16A)-C(15A)-C(16A)</td>
<td>110.0(4)</td>
<td>O(7)-C(15A)-C(16A)</td>
<td>112.8(5)</td>
</tr>
<tr>
<td>C(16A)-C(15A)-H(15A)</td>
<td>109.9</td>
<td>O(7)-C(15A)-H(15A)</td>
<td>109.9</td>
</tr>
<tr>
<td>C(17A)-C(16A)-C(15A)</td>
<td>124.9(7)</td>
<td>C(17A)-C(16A)-H(16A)</td>
<td>117.5</td>
</tr>
<tr>
<td>C(15A)-C(16A)-H(16A)</td>
<td>117.5</td>
<td>C(16A)-C(17A)-H(17C)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(16A)-C(17A)-H(17D)</td>
<td>120.0</td>
<td>H(17C)-C(17A)-H(17D)</td>
<td>120.0</td>
</tr>
<tr>
<td>O(7)-C(18A)-C(23A)</td>
<td>125.0(6)</td>
<td>O(7)-C(18A)-C(19A)</td>
<td>115.8(5)</td>
</tr>
<tr>
<td>C(23A)-C(18A)-C(19A)</td>
<td>119.2(5)</td>
<td>C(18A)-C(19A)-C(20A)</td>
<td>120.1(6)</td>
</tr>
<tr>
<td>C(18A)-C(19A)-I(1A)</td>
<td>119.5(4)</td>
<td>C(20A)-C(19A)-I(1A)</td>
<td>120.3(5)</td>
</tr>
<tr>
<td>C(21A)-C(20A)-C(19A)</td>
<td>120.3(7)</td>
<td>C(21A)-C(20A)-C(19A)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(19A)-C(20A)-H(20A)</td>
<td>119.8</td>
<td>C(20A)-I(1A)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(20A)-C(21A)-H(21A)</td>
<td>119.9</td>
<td>C(21A)-C(20A)-H(21A)</td>
<td>120.2(6)</td>
</tr>
<tr>
<td>C(21A)-C(22A)-C(23A)</td>
<td>120.2(7)</td>
<td>C(21A)-C(22A)-H(22A)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(23A)-C(22A)-H(22A)</td>
<td>119.9</td>
<td>C(18A)-C(23A)-C(22A)</td>
<td>119.9(7)</td>
</tr>
<tr>
<td>C(18A)-C(23A)-H(23A)</td>
<td>120.0</td>
<td>C(22A)-C(23A)-H(23A)</td>
<td>120.0</td>
</tr>
<tr>
<td>Cl(2)-C(1S)-Cl(I)</td>
<td>114.1(9)</td>
<td>Cl(2)-C(1S)-H(1S1)</td>
<td>108.7</td>
</tr>
<tr>
<td>Cl(1)-C(1S)-H(1S1)</td>
<td>108.7</td>
<td>Cl(2)-C(1S)-H(1S2)</td>
<td>108.7</td>
</tr>
<tr>
<td>Cl(1)-C(1S)-H(1S2)</td>
<td>108.7</td>
<td>H(1S1)-C(1S)-H(1S2)</td>
<td>107.6</td>
</tr>
<tr>
<td>Cl(4)-C(2S)-Cl(3)</td>
<td>107.4(5)</td>
<td>Cl(4)-C(2S)-H(2S1)</td>
<td>110.2</td>
</tr>
<tr>
<td>Cl(3)-C(2S)-H(2S1)</td>
<td>110.2</td>
<td>Cl(4)-C(2S)-H(2S2)</td>
<td>110.2</td>
</tr>
<tr>
<td>Cl(3)-C(2S)-H(2S2)</td>
<td>110.2</td>
<td>H(2S1)-C(2S)-H(2S2)</td>
<td>108.5</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Table 4 - Anisotropic displacement parameters (Å² x 10³) for 252i. The anisotropic displacement factor exponent takes the form: -2 gpi² | h² a*² U11 + ... + 2 h k a* b* U

<table>
<thead>
<tr>
<th>Atom</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(1)</td>
<td>77(1)</td>
<td>56(1)</td>
<td>75(1)</td>
<td>-2(1)</td>
<td>28(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>I(1A)</td>
<td>61(1)</td>
<td>85(1)</td>
<td>43(1)</td>
<td>3(1)</td>
<td>2(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>155(7)</td>
<td>125(6)</td>
<td>97(5)</td>
<td>-20(4)</td>
<td>3(5)</td>
<td>78(5)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>253(11)</td>
<td>141(7)</td>
<td>101(6)</td>
<td>-11(5)</td>
<td>-29(7)</td>
<td>90(8)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>161(5)</td>
<td>91(3)</td>
<td>141(5)</td>
<td>10(3)</td>
<td>-32(4)</td>
<td>39(3)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>104(3)</td>
<td>127(4)</td>
<td>110(4)</td>
<td>-12(3)</td>
<td>-36(3)</td>
<td>69(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>59(3)</td>
<td>65(3)</td>
<td>25(2)</td>
<td>4(2)</td>
<td>5(2)</td>
<td>30(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>53(2)</td>
<td>67(3)</td>
<td>29(2)</td>
<td>6(2)</td>
<td>8(2)</td>
<td>34(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>42(2)</td>
<td>62(2)</td>
<td>37(2)</td>
<td>6(2)</td>
<td>0(2)</td>
<td>32(2)</td>
</tr>
<tr>
<td>O(4)</td>
<td>90(3)</td>
<td>74(3)</td>
<td>41(2)</td>
<td>-9(2)</td>
<td>-4(2)</td>
<td>64(3)</td>
</tr>
<tr>
<td>O(5)</td>
<td>67(3)</td>
<td>52(2)</td>
<td>49(3)</td>
<td>-6(2)</td>
<td>-19(2)</td>
<td>39(2)</td>
</tr>
<tr>
<td>O(6)</td>
<td>60(2)</td>
<td>36(2)</td>
<td>51(2)</td>
<td>5(2)</td>
<td>17(2)</td>
<td>30(2)</td>
</tr>
<tr>
<td>O(7)</td>
<td>25(2)</td>
<td>70(3)</td>
<td>32(2)</td>
<td>2(2)</td>
<td>0(1)</td>
<td>26(2)</td>
</tr>
<tr>
<td>O(2A)</td>
<td>60(3)</td>
<td>63(3)</td>
<td>54(3)</td>
<td>5(2)</td>
<td>17(2)</td>
<td>42(2)</td>
</tr>
<tr>
<td>O(3A)</td>
<td>57(2)</td>
<td>50(2)</td>
<td>43(2)</td>
<td>6(2)</td>
<td>0(2)</td>
<td>38(2)</td>
</tr>
<tr>
<td>O(4A)</td>
<td>69(3)</td>
<td>71(3)</td>
<td>34(2)</td>
<td>-7(2)</td>
<td>-7(2)</td>
<td>43(2)</td>
</tr>
<tr>
<td>O(5A)</td>
<td>49(2)</td>
<td>63(3)</td>
<td>41(2)</td>
<td>7(2)</td>
<td>1(2)</td>
<td>39(2)</td>
</tr>
<tr>
<td>O(6A)</td>
<td>28(2)</td>
<td>48(2)</td>
<td>44(2)</td>
<td>1(2)</td>
<td>9(2)</td>
<td>20(2)</td>
</tr>
<tr>
<td>N(1)</td>
<td>36(2)</td>
<td>41(2)</td>
<td>27(2)</td>
<td>1(2)</td>
<td>1(2)</td>
<td>21(2)</td>
</tr>
<tr>
<td>N(1A)</td>
<td>25(2)</td>
<td>39(2)</td>
<td>36(2)</td>
<td>1(2)</td>
<td>3(2)</td>
<td>18(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>48(3)</td>
<td>59(3)</td>
<td>31(3)</td>
<td>3(2)</td>
<td>7(2)</td>
<td>34(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>60(4)</td>
<td>47(3)</td>
<td>32(3)</td>
<td>-8(2)</td>
<td>1(2)</td>
<td>28(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>38(3)</td>
<td>41(3)</td>
<td>27(3)</td>
<td>-5(2)</td>
<td>-1(2)</td>
<td>22(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>49(3)</td>
<td>56(4)</td>
<td>51(4)</td>
<td>18(3)</td>
<td>11(3)</td>
<td>21(3)</td>
</tr>
<tr>
<td>C(5)</td>
<td>78(5)</td>
<td>51(4)</td>
<td>65(5)</td>
<td>11(3)</td>
<td>-3(4)</td>
<td>28(4)</td>
</tr>
<tr>
<td>C(6)</td>
<td>79(6)</td>
<td>91(6)</td>
<td>80(7)</td>
<td>38(5)</td>
<td>39(5)</td>
<td>35(5)</td>
</tr>
<tr>
<td>C(7)</td>
<td>60(5)</td>
<td>64(5)</td>
<td>87(7)</td>
<td>21(4)</td>
<td>-12(4)</td>
<td>1(4)</td>
</tr>
<tr>
<td>C(8)</td>
<td>43(3)</td>
<td>45(3)</td>
<td>31(3)</td>
<td>-1(2)</td>
<td>0(2)</td>
<td>29(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>54(4)</td>
<td>61(4)</td>
<td>47(4)</td>
<td>4(3)</td>
<td>-12(3)</td>
<td>35(3)</td>
</tr>
<tr>
<td>C(10)</td>
<td>76(5)</td>
<td>66(4)</td>
<td>64(5)</td>
<td>5(3)</td>
<td>-13(4)</td>
<td>42(4)</td>
</tr>
<tr>
<td>C(11)</td>
<td>100(6)</td>
<td>64(4)</td>
<td>51(4)</td>
<td>0(3)</td>
<td>-27(4)</td>
<td>34(4)</td>
</tr>
<tr>
<td>C(12)</td>
<td>64(5)</td>
<td>129(8)</td>
<td>86(6)</td>
<td>12(6)</td>
<td>-9(4)</td>
<td>69(6)</td>
</tr>
<tr>
<td>C(13)</td>
<td>40(3)</td>
<td>40(3)</td>
<td>38(3)</td>
<td>3(2)</td>
<td>-2(2)</td>
<td>21(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>80(5)</td>
<td>68(4)</td>
<td>85(6)</td>
<td>-12(4)</td>
<td>-31(4)</td>
<td>57(4)</td>
</tr>
<tr>
<td>C(15)</td>
<td>48(3)</td>
<td>33(3)</td>
<td>40(3)</td>
<td>-1(2)</td>
<td>4(2)</td>
<td>23(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>46(3)</td>
<td>52(3)</td>
<td>54(4)</td>
<td>-3(3)</td>
<td>-5(3)</td>
<td>14(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>84(7)</td>
<td>107(9)</td>
<td>140(12)</td>
<td>-2(8)</td>
<td>-8(7)</td>
<td>51(6)</td>
</tr>
<tr>
<td>C(18)</td>
<td>49(3)</td>
<td>32(3)</td>
<td>41(3)</td>
<td>-1(2)</td>
<td>5(2)</td>
<td>20(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>55(3)</td>
<td>36(3)</td>
<td>44(3)</td>
<td>-5(2)</td>
<td>1(3)</td>
<td>21(3)</td>
</tr>
<tr>
<td>C(20)</td>
<td>84(5)</td>
<td>39(3)</td>
<td>55(4)</td>
<td>-3(3)</td>
<td>2(3)</td>
<td>36(3)</td>
</tr>
<tr>
<td>C(21)</td>
<td>82(5)</td>
<td>47(3)</td>
<td>50(4)</td>
<td>7(3)</td>
<td>5(3)</td>
<td>30(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>59(4)</td>
<td>49(3)</td>
<td>39(4)</td>
<td>0(3)</td>
<td>7(3)</td>
<td>18(3)</td>
</tr>
<tr>
<td>C(23)</td>
<td>52(3)</td>
<td>43(3)</td>
<td>42(3)</td>
<td>-5(2)</td>
<td>5(3)</td>
<td>23(3)</td>
</tr>
<tr>
<td>C(1A)</td>
<td>30(2)</td>
<td>43(3)</td>
<td>38(3)</td>
<td>6(2)</td>
<td>6(2)</td>
<td>19(2)</td>
</tr>
<tr>
<td>C(2A)</td>
<td>23(2)</td>
<td>40(3)</td>
<td>35(3)</td>
<td>-5(2)</td>
<td>2(2)</td>
<td>11(2)</td>
</tr>
<tr>
<td>C(3A)</td>
<td>23(2)</td>
<td>39(3)</td>
<td>31(3)</td>
<td>2(2)</td>
<td>3(2)</td>
<td>17(2)</td>
</tr>
<tr>
<td>C(4A)</td>
<td>27(3)</td>
<td>51(3)</td>
<td>66(4)</td>
<td>7(3)</td>
<td>5(3)</td>
<td>13(2)</td>
</tr>
<tr>
<td>C(5A)</td>
<td>40(3)</td>
<td>81(5)</td>
<td>66(5)</td>
<td>-3(4)</td>
<td>-15(3)</td>
<td>13(3)</td>
</tr>
<tr>
<td>C(6A)</td>
<td>37(3)</td>
<td>84(5)</td>
<td>75(6)</td>
<td>25(4)</td>
<td>22(3)</td>
<td>15(3)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C(7A)</td>
<td>41(4)</td>
<td>50(4)</td>
<td>158(10)</td>
<td>3(5)</td>
<td>6(5)</td>
<td>8(3)</td>
</tr>
<tr>
<td>C(8A)</td>
<td>36(3)</td>
<td>42(3)</td>
<td>39(3)</td>
<td>1(2)</td>
<td>1(2)</td>
<td>23(2)</td>
</tr>
<tr>
<td>C(9A)</td>
<td>77(5)</td>
<td>58(4)</td>
<td>64(4)</td>
<td>-5(3)</td>
<td>-14(3)</td>
<td>52(4)</td>
</tr>
<tr>
<td>C(10A)</td>
<td>74(5)</td>
<td>80(6)</td>
<td>138(9)</td>
<td>-29(6)</td>
<td>-43(5)</td>
<td>60(5)</td>
</tr>
<tr>
<td>C(11A)</td>
<td>135(9)</td>
<td>81(6)</td>
<td>79(6)</td>
<td>20(5)</td>
<td>1(6)</td>
<td>81(6)</td>
</tr>
<tr>
<td>C(12A)</td>
<td>83(5)</td>
<td>62(4)</td>
<td>82(6)</td>
<td>-9(4)</td>
<td>-13(4)</td>
<td>52(4)</td>
</tr>
<tr>
<td>C(13A)</td>
<td>26(2)</td>
<td>42(3)</td>
<td>32(3)</td>
<td>2(2)</td>
<td>4(2)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(14A)</td>
<td>55(4)</td>
<td>94(5)</td>
<td>41(3)</td>
<td>15(3)</td>
<td>-2(3)</td>
<td>49(4)</td>
</tr>
<tr>
<td>C(15A)</td>
<td>23(2)</td>
<td>45(3)</td>
<td>33(3)</td>
<td>2(2)</td>
<td>0(2)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(16A)</td>
<td>33(3)</td>
<td>49(3)</td>
<td>53(4)</td>
<td>7(3)</td>
<td>5(2)</td>
<td>16(2)</td>
</tr>
<tr>
<td>C(17A)</td>
<td>44(3)</td>
<td>48(4)</td>
<td>78(5)</td>
<td>-3(3)</td>
<td>-7(3)</td>
<td>10(3)</td>
</tr>
<tr>
<td>C(18A)</td>
<td>25(2)</td>
<td>55(3)</td>
<td>41(3)</td>
<td>-1(2)</td>
<td>4(2)</td>
<td>23(2)</td>
</tr>
<tr>
<td>C(19A)</td>
<td>32(3)</td>
<td>55(3)</td>
<td>46(3)</td>
<td>-13(3)</td>
<td>-10(2)</td>
<td>26(2)</td>
</tr>
<tr>
<td>C(20A)</td>
<td>53(4)</td>
<td>90(5)</td>
<td>65(5)</td>
<td>-16(4)</td>
<td>-20(3)</td>
<td>52(4)</td>
</tr>
<tr>
<td>C(21A)</td>
<td>42(4)</td>
<td>122(7)</td>
<td>92(7)</td>
<td>-19(5)</td>
<td>-1(4)</td>
<td>54(5)</td>
</tr>
<tr>
<td>C(22A)</td>
<td>37(3)</td>
<td>120(7)</td>
<td>71(6)</td>
<td>-10(5)</td>
<td>7(3)</td>
<td>41(4)</td>
</tr>
<tr>
<td>C(23A)</td>
<td>34(3)</td>
<td>97(5)</td>
<td>49(4)</td>
<td>4(3)</td>
<td>13(3)</td>
<td>35(3)</td>
</tr>
<tr>
<td>C(1S)</td>
<td>203(10)</td>
<td>132(9)</td>
<td>104(8)</td>
<td>-17(8)</td>
<td>-10(8)</td>
<td>86(9)</td>
</tr>
<tr>
<td>C(2S)</td>
<td>117(7)</td>
<td>109(7)</td>
<td>132(7)</td>
<td>-14(6)</td>
<td>-52(6)</td>
<td>68(6)</td>
</tr>
</tbody>
</table>
Table 5 - Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 252i

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>7805</td>
<td>11425</td>
<td>-193</td>
<td>51</td>
</tr>
<tr>
<td>H(2A)</td>
<td>11242</td>
<td>12315</td>
<td>-12</td>
<td>55</td>
</tr>
<tr>
<td>H(2B)</td>
<td>10538</td>
<td>13194</td>
<td>-81</td>
<td>55</td>
</tr>
<tr>
<td>H(5A)</td>
<td>8281</td>
<td>8465</td>
<td>-327</td>
<td>99</td>
</tr>
<tr>
<td>H(5B)</td>
<td>7255</td>
<td>7423</td>
<td>-184</td>
<td>99</td>
</tr>
<tr>
<td>H(5C)</td>
<td>8710</td>
<td>8748</td>
<td>-130</td>
<td>99</td>
</tr>
<tr>
<td>H(6A)</td>
<td>7119</td>
<td>9173</td>
<td>72</td>
<td>130</td>
</tr>
<tr>
<td>H(6B)</td>
<td>5690</td>
<td>8033</td>
<td>-15</td>
<td>130</td>
</tr>
<tr>
<td>H(6C)</td>
<td>6066</td>
<td>9629</td>
<td>-5</td>
<td>130</td>
</tr>
<tr>
<td>H(7A)</td>
<td>6586</td>
<td>9045</td>
<td>-450</td>
<td>125</td>
</tr>
<tr>
<td>H(7B)</td>
<td>5690</td>
<td>9485</td>
<td>-332</td>
<td>125</td>
</tr>
<tr>
<td>H(7C)</td>
<td>5401</td>
<td>7916</td>
<td>-328</td>
<td>125</td>
</tr>
<tr>
<td>H(10A)</td>
<td>8372</td>
<td>14167</td>
<td>-612</td>
<td>98</td>
</tr>
<tr>
<td>H(10B)</td>
<td>7765</td>
<td>13770</td>
<td>-802</td>
<td>98</td>
</tr>
<tr>
<td>H(10C)</td>
<td>9081</td>
<td>13626</td>
<td>-747</td>
<td>98</td>
</tr>
<tr>
<td>H(11A)</td>
<td>7867</td>
<td>11057</td>
<td>-824</td>
<td>112</td>
</tr>
<tr>
<td>H(11B)</td>
<td>6539</td>
<td>11139</td>
<td>-890</td>
<td>112</td>
</tr>
<tr>
<td>H(11C)</td>
<td>6355</td>
<td>10032</td>
<td>-746</td>
<td>112</td>
</tr>
<tr>
<td>H(12A)</td>
<td>5245</td>
<td>10935</td>
<td>-546</td>
<td>126</td>
</tr>
<tr>
<td>H(12B)</td>
<td>5394</td>
<td>12122</td>
<td>-675</td>
<td>126</td>
</tr>
<tr>
<td>H(12C)</td>
<td>6057</td>
<td>12537</td>
<td>-488</td>
<td>126</td>
</tr>
<tr>
<td>H(14A)</td>
<td>11889</td>
<td>9029</td>
<td>-171</td>
<td>104</td>
</tr>
<tr>
<td>H(14B)</td>
<td>13133</td>
<td>10155</td>
<td>-54</td>
<td>104</td>
</tr>
<tr>
<td>H(14C)</td>
<td>13218</td>
<td>10318</td>
<td>-258</td>
<td>104</td>
</tr>
<tr>
<td>H(15)</td>
<td>11941</td>
<td>13152</td>
<td>-492</td>
<td>47</td>
</tr>
<tr>
<td>H(16)</td>
<td>13375</td>
<td>14331</td>
<td>-168</td>
<td>66</td>
</tr>
<tr>
<td>H(17A)</td>
<td>14282</td>
<td>13804</td>
<td>-472</td>
<td>131</td>
</tr>
<tr>
<td>H(17B)</td>
<td>15224</td>
<td>14528</td>
<td>-300</td>
<td>131</td>
</tr>
<tr>
<td>H(20)</td>
<td>11336</td>
<td>18119</td>
<td>-520</td>
<td>68</td>
</tr>
<tr>
<td>H(21)</td>
<td>13013</td>
<td>18629</td>
<td>-734</td>
<td>73</td>
</tr>
<tr>
<td>H(22)</td>
<td>13859</td>
<td>17142</td>
<td>-786</td>
<td>64</td>
</tr>
<tr>
<td>H(23)</td>
<td>13168</td>
<td>15154</td>
<td>-616</td>
<td>55</td>
</tr>
<tr>
<td>H(1A)</td>
<td>10375</td>
<td>5095</td>
<td>210</td>
<td>44</td>
</tr>
<tr>
<td>H(2A1)</td>
<td>9631</td>
<td>1674</td>
<td>388</td>
<td>41</td>
</tr>
<tr>
<td>H(2A2)</td>
<td>8754</td>
<td>2118</td>
<td>265</td>
<td>41</td>
</tr>
<tr>
<td>H(5A1)</td>
<td>12690</td>
<td>4799</td>
<td>512</td>
<td>105</td>
</tr>
<tr>
<td>H(5A2)</td>
<td>12185</td>
<td>5689</td>
<td>621</td>
<td>105</td>
</tr>
<tr>
<td>H(5A3)</td>
<td>13732</td>
<td>6427</td>
<td>544</td>
<td>105</td>
</tr>
<tr>
<td>H(6A1)</td>
<td>14129</td>
<td>6824</td>
<td>233</td>
<td>108</td>
</tr>
<tr>
<td>H(6A2)</td>
<td>12843</td>
<td>6321</td>
<td>104</td>
<td>108</td>
</tr>
<tr>
<td>H(6A3)</td>
<td>13103</td>
<td>5194</td>
<td>200</td>
<td>108</td>
</tr>
<tr>
<td>H(7A1)</td>
<td>13102</td>
<td>8087</td>
<td>453</td>
<td>135</td>
</tr>
<tr>
<td>H(7A2)</td>
<td>11448</td>
<td>7361</td>
<td>428</td>
<td>135</td>
</tr>
<tr>
<td>H(7A3)</td>
<td>12462</td>
<td>7926</td>
<td>266</td>
<td>135</td>
</tr>
<tr>
<td>H(10D)</td>
<td>6656</td>
<td>5747</td>
<td>430</td>
<td>132</td>
</tr>
<tr>
<td>H(10E)</td>
<td>6931</td>
<td>5898</td>
<td>228</td>
<td>132</td>
</tr>
<tr>
<td>H(10F)</td>
<td>6778</td>
<td>7067</td>
<td>331</td>
<td>132</td>
</tr>
<tr>
<td>H(11D)</td>
<td>9239</td>
<td>8943</td>
<td>214</td>
<td>129</td>
</tr>
<tr>
<td>H(11E)</td>
<td>9178</td>
<td>7668</td>
<td>110</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>H(11F)</td>
<td>10477</td>
<td>8600</td>
<td>232</td>
<td>129</td>
</tr>
<tr>
<td>H(12D)</td>
<td>8584</td>
<td>7315</td>
<td>627</td>
<td>104</td>
</tr>
<tr>
<td>H(12E)</td>
<td>8764</td>
<td>8674</td>
<td>532</td>
<td>104</td>
</tr>
<tr>
<td>H(12F)</td>
<td>10071</td>
<td>8438</td>
<td>551</td>
<td>104</td>
</tr>
<tr>
<td>H(14D)</td>
<td>11085</td>
<td>1236</td>
<td>827</td>
<td>87</td>
</tr>
<tr>
<td>H(14E)</td>
<td>10073</td>
<td>1636</td>
<td>928</td>
<td>87</td>
</tr>
<tr>
<td>H(14F)</td>
<td>11617</td>
<td>2828</td>
<td>877</td>
<td>87</td>
</tr>
<tr>
<td>H(15A)</td>
<td>7185</td>
<td>2615</td>
<td>631</td>
<td>41</td>
</tr>
<tr>
<td>H(16A)</td>
<td>7260</td>
<td>526</td>
<td>693</td>
<td>56</td>
</tr>
<tr>
<td>H(17C)</td>
<td>6053</td>
<td>-272</td>
<td>370</td>
<td>76</td>
</tr>
<tr>
<td>H(17D)</td>
<td>6074</td>
<td>-1307</td>
<td>519</td>
<td>76</td>
</tr>
<tr>
<td>H(20A)</td>
<td>3671</td>
<td>2776</td>
<td>101</td>
<td>74</td>
</tr>
<tr>
<td>H(21A)</td>
<td>2208</td>
<td>2210</td>
<td>335</td>
<td>96</td>
</tr>
<tr>
<td>H(22A)</td>
<td>2791</td>
<td>1552</td>
<td>593</td>
<td>91</td>
</tr>
<tr>
<td>H(23A)</td>
<td>4922</td>
<td>1580</td>
<td>619</td>
<td>71</td>
</tr>
<tr>
<td>H(1S1)</td>
<td>9391</td>
<td>6237</td>
<td>888</td>
<td>174</td>
</tr>
<tr>
<td>H(1S2)</td>
<td>8660</td>
<td>6295</td>
<td>1061</td>
<td>174</td>
</tr>
<tr>
<td>H(2S1)</td>
<td>10364</td>
<td>8646</td>
<td>998</td>
<td>137</td>
</tr>
<tr>
<td>H(2S2)</td>
<td>11601</td>
<td>8566</td>
<td>1096</td>
<td>137</td>
</tr>
</tbody>
</table>
Table 6 - Dihedral angles [°] for 252i

<table>
<thead>
<tr>
<th>Atom1 - Atom2 - Atom3 - Atom4</th>
<th>Dihedral</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2) - O(1) - C(1) - N(1)</td>
<td>27.7(6)</td>
</tr>
<tr>
<td>C(2) - O(1) - C(1) - C(4)</td>
<td>150.7(5)</td>
</tr>
<tr>
<td>C(8) - N(1) - C(1) - O(1)</td>
<td>-156.4(5)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(1) - C(4)</td>
<td>-3.6(6)</td>
</tr>
<tr>
<td>C(8) - N(1) - C(1) - C(4)</td>
<td>87.3(7)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(1) - C(4)</td>
<td>-120.0(5)</td>
</tr>
<tr>
<td>C(1) - O(1) - C(2) - C(3)</td>
<td>-40.5(6)</td>
</tr>
<tr>
<td>C(8) - N(1) - C(3) - C(13)</td>
<td>-104.7(5)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - C(13)</td>
<td>102.0(5)</td>
</tr>
<tr>
<td>C(8) - N(1) - C(3) - C(15)</td>
<td>15.2(6)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - C(15)</td>
<td>-138.1(5)</td>
</tr>
<tr>
<td>C(8) - N(1) - C(3) - C(2)</td>
<td>134.3(5)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - C(2)</td>
<td>-19.0(5)</td>
</tr>
<tr>
<td>O(1) - C(2) - C(3) - N(1)</td>
<td>35.0(5)</td>
</tr>
<tr>
<td>O(1) - C(2) - C(3) - N(1)</td>
<td>-82.7(6)</td>
</tr>
<tr>
<td>O(1) - C(2) - C(3) - C(15)</td>
<td>156.5(5)</td>
</tr>
<tr>
<td>O(1) - C(1) - C(4) - C(7)</td>
<td>174.8(7)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - C(7)</td>
<td>-71.0(8)</td>
</tr>
<tr>
<td>O(1) - C(1) - C(4) - C(6)</td>
<td>55.8(7)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - C(6)</td>
<td>170.0(6)</td>
</tr>
<tr>
<td>O(1) - C(1) - C(4) - C(5)</td>
<td>-62.6(7)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - C(5)</td>
<td>51.6(8)</td>
</tr>
<tr>
<td>C(9) - O(3) - C(8) - O(2)</td>
<td>1.9(9)</td>
</tr>
<tr>
<td>C(9) - O(3) - C(8) - N(1)</td>
<td>-176.8(5)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(8) - O(2)</td>
<td>35.7(8)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(8) - O(2)</td>
<td>-174.3(6)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(8) - O(3)</td>
<td>-145.5(5)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(8) - O(3)</td>
<td>4.5(7)</td>
</tr>
<tr>
<td>C(8) - O(3) - C(9) - C(10)</td>
<td>-63.0(8)</td>
</tr>
<tr>
<td>C(8) - O(3) - C(9) - C(11)</td>
<td>61.9(8)</td>
</tr>
<tr>
<td>C(8) - O(3) - C(9) - C(12)</td>
<td>-179.6(6)</td>
</tr>
<tr>
<td>C(14) - O(5) - C(13) - O(4)</td>
<td>4.4(9)</td>
</tr>
<tr>
<td>C(14) - O(5) - C(13) - C(3)</td>
<td>-172.9(6)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(13) - O(4)</td>
<td>51.0(8)</td>
</tr>
<tr>
<td>C(15) - C(3) - C(13) - O(4)</td>
<td>-73.9(7)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(13) - O(4)</td>
<td>162.5(6)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(13) - O(5)</td>
<td>-131.7(5)</td>
</tr>
<tr>
<td>C(15) - C(3) - C(13) - O(5)</td>
<td>103.4(5)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(13) - O(5)</td>
<td>-20.1(7)</td>
</tr>
<tr>
<td>C(18) - O(6) - C(15) - C(16)</td>
<td>76.4(7)</td>
</tr>
<tr>
<td>C(18) - O(6) - C(15) - C(3)</td>
<td>-163.6(5)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(15) - O(6)</td>
<td>54.8(6)</td>
</tr>
<tr>
<td>C(13) - C(3) - C(15) - O(6)</td>
<td>176.8(4)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(15) - O(6)</td>
<td>-57.5(6)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(15) - C(16)</td>
<td>174.7(5)</td>
</tr>
<tr>
<td>C(13) - C(3) - C(15) - C(16)</td>
<td>-63.2(6)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(15) - C(16)</td>
<td>62.4(6)</td>
</tr>
<tr>
<td>O(6) - C(15) - C(16) - C(17)</td>
<td>-127.1(9)</td>
</tr>
<tr>
<td>C(3) - C(15) - C(16) - C(17)</td>
<td>116.3(9)</td>
</tr>
</tbody>
</table>
C(15) - O(6) - C(18) - C(23) 5.2(9)
C(15) - O(6) - C(18) - C(19) -174.2(5)
O(6) - C(18) - C(19) - I(1) -0.5(7)
C(18) - C(19) - C(20) - C(21) 1.9(10)
C(23) - C(18) - C(19) - C(20) 179.8(6)
C(19) - C(20) - C(21) - C(22) 2.0(12)
I(1) - C(19) - C(20) - C(21) 179.8(6)
C(1A) - N(1A) - C(8A) - O(6A) 32.1(5)
O(6A) - C(1A) - C(4A) - C(7A) -178.7(6)
O(6A) - C(1A) - C(4A) - C(5A) 0.4(7)
C(2A) - O(6A) - C(1A) - C(4A) 146.0(5)
C(8A) - N(1A) - C(1A) - O(6A) -156.1(5)
C(3A) - N(1A) - C(1A) - O(6A) -0.1(5)
C(8A) - N(1A) - C(1A) - C(4A) 85.7(6)
C(3A) - N(1A) - C(1A) - C(4A) -118.2(5)
C(1A) - N(1A) - C(8A) - O(2A) -178.7(6)
C(3A) - N(1A) - C(8A) - O(3A) -152.8(5)
C(8A) - O(3A) - C(9A) - O(4A) 176.6(7)
C(1A) - N(1A) - C(3A) - O(4A) 176.6(7)
C(9A) - O(3A) - C(8A) - O(2A) 5.1(9)
C(9A) - O(3A) - C(8A) - N(1A) -174.0(5)
C(1A) - N(1A) - C(8A) - O(2A) -178.7(6)
C(3A) - N(1A) - C(8A) - O(2A) 52.6(7)
C(1A) - N(1A) - C(8A) - O(3A) 137.3(5)
C(1A) - N(1A) - C(13A) - O(4A) 19.2(7)
C(1A) - N(1A) - C(3A) - C(13A) 102.2(5)
C(9A) - O(3A) - C(8A) - O(2A) 5.1(9)
C(9A) - O(3A) - C(8A) - N(1A) -174.0(5)
C(1A) - N(1A) - C(8A) - O(2A) -178.7(6)
C(3A) - N(1A) - C(8A) - O(2A) 28.1(9)
C(1A) - N(1A) - C(8A) - O(3A) 0.4(7)
C(3A) - N(1A) - C(8A) - O(3A) -152.8(5)
C(8A) - O(3A) - C(9A) - C(12A) 58.0(9)
C(8A) - O(3A) - C(9A) - C(10A) -67.0(9)
C(8A) - O(3A) - C(9A) - C(11A) 176.3(6)
C(1A) - N(1A) - C(13A) - O(4A) 4.3(8)
C(14A) - O(5A) - C(13A) - C(3A) -173.8(5)
C(14A) - O(5A) - C(13A) - C(3A) -173.8(5)
N(1A) - C(3A) - C(13A) - O(4A) 52.6(7)
C(2A) - C(3A) - C(13A) - O(4A) 164.9(5)
C(15A) - C(3A) - C(13A) - O(4A) -73.0(7)
N(1A) - C(3A) - C(13A) - O(5A) -129.3(5)
C(2A) - C(3A) - C(13A) - O(5A) -16.9(6)
C(15A) - C(3A) - C(13A) - O(5A) 105.1(5)
C(18A) - O(7) - C(15A) - C(16A) 88.9(6)
C(18A) - O(7) - C(15A) - C(16A) 88.9(6)
N(1A) - C(3A) - C(15A) - O(7) 55.8(6)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle 1</th>
<th>Bond 2</th>
<th>Angle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2A) - C(3A) - C(15A) - O(7)</td>
<td>-56.9(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13A) - C(3A) - C(15A) - O(7)</td>
<td>177.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1A) - C(3A) - C(15A) - C(16A)</td>
<td>177.0(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2A) - C(3A) - C(15A) - C(16A)</td>
<td>64.3(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13A) - C(3A) - C(15A) - C(16A)</td>
<td>-60.9(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7) - C(15A) - C(16A) - C(17A)</td>
<td>7.7(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3A) - C(15A) - C(16A) - C(17A)</td>
<td>-108.3(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15A) - O(7) - C(18A) - C(23A)</td>
<td>-10.0(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15A) - O(7) - C(18A) - C(19A)</td>
<td>169.5(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7) - C(18A) - C(19A) - C(20A)</td>
<td>-179.2(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23A) - C(18A) - C(19A) - C(20A)</td>
<td>0.3(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7) - C(18A) - C(19A) - I(1A)</td>
<td>1.0(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23A) - C(18A) - C(19A) - I(1A)</td>
<td>-179.4(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18A) - C(19A) - C(20A) - C(21A)</td>
<td>1.0(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(1A) - C(19A) - C(20A) - C(21A)</td>
<td>-179.2(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19A) - C(20A) - C(21A) - C(22A)</td>
<td>-2.0(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20A) - C(21A) - C(22A) - C(23A)</td>
<td>1.7(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7) - C(18A) - C(23A) - C(22A)</td>
<td>178.9(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19A) - C(18A) - C(23A) - C(22A)</td>
<td>-0.7(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21A) - C(22A) - C(23A) - C(18A)</td>
<td>-0.3(14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
8.1.2 X-Ray Data for 266d

Table 1 - Crystal data and structure refinement for 266d

<table>
<thead>
<tr>
<th>Identification code</th>
<th>k10dc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C18 H29 N O5</td>
</tr>
<tr>
<td>Formula weight</td>
<td>339.42</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P212121</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 11.7360(1)Å α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 9.9090(1)Å β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 16.7050(2)Å γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1942.66(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.161 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.084 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>736</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.28 x 0.28 x 0.2 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.63 to 27.44°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-15<=h<=15; -12<=k<=12; -21<=l<=21</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>37055</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4426 [R(int) = 0.0368]</td>
</tr>
<tr>
<td>Reflections observed (>2σ)</td>
<td>4098</td>
</tr>
<tr>
<td>Data Completeness</td>
<td>0.995</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.984 and 0.908</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4426 / 2 / 234</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.007</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0293 wR2 = 0.0752</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0351 wR2 = 0.0793</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.2(6)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.196 and -0.189 eÅ⁻³</td>
</tr>
</tbody>
</table>

Notes:

Allene hydrogens located and refined at 0.98 Å from C13.
Table 2 - Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($\AA^2 x 10^3$) for 266d.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>8445(1)</td>
<td>8802(1)</td>
<td>1698(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>7094(1)</td>
<td>10157(1)</td>
<td>4017(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>7966(1)</td>
<td>11822(1)</td>
<td>3346(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>8275(1)</td>
<td>6057(1)</td>
<td>3443(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>8703(1)</td>
<td>7821(1)</td>
<td>4256(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>8148(1)</td>
<td>8227(1)</td>
<td>3004(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>7909(1)</td>
<td>7799(1)</td>
<td>2176(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>8501(1)</td>
<td>10031(1)</td>
<td>2137(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>8564(1)</td>
<td>9625(1)</td>
<td>3037(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6636(1)</td>
<td>7620(1)</td>
<td>1969(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>6163(1)</td>
<td>6386(1)</td>
<td>2404(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6565(1)</td>
<td>7372(1)</td>
<td>1064(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>5918(1)</td>
<td>8849(1)</td>
<td>2190(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>7779(1)</td>
<td>10525(1)</td>
<td>3536(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>7346(1)</td>
<td>12803(1)</td>
<td>3813(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>9801(1)</td>
<td>9729(1)</td>
<td>3331(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>10656(1)</td>
<td>8833(1)</td>
<td>2908(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>10090(1)</td>
<td>10553(1)</td>
<td>3903(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>10368(1)</td>
<td>11371(1)</td>
<td>4480(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>8379(1)</td>
<td>7257(1)</td>
<td>3569(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>8881(1)</td>
<td>6992(1)</td>
<td>4980(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>7766(1)</td>
<td>6331(2)</td>
<td>5212(1)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>9825(1)</td>
<td>5970(2)</td>
<td>4850(1)</td>
<td>52(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>9225(2)</td>
<td>8056(2)</td>
<td>5585(1)</td>
<td>59(1)</td>
</tr>
</tbody>
</table>
Table 3 - Bond lengths [Å] and angles [°] for 266d

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(1)</td>
<td>1.4219(13)</td>
</tr>
<tr>
<td>O(2)-C(8)</td>
<td>1.1936(14)</td>
</tr>
<tr>
<td>O(3)-C(9)</td>
<td>1.4429(14)</td>
</tr>
<tr>
<td>O(5)-C(14)</td>
<td>1.3322(14)</td>
</tr>
<tr>
<td>N(1)-C(14)</td>
<td>1.3738(14)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.4743(14)</td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(2)-H(2A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(3)-C(8)</td>
<td>1.5293(15)</td>
</tr>
<tr>
<td>C(4)-C(7)</td>
<td>1.5265(17)</td>
</tr>
<tr>
<td>C(4)-C(6)</td>
<td>1.5350(16)</td>
</tr>
<tr>
<td>C(5)-H(5B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(6)-H(6A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(6)-H(6C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(7)-H(7B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(9)-H(9A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(14)-O(5)-C(15)</td>
<td>1.20.82(8)</td>
</tr>
<tr>
<td>C(14)-N(1)-C(1)</td>
<td>118.75(9)</td>
</tr>
<tr>
<td>O(1)-C(1)-N(1)</td>
<td>104.00(8)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(4)</td>
<td>115.29(9)</td>
</tr>
<tr>
<td>N(1)-C(1)-H(1)</td>
<td>108.2</td>
</tr>
<tr>
<td>O(1)-C(1)-H(1)</td>
<td>108.2</td>
</tr>
<tr>
<td>O(1)-C(2)-C(3)</td>
<td>106.18(8)</td>
</tr>
<tr>
<td>C(3)-C(2)-H(2A)</td>
<td>110.5</td>
</tr>
<tr>
<td>C(3)-C(2)-H(2B)</td>
<td>110.5</td>
</tr>
<tr>
<td>N(1)-C(3)-C(8)</td>
<td>111.69(9)</td>
</tr>
<tr>
<td>C(3)-C(3)-C(10)</td>
<td>110.85(9)</td>
</tr>
<tr>
<td>C(3)-C(3)-C(2)</td>
<td>110.29(9)</td>
</tr>
<tr>
<td>C(7)-C(4)-C(5)</td>
<td>108.89(11)</td>
</tr>
<tr>
<td>C(5)-C(4)-C(6)</td>
<td>108.66(11)</td>
</tr>
<tr>
<td>C(5)-C(4)-C(1)</td>
<td>109.72(10)</td>
</tr>
<tr>
<td>C(4)-C(5)-H(5A)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(5A)-C(5)-H(5B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(5A)-C(5)-H(5C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4)-C(6)-H(6A)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(6A)-C(6)-H(6B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(6A)-C(6)-H(6C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4)-C(7)-H(7A)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(7A)-C(7)-H(7B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(7A)-C(7)-H(7C)</td>
<td>109.5</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>H(7A)-C(7)-H(7C)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(2)-C(8)-O(3)</td>
<td>124.18(10)</td>
</tr>
<tr>
<td>O(3)-C(8)-C(3)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(3)-C(9)-H(9B)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(3)-C(9)-H(9C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(9B)-C(9)-H(9C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(12)-C(10)-C(3)</td>
<td>121.56(10)</td>
</tr>
<tr>
<td>C(10)-C(11)-H(11A)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(11A)-C(11)-H(11B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(11A)-C(11)-H(11C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(10)-C(12)-C(13)</td>
<td>179.20(13)</td>
</tr>
<tr>
<td>C(12)-C(13)-H(13B)</td>
<td>121.3(9)</td>
</tr>
<tr>
<td>O(4)-C(14)-O(5)</td>
<td>126.08(10)</td>
</tr>
<tr>
<td>O(5)-C(14)-N(1)</td>
<td>110.79(9)</td>
</tr>
<tr>
<td>O(5)-C(15)-C(16)</td>
<td>109.16(11)</td>
</tr>
<tr>
<td>O(5)-C(15)-C(17)</td>
<td>111.03(11)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(17)</td>
<td>112.32(11)</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(16B)-C(16)-H(16C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(15)-C(17)-H(17B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(15)-C(17)-H(17C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(17B)-C(17)-H(17C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(15)-C(18)-H(18B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(15)-C(18)-H(18C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(18B)-C(18)-H(18C)</td>
<td>109.5</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Table 4 - Anisotropic displacement parameters (Å² x 10³) for 266d. The anisotropic displacement factor exponent takes the form: -2 gpi² | h² a*² U₁₁ + ... + 2 h k a* b* U₁₂

<table>
<thead>
<tr>
<th>Atom</th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₂₃</th>
<th>U₁₃</th>
<th>U₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>46(1)</td>
<td>24(1)</td>
<td>25(1)</td>
<td>-2(1)</td>
<td>6(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>48(1)</td>
<td>31(1)</td>
<td>44(1)</td>
<td>-2(1)</td>
<td>21(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>38(1)</td>
<td>18(1)</td>
<td>37(1)</td>
<td>-1(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>56(1)</td>
<td>19(1)</td>
<td>36(1)</td>
<td>2(1)</td>
<td>-5(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>57(1)</td>
<td>24(1)</td>
<td>26(1)</td>
<td>5(1)</td>
<td>-6(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>37(1)</td>
<td>17(1)</td>
<td>25(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>36(1)</td>
<td>20(1)</td>
<td>24(1)</td>
<td>0(1)</td>
<td>2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>48(1)</td>
<td>20(1)</td>
<td>27(1)</td>
<td>1(1)</td>
<td>3(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>33(1)</td>
<td>17(1)</td>
<td>26(1)</td>
<td>1(1)</td>
<td>3(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>36(1)</td>
<td>26(1)</td>
<td>33(1)</td>
<td>-3(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>39(1)</td>
<td>39(1)</td>
<td>54(1)</td>
<td>6(1)</td>
<td>-5(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>47(1)</td>
<td>43(1)</td>
<td>37(1)</td>
<td>-7(1)</td>
<td>-8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>38(1)</td>
<td>38(1)</td>
<td>49(1)</td>
<td>-7(1)</td>
<td>-4(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>30(1)</td>
<td>22(1)</td>
<td>27(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>45(1)</td>
<td>25(1)</td>
<td>43(1)</td>
<td>-6(1)</td>
<td>7(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>31(1)</td>
<td>21(1)</td>
<td>31(1)</td>
<td>2(1)</td>
<td>5(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>36(1)</td>
<td>30(1)</td>
<td>49(1)</td>
<td>-4(1)</td>
<td>11(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>27(1)</td>
<td>29(1)</td>
<td>35(1)</td>
<td>2(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>37(1)</td>
<td>39(1)</td>
<td>40(1)</td>
<td>-8(1)</td>
<td>1(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>37(1)</td>
<td>22(1)</td>
<td>29(1)</td>
<td>2(1)</td>
<td>1(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>46(1)</td>
<td>34(1)</td>
<td>27(1)</td>
<td>9(1)</td>
<td>-3(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>50(1)</td>
<td>46(1)</td>
<td>45(1)</td>
<td>12(1)</td>
<td>9(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>44(1)</td>
<td>58(1)</td>
<td>54(1)</td>
<td>9(1)</td>
<td>-6(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>95(1)</td>
<td>53(1)</td>
<td>31(1)</td>
<td>3(1)</td>
<td>-15(1)</td>
<td>-12(1)</td>
</tr>
</tbody>
</table>
Table 5 - Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 266d

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>8304</td>
<td>6920</td>
<td>2080</td>
<td>32</td>
</tr>
<tr>
<td>H(2A)</td>
<td>7816</td>
<td>10588</td>
<td>2034</td>
<td>38</td>
</tr>
<tr>
<td>H(2B)</td>
<td>9185</td>
<td>10554</td>
<td>1981</td>
<td>38</td>
</tr>
<tr>
<td>H(5A)</td>
<td>6201</td>
<td>6533</td>
<td>2983</td>
<td>66</td>
</tr>
<tr>
<td>H(5B)</td>
<td>6616</td>
<td>5590</td>
<td>2262</td>
<td>66</td>
</tr>
<tr>
<td>H(5C)</td>
<td>5369</td>
<td>6241</td>
<td>2244</td>
<td>66</td>
</tr>
<tr>
<td>H(6A)</td>
<td>7063</td>
<td>6616</td>
<td>919</td>
<td>63</td>
</tr>
<tr>
<td>H(6B)</td>
<td>6810</td>
<td>8185</td>
<td>777</td>
<td>63</td>
</tr>
<tr>
<td>H(6C)</td>
<td>5778</td>
<td>7156</td>
<td>917</td>
<td>63</td>
</tr>
<tr>
<td>H(7A)</td>
<td>5119</td>
<td>8677</td>
<td>2054</td>
<td>63</td>
</tr>
<tr>
<td>H(7B)</td>
<td>6190</td>
<td>9638</td>
<td>1893</td>
<td>63</td>
</tr>
<tr>
<td>H(7C)</td>
<td>5983</td>
<td>9022</td>
<td>2766</td>
<td>63</td>
</tr>
<tr>
<td>H(9A)</td>
<td>6526</td>
<td>12644</td>
<td>3755</td>
<td>56</td>
</tr>
<tr>
<td>H(9B)</td>
<td>7531</td>
<td>13713</td>
<td>3624</td>
<td>56</td>
</tr>
<tr>
<td>H(9C)</td>
<td>7560</td>
<td>12717</td>
<td>4378</td>
<td>56</td>
</tr>
<tr>
<td>H(11A)</td>
<td>11425</td>
<td>9046</td>
<td>3098</td>
<td>57</td>
</tr>
<tr>
<td>H(11B)</td>
<td>10612</td>
<td>8989</td>
<td>2329</td>
<td>57</td>
</tr>
<tr>
<td>H(11C)</td>
<td>10483</td>
<td>7885</td>
<td>3023</td>
<td>57</td>
</tr>
<tr>
<td>H(16A)</td>
<td>7171</td>
<td>7022</td>
<td>5255</td>
<td>71</td>
</tr>
<tr>
<td>H(16B)</td>
<td>7855</td>
<td>5875</td>
<td>5729</td>
<td>71</td>
</tr>
<tr>
<td>H(16C)</td>
<td>7550</td>
<td>5670</td>
<td>4803</td>
<td>71</td>
</tr>
<tr>
<td>H(17A)</td>
<td>9562</td>
<td>5269</td>
<td>4480</td>
<td>78</td>
</tr>
<tr>
<td>H(17B)</td>
<td>10029</td>
<td>5556</td>
<td>5364</td>
<td>78</td>
</tr>
<tr>
<td>H(17C)</td>
<td>10494</td>
<td>6424</td>
<td>4624</td>
<td>78</td>
</tr>
<tr>
<td>H(18A)</td>
<td>9921</td>
<td>8509</td>
<td>5402</td>
<td>89</td>
</tr>
<tr>
<td>H(18B)</td>
<td>9366</td>
<td>7627</td>
<td>6104</td>
<td>89</td>
</tr>
<tr>
<td>H(18C)</td>
<td>8611</td>
<td>8720</td>
<td>5639</td>
<td>89</td>
</tr>
<tr>
<td>H(13A)</td>
<td>10377(15)</td>
<td>11047(16)</td>
<td>5034(4)</td>
<td>50(4)</td>
</tr>
<tr>
<td>H(13B)</td>
<td>10605(13)</td>
<td>12303(7)</td>
<td>4372(9)</td>
<td>44(4)</td>
</tr>
</tbody>
</table>
Table 6 - Dihedral angles [°] for 266d

<table>
<thead>
<tr>
<th>Atom1 - Atom2 - Atom3 - Atom4</th>
<th>Dihedral</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2) - O(1) - C(1) - N(1)</td>
<td>-26.75(11)</td>
</tr>
<tr>
<td>C(2) - O(1) - C(1) - C(4)</td>
<td>98.71(11)</td>
</tr>
<tr>
<td>C(14) - N(1) - C(1) - O(1)</td>
<td>-142.06(10)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(1) - O(1)</td>
<td>14.18(12)</td>
</tr>
<tr>
<td>C(14) - N(1) - O(1) - C(1)</td>
<td>94.26(12)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(1) - C(4)</td>
<td>-109.51(11)</td>
</tr>
<tr>
<td>C(1) - O(1) - C(2) - C(3)</td>
<td>29.03(12)</td>
</tr>
<tr>
<td>C(14) - N(1) - C(3) - C(8)</td>
<td>-85.69(13)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - C(8)</td>
<td>119.74(10)</td>
</tr>
<tr>
<td>C(14) - N(1) - C(3) - C(10)</td>
<td>40.03(14)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - C(10)</td>
<td>-114.54(10)</td>
</tr>
<tr>
<td>C(14) - N(1) - C(3) - C(2)</td>
<td>157.05(11)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - C(2)</td>
<td>2.47(12)</td>
</tr>
<tr>
<td>O(1) - C(2) - C(3) - N(1)</td>
<td>-18.43(12)</td>
</tr>
<tr>
<td>O(1) - C(2) - C(3) - C(8)</td>
<td>-136.71(9)</td>
</tr>
<tr>
<td>O(1) - C(2) - C(3) - C(10)</td>
<td>100.96(10)</td>
</tr>
<tr>
<td>O(1) - C(1) - C(4) - C(7)</td>
<td>-67.46(13)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - C(7)</td>
<td>51.60(14)</td>
</tr>
<tr>
<td>O(1) - C(1) - C(4) - C(5)</td>
<td>170.90(10)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - C(5)</td>
<td>-70.05(12)</td>
</tr>
<tr>
<td>O(1) - C(1) - C(4) - C(6)</td>
<td>53.22(12)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - C(6)</td>
<td>172.28(10)</td>
</tr>
<tr>
<td>C(9) - O(3) - C(8) - O(2)</td>
<td>5.09(17)</td>
</tr>
<tr>
<td>C(9) - O(3) - C(8) - C(3)</td>
<td>-175.49(10)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(8) - O(2)</td>
<td>19.03(16)</td>
</tr>
<tr>
<td>C(10) - C(3) - C(8) - O(2)</td>
<td>-107.82(13)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(8) - O(2)</td>
<td>130.57(12)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(8) - O(3)</td>
<td>-160.37(9)</td>
</tr>
<tr>
<td>C(10) - C(3) - C(8) - O(3)</td>
<td>72.78(11)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(8) - O(3)</td>
<td>-48.83(12)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(10) - C(12)</td>
<td>-129.69(11)</td>
</tr>
<tr>
<td>C(8) - C(3) - C(10) - C(12)</td>
<td>-3.52(14)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(10) - C(12)</td>
<td>118.47(11)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(10) - C(11)</td>
<td>51.14(13)</td>
</tr>
<tr>
<td>C(8) - C(3) - C(10) - C(11)</td>
<td>177.31(9)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(10) - C(11)</td>
<td>-60.69(12)</td>
</tr>
<tr>
<td>C(11) - C(10) - C(12) - C(13)</td>
<td>-135(11)</td>
</tr>
<tr>
<td>C(3) - C(10) - C(12) - C(13)</td>
<td>46(11)</td>
</tr>
<tr>
<td>C(15) - O(5) - C(14) - O(4)</td>
<td>-5.36(19)</td>
</tr>
<tr>
<td>C(15) - O(5) - C(14) - N(1)</td>
<td>173.52(10)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(14) - O(4)</td>
<td>-161.24(11)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(14) - O(4)</td>
<td>-8.32(17)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(14) - O(5)</td>
<td>19.84(15)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(14) - O(5)</td>
<td>172.76(10)</td>
</tr>
<tr>
<td>C(14) - O(5) - C(15) - C(18)</td>
<td>-179.70(13)</td>
</tr>
<tr>
<td>C(14) - O(5) - C(15) - C(16)</td>
<td>-62.47(15)</td>
</tr>
<tr>
<td>C(14) - O(5) - C(15) - C(17)</td>
<td>61.88(15)</td>
</tr>
</tbody>
</table>
Table 1 - Crystal data and structure refinement for 280

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>k11dc2</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C31 H38 N2 O11</td>
</tr>
<tr>
<td>Formula weight</td>
<td>614.63</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 8.9630(1)Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 10.6200(1)Å, β = 103.620(1)°</td>
</tr>
<tr>
<td></td>
<td>c = 16.8130(3)Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1555.38(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.312 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.100 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>652</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.50 x 0.35 x 0.30 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.80 to 27.47°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-11<=h<=11; -13<=k<=13; -21<=l<=21</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>30623</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6989 [R(int) = 0.0300]</td>
</tr>
<tr>
<td>Reflections observed (>2sigma)</td>
<td>6183</td>
</tr>
<tr>
<td>Data Completeness</td>
<td>0.994</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.981 and 0.949</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6989 / 16 / 436</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.027</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0325, wR2 = 0.0761</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0404, wR2 = 0.0808</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.0(5)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.143 and -0.159 eÅ⁻³</td>
</tr>
</tbody>
</table>
Table 2 - Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($\AA^2 x 10^3$) for 280.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>221(1)</td>
<td>816(1)</td>
<td>874(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>5153(1)</td>
<td>814(1)</td>
<td>623(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>4537(1)</td>
<td>-921(1)</td>
<td>1220(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>2293(1)</td>
<td>3138(1)</td>
<td>580(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>6594(1)</td>
<td>3044(1)</td>
<td>1361(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>7549(1)</td>
<td>4949(1)</td>
<td>1167(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>5403(2)</td>
<td>6985(1)</td>
<td>3413(1)</td>
<td>51(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>10033(2)</td>
<td>3088(2)</td>
<td>5424(1)</td>
<td>65(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>11152(2)</td>
<td>4857(1)</td>
<td>5294(1)</td>
<td>66(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>4777(1)</td>
<td>1171(1)</td>
<td>2637(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>2717(1)</td>
<td>1042(1)</td>
<td>3204(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>2424(1)</td>
<td>683(1)</td>
<td>1863(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>10284(2)</td>
<td>3988(2)</td>
<td>5018(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>2892(2)</td>
<td>943(1)</td>
<td>1105(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>1420(2)</td>
<td>596(1)</td>
<td>464(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>750(2)</td>
<td>451(2)</td>
<td>1709(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>4259(2)</td>
<td>147(1)</td>
<td>1015(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>4519(2)</td>
<td>2067(1)</td>
<td>420(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>3437(2)</td>
<td>2288(1)</td>
<td>982(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>5802(2)</td>
<td>3000(2)</td>
<td>506(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>7402(2)</td>
<td>4050(2)</td>
<td>2510(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>8107(2)</td>
<td>3017(2)</td>
<td>2986(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>7903(2)</td>
<td>3002(2)</td>
<td>3815(1)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>9495(2)</td>
<td>4027(2)</td>
<td>4141(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>9688(2)</td>
<td>5064(2)</td>
<td>3688(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>8988(2)</td>
<td>5064(2)</td>
<td>2861(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>230(2)</td>
<td>-903(2)</td>
<td>1858(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>-1532(2)</td>
<td>-878(2)</td>
<td>1630(1)</td>
<td>57(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>776(2)</td>
<td>-1899(2)</td>
<td>1336(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>798(2)</td>
<td>-1262(2)</td>
<td>2759(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>1538(2)</td>
<td>3798(2)</td>
<td>1119(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>2608(2)</td>
<td>4635(1)</td>
<td>1717(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>3581(2)</td>
<td>5481(2)</td>
<td>1461(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>4549(2)</td>
<td>6271(1)</td>
<td>2004(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>4527(2)</td>
<td>6233(1)</td>
<td>2826(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>3567(2)</td>
<td>5398(2)</td>
<td>3090(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>2634(2)</td>
<td>4594(2)</td>
<td>2542(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>6425(2)</td>
<td>7840(2)</td>
<td>3156(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>3425(2)</td>
<td>982(1)</td>
<td>2591(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>3621(2)</td>
<td>1147(2)</td>
<td>4066(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>2480(4)</td>
<td>781(3)</td>
<td>4580(2)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(29)</td>
<td>4925(5)</td>
<td>173(4)</td>
<td>4247(4)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>4214(6)</td>
<td>2450(4)</td>
<td>4251(3)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>2325(9)</td>
<td>1586(12)</td>
<td>4447(4)</td>
<td>91(3)</td>
</tr>
<tr>
<td>C(30A)</td>
<td>4347(14)</td>
<td>-33(9)</td>
<td>4297(7)</td>
<td>80(4)</td>
</tr>
<tr>
<td>C(31A)</td>
<td>4754(14)</td>
<td>2275(11)</td>
<td>4134(7)</td>
<td>73(3)</td>
</tr>
</tbody>
</table>
Table 3 - Bond lengths [Å] and angles [°] for 280

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(3)</td>
<td>1.4256(17)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(4)</td>
<td>1.3518(16)</td>
<td></td>
</tr>
<tr>
<td>O(3)-C(4)</td>
<td>1.1950(17)</td>
<td></td>
</tr>
<tr>
<td>O(4)-C(19)</td>
<td>1.436(2)</td>
<td></td>
</tr>
<tr>
<td>O(5)-C(7)</td>
<td>1.4459(17)</td>
<td></td>
</tr>
<tr>
<td>O(7)-C(23)</td>
<td>1.3644(19)</td>
<td></td>
</tr>
<tr>
<td>O(8)-N(12)</td>
<td>1.225(2)</td>
<td></td>
</tr>
<tr>
<td>O(10)-C(27)</td>
<td>1.2131(16)</td>
<td></td>
</tr>
<tr>
<td>O(11)-C(28)</td>
<td>1.4881(16)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.4582(17)</td>
<td></td>
</tr>
<tr>
<td>N(2)-C(12)</td>
<td>1.478(2)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.5395(19)</td>
<td></td>
</tr>
<tr>
<td>C(2)-H(2A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(15)</td>
<td>1.550(2)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(7)</td>
<td>1.499(2)</td>
<td></td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>C(7)-H(7A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.495(2)</td>
<td></td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.395(2)</td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.386(2)</td>
<td></td>
</tr>
<tr>
<td>C(14)-H(14)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(15)-C(18)</td>
<td>1.529(2)</td>
<td></td>
</tr>
<tr>
<td>C(16)-H(16A)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(16)-H(16C)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(17)-H(17B)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(18)-H(18A)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(18)-H(18C)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(19)-H(19A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(20)-C(25)</td>
<td>1.383(2)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.384(2)</td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.387(2)</td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.380(2)</td>
<td></td>
</tr>
<tr>
<td>C(24)-H(24)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(26)-H(26A)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(26)-H(26C)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(28)-C(31)</td>
<td>1.489(5)</td>
<td></td>
</tr>
<tr>
<td>C(28)-C(29)</td>
<td>1.536(3)</td>
<td></td>
</tr>
<tr>
<td>C(28)-C(31A)</td>
<td>1.557(10)</td>
<td></td>
</tr>
<tr>
<td>C(29)-H(29B)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(30)-H(30A)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(30)-H(30C)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(31)-H(31B)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(29A)-H(29D)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(29A)-H(29F)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(30A)-H(30E)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(31A)-H(31D)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(3)-O(1)-C(2)</td>
<td>108.52(10)</td>
<td></td>
</tr>
<tr>
<td>C(4)-O(2)-C(5)</td>
<td>110.43(11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C(6)-O(4)-C(19)</td>
<td>114.02(11)</td>
<td>C(8)-O(5)-C(7)</td>
</tr>
<tr>
<td>C(23)-O(7)-C(26)</td>
<td>117.04(13)</td>
<td>C(27)-O(11)-C(28)</td>
</tr>
<tr>
<td>C(27)-N(1)-C(1)</td>
<td>118.20(11)</td>
<td>C(27)-N(1)-C(3)</td>
</tr>
<tr>
<td>C(1)-N(1)-C(3)</td>
<td>118.20(11)</td>
<td>O(9)-N(2)-O(8)</td>
</tr>
<tr>
<td>O(9)-N(2)-C(12)</td>
<td>117.96(16)</td>
<td>O(8)-N(2)-C(12)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(4)</td>
<td>117.34(11)</td>
<td>N(1)-C(1)-C(6)</td>
</tr>
<tr>
<td>C(4)-C(1)-C(2)</td>
<td>101.00(10)</td>
<td>C(6)-C(1)-C(2)</td>
</tr>
<tr>
<td>C(1)-C(2)-H(2A)</td>
<td>111.0</td>
<td>O(1)-C(2)-H(2A)</td>
</tr>
<tr>
<td>O(1)-C(3)-N(1)</td>
<td>108.32(11)</td>
<td>O(1)-C(3)-C(15)</td>
</tr>
<tr>
<td>C(15)-C(3)-H(3)</td>
<td>102.88(13)</td>
<td>C(15)-C(3)-H(3)</td>
</tr>
<tr>
<td>O(3)-C(4)-O(2)</td>
<td>128.03(12)</td>
<td>O(3)-C(4)-C(1)</td>
</tr>
<tr>
<td>O(2)-C(4)-C(1)</td>
<td>109.47(12)</td>
<td>O(2)-C(5)-C(7)</td>
</tr>
<tr>
<td>O(2)-C(5)-H(5)</td>
<td>109.8</td>
<td>C(7)-C(5)-H(5)</td>
</tr>
<tr>
<td>O(6)-C(8)-O(5)</td>
<td>124.31(13)</td>
<td>O(6)-C(8)-C(9)</td>
</tr>
<tr>
<td>O(6)-C(8)-C(9)</td>
<td>111.26(12)</td>
<td>O(5)-C(8)-C(9)</td>
</tr>
<tr>
<td>C(14)-C(9)-C(10)</td>
<td>118.16(13)</td>
<td>C(14)-C(9)-C(10)</td>
</tr>
<tr>
<td>C(10)-C(9)-C(10)</td>
<td>119.52(15)</td>
<td>C(11)-C(9)-C(10)</td>
</tr>
<tr>
<td>C(11)-C(9)-C(10)</td>
<td>120.2</td>
<td>C(9)-C(10)-H(10)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(10)</td>
<td>120.8</td>
<td>C(12)-C(11)-H(11)</td>
</tr>
<tr>
<td>C(10)-C(11)-H(11)</td>
<td>123.16(14)</td>
<td>C(12)-C(11)-H(11)</td>
</tr>
<tr>
<td>C(13)-C(12)-N(2)</td>
<td>117.96(15)</td>
<td>C(13)-C(12)-N(2)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)</td>
<td>120.9</td>
<td>C(13)-C(12)-C(14)</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>120.41(15)</td>
<td>C(14)-C(13)-H(13)</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>119.8</td>
<td>C(13)-C(14)-C(13)</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>120.9</td>
<td>C(13)-C(14)-C(13)</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>120.9</td>
<td>C(13)-C(14)-H(14)</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>119.8</td>
<td>C(13)-C(14)-H(14)</td>
</tr>
<tr>
<td>C(17)-C(15)-C(18)</td>
<td>108.59(14)</td>
<td>C(17)-C(15)-C(18)</td>
</tr>
<tr>
<td>C(17)-C(15)-C(18)</td>
<td>113.60(12)</td>
<td>C(17)-C(15)-C(18)</td>
</tr>
<tr>
<td>C(18)-C(15)-C(16)</td>
<td>105.94(12)</td>
<td>C(18)-C(15)-C(16)</td>
</tr>
<tr>
<td>C(18)-C(15)-C(16)</td>
<td>110.40(12)</td>
<td>C(18)-C(15)-C(16)</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16A)</td>
<td>109.5</td>
<td>C(15)-C(16)-H(16A)</td>
</tr>
<tr>
<td>H(16A)-C(16)-H(16B)</td>
<td>109.5</td>
<td>H(16A)-C(16)-H(16B)</td>
</tr>
<tr>
<td>H(16A)-C(16)-H(16C)</td>
<td>109.5</td>
<td>H(16A)-C(16)-H(16C)</td>
</tr>
<tr>
<td>C(15)-C(17)-H(17A)</td>
<td>109.5</td>
<td>C(15)-C(17)-H(17A)</td>
</tr>
<tr>
<td>H(17A)-C(17)-H(17B)</td>
<td>109.5</td>
<td>H(17A)-C(17)-H(17B)</td>
</tr>
<tr>
<td>H(17A)-C(17)-H(17C)</td>
<td>109.5</td>
<td>H(17A)-C(17)-H(17C)</td>
</tr>
<tr>
<td>C(15)-C(18)-H(18A)</td>
<td>109.5</td>
<td>C(15)-C(18)-H(18A)</td>
</tr>
<tr>
<td>H(18A)-C(18)-H(18B)</td>
<td>109.5</td>
<td>H(18A)-C(18)-H(18B)</td>
</tr>
<tr>
<td>H(18A)-C(18)-H(18C)</td>
<td>109.5</td>
<td>H(18A)-C(18)-H(18C)</td>
</tr>
<tr>
<td>O(4)-C(19)-C(20)</td>
<td>112.92(13)</td>
<td>O(4)-C(19)-C(20)</td>
</tr>
<tr>
<td>C(20)-C(19)-H(19A)</td>
<td>119.0</td>
<td>C(20)-C(19)-H(19A)</td>
</tr>
<tr>
<td>C(20)-C(19)-H(19B)</td>
<td>119.0</td>
<td>C(20)-C(19)-H(19B)</td>
</tr>
<tr>
<td>C(25)-C(20)-C(21)</td>
<td>120.60(15)</td>
<td>C(25)-C(20)-C(21)</td>
</tr>
<tr>
<td>C(21)-C(20)-C(19)</td>
<td>121.95(14)</td>
<td>C(21)-C(20)-C(19)</td>
</tr>
<tr>
<td>C(22)-C(21)-H(21)</td>
<td>119.0</td>
<td>C(22)-C(21)-H(21)</td>
</tr>
<tr>
<td>C(21)-C(22)-C(23)</td>
<td>120.5</td>
<td>C(21)-C(22)-C(23)</td>
</tr>
<tr>
<td>C(23)-C(22)-H(22)</td>
<td>116.05(13)</td>
<td>C(23)-C(22)-H(22)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Bond</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>O(7)-C(23)-C(22)</td>
<td>124.25(14)</td>
<td>C(24)-C(23)-C(22)</td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)</td>
<td>120.43(15)</td>
<td>C(23)-C(24)-H(24)</td>
</tr>
<tr>
<td>C(25)-C(24)-H(24)</td>
<td>119.8</td>
<td>C(20)-C(25)-C(24)</td>
</tr>
<tr>
<td>C(20)-C(25)-H(25)</td>
<td>119.5</td>
<td>C(24)-C(25)-H(25)</td>
</tr>
<tr>
<td>O(7)-C(26)-H(26A)</td>
<td>109.5</td>
<td>O(7)-C(26)-H(26B)</td>
</tr>
<tr>
<td>H(26A)-C(26)-H(26B)</td>
<td>109.5</td>
<td>O(7)-C(26)-H(26C)</td>
</tr>
<tr>
<td>H(26A)-C(26)-H(26C)</td>
<td>109.5</td>
<td>H(26B)-C(26)-H(26C)</td>
</tr>
<tr>
<td>O(10)-C(27)-O(11)</td>
<td>126.35(11)</td>
<td>O(10)-C(27)-N(1)</td>
</tr>
<tr>
<td>O(11)-C(27)-N(1)</td>
<td>111.74(11)</td>
<td>C(30A)-C(28)-O(11)</td>
</tr>
<tr>
<td>C(30A)-C(28)-C(31)</td>
<td>130.1(5)</td>
<td>O(11)-C(28)-C(31)</td>
</tr>
<tr>
<td>C(30A)-C(28)-C(29A)</td>
<td>119.9(7)</td>
<td>O(11)-C(28)-C(29A)</td>
</tr>
<tr>
<td>C(31)-C(28)-C(29A)</td>
<td>84.1(5)</td>
<td>C(30A)-C(28)-C(29)</td>
</tr>
<tr>
<td>O(11)-C(28)-C(29)</td>
<td>104.32(16)</td>
<td>C(31)-C(28)-C(29)</td>
</tr>
<tr>
<td>C(29A)-C(28)-C(29)</td>
<td>33.6(4)</td>
<td>C(30A)-C(28)-C(30)</td>
</tr>
<tr>
<td>O(11)-C(28)-C(30)</td>
<td>110.9(2)</td>
<td>C(31)-C(28)-C(30)</td>
</tr>
<tr>
<td>C(29A)-C(28)-C(30)</td>
<td>137.8(5)</td>
<td>C(29)-C(28)-C(30)</td>
</tr>
<tr>
<td>C(30A)-C(28)-C(31A)</td>
<td>114.1(7)</td>
<td>O(11)-C(28)-C(31A)</td>
</tr>
<tr>
<td>C(31)-C(28)-C(31A)</td>
<td>22.3(4)</td>
<td>C(29A)-C(28)-C(31A)</td>
</tr>
<tr>
<td>C(29)-C(28)-C(31A)</td>
<td>131.4(4)</td>
<td>C(30)-C(28)-C(31A)</td>
</tr>
<tr>
<td>C(28)-C(29)-H(29A)</td>
<td>109.5</td>
<td>C(28)-C(29)-H(29B)</td>
</tr>
<tr>
<td>C(28)-C(29)-H(29C)</td>
<td>109.5</td>
<td>C(28)-C(30)-H(30A)</td>
</tr>
<tr>
<td>C(28)-C(30)-H(30B)</td>
<td>109.5</td>
<td>C(28)-C(30)-H(30C)</td>
</tr>
<tr>
<td>C(28)-C(31)-H(31A)</td>
<td>109.5</td>
<td>C(28)-C(31)-H(31B)</td>
</tr>
<tr>
<td>C(28)-C(31)-H(31C)</td>
<td>109.5</td>
<td>C(28)-C(29A)-H(29D)</td>
</tr>
<tr>
<td>C(28)-C(29A)-H(29E)</td>
<td>109.5</td>
<td>H(29D)-C(29A)-H(29E)</td>
</tr>
<tr>
<td>C(28)-C(29A)-H(29F)</td>
<td>109.5</td>
<td>H(29D)-C(29A)-H(29F)</td>
</tr>
<tr>
<td>H(29E)-C(29A)-H(29F)</td>
<td>109.5</td>
<td>C(28)-C(30A)-H(30D)</td>
</tr>
<tr>
<td>C(28)-C(30A)-H(30E)</td>
<td>109.5</td>
<td>H(30D)-C(30A)-H(30E)</td>
</tr>
<tr>
<td>C(28)-C(30A)-H(30F)</td>
<td>109.5</td>
<td>H(30D)-C(30A)-H(30F)</td>
</tr>
<tr>
<td>H(30E)-C(30A)-H(30F)</td>
<td>109.5</td>
<td>C(28)-C(31A)-H(31D)</td>
</tr>
<tr>
<td>C(28)-C(31A)-H(31E)</td>
<td>109.5</td>
<td>H(31D)-C(31A)-H(31E)</td>
</tr>
<tr>
<td>C(28)-C(31A)-H(31F)</td>
<td>109.5</td>
<td>H(31D)-C(31A)-H(31F)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Table 4 - Anisotropic displacement parameters (Å² x 10³) for 280. The anisotropic displacement factor exponent takes the form: -2 gpi² | h²aα² U11 + ... + 2 h k aα bβ U

<table>
<thead>
<tr>
<th>Atom</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>28(1)</td>
<td>43(1)</td>
<td>29(1)</td>
<td>-2(1)</td>
<td>-3(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>38(1)</td>
<td>31(1)</td>
<td>26(1)</td>
<td>0(1)</td>
<td>10(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>37(1)</td>
<td>27(1)</td>
<td>31(1)</td>
<td>1(1)</td>
<td>6(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>50(1)</td>
<td>30(1)</td>
<td>29(1)</td>
<td>2(1)</td>
<td>-9(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>50(1)</td>
<td>37(1)</td>
<td>27(1)</td>
<td>6(1)</td>
<td>2(1)</td>
<td>-15(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>54(1)</td>
<td>37(1)</td>
<td>39(1)</td>
<td>5(1)</td>
<td>12(1)</td>
<td>-13(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>69(1)</td>
<td>46(1)</td>
<td>32(1)</td>
<td>-5(1)</td>
<td>2(1)</td>
<td>-13(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>83(1)</td>
<td>70(1)</td>
<td>35(1)</td>
<td>4(1)</td>
<td>2(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(9)</td>
<td>63(1)</td>
<td>64(1)</td>
<td>55(1)</td>
<td>-13(1)</td>
<td>-16(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>29(1)</td>
<td>44(1)</td>
<td>23(1)</td>
<td>2(1)</td>
<td>1(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>32(1)</td>
<td>48(1)</td>
<td>21(1)</td>
<td>-10(1)</td>
<td>3(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>26(1)</td>
<td>32(1)</td>
<td>21(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>50(1)</td>
<td>53(1)</td>
<td>37(1)</td>
<td>-8(1)</td>
<td>-1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>30(1)</td>
<td>27(1)</td>
<td>20(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>32(1)</td>
<td>34(1)</td>
<td>24(1)</td>
<td>-2(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>25(1)</td>
<td>41(1)</td>
<td>27(1)</td>
<td>-5(1)</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>31(1)</td>
<td>29(1)</td>
<td>17(1)</td>
<td>-3(1)</td>
<td>2(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>45(1)</td>
<td>30(1)</td>
<td>20(1)</td>
<td>3(1)</td>
<td>2(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>36(1)</td>
<td>25(1)</td>
<td>20(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>53(1)</td>
<td>40(1)</td>
<td>24(1)</td>
<td>5(1)</td>
<td>5(1)</td>
<td>-13(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>34(1)</td>
<td>31(1)</td>
<td>34(1)</td>
<td>0(1)</td>
<td>9(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>31(1)</td>
<td>34(1)</td>
<td>33(1)</td>
<td>0(1)</td>
<td>7(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>47(1)</td>
<td>42(1)</td>
<td>35(1)</td>
<td>4(1)</td>
<td>0(1)</td>
<td>-14(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>54(1)</td>
<td>49(1)</td>
<td>35(1)</td>
<td>6(1)</td>
<td>3(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>37(1)</td>
<td>47(1)</td>
<td>31(1)</td>
<td>-5(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>40(1)</td>
<td>37(1)</td>
<td>46(1)</td>
<td>-9(1)</td>
<td>4(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>41(1)</td>
<td>33(1)</td>
<td>42(1)</td>
<td>-2(1)</td>
<td>8(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>32(1)</td>
<td>47(1)</td>
<td>31(1)</td>
<td>-3(1)</td>
<td>3(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>34(1)</td>
<td>76(1)</td>
<td>61(1)</td>
<td>-10(1)</td>
<td>12(1)</td>
<td>-14(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>45(1)</td>
<td>37(1)</td>
<td>40(1)</td>
<td>-1(1)</td>
<td>6(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>70(1)</td>
<td>57(1)</td>
<td>33(1)</td>
<td>2(1)</td>
<td>5(1)</td>
<td>-26(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>39(1)</td>
<td>33(1)</td>
<td>49(1)</td>
<td>-3(1)</td>
<td>-6(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>35(1)</td>
<td>26(1)</td>
<td>37(1)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>62(1)</td>
<td>31(1)</td>
<td>27(1)</td>
<td>2(1)</td>
<td>7(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>50(1)</td>
<td>26(1)</td>
<td>34(1)</td>
<td>1(1)</td>
<td>13(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>46(1)</td>
<td>30(1)</td>
<td>30(1)</td>
<td>-2(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>70(1)</td>
<td>48(1)</td>
<td>32(1)</td>
<td>-3(1)</td>
<td>19(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>47(1)</td>
<td>39(1)</td>
<td>45(1)</td>
<td>-1(1)</td>
<td>17(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>47(1)</td>
<td>38(1)</td>
<td>53(1)</td>
<td>-6(1)</td>
<td>2(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>30(1)</td>
<td>24(1)</td>
<td>21(1)</td>
<td>0(1)</td>
<td>2(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>41(1)</td>
<td>47(1)</td>
<td>18(1)</td>
<td>-8(1)</td>
<td>2(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(29)</td>
<td>50(2)</td>
<td>56(2)</td>
<td>25(1)</td>
<td>-4(1)</td>
<td>13(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>52(2)</td>
<td>37(2)</td>
<td>24(2)</td>
<td>6(1)</td>
<td>2(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>65(2)</td>
<td>32(2)</td>
<td>25(2)</td>
<td>-8(1)</td>
<td>5(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(29A)</td>
<td>61(4)</td>
<td>186(11)</td>
<td>27(3)</td>
<td>-22(5)</td>
<td>9(3)</td>
<td>20(6)</td>
</tr>
<tr>
<td>C(30A)</td>
<td>157(12)</td>
<td>44(4)</td>
<td>25(3)</td>
<td>10(3)</td>
<td>-7(7)</td>
<td>-5(6)</td>
</tr>
<tr>
<td>C(31A)</td>
<td>111(9)</td>
<td>78(6)</td>
<td>24(3)</td>
<td>-27(3)</td>
<td>4(5)</td>
<td>-20(7)</td>
</tr>
</tbody>
</table>
Table 5 - Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 280

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2A)</td>
<td>1293</td>
<td>1134</td>
<td>-28</td>
<td>37</td>
</tr>
<tr>
<td>H(2B)</td>
<td>1439</td>
<td>-298</td>
<td>299</td>
<td>37</td>
</tr>
<tr>
<td>H(3)</td>
<td>309</td>
<td>1044</td>
<td>2055</td>
<td>38</td>
</tr>
<tr>
<td>H(5)</td>
<td>3909</td>
<td>2068</td>
<td>-160</td>
<td>39</td>
</tr>
<tr>
<td>H(6)</td>
<td>4011</td>
<td>2649</td>
<td>1516</td>
<td>34</td>
</tr>
<tr>
<td>H(7A)</td>
<td>6518</td>
<td>2739</td>
<td>169</td>
<td>48</td>
</tr>
<tr>
<td>H(7B)</td>
<td>5389</td>
<td>3842</td>
<td>320</td>
<td>48</td>
</tr>
<tr>
<td>H(10)</td>
<td>7280</td>
<td>2329</td>
<td>2745</td>
<td>51</td>
</tr>
<tr>
<td>H(11)</td>
<td>8504</td>
<td>2303</td>
<td>4148</td>
<td>57</td>
</tr>
<tr>
<td>H(13)</td>
<td>10285</td>
<td>5761</td>
<td>3935</td>
<td>50</td>
</tr>
<tr>
<td>H(14)</td>
<td>9113</td>
<td>5766</td>
<td>2532</td>
<td>46</td>
</tr>
<tr>
<td>H(16A)</td>
<td>-1927</td>
<td>-1720</td>
<td>1703</td>
<td>85</td>
</tr>
<tr>
<td>H(16B)</td>
<td>-1895</td>
<td>-618</td>
<td>1058</td>
<td>85</td>
</tr>
<tr>
<td>H(16C)</td>
<td>-1900</td>
<td>-280</td>
<td>1984</td>
<td>85</td>
</tr>
<tr>
<td>H(17A)</td>
<td>1891</td>
<td>-1835</td>
<td>1411</td>
<td>62</td>
</tr>
<tr>
<td>H(17B)</td>
<td>275</td>
<td>-1762</td>
<td>758</td>
<td>62</td>
</tr>
<tr>
<td>H(17C)</td>
<td>512</td>
<td>-2738</td>
<td>1503</td>
<td>62</td>
</tr>
<tr>
<td>H(18A)</td>
<td>346</td>
<td>-2069</td>
<td>2859</td>
<td>81</td>
</tr>
<tr>
<td>H(18B)</td>
<td>492</td>
<td>-610</td>
<td>3102</td>
<td>81</td>
</tr>
<tr>
<td>H(18C)</td>
<td>1919</td>
<td>-1335</td>
<td>2894</td>
<td>81</td>
</tr>
<tr>
<td>H(19A)</td>
<td>1070</td>
<td>3178</td>
<td>1427</td>
<td>52</td>
</tr>
<tr>
<td>H(19B)</td>
<td>700</td>
<td>4318</td>
<td>788</td>
<td>52</td>
</tr>
<tr>
<td>H(21)</td>
<td>3583</td>
<td>5519</td>
<td>897</td>
<td>49</td>
</tr>
<tr>
<td>H(22)</td>
<td>5218</td>
<td>6831</td>
<td>1816</td>
<td>43</td>
</tr>
<tr>
<td>H(24)</td>
<td>3548</td>
<td>5374</td>
<td>3653</td>
<td>59</td>
</tr>
<tr>
<td>H(25)</td>
<td>2002</td>
<td>4006</td>
<td>2735</td>
<td>51</td>
</tr>
<tr>
<td>H(26A)</td>
<td>7150</td>
<td>7367</td>
<td>2917</td>
<td>71</td>
</tr>
<tr>
<td>H(26B)</td>
<td>6991</td>
<td>8321</td>
<td>3629</td>
<td>71</td>
</tr>
<tr>
<td>H(26C)</td>
<td>5835</td>
<td>8419</td>
<td>2747</td>
<td>71</td>
</tr>
<tr>
<td>H(29A)</td>
<td>1543</td>
<td>1283</td>
<td>4407</td>
<td>64</td>
</tr>
<tr>
<td>H(29B)</td>
<td>2944</td>
<td>942</td>
<td>5160</td>
<td>64</td>
</tr>
<tr>
<td>H(29C)</td>
<td>2228</td>
<td>-115</td>
<td>4502</td>
<td>64</td>
</tr>
<tr>
<td>H(30A)</td>
<td>4526</td>
<td>-652</td>
<td>4036</td>
<td>58</td>
</tr>
<tr>
<td>H(30B)</td>
<td>5343</td>
<td>116</td>
<td>4839</td>
<td>58</td>
</tr>
<tr>
<td>H(30C)</td>
<td>5739</td>
<td>432</td>
<td>3981</td>
<td>58</td>
</tr>
<tr>
<td>H(31A)</td>
<td>4852</td>
<td>2683</td>
<td>3874</td>
<td>62</td>
</tr>
<tr>
<td>H(31B)</td>
<td>4830</td>
<td>2489</td>
<td>4815</td>
<td>62</td>
</tr>
<tr>
<td>H(31C)</td>
<td>3349</td>
<td>3037</td>
<td>4185</td>
<td>62</td>
</tr>
<tr>
<td>H(31D)</td>
<td>3598</td>
<td>-713</td>
<td>4135</td>
<td>137</td>
</tr>
<tr>
<td>H(31E)</td>
<td>4752</td>
<td>-53</td>
<td>4892</td>
<td>120</td>
</tr>
<tr>
<td>H(31F)</td>
<td>5191</td>
<td>-146</td>
<td>4024</td>
<td>120</td>
</tr>
<tr>
<td>H(31G)</td>
<td>5584</td>
<td>2053</td>
<td>3870</td>
<td>110</td>
</tr>
<tr>
<td>H(31H)</td>
<td>5188</td>
<td>2467</td>
<td>4712</td>
<td>110</td>
</tr>
<tr>
<td>H(31I)</td>
<td>4204</td>
<td>3013</td>
<td>3863</td>
<td>110</td>
</tr>
</tbody>
</table>
Table 6 - Dihedral angles [°] for 280

<table>
<thead>
<tr>
<th>Atom1 - Atom2 - Atom3 - Atom4</th>
<th>Dihedral</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(27) - N(1) - C(1) - C(4)</td>
<td>65.55(15)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(1) - C(4)</td>
<td>-130.12(12)</td>
</tr>
<tr>
<td>C(27) - N(1) - C(1) - C(6)</td>
<td>-52.85(16)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(1) - C(6)</td>
<td>111.48(13)</td>
</tr>
<tr>
<td>C(27) - N(1) - C(1) - C(2)</td>
<td>-174.87(11)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(1) - C(2)</td>
<td>-10.55(14)</td>
</tr>
<tr>
<td>C(3) - O(1) - C(2) - C(1)</td>
<td>-37.24(14)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(2) - O(1)</td>
<td>27.92(13)</td>
</tr>
<tr>
<td>C(4) - C(1) - C(2) - O(1)</td>
<td>147.96(11)</td>
</tr>
<tr>
<td>C(6) - C(1) - C(2) - O(1)</td>
<td>-97.76(13)</td>
</tr>
<tr>
<td>C(2) - O(1) - C(3) - N(1)</td>
<td>29.77(14)</td>
</tr>
<tr>
<td>C(2) - O(1) - C(3) - C(15)</td>
<td>-96.41(13)</td>
</tr>
<tr>
<td>C(27) - N(1) - C(3) - O(1)</td>
<td>151.82(13)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - O(1)</td>
<td>-10.58(14)</td>
</tr>
<tr>
<td>C(27) - N(1) - C(3) - C(15)</td>
<td>-85.69(17)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(3) - C(15)</td>
<td>111.91(13)</td>
</tr>
<tr>
<td>C(5) - O(2) - C(4) - O(3)</td>
<td>177.91(12)</td>
</tr>
<tr>
<td>C(5) - O(2) - C(4) - C(1)</td>
<td>0.19(13)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - O(3)</td>
<td>36.41(18)</td>
</tr>
<tr>
<td>C(6) - C(1) - C(4) - O(3)</td>
<td>163.30(13)</td>
</tr>
<tr>
<td>C(2) - C(1) - C(4) - O(3)</td>
<td>-76.59(17)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(4) - O(2)</td>
<td>-146.04(10)</td>
</tr>
<tr>
<td>C(6) - C(1) - C(4) - O(2)</td>
<td>-19.15(13)</td>
</tr>
<tr>
<td>C(2) - C(1) - C(4) - O(2)</td>
<td>100.96(12)</td>
</tr>
<tr>
<td>C(4) - O(2) - C(5) - C(7)</td>
<td>143.76(11)</td>
</tr>
<tr>
<td>C(4) - O(2) - C(5) - C(6)</td>
<td>19.35(13)</td>
</tr>
<tr>
<td>C(19) - O(4) - C(6) - C(5)</td>
<td>-158.16(12)</td>
</tr>
<tr>
<td>C(19) - O(4) - C(6) - C(1)</td>
<td>88.44(15)</td>
</tr>
<tr>
<td>O(2) - C(5) - C(6) - O(4)</td>
<td>-152.48(10)</td>
</tr>
<tr>
<td>C(7) - C(5) - C(6) - O(4)</td>
<td>86.74(14)</td>
</tr>
<tr>
<td>O(2) - C(5) - C(6) - C(1)</td>
<td>-29.95(12)</td>
</tr>
<tr>
<td>C(7) - C(5) - C(6) - C(1)</td>
<td>-150.71(12)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(6) - O(4)</td>
<td>-90.80(14)</td>
</tr>
<tr>
<td>C(4) - C(1) - C(6) - O(4)</td>
<td>145.42(11)</td>
</tr>
<tr>
<td>C(2) - C(1) - C(6) - O(4)</td>
<td>25.35(16)</td>
</tr>
<tr>
<td>N(1) - C(1) - C(6) - C(5)</td>
<td>152.80(11)</td>
</tr>
<tr>
<td>C(4) - C(1) - C(6) - C(5)</td>
<td>29.02(12)</td>
</tr>
<tr>
<td>C(2) - C(1) - C(6) - C(5)</td>
<td>-91.05(13)</td>
</tr>
<tr>
<td>C(8) - O(5) - C(7) - C(5)</td>
<td>-157.68(13)</td>
</tr>
<tr>
<td>O(2) - C(5) - C(7) - O(5)</td>
<td>-65.14(15)</td>
</tr>
<tr>
<td>C(6) - C(5) - C(7) - O(5)</td>
<td>53.41(17)</td>
</tr>
<tr>
<td>C(7) - O(5) - C(8) - O(6)</td>
<td>-3.1(2)</td>
</tr>
<tr>
<td>C(7) - O(5) - C(8) - C(9)</td>
<td>177.43(13)</td>
</tr>
<tr>
<td>O(6) - C(8) - C(9) - C(14)</td>
<td>0.2(2)</td>
</tr>
<tr>
<td>O(5) - C(8) - C(9) - C(14)</td>
<td>179.67(14)</td>
</tr>
<tr>
<td>O(6) - C(8) - C(9) - C(10)</td>
<td>-179.26(16)</td>
</tr>
<tr>
<td>O(5) - C(8) - C(9) - C(10)</td>
<td>0.3(2)</td>
</tr>
<tr>
<td>C(14) - C(9) - C(10) - C(11)</td>
<td>-1.3(3)</td>
</tr>
<tr>
<td>C(8) - C(9) - C(10) - C(11)</td>
<td>178.08(16)</td>
</tr>
<tr>
<td>Bond 1 - Bond 2 - Bond 3 - Bond 4</td>
<td>Energy (kcal/mol)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>C(9) - C(10) - C(11) - C(12)</td>
<td>0.8(3)</td>
</tr>
<tr>
<td>C(10) - C(11) - C(12) - C(13)</td>
<td>0.4(3)</td>
</tr>
<tr>
<td>C(10) - C(11) - C(12) - N(2)</td>
<td>-178.39(17)</td>
</tr>
<tr>
<td>O(9) - N(2) - C(12) - C(13)</td>
<td>-4.1(2)</td>
</tr>
<tr>
<td>O(8) - N(2) - C(12) - C(13)</td>
<td>176.08(16)</td>
</tr>
<tr>
<td>O(9) - N(2) - C(12) - C(11)</td>
<td>174.81(17)</td>
</tr>
<tr>
<td>O(8) - N(2) - C(12) - C(11)</td>
<td>-5.0(2)</td>
</tr>
<tr>
<td>C(11) - C(12) - C(13) - C(14)</td>
<td>-1.2(3)</td>
</tr>
<tr>
<td>N(2) - C(12) - C(13) - C(14)</td>
<td>177.58(15)</td>
</tr>
<tr>
<td>C(10) - C(9) - C(14) - C(13)</td>
<td>0.5(2)</td>
</tr>
<tr>
<td>C(8) - C(9) - C(14) - C(13)</td>
<td>-178.91(15)</td>
</tr>
<tr>
<td>C(12) - C(13) - C(14) - C(9)</td>
<td>0.7(2)</td>
</tr>
<tr>
<td>O(1) - C(3) - C(15) - C(17)</td>
<td>58.28(16)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(15) - C(17)</td>
<td>-59.33(16)</td>
</tr>
<tr>
<td>O(1) - C(3) - C(15) - C(18)</td>
<td>-179.34(14)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(15) - C(18)</td>
<td>63.05(18)</td>
</tr>
<tr>
<td>O(1) - C(3) - C(15) - C(16)</td>
<td>-60.83(16)</td>
</tr>
<tr>
<td>N(1) - C(3) - C(15) - C(16)</td>
<td>-178.44(13)</td>
</tr>
<tr>
<td>C(6) - O(4) - C(19) - C(20)</td>
<td>63.37(17)</td>
</tr>
<tr>
<td>O(4) - C(19) - C(20) - C(25)</td>
<td>-131.07(15)</td>
</tr>
<tr>
<td>O(4) - C(19) - C(20) - C(21)</td>
<td>49.79(19)</td>
</tr>
<tr>
<td>C(25) - C(20) - C(21) - C(22)</td>
<td>-0.4(2)</td>
</tr>
<tr>
<td>C(19) - C(20) - C(21) - C(22)</td>
<td>178.80(14)</td>
</tr>
<tr>
<td>C(20) - C(21) - C(22) - C(23)</td>
<td>-1.2(2)</td>
</tr>
<tr>
<td>C(26) - O(7) - C(23) - C(24)</td>
<td>178.90(15)</td>
</tr>
<tr>
<td>C(26) - O(7) - C(23) - C(22)</td>
<td>-1.4(2)</td>
</tr>
<tr>
<td>C(21) - C(22) - C(23) - O(7)</td>
<td>-178.52(15)</td>
</tr>
<tr>
<td>C(21) - C(22) - C(23) - C(24)</td>
<td>1.2(2)</td>
</tr>
<tr>
<td>O(7) - C(23) - C(24) - C(25)</td>
<td>-179.95(16)</td>
</tr>
<tr>
<td>C(22) - C(23) - C(24) - C(25)</td>
<td>0.3(3)</td>
</tr>
<tr>
<td>C(21) - C(20) - C(25) - C(24)</td>
<td>1.9(2)</td>
</tr>
<tr>
<td>C(19) - C(20) - C(25) - C(24)</td>
<td>177.27(16)</td>
</tr>
<tr>
<td>C(23) - C(24) - C(25) - C(20)</td>
<td>-1.9(3)</td>
</tr>
<tr>
<td>C(28) - O(11) - C(27) - O(10)</td>
<td>-10.6(2)</td>
</tr>
<tr>
<td>C(28) - O(11) - C(27) - N(1)</td>
<td>170.06(12)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(27) - O(10)</td>
<td>-17.35(19)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(27) - O(10)</td>
<td>-178.74(13)</td>
</tr>
<tr>
<td>C(1) - N(1) - C(27) - O(11)</td>
<td>161.99(11)</td>
</tr>
<tr>
<td>C(3) - N(1) - C(27) - O(11)</td>
<td>0.60(19)</td>
</tr>
<tr>
<td>C(27) - O(11) - C(28) - C(30A)</td>
<td>-7.1(5)</td>
</tr>
<tr>
<td>C(27) - O(11) - C(28) - C(31)</td>
<td>76.6(2)</td>
</tr>
<tr>
<td>C(27) - O(11) - C(28) - C(29A)</td>
<td>163.3(5)</td>
</tr>
<tr>
<td>C(27) - O(11) - C(28) - C(29)</td>
<td>-163.03(17)</td>
</tr>
<tr>
<td>C(27) - O(11) - C(28) - C(30)</td>
<td>-48.0(2)</td>
</tr>
<tr>
<td>C(27) - O(11) - C(28) - C(31A)</td>
<td>52.9(5)</td>
</tr>
</tbody>
</table>
8.2 2D-NOE Spectra

8.2.1 2D-NOE Spectra for 281d
9. REFERENCES

207. Work conducted in conjunction with Ryan Cavilla towards his MChem Research Project.

