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SUMMARY

The work described in this thesis is concerned witH the development
of a computer software package to simulate the behavicur of hydraulic
systems and their associated elecironic and mechanical components.
The primary reqguirement was that the package should be suitable for
use by engineers with litile or no computing background. It should
attract users who would not otherwise come inte contact with
computers, but who often stand to gain the most from their use. The
second requirement was that it should be able to simulate the steady
state and dynamic behaviour of .as wide a range of circuits as

possible.

The resulting CAD package is known as HASP (the Hydraudlic Automatic
Simulation Package). The user of the package need not producp any
computer code. All that is necessary is to define the components in
the circuit and indicate the manner in which they are connected.
This differs from simulation languages which require the user to
become familiar with a vocabulary. of mnemonics representing the
mathematical components of an algorithm rather than the hydraulic

components of a circuit.

A significant amount of programming had already been carried out at
the commencement of the current work. However, at that time, the
software failed to meet the fundamental requireménts. It waé the
author’s intention to examine the package from two different

viewpoints:
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1. frqm the point of view of the user and

2. from that of the program developer.

To the tarpet user, the original package appeared unfriendly and
complex, and required a detailed knowledge of the computer operating
system. The author has erradicated these problems by developing a
new command interpreter, together with other enhancements such as

simultaneous simulation and graphical display of results.

The structure of the package is such that it can continue to expand
and broaden its areas of application. However, this growth was
hindered by - cumbersome modelling methods, which lacked any
classification. These vague methods havevbeen critically examined
and developed. The author has defined a classification scheme for
modelling methods with firm guidelines for future modellers. In
addition, modelling tools such as valve port area calculations and

polynomial regression algorithms have been developed.

On completion of this work, the simulation package presents itself to
the user as a syntactically simple system, but provides sufficient

growth paths for the program developer.
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INTRODUGTION

THE SIMULATION OF HYDRAULIC SYSTEMS

100. The design of fluid power systems, along with the requirements
of mast other technologies, has become more demanding. The systems
must be both efficient and reliable in order to reduce the running
and maintenanQe costs to a minimum. Also, the systems must pravide
the often demanding level of control required. Nowadays, designs
must be practicable and competitive if the contracter is to stay in

business.

101. The designer of hydraulic systems may be required to perform
dynamic as well as steady state analyses on the systems he considers
to be feasible. The options open to the designer are to perform
classical paper calculations or to employ a computer to perform a
simulation of the response of the circuit in either the time or the
frequency domain. In the past, the use of digital computers has heen
neglected for tuwo méin reasaons, these being firstly, the fact that
computers were expensive items of equipment and secondly, that a
great deal of specialist knowledge and familiaristaion was required

in order to use them.

102. With the advent of the micro-electronic chip, the cost of

computers reduced dramatically. Conversely, their power has become



significantly greater. However, even with inexpensive computing
facilities, it is still difficult to use the computer efficiently due
to the experience and time required in the production of a simulatjon

program for a particular hydraulic circuit.

103. The purpose of this work is to develop some aspects of a
computer software package which allows both experienced and
inexperienced computer users to produce pertinent simulation programs

economically in both time and effort.

THE HISTORY OF COMPUTER STIMULATION

104ﬂ At this point, it is useful to examine the wealth of experience
that has been gained over the years in the use of the computer in
simulating physical systems. Computer simulatiaon hegan over thirty
five vyears ago following the advent of the analogue computer. When
using such a device, the mathematical model describing the system to
be simulated is depicted as a hlock diagram. The diagram consists of
symhols which represent mathematical functions to be simulated by
electrical components. For example, rectangles represent arithmetic

functions and the circles represent generators.

105. In 1955, following the introduction of the digital computer,
R.G. Selfridge produced. the first of a large number of so-cglled
digital analogue simulators. These were programs written for digital
computers, or more specifically, they were digital representations of

sets of analogue elements. The elements normally 'appeared as



subroutines or functions. In the case of an analogue simulation, the
elements of the circuit were normally connected using a patch-board.
Similarly, users of a digital analogue simulator would be expected to
write main segments linking the subroutines and functions in the
required manner. The simulators that followed developed in terms of
the complexity of systems that could be simulated and also in terms
of the integration method employed. For example, the first simulator
used Simpson’s rule to perform the integration, whilst by the early
1960s, fourth-orfder Runge-Kutta and fifth-order predictor-correqﬁor
methods were being employed by packages such as DYSAC (Digitally

Simulated Analog Computer) and HYBLOC [11.

106. In 1965, a compiler called MIMIC was written which was closely
related to its predecessor MIDAS (Modified Integration Digital Analog
Simulation). They differed in two respects. Firstly, MIDAS wa; an
interpreter which translated the user-defined commands into a
language called FAP (an IBM assembly language), whereas MIMIC was a
compiler which translated the commands directly into machine code.
Secondly and more importantly, MIMIC allowed its own commands to be
interspersed with Fortran-like algebraic statements. MIMIC  was
closely followed by DSL/90 (Digital Simulation Language) which not
only allowed mixing of DOSL and Fortran IV statements Eut also
provided a facility for automatically sorting the statements. The
DSL compiler translated the statements into Fortran IV subroutines

which are then compiled.

107. The general philosophy of simulation languages has remained



largely unaltered from this time, more recent effort being placed in
ease of use, scope of applicatipn and the development of efficient
integration routines with particular emphasis on step-control.
Houwever, since the appearance of SIMULA in 1867, simulation languages
have been split into +two broad but distinct groups: meihods to
simulate continuous systems and methods to simulate discrete event

systems.

108. A continuous system consists of components which have the
ability to interact in a continuous fashion due to an internal or an
external excitation. The continuity is generally with respect to
time but may also be a function of other s;stem features.
Mathematical representation of continuous systems is done with the
aid of +time (and other) dependent differential equations. Examples
of the simulation of continuous systems are the representation of the
time (and possibly displaceﬁent) dependent pressure transients of an
hydraulic circuit as an actuator encounters a sudden increase in
load, and the changing stability of an aircraft as it passes through
its stalliﬁg condition. Since the digital simulation of continuous
systems inevitably involves numerical integration and lengthy
algebraic manipulation, simulation languages and packages such as
those mentioned above +tend to be based upon the most popular high

level scientific languagé, Fortran.

109. A discrete event system, as the name suggests, consists of
components which interact in a discontinuous or discrete fashion. If

an event occurs, the operation of the system may be altered in some



respect. However, the transient behaviour, i.e. the manner in the
system moves between states is of no interest. The simulation of
discrete event systems generally involves logical decisions and
optimisation based upon statistical data. Examples of the simulation
of these .systems are the response of say a traffic system to a bus
breaking down in the rush hour, and the analysis of the cause of an
hydraulic actuator sticking using failure mode analysis. Since the
digital simulation of discrete event systems often involves logical
decisions, simulation programs and packages tend to be based upon
high level languages which support rich Boolean algebra features such
as Algol and more recently Pascal (e.g. the simulation language
Simula [21). It has been found that the literature concerned with
discrete event simulation has little relevance to the development of
a dynamic simulation package and an extensive appraisal of past work

in this field has not been carried out.

110. The basic problem with simulation languages is that the user
must still perform a large amount of mathematical modelling in order
to adequately describe his system. This is inevitable if such a
general purpose tool is to he used. However, if the package is to be
used in limited appiications, then_ it 1is possible to produce

simulation packages which reduce the need for mathematical modelling.

111, The McDonnel Aircraft Corparation released an important package*
for simulating hydraulic systems in 1977. The package consists of
several programs which simulate different aspects of several

generalised hydraulic systems. For example, the program HYTRAN [31



analyses hydraulic transients and the program SSFAN [4] analyses the
steady state behaviour of a system. The programs are supplied with
§dditional modules which may be added by the user with few amendments
to the coding of the main program. Two problems with these programs
have been identified. Firstly, it is necessary to understand the
complex structure of the program in order to include additional
blocks, a necessary task if the program is to be used to simulate a
wide range of systems. Secondly, the data the user mus£ define in
order to run the programs is often difficult +to obtain. McDonnel
Douglas suggest that this is not a burden since the components which
require the attention are common to many systems, é.g. DC-10 pumps
are used on the Boeing 747, the Lockheed L-1011 and the Airbus A300
[51. However, the dimenéions and characteristics of this pump are
unlikely to be applicable to pumps in fields of interest outside

aeronautics.

112, In West Germany, a package called DSH (Digital Simul;tion of
Hydraulics) has been developed by Backe et al [B1. This package is
intended to have the versatility and a degree of user-friendliness
which allows an inexperienced computer user to simulate any hydraulic
system. The set of programs which form 0SH can be run on relatively
small computers (less than B4k bytes of core). The user of the
package defines his circuit in terms of ’'macro' or ’micro' words.
" The macroe word defines a mathematical model which already exists in
the package; A micro word defines a single mathematical operation.

By defining a sequence of micro words, it is possible to represent a



model not catered for by the basic package. The package consists of

five programs controlled by a coordinating program.

113. The major drawbacks of this package lie in two distinct areas.
Firstly, the static nature of the programs which constitute DSH tends
to limit the types of models which one can write. Secondly, the user
interface is extremely basici users having to define information in
terms of data fields. To quote Gordon and Riesenfeld [7], 'In order
to be successful, a (CAD) system must have appeal to the designer -
it must be simple, intuitive and easy 1o use. Ideally, an
interactive design system makes no demands on the user other than
those to which he has been formerly accustomed through ... design
experience’. It would be unreasonable to suggest that a system which
requires a user to define a great deal of information in terms of
data fields can ever be considered as simple, intuitive and easy to
use. The current work aims to provide a system which satisfies the

requirements guoted above.

THE _HYDRAULIC AUTOMATIC SIMULATION PACKAGE

The aims

114. A package known as the Hydraulic Automatic Simulation Péckage
has been developed at the University of Bath over a period of years.
Its aim is to allow a user to produce computer programs which will
perform a dynamic simulation of any hydraulic system of his choice.
Furthermore, it is desirable that the user need not learn a great

deal of the skills normally associated with the use of digital



computers. In particular it is intended that the package should:

(i) not require the user to have any previous knowledge of
computings

(ii) not require the user to spend a great deal of time learning
the procedures to be adopted;

(iii) allow a user to produce a simulation program and obtain
results in a matter of hours;

(iv) provide a library of compoﬁents sufficient to build a large
number of practical circuitsi

(v? provide a standard method of modelling such that if a neuw
component is required, the construction of that model is

neither laborious nor error-prone.

A description of the package

115, The manner in which the first three aims were achieved was to
produce a program generator together with a comprehensive libarary of
models. The program generator creates a set of controlling routines
for a simulatién program and is subsequently attached to the
necessary routines from the model library. Having used the program
generator, the user is left with a wunique simulation program
corresponding teo his wunique hydrauiic circuit. The simulation
programs are considered as temporary whereas the program generétor is

permanent -and is the mast important program of the package.

116. Theﬁe is one principal difference between this package and the

multitude of other packages that are available. In general, the user



of simulation packages must perform a large amount of mathematical
maodelling in order to describe his system, a task which is normally
unnecessary when using »HASP. ficcordingly, almost all other
simulation packages are actually simulation languages [8,9]. It
should be emphasised that HASP is not what one would normally
consider a language: it is' a complete package of programs, data-
bases, lihraries and command procedures and requires nothing of the
user other than a definition of +the layout. of his circuit.
Therefore, the user need never learn a language and need never
directly produce a files all necessary files being produced by the

programs following an interactive session.

117. Since HASP relies upon a fixed library of hydraulic components,
an inexperienced user is restricted to simulating circuits described
by the components that have already been modelled. (However,- the
structure of the package and tﬁe standardisation of modelling
techniques would allow more advanced users to include their ouwn
models into the library). Therefore, at the user level, HASP is not
as versatile as simulation languages which require the user to
develop his own complete mathematical algorithms. However, that is
not to say that HASP cannot be adapted to simulate other continuous
systems. In fact, it could be adapted to simulate any physical
system which can be described in terms of discrete mathematical
models. A provisc is of course that these models should be of a form
where they may be considered constituent parts of many different

configurations of the overall system.
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118. It is useful to consider the tasks the user of HASP must carry
out, from the initial conception of a hydraulic circuit configuration
to being able to examine the behavicur c¢f that circuit. At the same
time, it is worthwhile introducing some of the software that has been

designed to achieve these aims.

119. Initially, the user must produce a proposal far the hydraulic
circuit to be designed. His use of HASP begins with a search through

the component model library ta find models which suitably represent

the components which constitute his circuit. This may be done by -

consulting the documentation which exists or perhaps more easily by
using the online help facility provided by the package. To use this
facility, the user must be operating within the package. To enter
the package, the user simply types HASP. The onliﬁe help facility is
offered when the user issues the command to generate a new simulation

program.

120. Whichever method the user adopts in determining the required
components (i.e. online information, written reports or experience),
he must produce a description of his circuit in terms of HASP
component models and interconnecting links. An example of a simple
hydraulic circuit that one might wish to simulate is given in
figure 1.1 and the corresponding linking diagram is shown in
figure 1.2. The blocks represent component models, the HASP code
name of the components being inserted in the blocks. The inter-
cannecting links indicate information +transfer between models and

should be arbitrarily numbered for reference.
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121. The user is now ready to generate the controlling segments of
the simulation program. This is done by invoking the program
generator (assuming it has not already been invoked to give advice on
component model selection), then answering the questions posed. The
questions issued by the generator are entirely concerned with the
definition of +the linking diagram produced by the user and the
production of a file to store that information for possiblé
retrieval, amending and regenerating in the future. The program

generator employs an efficient method of user-error diagnosis.

122. Assuming the circuit configuration data defined by the user is
acceptable, several routinés (mostly written in Fortran5 are
generated. They are then compiled and linked with other necessary
routines. These routines are the selected component models, the
fluid properties definitioﬁ routine and the standard integrator. The
integrator employed by the simulation program is based on a method
developed by Gear [10]. The method is particularly wuseful in the =~
solution of the differential equations produced in the analysis of
.hydraulic systems due to its ability to select the most efficient

combination of order and integration timestep.

123. The user is now ready to run the simulation program that has
been produced. The simulation is best considered as being split into
two. The first section is concerned with the definition of the
parametric data required by the component models. Again, this
process is carried out completely interactively, posing questions

relevant to the size and performance characteristics of the hydraulic
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components. The information is again stored in a data file which, on
subsequent runs of the simulation program, may be retrieved and
amended. The first section also calculates all the parameters that
>Qill remain constant throughout the simulation. The second section
of the simulation program is concerned with the calculation of all
time dependent variables. These results are collected in another

data file.

124. Finally, the results are viewed graphically using one of the
graphics programs associated with HASP. Based on these results, the
user can then decide whether or not it is worth considering
components with different dimensions. If so, he simply reruns the
simulation program, retrieves and amends the parametric d;ta then
repeats the simulation process. Alternatively, he may wish to alter
the basic configuration of his circuit in which case he returns to
the program generator. He retrieves and amends the circuit
configuration data and generates a new simulation program with which

he can investigate further.

125. It should be emphasised that the time scale involved in
carrying out the process above can vary greatly depending on the size
of the circuit, the relative values of certain system parameters and
of course, the experience of the user. However, at most, the whole

process may be carried out in a matter of hours.

The user of the package

1268. The hypothetical user that has been described in the preceeding
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paragraphs is seen as being at best, inexperiencedﬁ and at worst,
totally ignorant of computing. However, it must be emphasised that
this ignorénce should not extend to the design of hydraulic systems.
The computer will not carry out the creative thought required in
engineering. It is merely a tool to examine the possible solutions
quickly and as accurately as the known parametric data will allow.
With the aid of HASP, it should be possible to produce a goed
prototype design, but the prototype and the experimental work should
not be cast aside. However, with diligent use, HASP has in the past,
and will in the future prove to be a useful and potent tool in the

design and trouble—shooting of hydraulic systems.

AN _OVERVIEW OF THE AUTHOR'S CONTRIBUTION

127. The aim of the current work is to ensure that the package meets
the aims set out in para.t14. Put rather more simply, these aims are
., to present a package which can be used to both produce simulation
programs by engineers with no knouwledge of computing, and to ensure
that modellers may produce new component models as quickly and
effectively as possible. To this end, the author has produced
several versions of the program generator and also written many
companent 'models and standard modelling utilities intended not only
to enhance the component model library, but also to indicate new
techniques and provide tools for modellers in the future. Also, a
command interpreter has been written in order to provide an interface

between the user and the computer operating system.
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128. Chapter 2 includes a descripiion of this command interpreter as
it provides a wuseful wvehicle with which to describe the overall
structure qf the package in more detail. Its primary purpose is, of
course, to explain what the user of HASP will see. Its secondary
purpose is to show the interaction of ‘the different programs and

files which collectively form the package.

129. Chapter 3 describes the structure of the program generator in
more detail, this being the first part of HASP a wuser will
experience. Chapter 4 logically continues with a description of the
simulation program. This involves a description of all its
constituent parts and therefore covers component models, modelling
aids (the special utility routines) and the general structure of the
progrém. Chapter & describeg how the package was used to simulate a
large practical hydraulic circuit. Chapter 6 looks at the management
of such a large software package. This includes information on
computer file and directory structure, documentation, portability and
also mentions certain legal aspects. Finally, chapters 7 and 8

present a discussion and a conclusion of the work carried out.

130. The appendices present additional details on +the command
interpreter, a selection of component models, the special utility
routines, integrator contreol from component models and several ideas

for future work.

Computer operating systems

131. The package was 1initially developed on a DIGITAL PDP—jl
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computer operating under the RSX-11M, version 4.0 operating system.
Originally, it was attempted to empleoy standard Fortran IV ({111
throughout. However, more recently, the use of Fortran 77 [121 has
been encouraged due to its wide acceptance. This has allowed the use
of a more structured approach to the development of the code.
Nevertheless, certain parts of the package are necessarily system
dependent. One important part of the package that is totally system
dependent is the routines which write the component selector file.
Under RSX, this file takes the form of an'overlay descriptor file
written in DIGITAL's overlay descriptor language (0DL), obviously
incompatible with other operating systems. Also, much of the
directory organisation 'and file manipulation is carried out by

command files which issue system commands.

132. Recently, the whole package has been transported to a DIGITHL'
VAX 117750 operating wunder UMS. The transition from one system to
the other was trouble free and although these systems are produced by
the same manufacturer, it does indicate that transporting.the package

to any other system is feasible.

133. A special note is made if any part of‘the software described in

the text is peculiar to a particular operating system.

134. The manuscript of the thesis has been prepared using the t{ext
formatters DOSR operating under UMS and mm/nroff operating under UNIX.
It was printed on a Hewlett-Packard ThinkJet printer using a courier

12 type-face.



CHAPTER 2

THE HASP ENVIRONMENT

INTRODUCTION

200. The acronym HASP has been used to describe the software
designed to simulate the response of hydraulic systems. However, if
we examine the construction of this package in terms of its
constituent parts, a host of files are found, each with its own
particular role. The software consists of files containing source,
object code, executable task images, data and commands. Some of the
files are accessible by all users, others are stored in secure
directories. Some of +the files must always exist, others are
transient. Some of the programs must be used on specific +terminals,

others are terminal independent.

201. In the early development of HASP, it was necessary for the user
to acquaint himself fully witﬁ this vast array of files. He would
have to learn all the commands required by the operating system in
order to control the creation and storage of files. Also, there

would be no safeguard against him accidentally misusing the system.

202. It became obvious that, in order to produce a system which 1is
inviting to the computer-layman, a user interface més hiphly
desirable. It was decided that such an interface should remove the

necessity of the user hecoming directly involved in issuing system
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commands. The commands required to operate HASP should be single
waords reminiscent of English. This interface.has been designed,
written and implemented by the author on the VAX-11/750 operating
under UMS, It is an interpreter which takes a user-defined high
level command such as "SIMULATE" or "DRAW" and translates the
requirement into a series of commands native to the operating system.
The interface is written in a language known as DCL (Digital Command
Language). With this interface, the user is led through HASP and, if
required, he is given guidance and advice. The command interpreter
controls the constituent parts of HASP to present a structurally

cohesive, but more importantly, a practicable package.

203. The general architecture of HASP is shown in figure 2.1. The
figure 1is split into two distinct sections: one section shows the
tasks a user must carry out in order to simulate a circuit, the other
shows the corresponding tasks the computer must carry out. A
description of the ' structure of the command interpreter is a
convenient manner in which to° iﬁtroduce the varicus tasks and
procedures which are collectively known as HﬁSP; Figure 2.1 will be

found of use throughout the following description.

THE HASP COMMAND INTERPRETER

204. ThevHASP command interpreter (HASP-CI) has been implemented
using the command procedures known collectively as the Digital
Command Language (DCL). Therefore, it must be understeood that

references to specific system commands apply only +to coperating
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systems which support DCL (i.e. UMS and more recent versions of RSX-
11). However, it is possible to emulate HASP-CI on most other modern

operating systems.

205. Two levels of commands exist under HASP-CI. Having typed a
level 1 command, it may be possible to type subsequent commands in
order to complete the instruction. The commands available under the

first level of the interpreter are as follows:

GENERATE Generate the source of the simulation program
LINK Produce the simulation task

SIMULATE Run the simulation program

DRAW View the simulation results

EXIT Exit from the HASP command interpreter
BATCH Submit a simulation program to run on batch
HELP Obtain more information about these commands
UMS Have the ability to type UMS commands

In all cases, it is merely necessary for the user to type sufficient
characters to make the command unambiguous. For the commands shown

above, this means that only the first character need be typed.

The GENERATE command

206. The command GENERATE invokes the current standard HASP program
generator. (The term standard is used since more than one program
generator exists. Non-standard generators have been written for
specific applications, further details of which are given in

Chapter 3.) In order to use the program generator, the user must have
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available sufficient information to describe the hydraulic circuit he
wishes to simulate. This data takes the form of a list of HASP
component model names together with 1link numbers defining the
connections between these models. The program generator produces
several files which will form the basis of the simulation program.
Both the program generator and the simulation progﬁam are described

in detail in the following chapters.

The LINK command

207. In simple terms, the command LINK takes the generated segments
and creates a simulation program from them. Specifically, the tasks

carried out are as fellouws:

1. Files created by previous generations are deleted and
parametric and results data files are maintained for the
three most recent versions.

2. The generated source of the simulation program is compiled.

3. The compiled version of the generated source is linked with
the required component models from the libraﬁy and the
standard integrator to form the executable task image of the

simulation program.

The SIMULATE command

208. The command SIMULATE runs the most recently produced simulation
program. If it is the first time a simulation program has been run,
then the user will be required to interactively define the parametric

data for every component in the simulation. On completion of the
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first run, this data is stored in a file on disc. On subsequent
runs, the data may be retrieved and amended by the user as required.

Furtther information on the simulation program is given in Chapter 4.

The DRAW command

209. The command DRAW allows the user to run a graphics program in
order to view the results of simulation runs. The user effectively
enters another level of HASP-CI commands. He now has the option of
running one of four different graphics programs. These programs,
together with the commands associated with each, are displayed every

time the user enters the command DRAW and are listed below.

1. ONE Plots any item of information from the latest results
file against time.

2. XY Plots any item of information against any other item
of information, both from the latest simulation.

3. TWO Plots any tuwo items of information from +the latest
results file against time.

4. UPDATE Plots the same item of information from tuwo

consecutive simulations against time.

The EXIT command

210. The command EXIT returns the user to the normal operating

system.

The BATCH command
211, The command BATCH invokes. a further command procedure which

allows the user to run a simulation program as a background task. By
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doing so, the issuing terminal is left free. This command is wuseful
when a simulation program has been tried and tested and one or more

sets of results are required.

212. The procedure requires the user to define the job to be
submitted to the batch vqueue. This entails the definition of the
total time for which the simulation is to be carried out and the
print interval. The user is also given the options to set a CPU time
limit of one hour on the job (useful in the case of a logical error)
and to reqguest that the job be held until after 1700 hrs, i.e.
outside the period of maximum usage of a multi—user-operating system.
(The latter option is obviously not given if it is already after

1700 hrs.? : -

The HELP command

213. The command HELP gives on-line assistance to the user by
producing a list of possible commands and describing any selected
command in detail. Each description consists of a general overvieuw
of '‘what the command does and also details of the system commands

which will be issued by that particular HASP command.

The UMS command

214, The command UMS allows the user to type standard operating
system command5 without leaving the HASP-CI. This is useful for more
experienced users who wish to carry out functions not catered for

under the interpreter.
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CHAPTER 3

[HE PROGRAM GENERATOR

AN TNTRODUCTION ‘AND_AN EXAMPLE

300. The program generator is a program which takes a user defined
hydraulic circuit and using this information, produces a
corresponding simulation program. Specifically, it produces four
Fortran source files which form the main segment and three
controlling subroutines of the simulation program tagether with a
selector file which, in effect, instructs the component library which
models are to be attached to the controlling segments. The form of
this selector file is totally dependent upon the computer operating
system being use&. .It will be described in detail in parasz 315 to

342.

30t1. As an example, consider the simple open loop +transmission
system shown in figure 1.1. The first step the user must take is to
select appropriate HASP component models. These models norﬂally
represent their hydraulic counterparts on a one-to-one basis. The
schematic block diagram of the circuit in terms of +these component
models may then be constructed as shown in figure 1.2, the
interconnecting links being numbered arbitrarily. It should be
emphasised that the 1links in no way represent physical components
such as pipes or shafts but merely indicate an exchange of

information between two models.
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302. Until recently, the development of this linking diagram was
carried out manually i.e. the user would have to search for suitable
components by readihg the literature associated with the model
library and then draw his ownbdiagram. Houwever, tﬁe author has added
a "help" routine to the program generator where lists of components
of a given type are presented in the form of a menu and additional
information subsequently presented for any particular model should it

be required (to be described in para.311).

303. The final task the user must complete in the manual method of
linking, is to convert the linking diagram into a table of
information in a format acceptable to the program generator. The

table of data corresponding to figure 1.2 is shown below.

29

TK@oo1 @1
PU@QQ! @1 02 03
PMoRQ1 @3
PIQ5@1 02 04 @5
PCO1@1 @4 06
TK@0RZ @6
MOQ@@t @5 @7 @8
LROOQ1+08
TKQ203 @7

304. The first line indicates that there are nine component models
in the circuit. The remaining lines list the component models in an
arbitrary order and define the 1links. betueen them,. Each line
consists of the four character mnemonic for the component model, the
two digit identifier to indicate multiple occurrences of the same
ﬁodel, and the external 1links in the form of two digit numbers

separated by single blank spaces. The asterisk next to the LR0O@
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entry indicates that this model is experimental and will be found in
the user’s own directory rather than in the standard component model

library {directory structure is described in detail in paras.B04 to

6207,

305. At this stage, the user 1is ready to employ the program
generator. The information outlined above is defined in a simple
interactive manner, the user being given the chance to correct typing
and logical errors. The generator employs a sophisticated algorithm
to check the validity of defined data and displays diagnostic error
messages as necessary. A file produced by the developers of
component models, termed the component model attributes file, is
interrogated at various stages of the generation procedure in order
to aid in checking the validity of the data and also to set up the
order and form of call statements to the component model subroutines.
Provided the defined data is acceptable, four Fortran files and one
component selector file are produced. At this point, the program
generator has completed its task and it is now necessary to link the
generated segments to selected segments from the component model

library.

THE STRUCTURE OF THE PROGRAM GENERATOR

306. In total, the program generator alone consists of some three
thousand lines. It is unnecessary to give a complete listing of the
program generator in this thesis. However, it is worthwhile to 1list

just one of the segments as an example. A routine knouwn as PGHELP
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has been chosen since it was written using the structured approach
allowed by the language Fortran-77 and also due to its brevity
(Table 3.1). It will be noticed that comments in the coding tend to
be placed to the right of the statements rather than being
interspersed with them. Although +this is not allowed under
ANSI X3.9-1978 [121, it 1is recommended that all future program
generator software contain this type of commenting since it allous
the graphic nature of the indented coding to show through. Should it
be necessary to transfer the software in source form to a computer
with a compiler which does not allow this form of commenting, then it
can be readily removed with the aid of a screen editor or a simple

specially written editing tool.

307. The program generator consists of three levels of segments
(figure 3.1). The highest is the main segment, its only ﬁurpose
being to call all five segments of the second level (figure 3.2).
The second level of segments make up the primary logic of the
generator. The lowest level of segments carry out single specific
tasks such as character manipulation, interrogation of the component
model attributes file and variable typé conversion. . Third level
segments form a set of thirteen utilities which may be employed by

one or more of the second level segments.

308. It is useful to restrict the description of segments to those
in the second level since, as mentioned, it is here that the primary
logic is based. The tasks of the third level segments are given in

Appendix F.100. The second level can be broadly divided into three
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functions:

1. The function of the routines known as PGIN and PGHELP is to
allow the user to describe his circuit.

2. The functidn of the routine known as PGCOMP is to check the
validity of the circuit so described and to set up an
acceptable call sequence.

3. The function of the routines known as PGOUT and PGSEL (or
PGODL under RSX) is to write the five files which constitute

the control and selector segments of the program generator.

The specific tasks of each of the five second level segments are

briefly described below.

Segment PGIN - Definition of the hydraulic circuit

309. The segment PGIN is the first routine to be employed -uhen
running the generator. PGIN 1is essentially the user/generator
interface in that the majority of gquestions and replies are
controlled in this segment. Its primary purpose is to obtain all the
information necessary to produce the simulation program. The user is
allowed to define his circuit interactively or to recall his circuit
from an existing data file. If he chooses to define his circuit
interactively, then he is given the option of storing the data in a
file for further use or reference. If he chooses 1o reirieve h;s
data from a file, then he 1is given the option of interactively
editing his circuit data and storing in either a new data file or the

initial file.
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310. There is a great deal of interaction between this routine and a
routine PGHELP (para.311) which gives the user aid in selection of
appropriate component models. There may also be interaction between
this routine'and a sorting routine PGCOMP (para.312) should the user
have defined an unacceptable circuit. A flow chart for PGIN is shouwn

in figure 3.3 from which this interaction may be better appreciated.

Seament PGHELP - Aid in component selection

311. The segment PGHELP is employed if the user requires information
about a single component or a group of components. The purpose of
the file is to access the component model attributes file and the
information text file called INFORM.DAT. The latter should contain a
writtén introduction to every model in the component model library.
It 1is suggested that this text should be the introduction given in
the model report together with the relevant model assumptions. When
a developer has completed a new model, he is expected to insert
entries into both COMPON.DAT and INFORM.DAT. Figure 3.4 1is a flow
chart for segment PGHELP. At present, PGHELP is included in the
program generator. However, it is fea;ible to extract this wutility
and merge it with a program which allows the graphical definition of

the circuit (to be described in para.?711 and Appendix E.200).

Seagment PGCOMP - The sorting routine

312. The segment PGCOMP serves two purposes. Firstly, it examines
the attributes of the models with the aid of-a utility subroutine,
LOOKUP. If the user has defined a circuit which 1is wunacceptable,

then it produces a diagnostic error message then returns control to
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PGIN to allow the user to reconsider (possibly with the aid of
PGHELP ). Secondly, PGCOMP uses the information gained from
COMPON.DAT to set up an acceptable component model call seguence.
The algorithm of +this routine has remained unchanged since the
original development of HASP. Minor alterations have been carried
out by the author in order to maintain compatibility with revised and
new routines. A flow chart of PGCOMP is included for completeness

and is shown in figure 3.5.

Segment PGOUT - Write the simulation program source files

313. Though the largest of all the generator routines, the segment
PGOUT has perhaps the simplest and certainly the most mechanical
task. Its sole purpose is to write the four Fortran routines which
will control the simulation program ultimately produced, using the
information already gained by PGIN and PGCOMP. The coding is
completely sequential and, as such, does not require a flow chart.
This routine has been substantially altered by the author in order to
introduce the simulation program corrections and modifications

mentioned in Chaptér 4.

Seagment PGODL/PGSEL - Write the component selector fi

314. This is the part of the generator which is dependent upon the
operating system being used. PGSEL is used in the generator which
operates under UMS and PGODL is used in the generator which operajes
under RSX. Their primary objective is to create a selector file for
the linker. Under UMS, this takes the form of a simple options file

(called CAD.OPT) which merely lists the names of the object files to
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be included in the simulation task. However, under RSX, the purpose
of the selector (called CAD.ODL) is twofold. Firstly, it carries out
the same function as the UMS options file. Additionally, it
‘describes to the linker (called the taskbuilder under RSX) the method
by which the simulation program is to be overlaid. CAD.ODL is
written in a form of assembler called the Overlay Descriptor
lLanguage. Due to the rather complex nature of the routine PGODL and
the fact that this routine.is system dependent, a complete section is
devoted to its structure (paras.315 to 342). This section also
serves to introduce the structure of +the simulation program

{Chapter 4).

THE COMPONENT SELECTOR FILE ¢(RSX)

315. This section describes the selector file written for RSX
(i.e. the file written by the generator segment PGODL) since this
description also covers the rather more trivial task of writing the

selector file for UMS (i.e. the'file written by segment PGSEL).

316. The primary addressing mechénism of the PDP 11 is ¢tha 1B bit
word. The maximum physical address space that the PDP 11 can
reference at any one time is 177777 bits (in octal) i.e. the maximum
virtual address of a task must be less than 177777. This effectively
means that the size of any task or any segmentg of a task in memory

at any one time must be less than 32k words.

317. A simulation program produced by the program generation and
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subsequent linking pocedures consists of a large number of
subroutines and therefore requires a large amount of computer memory.
The amount of memory reguired is evidently a function of the
complexity of the hydraulic circuit to be simulated. However, the
space required would almost inevitably exceed the 32k words of
virtual address space available. This problem is overcome using the

principle of overlays.

318. Using overlays saves memory space by reducing the size of the
executing section of the task. The task must be carefully designed
to have discrete sections which can execute independently of the
other sections. These sections reside on disc until they are

required thereby saving memory space.

319. An example of where overlaying may be used 1is given below.
Consider a main segment which calls a subroutine which we shall call
subroutine A. Subroutine A carries out its function then returns to
the main segment. The main segment subsequently calls another
subroutiﬁe, B. It is evident that subroutine A and subroutine B need
not both be in ~memory at the same time. They are said to be
logically independent. A task consisting of this main segment and
the two subroutines could be overlaid so that either the main segment
and subroutine A or the main segment and subroutine B is in memory.
However, had the program been written such that the main segment
called subroutine A which in turn called subroutine B, then the task

could not have heen overlaid.
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