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Summary

Modern cellular radio systems tend to comprise outdoor basestations and indoor users.
Knowledge of the radio path characteristics spanning the indoor/outdoor interface is
advantageous for network deployment planners and system designers alike. A new model for
producing location specific wide-area-to-indoor radio path predictions at 2 and 5 GHz has been
developed and validated. Applications for the prediction method encompassing the new model
would be the optimisation of basestation sites or output power in order to achieve a required

indoor coverage level.

A three-dimensional ray optics tracing tool employing ray shooting and including consideration
of diffraction has been utilised for characterisation of the wide-area. Via a hypothetical array of
tessellated collection apertures the ray-tracing prediction of power delay profile over the
exterior surface of a target building is captured and then transformed across the indoor/outdoor
interface and to within the building. The output from the model is in the form of a probability
density function for the transmission loss and RMS delay spread across a horizontal plane

through the building at a height determined representative of a typical user.

Measurements using a channel sounder designed specifically to aid the development of the
model have been performed in a number of different scenarios at 2 and 5 GHz. Comparison of
predictions derived with the model and the results of a measurement campaign are presented to
enable an assessment of the accuracy of the model to be determined. The comparison shows
close agreement with transmission loss predictions at 2 and 5 GHz and reasonable agreement

(albeit with a tendency to underestimate) with RMS delay spread predictions.
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1 Introduction

1.1 Background

The end of the twentieth century witnessed a considerable increase in the number of mobile
communication products used in everyday life. The introduction of the Global System for
Mobile (GSM) cellular system was hugely successful and by early 2004 there were over one
billion GSM service subscribers worldwide [1]. In addition to the growth of wireless voice
services, provided by GSM, the adoption of mobile data services by consumers is now
accelerating. Mobile Wireless Application Protocol (WAP) browsing using General Packet
Radio System (GPRS) on Second Generation (2G) cellular networks as well as the use of more

sophisticated data services on Third Generation (3G) cellular networks is commonplace.

Wide spread industry practice for the planning of wireless networks has primarily involved the
use of coverage tools based on path loss predictions derived from the work of Okumura, Hata,
Walfish-Ikegami and others. The path loss prediction techniques originally proposed by such
authors have been refined as the result of practical experience and further measurement
campaigns. Such tools are now often enhanced by the use of ray-tracing. This technique is used
in different ways by different organisations, by some to improve the accuracy of generic models
of specific terrain features and by others for location specific predictions of complex
environments. The majority of these commercial tools are concerned with the prediction of
signal amplitude coverage in a specified geographic area. The assumption being that the time
domain properties of the radio path do not require analysis at the network planning phase as the
system has been designed to operate over the range of delay spread conditions likely to be

experienced.

The current expansion of multimedia computing, driven largely by the Internet, has increased
the requirements on wireless systems to provide increased data rates to mobile platforms. The
consequence of this has been the creation of new radio systems and products operating in
considerably wider channels than traditionally used by cellular systems and at higher carrier
frequencies. Increasingly these systems are also required to span the indoor/outdoor interface as
they serve predominantly indoor users from outdoor base stations. The consequence of higher
‘on air’ transmission rates is the increased importance of the time domain properties of the
channel. The development of such systems and the use of higher carrier frequencies require new

models and tools to those previously used.
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1.2 Motivation and Objective

The use of ray-tracing for wide-area coverage prediction for broadband data systems is now a
realistic possibility with the increased availability of significant computational power and the
restricted geographic areas over which such systems tend to operate. Higher carrier frequencies
result in increased signal attenuation from physical obstructions in the direct path and increase
the reliance on reflections and diffraction to achieve non-line-of-sight (non-LOS) coverage. This
provides motivation for the development of a new model to facilitate accurate, location specific

prediction to optimise base station location and estimate coverage.

Propagation prediction across the indoor/outdoor interface and in-buildings does not lend itself
well to location specific ray optics prediction due to the rich and unique nature of the interior of
most buildings. Here a generic approach to modelling is more suitable, employing a process of
classification for different building types possibly based on postcode or some other readily

available data.

This research addresses the development of a modelling and prediction approach for use in
system development and network planning of wide-area broadband systems principally
operating at 2 and 5 GHz. (The exact frequencies used for the measurements and simulations are
2017.5 MHz and 5225 MHz). The model utilises a combination of location specific ray-tracing
for the wide-area and generic models for the indoor/outdoor interface and in-building

propagation. The combined model provides both transmission loss and delay spread predictions.

1.3 Target System

The target system for which the proposed modelling and simulation method would be
appropriate is a wideband system operating between 2 and 5 GHz over path lengths of typically
up to 4 km and organised in a cellular structure. The term ‘wideband’ is used to identify a
system operating across a radio channel exhibiting frequency selective fading. This describes a
channel where the path loss and time domain properties vary, with frequency, by an appreciable
amount. This is in contrast to a narrowband system operating over a channel exhibiting flat
fading, where the path loss properties are constant across the channel and the time delay spread

is small relative to the symbol duration and need not be considered.

It is envisaged that the practical base stations in such a system would employ relatively low
elevation antennas due to planning restrictions and therefore the system would operate with a
mixture of line-of-sight (LOS) and non-LOS radio channels reliant on multipath propagation. At
these transmission frequencies it is likely that sectored antennas with gain would be used at the
base station and, for reasons of mobility, omnidirectional antennas at the subscriber terminal.
Typical applications of such systems would be the delivery of broadband data services to

communities of consumers not serviced by high speed cable.
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1.4 Modelling Approach

Modern usage patterns of mobile radio technology often involve outdoor base stations and
indoor users. It is therefore a requirement of the model that this scenario be accommodated. The
motivation for the model development is to improve propagation prediction accuracy and to
offer location specific predictions. If the model is to be location specific, avoiding the historical
use of clutter ‘type’ data, it is a requirement that it makes use of three-dimensional data
generated from aerial surveillance and other location specific information. Potential data sources

are land usage databases compiled from census, electoral roll and local planning departments.

Building penetration and indoor propagation characteristics have been reported by many authors
[2][3][4] and consistently show significant losses and power delay spreads. A model that is
capable of using the time and amplitude domain characteristics of the ray power, incident on the
exterior of the building, as a starting point, is required. This requires the development of a

suitable ray-tracing interface function, building penetration and indoor model elements.
Hence, in summary, the modelling approach is to combine:

(i) Location specific ray-tracing for the outdoor environment
(ii) Building interface model with dependencies on building type and ray angle of incidence
(iii) In-building model with dependency on building parameters and distance within building

The combination of these three elements is to enable delivery of location specific transmission
loss and delay spread statistics for radio systems operating with outdoor base stations and

indoor mobile users.

1.5 Guide to Thesis

The objective of the research documented within this thesis is to derive a new model that can be
used in order to produce location specific site surveys for wideband radio systems operating
across the indoor/outdoor interface. The model has several parts and uses a combination of ray
optics techniques and generic models. As part of the process of generating and validating the
model it has been necessary to build measurement equipment, perform measurements and
develop software to perform a number of simulation and analysis functions. These stages of
development are addressed sequentially, culminating in a quantitative assessment of the

accuracy of the model.

Chapter 1: By way of introduction a brief overview of the principle techniques currently
employed by commercial propagation prediction tools allows an understanding of the potential
benefits from the proposed new approach. A definition of the target systems that the model is
aimed at accommodating shows where the model is applicable. Finally the introductory section

includes an overview of the modelling approach.
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Chapter 2: The development of radio prediction software, hardware and the planning and
execution of measurement campaigns requires an understanding of the basic principles of radio
wave propagation. An understanding of the mechanics of ray optics transmission, reflection,
refraction and diffraction are key to the implementation of a ray-tracing solution. In order to
plan and execute a successful measurement campaign of the amplitude and time domain
characteristics of radio paths in different environments an understanding of the significance of

Rayleigh and Log Normal fading is important.

Radio propagation measurement and modelling has been the subject of considerable research by
a great many authors for many decades. There are a number of relevant publications analysing

different aspects of the propagation characteristics of the target systems.

These aspects of fundamental radio wave propagation, as well as the research in this field by
others, are included in a chapter principally looking at the theoretical background to the topic
and examining relevant existing published models. In order to demonstrate the importance of
consideration of the time domain properties of radio paths an example of the effect of multipath

propagation, causing delay spread, in a ‘real’ system is included.

Chapter 3: A Three-Dimensional (3D) ray-tracing software engine has been written as part of
this research. The ray-tracing solution for the outdoor environment forms the starting point for
interface and indoor model sections. There are a number of alternative approaches and options
for the structure of the environment, the propagation of the rays and the capture of the results.
The options chosen and the trade-offs involved are detailed along with the algorithms used to

describe the ray optics mechanics and the flow of the software.

Rigorous validation of such tools with known test cases is important due to the difficulty in
making critical observations from the rich results obtained with simulations of real
environments. A series of simulation results for geometrically simple ‘Canonical’ environments
is presented along with corresponding predictions derived from alternative methods. Finally the

significance of including consideration of diffraction is analysed.

Chapter 4: An instrument capable of performing amplitude and time domain measurements of a
radio path has been designed and built. The chosen architecture for the equipment is a super-
heterodyne radio frequency translator with a digital signal processing baseband. Connection to a
laptop Personal Computer (PC) for control and result logging is via a Universal Serial Bus
(USB) interface. In addition to details of the design of the equipment, the algorithms used to
post process the results and to derive the quantitative path metrics are documented. The chapter
concludes with validation measurement results generated by the instrument using a variety of
cables and splitters in order to synthesis known multipath conditions between the transmitter

and receiver.
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Chapter 5: The technical details of the measurement campaign performed including an aerial
photograph of the location and an image of the ray-tracing environment model is included as a
reference. A comparison of the predicted Received Signal Strength (RSS) and the measured
RSS at a significant number of locations across the environment has been generated as a final
validation step. This has been produced by comparison of the RSS logged during a Global
Positioning System (GPS) vehicular survey with the corresponding ray-tracing RSS at a number
of locations. A quantitative measure of the accuracy of the ray-tracing simulation is presented
both as a line graph of measured and predicted levels and as an image of the environment

overlaid with signal strength error information at a number of locations.

The conclusion of the measurement campaign section is the processed measurement results for
the wide-area-to-indoor, outdoor-to-indoor and indoor-to-indoor soundings. Transmission loss

and delay spread results are documented and a critical analysis of salient trends performed.

Chapter 6: The new model comprises three main elements. Ray tracing for the wide-area
environment, the COST 231 [5] LOS interface element for the indoor/outdoor interface and a
modified COST 231 LOS building penetration element for the indoor propagation. The theory
and background relating to the interface and indoor elements is analysed prior to a description
of the method of combination of the three elements necessary in order to generate the unitary

prediction. A rigorous algorithmic description of the model as implemented is presented.

Chapter 7: Deployment of the model and quantitative assessment of the accuracy of the
prediction is key to this research. The wide-area-to-indoor amplitude and time delay spread
measurements previously reported provide a data set of comparable measurement results for
such an assessment. The results of this assessment are detailed by way of comparable statistics,
error calculations and the publication of graphical predictions and graphical measurement

results for common locations.

Chapter 8: Conclusions regarding all the areas of analysis, simulation and measurement are
offered. This includes consideration of the likely future use of 3D ray-tracing in deployment

planning. Finally a number of opportunities for further work are discussed.
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1.6 Technical Reports and Publications

Technical interim reports and conference publications in the form of a poster, several papers and

several presentations have been produced during this research.

1. Smithson, A. G., “Mobile Radio Channel Simulation”, University of Bath, 2™ Feb 2000

2. Smithson, A. G., “Literature Search”, University of Bath, 28" June 2000

3. Smithson, A. G., “Channel Sounder design study”, University of Bath, 8" Nov 2000

4. Smithson, A. G., “Transfer Thesis”, University of Bath, 16" Sep 2002

5. Smithson, A. G. and Glover, I. A., “High performance digital radio channel sounder for use
at 2 and 5 GHz” (poster and paper), IEE ICAP, Exeter, 31% March — 3 April 2003

6. Smithson, A. G., “The development of a new model for radio propagation modelling across
the indoor/outdoor interface” (presentation), URSI, Bath, 6" July 2004

7. Smithson, A. G. and Glover, I. A., “A new model for radio propagation prediction of
wideband systems spanning the indoor/outdoor interface” (paper and presentation),
IADAT-tcn2005, Portsmouth, 2005

8. Smithson, A. G. and Glover, I. A., “A viable 3D ray-tracing technique for cellular
planning” (paper and presentation), IADAT-tcn2005, Portsmouth, 2005

The following transaction paper has been submitted and is currently under going review.

9. Smithson, A. G. and Glover, 1. A., “A New, Location-specific, Model for Prediction of
Attenuation and Delay-spread Coverage in Indoor Environments Served by Outdoor Base-

stations”, IEEE, Antennas and Propagation Transactions.
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2 Radio Wave Propagation Mechanics and Properties

The propagation of radio waves can be described by four mechanisms for the systems targeted
by this model. These are direct transmission, reflection, refraction and diffraction. A typical

radio channel in the target system will comprise propagation by all four of these mechanisms.

2.1 Direct Transmission

In the case of a clear LOS path the direct transmission will be significant due to the losses
associated with reflection and diffraction. However in most cases in a real environment, even
with a LOS path, there will be some components propagated by reflection and diffraction. For
radio channels with significant obscuration of the LOS path the direct transmission component

may be attenuated to the point that reflection and diffraction are dominant.

2.2 Reflection and Refraction

A plane wave incident on a plane obstacle will be specularly reflected. A plane wave incident
on an irregular surface (irregular relative to the wavelength) will result in scattering. The
proportion of incident energy reflected will depend on the angle of incidence and the material of
the obstacle. In addition to a resultant reflected wave there will, potentially, be a refracted wave
into the obstacle. If the obstacle is a perfect conductor all the incident energy will be reflected.
Most real obstacles, however, are not perfect conductors, but lossy dielectrics. In this case some
energy will be reflected, some refracted and some lost (to absorption). The relationship between
incident, reflected and refracted waves and the obstacle material properties is described by the

Fresnel equations [6].

2.3 Diffraction

Radio waves exhibit diffraction resulting in propagation of energy behind physical obstacles.
The physical description of the mechanism of diffraction is given by Huygen [6]. He states, “all
points on a wavefront can be considered as point sources for the production of secondary
wavelets. These combine to produce a new wavefront in the direction of propagation.”
Diffraction occurs when these new wavefronts propagate into a shadowed region. The
relationship between incidence wave, diffracted waves and obstacle material properties was
originally described by the Geometrical Theory of Diffraction (GTD) [7]. Later the Uniform
Theory of Diffraction (UTD) [8] was published offering diffraction coefficients valid through
the transition regions adjacent to shadow and reflection boundaries. Further work [9] has

extended the UTD to apply to diffraction from edges with finite conductivity.
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2.4 Path Loss and Fading Properties

The transmission loss of a radio channel is a key metric in network planning and system design
and therefore the proposed model must offer accurate transmission loss predictions to be of use.
Due to the likely mobility patterns of users the majority of radio channels in the target system
will not have a direct LOS between transmit and receive antenna. The direct transmission path
will therefore be attenuated by the obstacles that lie on the path. In such situations if the direct
transmission path encounters sufficient attenuation the signal at the receiver will be dominated
by components resulting from reflection and/or diffraction. In a radio system if the received
signal is composed of multipath components having uniformly distributed angle-of-arrival and
Guassian distributed amplitude, the resultant amplitude fading characteristics will have a

Rayleigh amplitude probability distribution [10].

In a radio channel where the received signal is composed of a single dominant component plus
reflected and diffracted components (having uniformly distributed angle-of-arrival and Guassian
distributed amplitude) the resulting amplitude fading characteristics will have a Rician
amplitude probability distribution [11].

Movements in a real environment will alter the relative phase and amplitude of the multipath
components arriving at the receiver, resulting in time varying fading even for fixed transmit and
receive locations. Physical movement of the user terminal through the environment will also
result in an additional, slower, amplitude variation due to changes in shadowing losses from
clutter. This fading is referred to as log-Normal fading due to the log-amplitude statistics having

a Gaussian or Normal distribution.

If the spread of multipath component delays are short enough to result in a frequency
independent channel transfer function the fading can be considf:red to be flat where all
frequency components across the channel bandwidth can be considered to be subject to the same
channel transfer function. The target systems for which this model is proposed will often have
no significant direct transmission component and the reflected and diffracted components may
have travelled paths differing in length by several hundred metres. This will result in path delay
spread variations in excess of a micro second. Given typical channel bandwidths of several tens
of Megahertz this will result in clusters of received rays which can be considered to be
independent, resulting in frequency selective fading and a frequency dependent channel transfer
function.

For the target system it is envisaged that the majority of user terminals will be in non-LOS
locations and the physical distances involved will be sufficient to ensure they will experience
frequency selective fading of varying severity. A minority will have a received signal composed

of a single dominant component plus multipath elements due to a LOS radio path.
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