PHD

Interaction of Myo-inositol 1,4,5-trisphosphate with its receptor and metabolic enzymes in platelets: Modulation by structural analogues

Al-Hafidh, Jenan

Award date:
1994

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Interaction of Myo-inositol 1,4,5-trisphosphate with its receptor and metabolic enzymes in platelets: Modulation by structural analogues.

Submitted by Jenan Al-Hafidh
for the degree of
Doctor in Philosophy
at the University of Bath
1994

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior written consent of the author.

This thesis may be available for consultation within the University Library and may be photocopied or lent to other libraries for the purpose of consultation.
ABSTRACT.

Myo-inositol 1,4,5-trisphosphate-induced Ca²⁺-release from permeabilised platelets was found to be stereospecific. D-InsP₃ was found to be a full agonist whereas its enantiomer, L-myoinositol 1,4,5-trisphosphate was inactive. A temperature dependence of InsP₃-induced Ca²⁺-release was also established. Parallel shift of the InsP₃-dose response curve to the right were observed with increasing temperatures from 4°C to 37°C. This reduction in apparent efficacy was mirrored by the more rapid rate of InsP₃ metabolism. InsP₃ is metabolised faster at 37°C than at 4°C, and the apparent decrease in potency of InsP₃ with the increase in temperature may be due to this increased metabolism.

With the aid of the two inositol phosphate analogues, L-myoinositol 1,4,5-trisphosphorothioate and myo-inositol 1,3,5-trisphosphorothioate, we have confirmed the presence of different forms of the 5-phosphatase enzyme in platelets. InsP₃ selective 5-phosphatase and an Ins(1,3,4,5)P₄ selective 5-phosphatase have been demonstrated.

A structure-activity relationship has been established for the structural requirements for InsP₃-induced Ca²⁺-mobilisation in platelets at the InsP₃ receptor. It is apparent that the vicinal 4,5-bisphosphate is essential for activity as shown when examining analogues with modifications at these positions. The hydroxyls on the 2-, 3- and 6-positions play a less considerable role, with only the 6-hydroxyl playing a small, but significant role in receptor activation and Ca²⁺-mobilisation.

As a result of examining over 30 inositol phosphate analogues, to date, the best receptor antagonists uncovered are the three partial agonists scyllo-inositol 1,2,4,5-tetrakisphosphorothioate, L-chiro-inositol 2,3,5-trisphosphorothioate and myo-
inositol 1,4,6-trisphosphorothioate. These will provide tools in designing future antagonist.

Studies on the role of Ca^{2+}-entry upon InsP_3-production were investigated using the Ca^{2+}-influx inhibitor SKF 96365. However, this compound was not found to be a pure influx inhibitor in platelets, but that it was capable of inhibiting PAF-induced InsP_3-production, 5-HT release and Ca^{2+}-mobilisation. It was, however, unable to modify InsP_3- and $\text{Ins}(1,3,4,5)\text{P}_4$-induced Ca^{2+}-release.
ACKNOWLEDGEMENT

My thanks go to Professor John Westwick for his encouragement and motivation and for his constant support throughout this project. Thanks also to Professor B.V.L.Potter for comments in the preparation of this thesis.

I would like to thank the "Inositol Chemists" Nick, Det, Steve, Liu and Andy without whom this work would not have been possible. Thankx to Leslie, Ewan and Pete for their help, Steve Ward for guidance in the metabolism studies, philosophical thoughts and guidance in the preparation of this thesis, and a big mention for my friends especially, Carolyn, Andy, Mary, Tony and Simon, without whom I would have had many a dull day !.

I would like to thank my mum, sis and little brov., for being there. Finally a big mention for to Henry's cat for being crazy and making my laugh, wow.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>I</td>
</tr>
<tr>
<td>Abstract</td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>IV</td>
</tr>
<tr>
<td>Contents</td>
<td>V</td>
</tr>
<tr>
<td>List of figures</td>
<td>XV</td>
</tr>
<tr>
<td>List of tables</td>
<td>XXI</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>XXII</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 The blood platelet</td>
<td>2</td>
</tr>
<tr>
<td>1.1 The basic platelet response</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Platelet agonists and their signalling mechanisms</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Platelets in health and disease</td>
<td>9</td>
</tr>
<tr>
<td>1.4 A historical aspect of phosphoinositide signalling</td>
<td>14</td>
</tr>
<tr>
<td>1.5 DAG, InsP₃ and Ins(1,3,4,5)P₄ as second messengers</td>
<td>14</td>
</tr>
<tr>
<td>1.6 The role of Ca²⁺ in cell activation</td>
<td>16</td>
</tr>
<tr>
<td>1.7 InsP₃ and its metabolism</td>
<td>18</td>
</tr>
<tr>
<td>1.7.1 Route 1</td>
<td>19</td>
</tr>
<tr>
<td>1.7.2 Route 2</td>
<td>21</td>
</tr>
<tr>
<td>1.7.3 Route 3</td>
<td>24</td>
</tr>
<tr>
<td>1.8 Platelet lipids and the PI cycle</td>
<td>24</td>
</tr>
<tr>
<td>1.9 InsP₃ metabolizing enzymes in platelets</td>
<td>27</td>
</tr>
<tr>
<td>1.9.1 InsP₃ and Ins(1,3,4,5)P₄ 5-Phosphatase</td>
<td>27</td>
</tr>
<tr>
<td>1.9.2 InsP₃ 3-Kinase</td>
<td>29</td>
</tr>
<tr>
<td>1.10 Lithium (Li⁺) as an inhibitor of inositol trisphosphate metabolism</td>
<td>30</td>
</tr>
</tbody>
</table>
1.11 InsP₃ receptor 31
1.12 Regulation of the InsP₃ receptor 33
1.13 InsP₃ receptor subtypes and receptor heterogeneity 35
1.14 Modified inositol phosphates 37
1.15 Permeabilisation methods 41
 1.15.1 Electrical 41
 1.15.2 Chemical 42
1.16 Ca²⁺ detection 42
1.17 Functional responses of platelets 47
1.18 AIMS 48

2 Materials and methods 50

2.1 Materials 51
 2.1.1 Chemicals 52
 2.1.2 Radiochemicals 52
 2.1.3 Buffers 53
 2.1.3.1 Hapes buffered tyrode (HBT) 53
 2.1.3.2 "Intracellular" like buffer (ICB) 53
 2.1.3.3 High K⁺ buffer (A) 54
 2.1.3.4 High K⁺ buffer (B) 54
 2.1.3.5 Platelet membrane buffer 55
 2.1.3.6 Platelet membrane storage buffer 56
 2.1.4 Drugs and solutions 56

2.2 Methods 59
 2.2.1 Blood collection 59
 2.2.2 Preparation of washed platelets 59
2.2.3 Preparation of permeabilised platelets

2.2.3.1 Determination of the free [Ca2+] of ICB

2.2.3.2 Permeabilisation techniques

2.2.3.2.1 Chemical

2.2.3.2.2 Electrical

2.2.4 Resealing of electropermeabilised platelets

2.2.4.1 To test for resealing of cells

2.2.5 Preparation of platelet membranes

2.2.5.1 Preparation of crude membranes

2.2.5.2 Preparation of a pure membrane

2.2.6 Ca2+ measurements in permeabilised platelets

2.2.6.1 45Ca2+ release assay

2.2.6.1.1 45Ca2+ uptake and permeabilisation

2.2.6.1.2 Calculation for 45Ca release

2.2.6.1.3 45Ca release from permeabilised platelets

2.2.6.1.4 Optimum cell number

2.2.6.1.5 Platelet integrity upon saponin treatment

2.2.6.1.6 Analogue-induced 45Ca-release

2.2.6.1.7 Testing for antagonistic activity

2.2.6.2 Fluorometric measurements

2.2.6.2.1 Platelet preparation

2.2.6.2.2 Calibration of the fluorescence

2.2.6.2.3 Modifications on the original technique
2.2.7 Assessment of permeabilised platelet function [14C]5-HT release

2.2.7.1 Platelet preparation

2.2.7.2 Electroporated cells

2.2.7.3 Saponin permeabilised cells

2.2.8 Ca2+ measurements in platelet membranes

2.2.8.1 45Ca2+ release assay

2.2.8.1.1 45Ca2+ uptake

2.2.8.1.2 45Ca2+ release

2.2.8.1.3 The effect of heparin on InsP3 response

2.2.8.2 Fluorometric measurements

2.2.8.2.1 Calibration of the fluorescence

2.2.8.2.2 Ca2+ measurements

2.2.9 Methods for InsP3 metabolism

2.2.9.1 3H]InsP3 metabolism

2.2.9.1.1 HPLC Elution gradient

2.2.9.1.2 The effect of InsP3 metabolic enzyme inhibitors

2.2.9.2 [32P]gamma-ATP studies

2.2.9.2.1 [32P]-incorporation into Ins(1,3,4,5)P4

2.2.9.2.2 The effect of InsP3 metabolic enzyme inhibitors
2.2.10 Studies on whole platelets

2.2.10.1 Fluorometric Ca\(^{2+}\) measurements
 2.2.10.1.1 Platelet preparation
 2.2.10.1.2 Calibration of the fluorescence

2.2.10.2 Dense granule release

2.2.10.3 Agonist-induced Ins\(_P\)\(_3\) production
 2.2.10.3.1 Sample preparation
 2.2.10.3.2 Preparation of Ins\(_P\)\(_3\) standards for binding assay
 2.2.10.3.3 \(^{3}\)H\(\text{InsP}_3\) production

2.2.11 Protein assay
 2.2.11.1 Sample preparation

3 Results

3.1 Structure/activity relationships

3.1.1 Optimising \(^{45}\)Ca release assay conditions
 3.1.1.1 The effect of saponin on platelet integrity
 3.1.1.2 Optimal saponin concentration for \(^{45}\)Ca loading
 3.1.1.3 Time course of 3\(\mu\)M Ins\(_P\)\(_3\)-induced \(^{45}\)Ca release
 3.1.1.4 Optimal cell number for \(^{45}\)Ca release assay
3.1.2 Inositol phosphate analogues and 45Ca release

3.1.2.1 InsP$_3$ & L-mylo-inositol 1,4,5-trisphosphate 89
3.1.2.2 6-positional modification 89
3.1.2.3 2-positional modification 94
3.1.2.4 Phosphorothioate analogues 96
3.1.2.5 Positional phosphate modification 98
3.1.2.6 Miscellaneous inositol phosphate analogues 101
3.1.2.7 Myo-inositol 1,3,4,5-tetrakisphosphate 103
3.1.2.8 Inositol tetrakisphosphate analogues 104
3.1.2.9 Inositol tetrakisphosphate analogues 106

3.1.3 Partial agonists 108

3.1.3.1 Scyllo-Ins(1,2,4,5)PS$_4$ 108
3.1.3.2 L-Chiro-Ins(2,3,5)PS$_3$ 111
3.1.3.3 Ins(1,4,6)PS$_3$ 113

3.1.4 Inhibitors of InsP$_3$-induced 45Ca-release 116

3.1.4.1 Heparin 116
3.1.4.2 Decavanadate 116
3.1.4.3 Benzene 1,2,4-trisphosphate 116

3.1.5 The effect of temperature on InsP$_3$-induced Ca$^{2+}$ release 120

3.1.6 The effect of temperature on scyllo-Ins(1,2,4,5)P$_4$ 121

3.1.7 45Ca release by non-inositol phosphate compounds 123

3.1.7.1 cyclic ADP-ribose (cADPR) 123
3.1.7.2 phorbol esters and diacylglycerol 123
3.2 [PH]InsP₃ metabolism 124

3.2.1 [PH]InsP₃ metabolism 124
3.2.2 The effect of inositol phosphate analogues 129
on [PH]InsP₃ metabolism 129
3.2.3 Metabolism of [³²P]-Ins(1,3,4,5)P₄ 133
 3.2.3.1 [³²P] incorporation into Ins(1,3,4,5)P₄ 133
 3.2.3.2 The effect of inositol phosphate analogues 136
 on [³²P]-incorporation 136

3.3 Platelet functional responses. 137
3.3.1 InsP₃ induced Dense granule release 137
 3.3.1.1 Saponin permeabilisation of platelets 137
 suspended in ICB 137
 3.3.1.2 The effect of Ca²⁺ on 20μg/ml saponin 139
treatment 139
 3.3.1.3 The effect of EGTA on 20μg/ml saponin 139
treatment 139
 3.3.1.4 The effect of InsP₃ on saponised 139
platelets 139
 3.3.1.5 Saponin permeabilisation of platelets 142
 in high K⁺ buffer 142
 3.3.1.6 The effect of EGTA on 15μg/ml saponin 142
treatment 142
 3.3.1.7 The effect of InsP₃ on 15μg/ml saponin 145
treatment 145
 3.3.1.8 Increasing contact time between platelets 145
 and agonist 145
3.3.1.9 Electroporation of platelets suspended in ICB
3.3.1.10 Resealing of electroporated platelets suspended in ICB
3.3.1.11 The function of resealed platelets in ICB
3.3.1.12 The function of resealed platelets in high K+ buffer

3.4 SKF 96365 studies on platelets

3.4.1 The effect of SKF 96365 on Ca2+ release
3.4.2 The effect of SKF 96365 on dense granule release
3.4.3 The effect of SKF 96365 on InsP3 production
3.4.4 Studies on permeabilised platelets
 3.4.4.1 45Ca release induced by SKF 96365
 3.4.4.2 The effect of SKF 96365 on InsP3 and Ins(1,3,4,5)P4-stimulated 45Ca release

3.5 Platelet membranes for examining InsP3-induced 45Ca-release

3.5.1 45Ca2+ release assay
 3.5.1.1 Optimal protein concentration for 45Ca
 3.5.1.2 Time course of 45Ca uptake into crude platelet membranes
 3.5.1.3 InsP3 dose response curve in crude membranes
 3.5.1.4 The effect of heparin on InsP3-induced 45Ca release

4 Discussion
4.1 Structure/activity relationship

4.1.1 Structural requirements for Ca\(^{2+}\) release 166
4.1.2 Temperature dependence of InsP\(_3\)-induced Ca\(^{2+}\) release 166
4.1.3 Phosphorothioate modification 168
4.1.4 Positional modifications 169
 4.1.4.1 Modification at the 1-position 170
 4.1.4.2 Modification at the 2-position 170
 4.1.4.3 Modification at the 3-position 172
 4.1.4.4 Modification at the 4-position 175
 4.1.4.5 Modification at the 5-position 175
 4.1.4.6 Modification at the 6-position 176
 4.1.4.7 Multiple modifications 177

4.1.4 Partial agonists 188
4.1.5 InsP\(_3\)-receptor antagonists 193
 4.1.5.1 Heparin 193
 4.1.5.2 Decavanadate 194
 4.1.5.3 Benzene 1,2,4-trisphosphate 194

4.1.6 The InsP\(_3\) receptor 194
 4.1.6.1 Receptor regulation 197
4.1.7 Additional compounds investigated 199
 4.1.7.1 cyclic ADP-ribose 199
 4.1.7.2 Phorbol esters and diacylglycerol 199

4.2 Metabolism of [\(^{3}\)H]InsP\(_3\) and the effect of some enzyme inhibitors 201
4.3 Ca²⁺ entry and the effect of SKF 96365 in platelet signalling

4.4 Functional responses of permeabilised platelets
 4.4.1 Fluorescent studies
 4.4.2 Functional studies; aggregation and dense granule release

4.5 Summary of discussion

9 Appendix I Names and structures of inositol phosphates examined

10 Bibliography

Publications arising from this thesis
LIST OF FIGURES

Introduction

Fig 1. The biosynthetic pathway for AA formation 6
Fig 2. The signalling mechanisms of excitatory and inhibitory platelet agonists 8
Fig 3. The enzymatic hydrolysis of PIP$_2$ 13
Fig 4. The bifurcating signal pathway involving PIP$_2$ breakdown 20
Fig 5. The metabolism of InsP$_3$ 22
Fig 6. Membrane inositol phospholipids phosphorylation 25
Fig 7. The structure of the InsP$_3$ receptor 32
Fig 8. Multiple effects of Ca$^{2+}$ on the InsP$_3$ receptor 34
Fig 9. Ca$^{2+}$ pools and Ca$^{2+}$ transport systems in platelets 43

Results

Fig 10. The effect of saponin on dense granule integrity 84
Fig 11. Optimal saponin concentration for 45Ca uptake 85
Fig 12. Time course of InsP$_3$-induced 45Ca-release at 4°C, 20°C and 37°C. 87
Fig 13. Optimal cell number required for 45Ca release assay. 88
Fig 14. Dose response curves for D-InsP$_3$ and L-InsP$_3$ 90
Fig 15. Dose response curves to InsP$_3$, 6-deoxy-Ins(1,4,5)P$_3$ and 6-deoxy-Ins(1,4,5)P$_3$. 91
Fig 16. Dose response curves to InsP$_3$, 6-deoxy-2,3- 93
cyclohex-Ins(1,4,5)P$_3$ and 6-deoxy-2,3-cyclohex-Ins(1,4,5)PS$_3$.

Fig 17. Dose response curves to InsP$_3$ and Ins(2,2)F$_2$(1,4,5)P$_3$

Fig 18. Dose response curves to some phosphorothioate substituted InsP$_3$

Fig 19. Dose response curves to positionally modified InsP$_3$ analogues D/L-Ins(1,3,4)P$_3$, Ins(1,3,5)PS$_3$ and L-Ins(1,4,5)PS$_3$

Fig 20. The effect of the metabolic enzyme inhibitors, L-Ins(1,4,5)PS$_3$ and Ins(1,3,5)PS$_3$, on InsP$_3$-stimulated 45Ca-release at 4°C and 37°C.

Fig 21. Dose response curve to InsP$_3$ and scyllo-Ins(1,2,4)P$_3$

Fig 22. Dose response curve to InsP$_3$, Ins(1,3,4,5)P$_4$ and Ins(3)PS(1,4,5)P$_3$.

Fig 23. Dose response curve to InsP$_3$, Ins(1,3,4,5)P$_4$, Ins(1,2,4,5)P$_4$ and Ins(3,6)BZ$_2$(1,2,4,5)P$_4$.

Fig 24. Dose response curve to InsP$_3$, Ins(1,3,4,6)P$_4$ and Ins(1,3,4,6)PS$_4$

Fig 25. Dose response curve to InsP$_3$, scyllo-Ins(1,2,4,5)P$_4$ and scyllo-Ins(1,2,4,5)PS$_4$.

Fig 26. Dose response curve to InsP$_3$, L-chiro-Ins(2,3,5)P$_3$ and L-chiro-Ins(2,3,5)PS$_3$.

Fig 27. The dose response curve to InsP$_3$, Ins(1,4,6)P$_3$ and Ins(1,4,6)PS$_3$

Fig 28. Inhibition of the InsP$_3$ response by Ins(1,4,6)PS$_3$

Fig 29. The effect of heparin on InsP$_3$ response
Fig 30. The effect of decavanadate on InsP$_3$ response

Fig 31. The effect of benzene trisphosphate on the
InsP$_3$ response.

Fig 32. The effect of temperature on InsP$_3$-induced 45Ca
release

Fig 33. The effect of temperature on scyllo-Ins(1,2,4,5)P$_4$
-induced 45Ca release

Fig 34. HPLC separation of [PH]InsP$_3$ metabolites at 4°C

Fig 35. HPLC separation of [PH]InsP$_3$ metabolites at 20°C

Fig 36. HPLC separation of [PH]InsP$_3$ metabolites at 37°C

Fig 37. The effect of temperature on InsP$_3$ metabolism

Fig 38. HPLC separation of [PH]InsP$_3$ metabolites at 10
minutes in the presence of 3μM L-Ins(1,4,5)PS$_3$
and Ins(1,3,5)PS$_3$.

Fig 39. HPLC separation of [PH]InsP$_3$ metabolites at 10
minutes in the presence of 10μM L-Ins(1,4,5)PS$_3$
and Ins(1,3,5)PS$_3$

Fig 40. HPLC separation of [PH]InsP$_3$ metabolites at 10
minutes in the presence of 30μM L-Ins(1,4,5)PS$_3$
and Ins(1,3,5)PS$_3$

Fig 41. The effect of L-Ins(1,4,5)PS$_3$, on InsP$_3$
metabolism

Fig 42. The effect of Ins(1,3,5)PS$_3$ on InsP$_3$ metabolism

Fig 43. The effect of saponin permeabilisation, on
$[^{14}\text{C}]$5-HT release.

Fig 44. The effect of Ca$^{2+}$ on $[^{14}\text{C}]$5-HT release

Fig 45. The effect of EGTA on Ca$^{2+}$-induced $[^{14}\text{C}]$5-HT
release.
Fig 46. The use of different saponin concentrations, in permeabilising platelets.

Fig 47. The effect of 3 minute incubations of 10μM InsP₃ on [¹⁴C]5-HT release

Fig 48. The effect of 5 minute incubations of 10μM InsP₃ on [¹⁴C]5-HT release

Fig 49. Ca²⁺-induced [¹⁴C]5-HT release in electroporated platelets

Fig 50. PAF-induced [¹⁴C]5-HT release in intact and electroporated platelets

Fig 51. To assess permeabilisation and resealing of electroporated cells.

Fig 52. Inhibition of PAF-induced elevation of cytosolic calcium concentration by SKF 96365.

Fig 53. Inhibition of 3nM PAF-induced [¹⁴C]5-HT release by SKF 96365.

Fig 54. Inhibition of 300nM PAF-induced InsP₃ production by SKF 96365.

Fig 55. Dose response curves to InsP₃ and SKF 96365

Fig 56. The effect of SKF 96365 on 3μM InsP₃-induced ⁴⁵Ca-release.

Fig 57. The effect of SKF 96365 on 3μM Ins(1,3,4,5)P₄-induced ⁴⁵Ca-release.

Fig 58. Optimal protein concentration for ⁴⁵Ca release assay from platelet membranes.

Fig 59. Time course for ⁴⁵Ca uptake into crude platelet
membranes

Fig 60. Dose response curves to InsP₃ of three different crude membrane preparations.

Fig 61. Inhibition of 3μM InsP₃-induced 45Ca-release in crude platelet membranes by heparin

Discussion

Fig 62. The structures of InsP₃ and Scyllo-Ins(1,2,4)P₃

Fig 63. The structures of InsP₃ and L-chiro-Ins(2,3,5)P₃

Fig 64. The structures of InsP₃ and Ins(1)P(4,5)pyrophosphate

Fig 65. Alternative binding conformations for Ins(1,3,4,6)P₄

Fig 66. The structures of InsP₃ and L-Ins(1,3,4)P₃

Fig 67. The structures of InsP₃ and Ins(1,4,6)P₃

Fig 68. Summary of the structural requirements for activity at the platelet InsP₃ receptor

Fig 69. The chemical structures of scyllo-Ins(1,2,4,5)P₄; scyllo-Ins(1,2,4,5)PS₄; chiro-Ins(2,3,5)P₃;
L-chiro-Ins(2,3,5)PS₃; Ins(1,4,6)P₃ and Ins(1,4,6)PS₃ (20).

Fig 70. The proposed structural requirements for partial agonists activity.

Fig 71. Summary of the requirements of the 5-phosphatase

Fig 72. InsP₃ and its metabolites

Fig 73. The structure of SKF 96365

Fig 74. The involvement of Ins(1,3,4,5)P₄ in Ca²⁺ entry
LIST OF TABLES.

Table 1. The two types of 5-phosphatase enzymes in platelets and their affinities for InsP_3 and Ins(1,3,4,5)P_4 28

Table 2. The effect of modifying ring hydroxyls on InsP_3 induced-Ca^{2+} mobilisation. 38

Table 3. Showing the reagents required for [^3H]InsP_3 assay 80

Table 4. Comparison of the position and orientation of the hydroxyls of InsP_3 and scyllo-Ins(1,2,4)P_3 171

Table 5. Comparison of the position and orientation of the hydroxyls of InsP_3 and L-Chiro-Ins(2,3,5)P_3 173

Table 6. Comparison of the position and orientation of the hydroxyls of InsP_3 and L-Ins(1,3,4)P_3 182

Table 7. Comparison of the position and orientation of the hydroxyls of InsP_3 and Ins(1,4,6)P_3 184

Table 8. Comparison of analogues studied in permeabilised platelets with other cell systems. 186

Table 9. Comparison of partial analogues studied in permeabilised platelets with other cell systems. 187
ABBREVIATIONS

Inositol lipids and phosphates

PI Phosphoinositide
PtdIns Phosphatidylinositol
PtdIns(3)P Phosphatidylinositol 3-phosphate
PtdIns(4)P Phosphatidylinositol 4-phosphate
PtdIns(3,4)P Phosphatidylinositol 3,4-bisphosphate
PtdIns(4,5)P Phosphatidylinositol 4,5-bisphosphate
PtdIns(3,4,5)P Phosphatidylinositol 3,4,5-trisphosphate

All the inositol phosphates are based upon myo-inositol, unless otherwise stated. All inositol phosphates refer to the D-isomer, unless stated. The positions of the phosphates around the inositol ring are given in parenthessese to indicate a specific analogue. Abbreviations of the structures and names of all the analogues examined can be found in appendix I.

Other abbreviations.

AA arachidonic acid
AC adenylate cyclase
ADP adenosine 5'-diphosphate
ADP-ribose adenosine diphosphate ribose
ATP adenosine 5'-trisphosphate
BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid.
BSA bovine serum albumin
cAMP adenosine 3':5'-cyclic monophosphate
cADP-ribose cyclic adenosine diphosphate ribose
[Ca\(^{2+}\)]_e extracellular calcium concentration
[Ca\(^{2+}\)]_i intracellular calcium concentration
CHCl\(_3\) chloroform
CPM counts per minute
DAG diacylglycerol
DMSO dimethylsulphoxide
EC\(_{50}\) concentration producing 50% of maximal response
EDTA ethylenediamine tetraacetic acid
EGTA ethyleneglycol-bis(B-aminoethylether) \(N,N',N'-\)tetraacetic acid
Fura-2 AM fura-2 acetomethoxy ester
G-protein guanine nucleotide-binding proteins
\(G_i\) G-protein associated with inhibition of AC
\(G_s\) G-protein associated with activation of AC
HBT hepes buffered tyrode
5-HT 5-hydroxytryptamine
HPLC high pressure liquid chromatography
IC\(_{50}\) concentration producing 50% inhibition of response
IC\(_{50}\) concentration of agent inhibiting a response by 50%
ICB "intracellular" like buffer
LT's leukotrienes
NO nitric oxide
PAF platelet activating factor
PBS phosphate buffered saline
PC phosphatidylincholine
PE phosphatidylethanolamine
PGL\(_2\) prostacyclin
PIP\(_2\) PtdIns(4,5)P\(_2\)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PLA<sub>2</sub></td>
<td>phospholipase A<sub>2</sub></td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>PRP</td>
<td>platelet rich plasma</td>
</tr>
<tr>
<td>RMCE</td>
<td>receptor mediated calcium entry</td>
</tr>
<tr>
<td>TXA<sub>2</sub></td>
<td>thromboxane</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrands factor</td>
</tr>
</tbody>
</table>
INTRODUCTION
Overview

Rabbit platelets were used to study phosphoinositide (PI) signalling. Platelets provide an ideal model for studying the effects of D-myoinositol 1,4,5-trisphosphate (InsP$_3$) and its analogues as they do not possess a nucleus or RNA that will complicate and interfere with the signalling mechanism. This thesis is written in such a way that the introduction contains a literature review of research carried out until the start of this study, i.e. until 1990. The rest of the literature is reviewed, along with my results, in the discussion section.

1 The blood platelet.

Blood platelets circulate as smooth anucleate biconvex discs, 1µm thick and 2-3µm in diameter. They are formed by fragmentation of the cytoplasm of megakaryocytes in the bone marrow. In general, platelets are incapable of protein synthesis in biologically significant quantities, however newly formed platelets often contain ribosomes and RNA from the parent cell cytoplasm. The platelet count in peripheral blood is 2.5x 108/ml with a turnover of 3x 107/ml/day. The half life of the platelet in circulation is 8-10 days, for review see Siess, (1989). Although platelets contain no nucleus, they contain cellular organelles such as mitochondria, open canilicular systems, microtubules, dense tubular system and storage granules (dense granules, α_1 granules and α_2 granules) (Crawford and Scrutton, 1987).

The major purpose of platelets in the circulation is participation in the haemostatic reaction, where they play a role in the formation of a cellular plug at the site of vascular damage fulfilling their primary role in arresting bleeding.
Although most of our understanding of blood platelets concerns the role of this cell in haemostasis and in disorders of this process such as thrombosis, the ease of isolation of a homogeneous cell population, the lack of a nucleus to complicate cellular responses and the wide range of functions platelets possess has meant that they have been used extensively to study signal transduction, adhesion and secretion.

1.1 The basic platelet response.

Platelets are very rapidly activated and respond to a wide range of agonists upon cell surface receptor occupation. The platelet response can be classified into two categories that may be related to different functions of platelets in vivo. First, the reversible platelet response, including adhesion, shape change and primary reversible aggregation and second, the irreversible platelet response that comprises release reaction and secondary irreversible aggregation. These latter irreversible responses are involved in the haemostatic function of platelets reviewed in Siess, (1989).

Resting circulating platelets are discoid and have a smooth ripple surface. The first physiological responses upon stimulation are platelet adhesion and shape change. Physiological vasodilation, which leads to gaps within the endothelial lining or pathophysiological vascular injury resulting in the exposure of subendothelial tissue. Both these effects contribute to the adhesion process. Platelets adhere to the subendothelial material by their interaction with two specific macromolecule proteins, collagen and von Willebrand's factor (vWF). Adhesion proceeds in two distinct phases: (i) an initial contact phase in which a platelet is bound to the vessel wall by a small amount of membrane or through pseudopodia and (ii) a spreading phase in which the platelet is more intimately
bound to the subendothelium by a large amount of endothelium (Leytin et al., 1984).

Following adhesion, shape change occurs. This is characterised by two distinct morphological features: the spheration of the platelet and the extrusion of pseudopods. In addition, the membrane surface becomes irregular and folded. All platelet stimuli except adrenaline and phorbol esters induce full platelet shape change. Adrenaline and phorbol esters do not raise \([\text{Ca}^{2+}]_i\), inducing only some pseudopod formation without platelet spheration (Bendtzen et al., 1983; Cusack and Hourani, 1982). This indicates that platelet spheration and pseudopod formation are separate independent events.

Subsequent to adhesion and shape change, aggregation can occur. *In vitro* this can be distinguished into two types, primary and secondary aggregation. The former is reversible and can occur without a release reaction and the latter is irreversible and associated with the release reaction. Primary reversible aggregation is induced by low concentrations of platelet stimuli in the presence of extracellular Mg\(^{2+}\) or Ca\(^{2+}\). Primary aggregation results from the exposure of the fibrinogen receptor and some subtle change in the glycoproteins IIb and IIIa giving rise to the formation of reversible cross-linking of platelets by fibrinogen molecules (Bennett and Vilaire, 1979). Secondary aggregation results from reinforcing these fibrinogen links by secreted thrombospondin (Leung and Nachman, 1982).

The final step is the release reaction (Holmsen et al., 1969; Holmsen, 1978; Holmsen, 1985). This occurs by the exocytotic discharge of the granule contents. There are at least three types of secretory granules; dense-, \(\alpha_1\)- and \(\alpha_2\) (lysosomal) secretory granules. These three storage granules can be
distinguished by their density and their discharge is under differential or graded control (Thevenod et al., 1989).

In general a lower concentration of agonist is needed to release the contents of the α_1-granules than the dense granules (Holmsen, 1978), for review see Siess (1989).

The platelet haemostatic function must be highly regulated in order to allow the formation of a haemostatic plug when needed and otherwise prevent haemorrhage or thrombosis. The balance between antiaggregatory and proaggregatory signals is achieved by compounds which are able to promote or inhibit platelet activation. These compounds originate from an extrinsic source (thrombin and vWF), from activated platelets themselves [adenosine diphosphate (ADP), 5-HT, Ca$^{2+}$, thromboxane (TXA$_2$)] or from the vascular endothelium [PGI$_2$, nitric oxide (NO)] (Siess, 1989). The release reaction has a self-amplification effect on the response where the release of the granule contents such as ADP and 5-HT stimulate the activation of yet other platelets, thus amplifying the original stimulus.

The vascular endothelium also plays a role in haemostasis. It is capable of producing NO and this causes an increase in cGMP levels by acting through a soluble guanylate cyclase. In platelets, an increase in levels of cGMP is anti-aggregatory, inhibiting aggregation (Radomski et al., 1990; Siess, 1989). Furthermore PGI$_2$, which is also released from the vascular endothelium, also acts to inhibit aggregation (McIntyre et al. 1985) by activating adenylate cyclase and increasing cAMP levels (Siess, 1989).

Two major pathways have been proposed for AA liberation (see figure 1); a direct deacylation of membrane phospholipids by PLA$_2$ or
Phospholipids

PLC

PIP$_2$

sn-1,2-diacylglycerol
&
myo-inositol 1,4,5-trisphosphate

DAG lipase

Arachidonic acid

PLA$_2$

Arachidonic acid

PGH$_2$

PGG$_2$

PGD$_2$

PGE$_2$

C-17 hydroxyacid

Figure 1. The biosynthetic pathway for arachidonic acid (AA) formation and its metabolites through the cyclo-oxygenase pathway.
the sequential action of PLC on phosphatidylinositol lipids followed by the action of DAG-lipase, the former route having a greater role. Ca$^{2+}$ dependent activation of PLA$_2$ and subsequent eicosanoid biosynthesis is considered essential to promote platelet self-amplification (Siess, 1989; Lapetina et al., 1986). TxA$_2$ is a potent vasoconstrictor and agonist on platelets.

Its action is short lived due to its rapid metabolism to TxB$_2$ (Hamberg et al., 1975) PLA$_2$ is an enzyme involved in the liberation from membrane phospholipids of an arachidonyl residue (AA) from membrane phospholipids which can be subsequently metabolized to various bioactive lipid mediators such as PGs, TxA$_2$ and leukotrienes (Takayama et al., 1991). The isolation of a cytosolic soluble PLA$_2$ from rabbit platelets has recently been implicated in AA liberation in rabbit stimulated platelets (Takayama et al., 1991).

1.2 Platelet agonists and their signalling mechanisms.

Platelets are non-electrically excitable cells (Thevenod et al., 1989). The absence of a nucleus and hence nuclear receptors means that activation is confined to cell surface receptor activation. Thus, surface receptors have coupling mechanisms which allow a signal to be carried (transduced) from the cell surface receptor through the membrane to the cytosol, leading to the formation or liberation of intracellular messenger molecules. There are several components of signal transducing mechanisms these include; D-myoinositol 1,4,5-trisphosphate (InsP$_3$), Ca$^{2+}$, cAMP, diacylglycerol (DAG) and protein tyrosine kinases (PTK's) (Berridge and Irvine, 1989; Berridge, 1986) which in turn act on targets inside the cell.

Many different agents can activate the same series of responses in platelets.
Figure 2. The signalling mechanisms of excitatory and inhibitory platelet agonists.
These responses are achieved by the interaction of each of these agonists with specific cell surface receptors, based upon demonstration of saturable binding and the existence of the same specific inhibitors of both binding and platelet response. Thus, while there is a high degree of specificity at the level of the agonist-receptor interaction, this specificity is almost lost by the appearance of the same final responses, (Holmsen, 1985). The specificity that remains at the level of response execution is of a quantitative nature. These platelet agonists can thus be divided into weak, intermediately strong and strong agonists according to how far in the response sequence they drive the platelets.

All platelet agonists trigger PIP$_2$ hydrolysis, with the exception of adrenaline and collagen, see figure 2. Thus, agonists such as thrombin, PAF, TxA$_2$, ADP, α-adrenergic and β-adrenergic receptors couple G-proteins, Haslam and Davidson (1984ab) reviewed in Siess, (1989). Subsequently, activating PLC which in turn hydrolysis PIP$_2$ to give the two second messengers DAG and InsP$_3$, (Haslam and Davidson, 1984ab; Marks et al., 1990). In permeabilised platelets InsP$_3$ has been shown to cause secretion, aggregation and protein phosphorylation (Lapetina et al., 1984; Brass et al., 1987) and these events appear to be a consequence of the ability of InsP$_3$ to mobilise Ca$^{2+}$ sequestered within the platelet dense tubular system (Authi and Crawford, 1985; Nishizuka, 1986; Uemura et al., 1990). As all platelet agonists act through PI, modulation of the PI signalling pathway in platelets could represent an effective way to modulate platelet activity.

1.3 Platelets in health and disease.

The number of circulating platelets in normal persons is maintained within a narrow range and the factors that regulate this count are poorly understood.
However 60-70% of all platelets are in the peripheral circulation and in dynamic equilibrium with a pool of platelets in the spleen. Extreme alterations in platelet number, too few as in thrombocytopenia, or too many as in thrombocytosis can be detrimental. High platelet numbers as in thrombocytosis are associated with thrombosis or patients may undergo spontaneous aggregation in the circulation; bleeding time may also be prolonged, especially if additional risk factors such as pre-existing arterial disease or prolonged immobility are present. On the other hand low platelet count, a side effect of aggressive chemotherapy or irradiation therapy, causes an inability for blood to clot and there is a danger of death due to excessive bleeding.

Platelets play a crucial role in haemostasis and in the pathogenesis of thrombosis. Their role in haemostasis is two fold: first, the formation of the haemostatic plug at the site of vascular injury and secondly the secretion of vasoactive substances leading to blood vessel contraction and recruitment of other platelets and substances from their granules which are involved in coagulation.

Diseases such as atherosclerosis rarely lead to occlusion, however the presence of a thrombus and the severe atherosclerotic narrowing causes occlusion of the vessel. 90% or more of acute transmural myocardial infarcts are associated with one or more segments occluded by a thrombus. This is caused by the loss or denudation of an area that is normally a thromboresistant endothelial layer and the subsequent exposure of this area to circulating platelets causing adhesion, aggregation, degranulation and the activation of the circulating platelets. This occlusion leads to tissue starvation of oxygen and subsequent death in severe cases such as stroke.

Stress appears to be the most common cause of occlusion in vascular disease. During stress, circulating levels of noradrenaline and adrenaline are elevated
and thus potentiate the risk of thrombosis. In order to reduce the long term risks of vascular disease, it is best to address the factors that are associated with the increased risk and not to use anti-thrombotic drugs when patients suffer from angina or have a myocardial infarction.

Hypertension, elevated blood lipids, the presence of other diseases such as diabetes as well as a genetic predisposition and bad living habits all increase the risk of thrombotic disorders.

There has been active research over the last 20 years in the search for compounds that depress platelet reactivity and function, and it is possible to divide such agents into three classes:

I. Receptor antagonists which antagonise the platelet response to specific stimuli by blocking the interaction of the stimulant with its receptor, eg. phentolamine blocks aggregation induced by catecholamines, ATP blocks platelet ADP receptors. However, because of the diversity of agents that can activate platelets and because of the self-amplification process in platelet activation, it is unlikely that any single type of receptor antagonist could prevent platelet thrombus formation when platelets in vivo are exposed simultaneously to several different stimuli.

II. Enzyme inhibitors which are involved in the platelet activation cascade such as aspirin. Aspirin irreversibly acetylates the cyclo-oxygenase enzyme hence blocking it and this enzyme is responsible for the production of prostaglandins and TxA2 from AA. Thus, inhibiting this enzyme can cause significant inhibition of platelet function if the response depends completely on AA metabolism such as with low doses of collagen (Roth and Majerus, 1975; Patrono, 1989).
III. Stimulators of AC and local anaesthetics; PGI$_2$, in platelets produced by the vascular endothelium, acts to stimulate AC elevating cAMP levels thus blocking activation. However because cAMP is a ubiquitous intracellular messenger in most cell, the effect of such drugs are not limited to platelets and their potential clinical value as antithrombotic agents is limited. Local anaesthetics are also non-specific, and act by stabilising cell membranes, and at low concentrations can inhibit secretion and aggregation.

However to date, the most significant clinical studies carried out on anti-thrombotic agents is the finding that aspirin has a protective effect against acute myocardial infarction, showing a decreased incidence of death or recurring myocardial infarction (Roth and Majerus, 1975; Smith and Willis, 1971). Aspirin has been convincingly shown to reduce the incidence of vascular occlusion events in a wide range of patients at risk of thrombotic complications (Patrono, 1989), its beneficial effects linked to the suppression of TxA$_2$-dependent platelet aggregation.

Upon platelet receptor activation, InsP$_3$ is liberated from the enzymatic cleavage of membrane lipids, and this in turn acts to mobilise intracellular Ca$^{2+}$. Since platelets play a major role in many diseases such as thrombosis, the development of drugs that can block platelet agonists will no doubt be beneficial. However, so many agonists act together to elicit the platelet response and specific antagonists to each agent is not a practical solution. Since all platelet agonists possess the same signalling mechanisms, it is more reasonable to block platelet activation through blocking signalling. Thus, blocking the InsP$_3$ receptor would be a good example. If such a compound existed, then it is envisaged that it may have a beneficial effect in the above diseases. Platelets were thus used in this study.
given that occlusive vascular disease is the major cause of death in the western
world and the knowledge that platelets play a crucial role in this disease.

\[R^1 = R^2 = H; PI \]
\[R^1 = PO_3^-; R^2 = H; PIP \]
\[R^1 = R^2 = PO_3^-; PIP_2 \]

\[\text{D-myo-inositol 1,4,5-trisphosphate} \quad \text{1,2-diacylglycerol} \]

Figure 3. The enzymatic hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP₂) by PLC to give the second messenger molecules InsP₃ and DAG.
1.4 **A historical aspect of phosphoinositide signalling.**

Since the initial findings of Mabel and Lowel Hokin on the effects of neurotransmitters and hormones on phospholipid turnover more than three decades ago, studies on phosphatidylinositol (PI) metabolism have been a focus of attention, Michell *et al.*, (1981), for review see Abdel-Latif, 1986. Thus, it was established that the polyphosphoinositide (PPI) phosphatidylinositol-4,5-bisphosphate (PIP$_2$) was the one, figure 3.

1.5 **DAG, InsP$_3$ and Ins(1,3,4,5)P$_4$ as second messengers.**

The initial suggestion that stimulated PIP$_2$ breakdown is involved in Ca$^{2+}$ mobilisation (Berridge and Irvine, 1984; Berridge and Irvine, 1989) has since been confirmed in many cells and tissues. InsP$_3$ induced Ca$^{2+}$ mobilisation first reported in permeabilised pancreatic acinar cells (Streb *et al.*, 1983) and successive studies confirmed that InsP$_3$ had similar effects in many cell types (Berridge and Irvine, 1984; Irvine *et al.*, 1986; Berridge and Irvine, 1989).

Analysis of the rates of receptor stimulated InsP$_3$ formation (Berridge, 1983; Downes and Wusteman, 1983; Tashjian *et al.*, 1987; Horstman *et al.*, 1988) and its subsequent complex metabolism (Berridge *et al.*, 1988; Shears, 1989) further substantiate the role of InsP$_3$ as an intracellular messenger by demonstrating that it is both formed and inactivated on a time scale commensurate with a role in mediating receptor regulated Ca$^{2+}$ signals (Merritt and Rink, 1987). The response of most cells to Ca$^{2+}$ mobilising stimuli is initially relatively independent of extracellular Ca$^{2+}$, but the sustained elevation of [Ca$^{2+}$]$_i$ is absolutely dependent on extracellular Ca$^{2+}$.
The substantial literature demonstrating that these two phases of response, mobilisation of intracellular Ca\(^{2+}\) and stimulated Ca\(^{2+}\) entry across the plasma membrane are features of most cells and depend upon receptor stimulated PIP\(_2\) hydrolysis (Putney, 1986; Putney, 1987; Putney, 1990). The link between PIP\(_2\) hydrolysis and stimulated Ca\(^{2+}\) entry is not clear although most models ascribe a central role to InsP\(_3\) because there is reasonable agreement that empty InsP\(_3\)-sensitive Ca\(^{2+}\) stores are an important control of Ca\(^{2+}\) entry either alone (Putney, 1986; Putney, 1990), or in concert with the phosphorylated product Ins(1,3,4,5)P\(_4\) (Irvine and Moor, 1986; Irvine and Moor, 1987; Morris et al., 1987). This is an important idea since the triggering of Ca\(^{2+}\) entry is fundamental to the generation of the Ca\(^{2+}\) signals. However, the possible role of Ins(1,3,4,5)P\(_4\) as a second messenger remains a controversial one, and to date, a specific role for Ins(1,3,4,5)P\(_4\), whether it acts as a second messenger on its own right, synergises with InsP\(_3\) or mediated Ca\(^{2+}\) entry is not clear. The presence of an Ins(1,3,4,5)P\(_4\) receptor has become apparent and for this reason, Ins(1,3,4,5)P\(_4\) is perceived to play a significant role in PI signalling.

DAG is a lipophilic molecule, and on release it remains within the plane of the plasma membrane (Nishizuka, 1984; Nishizuka, 1986; Nishizuka, 1988). The amount of DAG accumulated in platelets is considerably higher than the amount of InsP\(_3\) produced. This consideration is important for the proposed two step mechanism of platelet activation (Siess, 1989), where the first step is InsP\(_3\) formation, and Ca\(^{2+}\) mobilisation. These events cause platelet shape change, Ca\(^{2+}\) mobilisation primes PKC, possibly by placing the enzyme into a strategic position in the plasma membrane. The second step involves the activation of PKC by DAG leading to platelet aggregation and secretion.
1.6 The role of Ca$^{2+}$ in cell activation.

Calcium ions are key second messengers in eukaryotic cells. An absolute requirement for Ca$^{2+}$ during muscle contraction was first observed over 100 years ago when Ringer (1883) observed that a mixture of tap water, rather than distilled water, and sodium chloride was more effective in maintaining cardiac contractility, and he attributed this to the presence of Ca$^{2+}$ ions in tap water.

In 1962, Grette first proposed a role for this ion in stimulus-secretion coupling in platelets (Grette, 1962). In addition, the development of the aggregometer by Born (1962ab) and more significantly the of advances made in monitoring intracellular Ca$^{2+}$ by fluorescent molecules such as quin-2 (Tsien et al., 1982) has led to the undisputable role of Ca$^{2+}$ in cellular signalling. Further, a key role for other messenger molecules is often the modulation of Ca$^{2+}$ fluxes where the only compelling documented intracellular role of InsP$_3$ (a known second messenger molecule) is the mobilisation of this messenger ion (Berridge and Irvine, 1989).

The importance of Ca$^{2+}$ in the transmission of information inside living cells has been a subject of many reviews (Abdel-Latif, 1986; Putney, 1986; Rink and Merrit, 1990). Ca$^{2+}$ is a regulator of many cell functions and its function is most recognised in excitable and secretory cells where functions such as contraction and secretion are controlled by this cation. In the unstimulated cell, the cytosolic Ca$^{2+}$ concentration is ≈ 0.1μM, which is 104 fold lower than the millimolar extracellular Ca$^{2+}$, and following stimulation, [Ca$^{2+}$]$_i$ rises to 1-10μM. The low cytosolic [Ca$^{2+}$] is maintained at this level by energy dependent Ca$^{2+}$ transport mechanisms that either extrude Ca$^{2+}$ across the plasma membrane or sequester Ca$^{2+}$ within intracellular organelles (Gill and Cheuh,
In most cells, the cytosolic concentration of free Ca\(^{2+}\) ions is low ≈ 60-200nM and therefore only accounts for a small fraction of the total cellular calcium content (Meldolesi et al., 1990).

The mitochondria do not play a role in InsP\(_3\) induced Ca\(^{2+}\)-mobilisation (Joseph et al., 1984; Thevenod et al., 1989). They are only significant if intracellular Ca\(^{2+}\) rises over 1\(\mu\)M at which point mitochondrial Ca\(^{2+}\) uptake comes into action in order to limit the extent of [Ca\(^{2+}\)]\(_i\) rise (Meldolesi et al., 1990; Rink and Merrit, 1990). The effect of InsP\(_3\) induced Ca\(^{2+}\) mobilisation upon receptor activation is not the only one. Evidence suggests that levels of Ca\(^{2+}\) remaining within such organelles appear to have important consequences for signalling and regulation within the cells (Putney, 1987; Takemura and Putney, 1989; Putney, 1990).

The ER is thought to play the pivotal role in Ca\(^{2+}\) storage. A high affinity Ca\(^{2+}\)-ATPase pump is responsible for transmembrane accumulation of high [Ca\(^{2+}\)] which are maintained within the organelle and subsequent Ca\(^{2+}\) release occurs through a specific channel upon activation. Specific intracellular Ca\(^{2+}\) pump-blocking agents have recently been obtained discussed in (Rink and Merrit, 1990; Capiod et al., 1989), having no effect on plasma membrane ATPases. Thapsigargin (TG) and more recently 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) are two such compounds which inhibit endoplasmic reticulum Ca\(^{2+}\)-ATPase. They are proving to be useful tools in the study of intracellular Ca\(^{2+}\) release and storage (Rink and Merrit, 1990).

Thus, increases in intracellular Ca\(^{2+}\) concentration caused by agonist stimulation trigger a variety of responses in cells from cell differentiation and proliferation, secretion, metabolism and contraction. These increases are key
signals in the platelet response, and the ability to elucidate the role of Ca2+ in platelet activation and to modify Ca2+ release with the use of inositol phosphate analogues may provide us with useful tools to modify platelet activation. This can be subsequently implemented in disease states such as thrombosis and atherosclerosis.

1.7 InsP\textsubscript{3} and its metabolism.

A second messenger, once released inside the cell, must be efficiently deactivated metabolically in order to terminate its action and return the cell to its basal state in preparation for a new stimulus. Additionally, metabolites of the second messenger may possess other physiological activities within the cell. These aspects have come under close scrutiny in the past few years and it has become apparent that the metabolism of InsP\textsubscript{3} to free inositol, which is then recycled into lipid synthesis, is of considerable complexity generating many inositol phosphates which are often difficult to separate. In addition, this is further complicated by the fact that InsP\textsubscript{3} is not the only hydrophilic product of PLC induced PIP\textsubscript{2} cleavage, PIP\textsubscript{2} cleavage can also occur at the 2-OH of the phosphorus of the inositol ring, giving rise to cyclic inositol phosphate, D\textit{-myo-}
inositol-1:2cyclic,4,5- trisphosphate,

\[
\text{Ins}(1:2\text{cyc},4,5)\text{P}_3.
\]

Three major routes of metabolism have been identified, for review see (Berridge, 1987; Shears, 1989), see figures 4 and 5.
1.7.1 Route 1.

The first route involves the action of enzyme InsP$_3$ 5-phosphatase, responsible for the dephosphorylation at the 5-position phosphate, this having been first demonstrated in erythrocytes (Downes et al., 1982). The other enzymes involved are the inositol polyphosphate 1-polyphosphatase and inositol monophosphatase, see figure 4 and 5.

The product of the action of InsP$_3$ 5-phosphatase enzyme is myo-inositol 1,4-bisphosphate [Ins(1,4)P$_2$]. Since this has no known physiological role in the signalling pathway and does not mobilise Ca$^{2+}$ (Berridge, 1987). Thus, the dephosphorylation must serve solely as an inactivating step. Hence, InsP$_3$ 5-phosphatase enzyme plays a vital role in terminating release of Ca$^{2+}$ by InsP$_3$. This enzyme is sensitive to divalent cations in that it has an absolute requirement for Mg$^{2+}$ and is inhibited by silver, zinc and cobalt (Downes et al., 1982; Berridge, 1987). However, this enzyme is insensitive to Li$^+$ (Downes et al., 1982).

This situation is further complicated by the existence of two types of the InsP$_3$ 5-phosphatase enzyme, a soluble type and particulate type and by the presence of more than one type of soluble enzyme in both brain and platelets (Majerus et al., 1988; Shears, 1989). The significance of the presence of enzyme subtypes is still unclear, for review see Shears (1989). The next step in the metabolism involves the enzyme inositol polyphosphate 1-polyphosphatase. This does not attack InsP$_3$ or myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P$_4$], but is specific for Ins(1,4)P$_2$ and myo-inositol 1,3,4-trisphosphate [Ins(1,3,4)P$_3$] (see later) (Inhorn and Majerus, 1987; Inhorn and Majerus, 1988). This enzyme is Mg$^{2+}$ dependent and Li$^+$ sensitive and hydrolyses Ins(1,4)P$_2$
Figure 4. The bifurcating signal pathway involving PIP$_2$ breakdown to give InsP$_3$ and DAG. Upon cell surface receptor occupation, a G-protein is activated (G$_q$) which binds GTP and in turn activates PLC. Both of the messengers produced are metabolized rapidly in order to return the cell to its resting state.

a: InsP$_3$ 5-phosphatase, b: 1-phosphatase, c: inositol monophosphatase, d: InsP$_3$ 3-kinase, e: 4-phosphatase, f: 3-phosphatase.
to give myo-inositol 4-phosphate \([\text{Ins}(4)\text{P}]\). Ca\(^{2+}\) can also inhibit this enzyme with 40% inhibition occurring at 1\(\mu\)M Ca\(^{2+}\) (Inhorn and Majerus, 1988).

There have been two reports that \(\text{Ins}(1,4)\text{P}_2\) can be dephosphorylated to myo-inositol 1-phosphate \([\text{Ins}(1)\text{P}]\) via an inositol polyphosphate 4-phosphatase (Storey et al., 1984; Takimoto et al., 1987), however, Inhorn and Majerus (Inhorn and Majerus, 1987; Inhorn and Majerus, 1988) have proposed that the product of the enzyme reaction was incorrectly identified as \(\text{Ins}(1)\text{P}\), and it was in fact \(\text{Ins}(4)\text{P}\). Thus, the major enzyme of metabolism is the 1-phosphatase (Inhorn and Majerus, 1987; Inhorn and Majerus, 1988). \(\text{Ins}(4)\text{P}\) is then dephosphorylated by a nonspecific phosphatase, inositol monophosphatase, which has no specificity for \(\text{Ins}(4)\text{P}\) but also acts on \(\text{Ins}(1)\text{P}, \text{myo-inositol 3-phosphate}\ [\text{Ins}(3)\text{P}] \) and \(\text{myo-inositol 6-phosphate}\ [\text{Ins}(6)\text{P}]\). This enzyme is inhibited by Li\(^{+}\) (Nahorski, 1990; Kennedy et al., 1990; Kendall and Whitworth, 1990), and the product of hydrolysis is free \(\text{myo-inositol}\), which can enter the lipid cycle.

1.7.2 Route 2.

Metabolism begins with the phosphorylation of \(\text{InsP}_3\) by \(\text{InsP}_3\) 3-kinase (Irvine et al., 1988; Irvine et al., 1985; Berridge and Irvine, 1989) to give \(\text{Ins}(1,3,4,5)\text{P}_4\), and the physiological significance of this molecule has eluded most investigators. The other enzymes involved are the \(\text{Ins}(1,3,4,5)\text{P}_4\) 5-phosphatase, the inositol polyphosphate 1-phosphatase, the inositol polyphosphate 4-phosphatase, the inositol polyphosphate 3-phosphatase and inositol monophosphatase, see figure 4. The 3-kinase enzyme is mostly soluble in all tissues studied, for review see (Shears, 1989), and has an absolute requirement for Mg\(^{2+}\) in order to aid phosphate transfer.
Figure 5. The metabolism of InsP₃ by the two enzymes InsP₃ 3-kinase and InsP₃ 5-phosphatase and the subsequent breakdown of these metabolites by further enzymes (see text for explanation).
from ATP to the 3-position of InsP₃. There is evidence that an increase in Ca²⁺ stimulates this enzyme in many tissues in a calmodulin-dependent manner. Thus, transient receptor-mediated elevations in cytosolic Ca²⁺ can increase the rate of Ins(1,3,4,5)P₄ formation and this may have significant functions (see later).

Ins(1,3,4,5)P₄ is subsequently metabolized by the Ins(1,3,4,5)P₄ 5-phosphatase enzyme, which may be similar to InsP₃ 5-phosphatase. In brain this enzyme attacks both InsP₃ and Ins(1,3,4,5)P₄, however, generally different forms will attack InsP₃ or Ins(1,3,4,5)P₄ preferentially. The soluble type I 5-phosphatase enzyme and the particulate type have higher affinity for InsP₃ over Ins(1,3,4,5)P₄, thus Ins(1,3,4,5)P₄ may act as a competitive inhibitor, on the other hand type II soluble enzyme has poor affinity for Ins(1,3,4,5)P₄. What the significance of this is or how important the inhibition is in vivo is difficult to gauge and until these enzymes are fully purified an interrelationship between tissue and enzyme will then become clear.

The product of 5-phosphatase hydrolysis is Ins(1,3,4)P₃, which can either be phosphorylated by a 6-kinase to give myo-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P₄] (Balla et al., 1987; Shears et al., 1987; Stephens et al., 1990; King et al., 1990) (see later), or dephosphorylated by two enzymes, the inositol polyphosphate 1-phosphatase, a Mg²⁺ dependent enzyme, to give myo-inositol 3,4-bisphosphate [Ins(3,4)P₂] (Inhorn et al., 1987).

The second route is via an inositol polyphosphate 4-phosphatase that gives rise to myo-inositol 1,3-bisphosphate [Ins(1,3)P₂], a Mg²⁺ dependent enzyme that is not inhibited by Li⁺ (Bansal et al., 1987; Bansal et al., 1990). Further
metabolism by specific enzymes leads to the monophosphates and subsequently to inositol, see figure 4 and 5.

1.7.3 Route 3.

Recently, reports have indicated the presence of Ins(1,3,4,5)P$_4$ 3-phosphatase activity (Hoer et al., 1988; Doughney et al., 1988; Cullen et al., 1989) which leads to the reformation of InsP$_3$ (Shears, 1989). The role of this novel enzyme could therefore be in maintaining InsP$_3$ levels and the significance of this is not determined. It has been suggested that the substrate for this 3-phosphatase is myo-inositol 1,3,4,5,6-pentakisphosphate [Ins(1,3,4,5,6)P$_5$], in preference to InsP$_3$. Thus, its actions on InsP$_3$ only become apparent when this inhibitory effect is removed.

Ins(1,3,4,5)P$_4$ has also been implicated in the production of Ins(1,3,4,5,6)P$_5$ by a novel 6-kinase although other evidence has suggested that Ins(1,3,4,5,6)P$_5$ is produced by the action of a 3-kinase on myo-inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P$_4$] (Stephens et al., 1988ab) see later section on higher inositol phosphates) (Stephens et al., 1990; Stephens and Downes, 1990).

1.8 Platelet lipids and the PI cycle.

The outer membrane lipid composition of human platelets is phosphatidylcholine (PC) 23%, phosphatidylethanolamine (PE) 11%, phosphatidylserine (PS) 4.5% and PI 5-7%. PPI make up a minor percentage of membrane lipids, phosphatidylinositol 4-phosphate (PIP) and PIP$_2$ accounting for 15 \approx 12% of total polyphosphoinositol lipids, reviewed in Siess, (1989) (Mauco et al., 1984; Billah and Lapetina, 1982).
Figure 6. Membrane inositol phospholipids phosphorylation. The classical pathway involving the phosphorylation of the 4-OH and the 5-OH by the two enzymes, PI 4-kinase and PI(4)P 5-kinase, is shown in the lower half of the diagram. Each of these lipids can serve as substrates for the PI 3-kinase giving rise to the novel 3-phosphorylated inositol lipids (shown in the upper half of the diagram).
The PPI's are synthesized by the sequential phosphorylation of PI by the enzymes PI 4-kinase and PI(4)P 5-kinase, both are membrane bound (Kaulen and Gross, 1976). PI and PPI exist in both resting and stimulated platelets in metabolically homogeneous pools. After platelet stimulation with agonists such as thrombin, ADP or AA, a rapid decrease in PIP₂ is observed and after 5 seconds of agonist addition a total of 20-50% loss of total mass is observed due to PLC activation (Siess, 1989). This loss is transient and 10 seconds after, levels return to normal (Agranoff et al., 1983; Billah and Lapetina, 1982). Levels of PI do not decrease after platelet stimulation, in fact they are found to increase after a lag time of 30 seconds from platelet stimulation (Billah and Lapetina, 1982) due to resynthesis and flux.

Two types of enzymes have been established in the synthesis of inositol lipids, type I kinase [with intrinsic tyrosine kinase activity (Takenawa et al., 1990; Auger et al., 1989)], leading to the phosphorylation at the novel-3 positions, and type II kinase being the classical kinase involved in PIP and PIP₂ production and phosphorylation at the 4-and 5- positions (Sultan et al., 1990; Auger et al., 1989; Cunningham et al., 1990; Takenawa et al., 1990; Whitman et al., 1988), see figure 6.

PI turnover in platelets was first noted by Firkin and Williams, who demonstrated that ³²P-labelled phosphate was incorporated into PA, PI and PPI. In addition, recently, the novel lipid phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P₂] have been shown to accumulate upon thrombin stimulation (Sultan et al., 1990; Cunningham et al., 1990). However a role for these lipids in platelets is still unclear, but a suggested role for these 3-phosphorylated lipids in other cells has been as
second messengers in regulating cell growth and differentiation, for review see Berridge (1990).

1.9 InsP₃ metabolizing enzymes in platelets.

1.9.1 InsP₃ and Ins(1,3,4,5)P₄ 5-Phosphatase.

As in most other cells, platelets metabolize InsP₃ by two enzymes, a dephosphorylation and inactivation by a 5-phosphatase, and phosphorylation through a 3-kinase (Daniel et al., 1987). Two forms of 5-phosphatase enzyme are thought to exist. Initial data suggests that the 5-phosphatase is mainly cytosolic (Connolly et al., 1985), however, recent evidence suggests a particulate enzyme (Vedia et al., 1988). There are multiple isoforms of the inositol polyphosphate-5-phosphatase enzyme distributed between the soluble and particulate fractions and these act on three substrates, InsP₃, Ins(1,3,4,5)P₄ and Ins(1:2cyc,4,5)P₃.

In human platelets, two forms of the cytosolic 5-phosphatase have been isolated (Connolly et al., 1985; Mitchell et al., 1989). Type I enzyme has a molecular weight of 45kDa and requires Mg²⁺. It has greater activity against Ins(1,3,4,5)P₄ as a substrate at low substrate concentration, and consistent with this is that low concentrations of Ins(1,3,4,5)P₄ (1μM) inhibit InsP₃ or Ins(1:2cyc,4,5)P₃ breakdown. This implies that cellular levels of InsP₃ metabolites may be sustained under conditions where Ins(1,3,4,5)P₄ is formed. Type I enzyme is also phosphorylated by PKC (Connolly et al., 1986) and this is associated with an increase in enzyme activity, thus PKC activation tends to reduce levels of InsP₃, terminating signalling.
The type II enzyme has a molecular weight of 75kDa and hydrolyses the same substrates as type I (Mitchell et al., 1989). However, it has a lower affinity for both InsP₃ and Ins(1,3,4,5)P₄ and is not phosphorylated by PKC. It requires Mg²⁺ for activity, and unlike the type I enzyme, metabolites of InsP₃ do not inhibit enzyme activity. Further studies have shown that a membrane bound, particulate enzyme is also present in platelets, and approximately 40% of InsP₃ 5-phosphatase activity is membrane-bound (Vedia et al., 1988), with a molecular weight of 49kDa (Connolly et al., 1985). The existence of 3 types of 5-phosphatase enzyme confounds the simple interpretation of the role of this enzyme in controlling inositol phosphate fluxes and in turn Ca²⁺ signalling. Approximately twice as much type II enzyme is present in platelets as the type I, and since type I enzyme has lower affinity for Ins(1,3,4,5)P₄ than type II, it appears that cellular levels of Ins(1,3,4,5)P₄ may influence which of the phosphatases hydrolyse InsP₃.

<table>
<thead>
<tr>
<th>Enzyme type</th>
<th>Km InsP₃</th>
<th>Km Ins(1,3,4,5)P₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble: Type I</td>
<td>7.5μM</td>
<td>0.5μM</td>
</tr>
<tr>
<td>Type II</td>
<td>24μM</td>
<td>7.5μM</td>
</tr>
<tr>
<td>Membrane bound</td>
<td>100μM</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The two types of 5-phosphatase enzymes in platelets and their affinities for InsP₃ and Ins(1,3,4,5)P₄.

This is further complicated by the fact that type I enzyme is phosphorylated and activated by PKC. Thus type I enzyme hydrolyses InsP₃ > Ins(1,3,4,5)P₄.
Therefore, at low substrate concentration Ins\((1,3,4,5)P_4\) is hydrolysed rapidly and competitively inhibits InsP\(_3\) hydrolysis, and at high substrate concentration InsP\(_3\) is metabolized at a greater rate. For a summary see Table 1.

1.9.2 **InsP\(_3\), 3-Kinase.**

The 3-kinase enzyme responsible for the 3-phosphorylation of InsP\(_3\) (InsP\(_3\) 3-kinase), is a Ca\(^{2+}\)/calmodulin dependent enzyme as for other cell types (Biden et al., 1987; Daniel et al., 1987; Daniel et al., 1988). In stimulated platelets, Ins\((1,3,4)P_3\) is the major metabolite and not Ins\((1,4)P_2\) as found in other cells (Daniel et al., 1988), and since this route of metabolism consumes ATP, one can envisage that the metabolites of this pathway may play an important role in platelet function. However, as for as Ca\(^{2+}\) mobilisation goes, Ins\((1,3,4)P_3\) has been shown to be very poor at releasing Ca\(^{2+}\), if at all (Irvine et al., 1986) and its direct function in platelets or any other cell type has not yet been defined. Further, King et al., (1990) have recently found that thrombin-stimulation of permeabilised platelets causes the accumulation of a novel inositol tetrakisphosphate by the action of a 6-kinase enzyme. The metabolite was identified as Ins\((1,3,4,6)P_4\). However, this accumulation is minor in comparison with its precursor Ins\((1,3,4)P_3\), and it is thought to play only a minor part (King et al., 1990).

InsP\(_3\) 3-kinase is a substrate for PKC (King and Rittenhouse, 1989), and thus receptor occupation will phosphorylate this enzyme increasing its activity, thus removing InsP\(_3\) from the cytosol and its Ca\(^{2+}\) mobilising actions. However, Lin et al., (1990) have proposed that PKC inhibits the 3-kinase enzyme, based upon studies using PKC activators and inhibitors.
InsP$_3$ 3-kinase consists of two polypeptides, 53 and 36 kDa molecular weight, and the majority of activity is associated with the 36kDa component. It is not known if these two different polypeptides are distinct enzymes (Takazawa et al., 1989) or if they share a precursor-product relationship (Lee et al., 1990).

In platelets, Ins(1:2cyc,4,5)P$_3$ is formed upon thrombin stimulation (Weber and Johnson, 1986; Ishii et al., 1986). This inositol phosphate is capable of mobilising Ca$^{2+}$ (Wilson et al., 1985) in platelets with a similar potency to InsP$_3$, however little interest in this compound as a second messenger has been maintained due to its low ability to release Ca$^{2+}$ in other cell systems.

1.10 Lithium (Li$^+$) as an inhibitor of inositol trisphosphate metabolism.

Lithium is an uncompetitive inhibitor of the 1- phosphatase and inositol monophosphatase (Inhorn and Majerus, 1987; Drummond, 1987; Inhorn and Majerus, 1988), see figure 4. Li$^+$ is uniquely effective in the therapy and prophylaxis of manic depression. In the last few years there has been growing evidence that the actions of Li$^+$ in affective disorders is related to its ability to interfere with PI signalling (Batty and Nahorski, 1985), for review see (Nahorski et al., 1990). It has been argued that Li$^+$ may act by reducing the supply of inositol for the resynthesis of PI's that are used to generate second messengers.

However, until alternative inhibitors of inositol monophosphatase or inositol uptake are shown to be as efficacious as Li$^+$ clinically, the therapeutic actions of Li$^+$ can not be ascribed to these cellular actions. On a positive note however, the stimulus-dependent effects of Li$^+$ on PI signalling at concentrations within
the therapeutic range highlight the potential of targeting drugs at an intracellular second messenger signalling system.

1.11 InsP₃ receptor.

It has been known for some years now that the ability of InsP₃ to open a Ca²⁺ channel in the membrane associated with the endoplasmic reticulum or specialised calciosome depends critically on the positional distribution of the phosphate groups on the inositol ring (Potter, 1990bc). It is reasonable to assume therefore, that InsP₃ interacts with a specific receptor linked directly or indirectly to this Ca²⁺ channel.

The initial identification of specific InsP₃ binding proteins was achieved using radioligand binding assays and these utilised membranes from peripheral tissues such as neutrophils, hepatocytes and adrenal gland microsomal membranes (Baukal et al., 1985; Spat et al., 1986), however, due to the low abundance of InsP₃ receptors in these tissues, subsequent studies turned to the CNS where [³H]InsP₃ binding in the cerebellum was detected over 100 times greater than in most peripheral tissue (Worley et al., 1987ab; Willcocks et al., 1987; Worely et al., 1989).

The native molecular weight of the InsP₃ binding protein is about 1 million daltons as assessed by gel filtration studies (Supattapone et al., 1988). However, the purified receptor protein is a single 260 kDa (Supattapone et al., 1988) band when analysed on SDS-PAGE, suggesting a tetrameric structure. Upon receptor isolation, most of the biochemical and pharmacological properties of the InsP₃-binding protein remain unaltered, with one exception: [³H]InsP₃ binding to the purified receptor
Figure 7. The structure of the \(\text{InsP}_3 \) receptor. It consists of a large transmembrane protein with eight hydrophobic domains at the carboxy terminus; a large hydrophilic domain that contains the regulatory sites for phosphorylation and the ligand binding domain at the amino terminus (Mignery and Sudhof, 1990).
is unaffected by Ca$^{2+}$ even at concentrations 10000 fold higher than those that inhibit binding in crude membranes (Supattapone et al., 1988), and this property can be reconstituted by the addition of detergent extracted membranes to the purified membrane receptor (Danoff et al., 1988) and the ability of Ca$^{2+}$ to inhibit InsP$_3$ binding has been proposed to be mediated through a separate protein called "calmedin" (Danoff et al., 1988).

InsP$_3$ activates Ca$^{2+}$ release, cooperatively, through the direct binding to a ligand activated Ca$^{2+}$-channel, thus allowing Ca$^{2+}$ mobilisation (Debs et al., 1988; Meyer et al., 1990; Meyer and Stryer, 1990) by the release of Ca$^{2+}$ from intracellular non-mitochondrial pools (Streb et al., 1983). The site of action has been an area of some controversy in recent years and the initial suggestion that the InsP$_3$-sensitive Ca$^{2+}$-pool is part of the endoplasmic reticulum (ER) has recently been questioned, although the bulk of the evidence points to this fact (Streb et al., 1983; Streb et al., 1984; Putney, 1990). The proposal that a novel calsequestrin-containing organelle referred to as "calciosome" is the InsP$_3$ sensitive-Ca$^{2+}$ pool (Volpe et al., 1988; Meldolesi et al., 1990). However, as yet there does not seem to be any overwhelming evidence for a clearly identifiable and discrete Ca$^{2+}$ storage organelle.

1.12 Regulation of the InsP$_3$ receptor.

The InsP$_3$ receptor and the actions of InsP$_3$ are highly regulated by a variety of agents including Ca$^{2+}$, pH, PKA and ATP (Worley et al., 1987ab; Willcocks et al., 1987; Joseph et al., 1989).

Ca$^{2+}$ was found to be a potent inhibitor of [H]InsP$_3$ binding with an IC$_{50}$ of 300nM suggesting that Ca$^{2+}$ released by InsP$_3$ may act as a negative feedback mechanism inhibiting further Ca$^{2+}$
Figure 8. Multiple effects of Ca2+ on the InsP\textsubscript{3} receptor. Cytosolic Ca2+ can exert both an stimulatory and an inhibitory effect on InsP\textsubscript{3}-induced Ca2+-mobilisation. The inhibitory effects mediated by a membrane calmodin, whereas the stimulatory modes of action are not yet known.
release (Joseph et al., 1989; Zao and Mullan, 1990; Berridge, 1990; Petersen and Wakui, 1990). Calcium has also been shown to have a biphasic regulation on the action of InsP$_3$ (IION, 1990), see figure 8.

The receptor can be phosphorylated by protein kinase A (PKA) (Weeks et al., 1984; Walaas et al., 1986). This results in a decrease in the potency in InsP$_3$ for releasing Ca$^{2+}$ (Supattapone et al., 1988) by phosphorylating the Ca$^{2+}$-ATPase. Adenine nucleotides can also directly allosterically regulate the InsP$_3$-activated Ca$^{2+}$ channels. This allosteric regulation is selective for ATP with other adenine nucleotides being less potent and guanine nucleotides being ineffective (Ferris et al., 1990).

1.13 InsP$_3$ receptor subtypes and receptor heterogeneity.

InsP$_3$ binding sites have been described in many tissues. Variations have been reported in the affinity values of these binding proteins to InsP$_3$, eg. in the rat cerebellum a reported affinity, Kd= 40nM (Worley et al., 1987ab) compared with Kd 5nM in bovine adrenal cortex (Baukal et al., 1985). In addition, conflicting reports of InsP$_3$ binding affinities within a single tissue have come to light, eg. in the liver, Nunn & Taylor (1990) show a Kd of 5.5nM, whereas Guillemette et al (1988) show a Kd of 1.7nM and Mauger et al find two binding affinities Kd of 2.23 and 88nM (Mauger et al., 1989). Similar discrepancies have been found in other tissues, and Varney et al., (1990) have suggested that although these discrepancies within the affinities of InsP$_3$ to receptors in different tissues are present, no consistent pattern is present to suggest receptor subtypes.

This confusion regarding the discrepancies within receptor affinities could be simply solved by the discovery of a high affinity receptor antagonist. Heparin, a
sulphated polysaccharide, binds with relatively high affinity, <2μM to the InsP₃ receptor, thus antagonising the actions of InsP₃ and has been used widely as an antagonist (Ghosh et al., 1986; Cullen et al., 1988; Tones et al., 1989). However, it should be noted that heparin has other actions within the cell; it has been found to inhibit the 3-kinase enzyme (Takazawa et al., 1989), to stimulate L-type Ca²⁺ channels (Knaus et al., 1990), to uncouple receptors from their G-proteins including those that stimulate InsP₃ formation (Mousli et al., 1990) and to inhibit InsP₃ 3-kinase and Ins(1,3,4,5)P₄ binding sites. These other effects severely limit the ability to utilise heparin as an InsP₃ receptor antagonist. A second compound, decavanadate, has been found to inhibit InsP₃-induced Ca²⁺-mobilisation (Föhr et al., 1989), however this also interacts with Ins(1,3,4,5)P₄ binding and the enzymes associated with InsP₃ metabolism. Thus to date of starting this study, no specific InsP₃-receptor antagonists were available.

A recent report indicates that InsP₃ receptors in the liver can exist in two states, a high and low affinity states, regulated by cytosolic Ca²⁺ (Mauger et al., 1989; Pietri et al., 1990). The role of Ca²⁺ is clearest in the cerebellum where increases in [Ca²⁺]ᵢ that occur upon stimulation (0.1- 1μM) decrease the affinity of the InsP₃ receptor and the sensitivity of Ca²⁺ mobilisation to InsP₃ (Worley et al., 1987ab; Joseph et al., 1989). This occurs in the absence of ATP at 4°C thus does not require protein phosphorylation (Supattapone et al., 1988). The same is observed in other tissues, eg. uterine smooth muscle (Varney et al., 1990), neuroblastoma cells (Chueh and Gill, 1986). However, other tissues such as blood platelets (Brass and Joseph, 1985), the adrenal cortex (Varney et al., 1990) and the vas deferens (Mourey et al., 1990) increases in cytosolic [Ca²⁺]ᵢ have very little effect on InsP₃ binding to its receptor. These different sensitivities, to Ca²⁺, have been explained by the differential distribution of calmodin, a large neutral membrane protein, which confers Ca²⁺
sensitivity upon purified receptors (Danoff et al., 1988), see earlier). However, the situation is not this simple, because whereas calmodulin is an integral membrane protein, Ca\(^{2+}\) sensitivity in a variety of peripheral tissue is irreversibly lost after exposure to low [Ca\(^{2+}\)], suggesting that the Ca\(^{2+}\)-binding protein in these tissues may only be loosely associated with the membrane (Zhao and Muallem, 1990).

In platelets, InsP\(_3\)-stimulated Ca\(^{2+}\)-mobilisation has been demonstrated (Brass and Joseph, 1985; Adunyah and Dean, 1986) by a ligand binding reaction and InsP\(_3\)-binding proteins have been demonstrated (Hansson et al., 1990). Further little work has been done on this receptor in this tissue regarding cloning and receptor expression. Ligand binding has been shown to increase with an increase in pH, and at high pH two binding sites have been distinguished, one being of low ligand affinity and the second showing high affinity. These data suggest the presence of either more than one receptor subtype or of negative cooperativity. However, binding data alone cannot distinguish between these two possibilities.

Since the InsP\(_3\) receptor has been cloned, a significant homology between itself and the ryanodine receptor found in skeletal muscle has been demonstrated (Fill and Coronado, 1988; Kwan and Putney, 1990; Shah and Part, 1988). The significance of these similarities will only be revealed with future investigations in this area.

1.14 Modified inositol phosphates.

Recognition that D-myo-inositol 1,4,5-trisphosphate is a second messenger has stimulated renewed interest in the chemistry of inositol phosphates within the last decade. The major structural requirements for InsP\(_3\)-stimulated Ca\(^{2+}\)-
mobilisation are the presence of the 4,5 vicinal phosphates with the additional phosphate at the 1- or 2- positions which increases the affinity (Berridge and Irvine, 1984; Potter, 1990). L-myo-inositol 1,4,5-trisphosphate (L-InsP3), the enantiomer of the naturally occurring molecule, is inactive (Strupish et al., 1988; Taylor et al., 1989). It is important to emphasise that to the date of beginning this study, although inositol phosphates and their analogues available differ widely in their affinities for the InsP3-receptor and their ability to mobilise Ca2+, all the compounds tested appear to be full agonists.

The contributions of the ring hydroxyl groups have been investigated, Henne et al. (1988) have studied 1-position modifications, where the phosphate moiety was substituted with bulky ester groups resulting in minimal loss of biological activity. Modifications at the 2-position also cause little or no loss in activity (Hirata et al., 1989; Hirata et al., 1990).

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP3</td>
<td>0.13 ± 0.01μM</td>
</tr>
<tr>
<td>6-deoxy-Ins(1,4,5)P3</td>
<td>6μM</td>
</tr>
<tr>
<td>scyllo-Ins(2)F(1,4,5)P3</td>
<td>0.77 ± 0.08μM</td>
</tr>
<tr>
<td>Ins(2,2)F2(1,4,5)P3</td>
<td>0.41 ± 0.05μM</td>
</tr>
</tbody>
</table>

Table 2. The effect of modifying ring hydroxyls on InsP3 induced-Ca2+ mobilisation. Modification at the 6-OH exemplified by 6-deoxy-Ins(1,4,5)P3 shows a significant loss in activity as indicated by the EC50, whereas modifications at the 2-OH show little if any loss in Ca2+ mobilising activity.
Removal of the 2-OH or its replacement by a fluorine atom show little effect. 2-deoxy-myoinositol-1,4,5-trisphosphate [Ins(2)deoxy(1,4,5)P₃] is 2.5 less potent, DL-2,2-difluoro-2-deoxy-myoinositol 1,4,5-trisphosphate [Ins(2,2)F₂(1,4,5)P₃] is 1.6 fold less potent, and DL-2-deoxy-2-fluoro-scylo-inositol 1,4,5-trisphosphate [scylo-Ins(2)F(1,4,5)P₃] is 3 fold less potent than InsP₃ (Hirata et al., 1989; Safrany et al., 1990), see Table 2.

All these results lead us to assume that the 2-OH cannot be making a major contribution to ligand receptor binding and subsequent activation, otherwise these major alterations in 2-OH functional groups will have had a significant effect on binding and activation.

These data (from Table 3) should be compared with modifications at the 6-OH where D-6-deoxy-myoinositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P₃] has an EC₅₀ of 6μM (Safrany et al., 1990) and DL-6-methoxy-myoinositol 1,4,5-trisphosphate [6-methoxy-Ins(1,4,5)P₃] has an EC₅₀ of 65μM (Polokoff et al., 1988). Such losses in activity indicate that the 6-OH is important for receptor binding and activation. The 6-OH is a neighbour to both 1- and 5-phosphate groups and removal of this group may effect the conformation of these adjacent phosphates, thus making it weaker, as seen above.

3-Deoxy-myoinositol 1,4,5-trisphosphate [3-deoxy-Ins(1,4,5)P₃] has also been synthesized and it appears to be a full agonist in releasing ⁴⁵Ca from NIH 3T3 cells. Although an EC₅₀ is not yet available, maintenance of activity appears to be probable (Seewald et al., 1990), leading to the perhaps surprising conclusion that the 3-OH is not essential for InsP₃ receptor binding and Ca²⁺ mobilisation. No data are available concerning the conformation of InsP₃ bound to its receptor. While the three phosphates will most likely make the major
contribution to binding energy with the receptor, the three hydroxyls at the 2-, 3- and 6- positions may act as either hydrogen bond donors to the receptor protein or hydrogen bond acceptors from the protein, and from the above modifications it can be seen that both the 6-OH and the 3-OH are important in activity. In addition, multiple deletions of the hydroxyl groups can lead to a substantial loss of Ca\(^{2+}\)-mobilising activity as demonstrated by DL-1,2,4-cyclohexane-3,5,6-trisphosphate (loss of \(\approx\) 130 fold activity for the racemic mixture) (Polokoff et al., 1988).

Phosphorothioate analogues, myo-inositol 1,4,5-trisphorothioate \([\text{Ins}(1,4,5)\text{PS}_3]\) and myo-inositol 5-phosphorothioate 1,4-bisphosphate \([\text{Ins}(5)\text{PS}(1,4)\text{P}_2]\) have both been synthesized. \(\text{Ins}(1,4,5)\text{PS}_3\) being metabolically stable and \(\text{Ins}(5)\text{PS}(1,4)\text{P}_2\) being still closer to \(\text{InsP}_3\) in structure. Both of these analogues are potent mobilizers of Ca\(^{2+}\) (Taylor et al., 1988; Taylor et al., 1989) and resistant to the 5-phosphatase enzyme (Willcocks et al., 1988; Csatò and Czarnetzki, 1988; Taylor et al., 1989). However, \(\text{Ins}(5)\text{PS}(1,4)\text{P}_2\) is a substrate for the 3-kinase whereas \(\text{Ins}(1,4,5)\text{PS}_3\) is not, suggesting that the 4-phosphate may interfere sterically or electronically with the 3-OH, thus inhibiting substrate binding.

\(\text{Ins}(1,4,5)\text{PS}_3\) is therefore a persistent activator of the \(\text{InsP}_3\) receptor being resistant to metabolic enzymes. As a consequence of this \(\text{Ins}(1,4,5)\text{PS}_3\) has been used to demonstrate the synergy between \(\text{InsP}_3\) and \(\text{Ins}(1,3,4,5)\text{P}_4\) Irvine et al. (1988), where in lacrimal acinar cells (Morris et al., 1987) \(\text{Ins}(1,3,4,5)\text{P}_4\) was essential in conjunction with \(\text{InsP}_3\) in maintaining a Ca\(^{2+}\)-dependent K\(^{+}\) current, dependent upon extracellular Ca\(^{2+}\), \(\text{Ins}(1,4,5)\text{PS}_3\) alone gave rise to a single transient response typical of \(\text{InsP}_3\), but together with \(\text{Ins}(1,3,4,5)\text{P}_4\) it evoked the same sustained response, confirming that the transient response with \(\text{InsP}_3\) was not due to rapid metabolism and that \(\text{Ins}(1,3,4,5)\text{P}_4\) was not producing its
effect by protecting InsP₃ against metabolism by the 5-phosphatase (Changya et al., 1989).

Inositol phosphorothioates have found applications in studies of the polyphosphoinositide signalling pathway, discussed in Potter et al. (1990abc). Thus, chemical modified inositol phosphates and their phosphorothioate analogues are proving to be valuable pharmacological tools in helping to unravel the PI signalling pathway. However the greatest benefit will be gained when a specific small molecule antagonist is identified and to this end many laboratories are working. This will greatly enhance our knowledge of this complex signal transduction pathway, for review see Potter (1990abc).

1.15 Permeabilisation methods.

The hydrophilic nature of inositol phosphates and their analogues renders these compounds impermeable to intact cell membranes. Direct access to the intracellular space is however necessary if these compounds are to interact with an intracellular receptor. Thus the cell membrane needs to become permeable and this can be achieved by one of many ways:

1.15.1 Electrical.

When a suspension of cells is exposed to a high electric field, their membranes become permeable to solutes (Knight and Baker, 1982; Baker and Knight, 1978; Knight and Scrutton, 1980). It is thought that the voltage develops across the membrane and causes the membrane to breakdown and become permeable. The magnitude of the potential difference across the cell membrane will therefore depend upon the intensity of the field and the cell radius and will vary with cell size. Thus an electric field applied across cells will cause a breakdown of the
plasma membranes of a homogeneous cell population and will not affect the functional integrity of smaller intracellular organelles. Platelets are very small cells with a diameter of 1-3 μm and therefore require a relatively large field strength to permeabilise the cell membrane (Knight et al., 1984; Knight and Scrutton, 1980; Hughes and Crawford, 1990; Knight et al., 1988).

1.15.2 Chemical.

Various chemical agents have been used to provide access into the intracellular compartment of the cell. These include:

α-toxin (Seeger et al., 1984; Thealestam, 1983; McGee et al., 1983); ATP4 (Cockcroft and Gomperts, 1979ab; Cockcroft and Gomperts, 1980; Gomperts et al., 1983); Detergents, eg. saponin and digitonin (Lapetina et al., 1984).

Saponin was used extensively in this study, and it exerts its action by interacting with the plasma membrane cholesterol, dissolving it, rendering the cells permeable. The use of detergents has been extensive in studying InsP₃-stimulated Ca²⁺-mobilisation in many cell types including platelets (Brass and Joseph, 1985; Bjorck et al., 1986; Diamond and Henrich, 1987).

1.16 Ca²⁺ detection.

Ca²⁺ plays a pivotal role platelet functions. Changes in cytosolic Ca²⁺ concentrations are important for shape change, aggregation and secretory responses, as shown in figure 9.

Free Cytosolic Ca²⁺ is low, being ≈100nM (Rink et al., 1982) and this is 10000 fold less than the concentration of free Ca²⁺ in the plasma (1mM). Because an increase in
Figure 9. Ca$^{2+}$ pools and Ca$^{2+}$ transport systems in platelets. ER, endoplasmic reticulum; Mito, mitochondrion; PM, plasma membrane.
cytosolic $[\text{Ca}^{2+}]_c$ will cause platelet activation, mechanisms in resting platelets exist that limit Ca^{2+} influx from the plasma and actively remove Ca^{2+} from the cytosol. Ca^{2+} released into the cytosol, in stimulated platelets, can originate from either the extracellular plasma via Ca^{2+} channels or from its mobilisation from one or more intracellular pools.

Various methods exist to measure Ca^{2+} fluxes, pools and intracellular concentrations in stimulated and resting cells. The direct measurement of $[\text{Ca}^{2+}]_i$ was made possible by the synthesis and subsequent development of Ca^{2+}-fluorescent indicators.

Indicators of free Ca^{2+} ions which can be loaded into cells in a non-disruptive manner initiated a revolution in the studies of intracellular Ca^{2+} homoeostasis. The first of these indicators was quin-2 (Tsien, 1988), the structure of which is based on EGTA, and it selectively binds Ca^{2+}. Subsequently, fura-2 and indo-1 (Grynkiewicz et al., 1985), a second generation of indicators, became available. Quin-2 is not cell permeable, unlike its ester derivative, and the second generation of indicators (Tsien, 1988). Thus the acetomethoxy ester derivatives of quin-2, fura-2 and indo-1 are able to cross cell membranes and once inside the cell, cytosolic esterases cleave the ester groups trapping the indicator in the cell cytosol. Fura-2 is the choice of fluorescent indicator in this study because cell loading requires incubations of 30 minute at 37°C making simple to use in addition to the advantages over quin-2 (see below).

These new indicators have several advantages over quin-2 as indicated by Grynkiewicz et al., (1985):
I. Higher efficiency of fluorescence and increased brightness, reducing the required loading levels thus reducing any buffering of Ca\(^{2+}\) transients that is observed with quin-2.

II. Better selectivity for Ca\(^{2+}\) ions over other divalent cations.

III. Ca\(^{2+}\) binding to fura-2 and indo-1 alters the wavelength of excitation and emission which enables the use of ratio fluorescence at two wavelengths giving more accurate [Ca\(^{2+}\)]\(_i\) readings.

IV. Less autofluorescence due to longer wavelength.

V. Lower affinities for Ca\(^{2+}\), which gives a wider window for [Ca\(^{2+}\)]\(_i\) measurements.

Tsien and coworkers have since developed a new group of fluorescent indicators based on rhodamine and fluorescein chromaphores (Tsien et al., 1982; Minta et al., 1989), fluo-3 is one such dye. It has visible excitation and emission wavelength which are more convenient for fluorescent microscopy and flow cytometry than the UV required by the previous indicators. However, one disadvantage is that upon Ca\(^{2+}\) binding it increases in fluorescence without an accompanied increase in wavelength as seen with fura-2 and indo-1, making it unsuitable for ratio fluorescence. The free acids of these dyes are also used to measure [Ca\(^{2+}\)]\(_i\), but because they are unable to cross membranes, they need to be used in a permeabilised cell preparation or in a cell homogenate preparation, and fura-2 free acid has been used extensively in this study.

45Ca$^{2+}$ accumulation in platelets has been studied to identify the organelle responsible for Ca$^{2+}$ sequestration (Brass, 1984). Within the platelet, both the dense tubular system and the mitochondrion can act as Ca$^{2+}$ storage organelles (LePeuch et al., 1983) see earlier, and sequestering is most likely to occur within the dense tubular system (Menashi et al., 1981).

Platelet membrane fractions have demonstrated Ca$^{2+}$ accumulation in the presence of ATP. Subsequently, a Ca$^{2+}$-dependent ATP-ase was found to be localised in the dense tubular system (Menashi et al., 1981). Hence 45Ca$^{2+}$ is taken up via the Ca$^{2+}$-dependent ATP-ase pump into the dense tubular system. In addition, further studies show that two distinct Ca$^{2+}$ pumps are associated with the plasma and intracellular human platelet membranes indicating the possible involvement of both Ca$^{2+}$-ATPases in the regulation of intracellular [Ca$^{2+}$] (Enyedi et al., 1986; Enouf et al., 1987). Many studies have been carried out using 45Ca$^{2+}$ as a probe for Ca$^{2+}$-mobilisation in InsP$_3$-stimulated platelets (Brass and Joseph, 1985; Authi and Crawford, 1985) and in the present study, 45Ca measurements are undertaken to assess the mobilisation abilities of inositol phosphate analogues.

The discovery of ion selective membranes for their later use in ion selective electrodes has meant the ability to be able to directly measure Ca$^{2+}$ release in a cell suspension is available. Ion selective electrodes have been widely used to study Ca$^{2+}$ transport and mobilisation in cells (Yamazaki et al., 1979; Streb et al., 1983). The ion selective electrode is based on a liquid membrane of calcium-bis[di(decyl)phosphate] sensor dissolved in dioctylphenylphosphonate and this was an important milestone in Ca$^{2+}$-ion determination (Craggs et al., 1979). Subsequent modifications and advances within membrane technology has
lead to the design of mini-electrodes and improved sensors based on a neutral carrier system (Ammann et al., 1975; Kopp et al., 1990).

1.17 Functional responses of platelets.

Dense granule release and aggregation are both Ca$^{2+}$ dependent functional responses. Aggregation is dependent on both Ca$^{2+}$ and Mg$^{2+}$ for the binding of fibrinogen to its receptor (see earlier). Thus, aggregation and Ca$^{2+}$ mobilisation should be parallel independent processes. However, to date no studies have been carried out to study the effect of InsP$_3$-stimulated aggregation and whether this mimicks Ca$^{2+}$-mobilisation is not certain. Aggregation is detected using an optical aggregometer (Born, 1962ab). A limitation on the use of this aggregometer is that it does not distinguish between primary and secondary aggregation.

Platelets release their granule contents upon stimulation. Granule release can occur either via a weak agonist such as ADP or adrenaline, dependent on the presence of extracellular Ca$^{2+}$ and Mg$^{2+}$, which causes initial platelet aggregation, AA release and the consecutive formation of TxA$_2$ and PGs that stimulate secretion, or release can occur independently of extracellular Ca$^{2+}$ with strong agonists such as PAF, thrombin and collagen (Siess, 1989).

In permeabilised platelets, InsP$_3$ has been shown to induce dense granule release in a dose dependent manner (Brass and Joseph, 1985; Brass et al., 1987), and dense granule release as a measure of platelet function using permeabilised platelets has been assessed in this study.
1.18 AIMS.

Ca\(^{2+}\)-mobilisation is a common feature of the majority of platelet agonists examined to date. As InsP\(_3\)-induced Ca\(^{2+}\)-mobilisation is the only well characterised system for receptor-operated calcium-mobilisation in platelets, antagonism of the InsP\(_3\) receptor in platelets is a worthwhile therapeutic goal. Therefore the aims of this thesis are:

1. To study Ca\(^{2+}\)-mobilisation induced by InsP\(_3\) and its analogues in order to develop structure/activity relationships of inositol phosphates.

InsP\(_3\)-stimulated Ca\(^{2+}\)-mobilisation in permeabilised platelets has been studied in many tissues, but little work has been carried out in platelets. The availability of many novel inositol phosphate analogues has made it possible to investigate the Ca\(^{2+}\)-mobilising abilities of these compounds and thus to establish structure/activity relationships.

2. To identify potential InsP\(_3\) receptor antagonists.

The availability of a specific InsP\(_3\)-receptor antagonist would contribute greatly to the understanding of the PI signalling pathway and in this study, we have investigated potential antagonistic activity expressed by the inositol phosphate analogues.

3. To investigate the metabolism of InsP\(_3\) in platelets and the enzymes involved in the metabolism, namely InsP\(_3\) 5-phosphatase and InsP\(_3\) 3-kinase.

InsP\(_3\) is metabolized by a series of complex steps to give active and inactive metabolites. The two main enzymes involved in InsP\(_3\) breakdown are the 5-
phosphatase and the 3-kinase enzymes. In addition, the effect of temperature on
InsP₃ metabolism was studied at 4°C, 20°C and 37°C.

4. To determine the effects of inositol phosphate analogous on InsP₃-
metabolising enzymes, namely InsP₃ 5-phosphatase and InsP₃ 3-kinase.
To examine the effect of metabolic enzyme inhibitors on InsP₃ metabolism. To
establish the possibility of the presence of isozymes and to assess the
significance of one metabolic route over the other.

5. To establish the functional effects of InsP₃ and analogues on
permeabilised platelets in terms of Ca²⁺ release, aggregation and dense
granule release.
Elevation of [Ca²⁺]ᵢ is known to trigger both aggregation and secretion in
platelets. In this study we have attempted to show these effects with the possible
aim of elucidating an inhibitor to platelet function.

6. To examine the relationship between the inhibition of Ca²⁺ influx and
InsP₃ generation, dense granule release, Ca²⁺ mobilisation and InsP₃-
stimulated Ca²⁺-mobilisation.
Ca²⁺ influx is thought to play an important role in the Ca²⁺-response induced
by InsP₃, by refilling the intracellular pools. In this study, the Ca²⁺-influx
inhibitor, SKF 93635, was used to elucidate the role of influx in PAF-
stimulated intact platelets, as well as Ca²⁺ mobilisation, dense granule release
and InsP₃ production.
MATERIALS
AND
METHODS
2.1 MATERIALS.

2.1.1 Chemicals.

Bovine serum albumin (BSA) fraction v, protease free; Adenosine 5-trisphosphate (ATP, disodium salt); ethylenediamine-tetraacetic acid (EDTA); ethyleneglycol-bis(b-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA); saponin; heparin, H-3393 and low molecular weight 3000 (H-5271); oligomycin; leupeptin; hepes (acid); mops; quin-2 (free acid) were all purchased from Sigma chemical company, Poole, Dorset, UK.

Calcium chloride (AnalaR); digitonin (AnalaR); D-glucose (AnalaR); magnesium chloride hexahydrate (AnalaR); sodium dihydrogen orthophosphate; sodium hydroxide; potassium hydroxide; sodium succinate (AnalaR); tri-sodium citrate (AnalaR); ammonium sodium orthophosphate; Dow Corning silicone oils 556 and 550 were all purchased from BDH ltd, Avon, UK.

Ionomycin (free acid); Ins(1)P (potassium salt) and Ins(1,3,4,6)P₄ (ammonium salt), were purchased from Calbiochem Company, Novobiochem, UK Ltd. Ins(1,4,5)P₃ (potassium salt), and Ins(1,3,4,5)P₄ (potassium salt) were purchased from The University of Rhode Island Foundation, Kingstone, RI, USA. Nitrocellulose filter discs and GF-B filter strips for the Brandell cell harvester were purchased from Whatman laborotory sales, Maidstone, Kent, UK. Chelex 100 chelating ion exchange resin was obtained from Bio-Rad, U.S.A; α-toxin was obtained from from Gibco BRL, Middlesex, UK.

Ammonium hydrogen orthophosphate (AnalR); MeOH (HPLC grade); tetrahydrofuran (THF) (HPLC grade) and diacylglycerol (DAG) were obtained
from Fisons, FSA laboratory supplies, Loughborough, UK. Fura-2 acetomethoxy ester (fura-2 AM) and Fura-2 free acid, calcium calibration kit and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), were purchased from Molecular Probes, Eugene, Oregon, USA. Platelet activating factor (PAF) was from Bachem Bioscience Inc. Bubendorf, Switzerland. Hypnorm was purchased from Janssen Pharmaceuticals Ltd., Oxon, UK.

SKF 96365 was a gift from Dr C.Poll, Bayer, Slough, UK. All the inositol phosphate analogues tested were provided by Prof. B.V.L.Potter.

2.1.2 Radiochemicals.

D-myö-[³H]-inositol 1,4,5-trisphosphate, [³H]InsP₃, potassium salt (44µCi/mmol; 10µCi/ml); Calcium[⁴⁵Ca] Chloride, ⁴⁵Ca, (2mCi/ml); [¹⁴C]5-hydroxytryptamine creatine sulphate [¹⁴C]5-HT, (54mC/mmol;50µCi/ml) and [³²P]gamma-Adenosine 5-trisphosphate, [³²P]gamma-ATP, (3Ci/mmol) were obtained from Amersham International, Aylesbury, Bucks, UK.
2.1.3 **Buffers.**

2.1.3.1 **Hepes buffered tyrode (HBT).**

<table>
<thead>
<tr>
<th></th>
<th>amount per litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>145mM 8.4g</td>
</tr>
<tr>
<td>Hepes</td>
<td>10mM 2.4g</td>
</tr>
<tr>
<td>KCl</td>
<td>5mM 375mg</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1.0mM 200mg</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>0.5mM 101mg</td>
</tr>
</tbody>
</table>

The above were dissolved in 950 mls of Milli-Q water and the pH adjusted to 7.4 with NaOH and the volume made up to 1 litre. Prior to use, 5.5mM glucose (100mg/100mls) and 0.25% BSA (250mg/100mls) were added and the mixture stirred gently avoiding any frothing.

2.1.3.2 **"Intracellular" like buffer (ICB).**

<table>
<thead>
<tr>
<th></th>
<th>amount per litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>120mM 89.34g</td>
</tr>
<tr>
<td>Hepes</td>
<td>20mM 47.68g</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>6.0mM 12.2g</td>
</tr>
<tr>
<td>Sodium</td>
<td>5.0mM 13.52g</td>
</tr>
<tr>
<td>succinate</td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>2.0mM 2.72g</td>
</tr>
</tbody>
</table>
The above, when dissolved in 1 litre of Milli-Q water, gave a 5x stock which was stored as 50 ml aliquots in plastic containers at -20°C. Prior to use, 10 mls of the stock 5x concentrate was brought to a total volume of 50 mls with Milli-Q water giving the working ICB. 5mM ATP was added and the pH adjusted to 6.9 with 20% w/v KOH (since ATP rapidly decomposes under acidic aqueous solutions, (Dawson and Clarke, 1972) and oligomycin 5μl of 5mg/ml stock was also added, and the [Ca^{2+}]_r was adjusted.

2.1.3.3 **High K⁺ buffer. (Brass and Joseph, 1985).**

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount per litre</th>
<th>Amount per litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>160mM</td>
<td>11.93g</td>
</tr>
<tr>
<td>Hepes</td>
<td>13.3mM</td>
<td>3.46g</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>5.3mM</td>
<td>1.08g</td>
</tr>
<tr>
<td>ATP</td>
<td>3.3mM</td>
<td>1.67g</td>
</tr>
<tr>
<td>Creatine</td>
<td>6.7mM</td>
<td>2.55mg</td>
</tr>
<tr>
<td>Phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatine kinase</td>
<td>6.7 units/ml</td>
<td>3.53mg</td>
</tr>
</tbody>
</table>

This buffer was prepared daily as some of the reagents break down on storage. The above were dissolved in Milli-Q water, the pH was adjusted to 7.1 and the final buffer was stored in a plastic container. This buffer is referred to as buffer A in the text.
2.1.3.4 **High K\(^+\) buffer.** (Hughes and Crawford, 1990).

<table>
<thead>
<tr>
<th></th>
<th>Amount per litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(^+)Glutamate</td>
<td>150mM 27.5g</td>
</tr>
<tr>
<td>Pipes</td>
<td>20mM 7.56g</td>
</tr>
<tr>
<td>ATP</td>
<td>5mM 2.72g</td>
</tr>
<tr>
<td>MgCl(_2)</td>
<td>7mM 2.84g</td>
</tr>
<tr>
<td>Glucose</td>
<td>5mM 1.00g</td>
</tr>
<tr>
<td>EGTA</td>
<td>2mM 20ml of 200mM</td>
</tr>
</tbody>
</table>

This buffer was prepared daily, as required, by dissolving the reagents in Milli-Q water and adjusting the pH to 7.3. This buffer is referred to as buffer B in the text.

2.1.3.5 **Platelet membrane buffer.**

<table>
<thead>
<tr>
<th></th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>30mM</td>
</tr>
<tr>
<td>MgCl(_2)</td>
<td>5mM</td>
</tr>
<tr>
<td>Tris-base</td>
<td>20mM</td>
</tr>
<tr>
<td>sucrose</td>
<td>0.3mM</td>
</tr>
<tr>
<td>ATP</td>
<td>1mM</td>
</tr>
<tr>
<td>PMSF</td>
<td>40µM</td>
</tr>
<tr>
<td>aprotinin</td>
<td>0.01U/ml</td>
</tr>
<tr>
<td>EGTA</td>
<td>3mM</td>
</tr>
</tbody>
</table>
These constituents were dissolved in Milli-Q water and the pH was adjusted to 7.0. The buffer was prepared daily as some constituents decompose upon storage. This buffer is referred to as buffer C in the text.

2.1.3.6 Platelet membrane storage buffer.

<table>
<thead>
<tr>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
</tr>
<tr>
<td>MgCl₂</td>
</tr>
<tr>
<td>PMSF</td>
</tr>
<tr>
<td>aprotinin</td>
</tr>
<tr>
<td>EGTA</td>
</tr>
</tbody>
</table>

The above were dissolved in Milli-Q water and the pH adjusted to 7.2. This buffer was prepared daily to avoid the breakdown of any of the constituents. This buffer is referred to as buffer D in the text.

2.1.4 Drugs and solutions.

I-O-Octadecyl-2-acetyl-sn-glycero-3-phosphocholine (PAF).

A 10⁻²M stock solution was dissolved in chloroform:methanol (4:1, v/v) and stored at -20°C. Sub-aliquots (10μl) were removed, dried under nitrogen and made up to 1ml in PBS containing 2.5mg/ml BSA to give a final concentration of 10⁻⁴M PAF. This was stored as 40μl aliquoted at -20°C.

Prostacyclin (PGI₂).

PGI₂ was a gift from Dr.B.J.R.Whittle, Wellcome laboratories, Beckenham, Kent. 1mg/ml stock solutions were prepared by dissolving the solid in 0.5M
Tris/HCl buffer (pH 10.5) and 40μg/40μl aliquots were stored at -20°C. Prior to use, an aliquot was thawed and diluted to 1 ml in 0.01M Tris/HCl buffer (pH 10.5) and stored on ice.

Ionomycin.
A stock solution of 5mM in dry DMSO was prepared and stored at 4°C.

Diacylglycerol (DAG).
1mM stock solution in CHCl₃ was prepared, aliquots of 10μl were dried down and stored at -20°C.

Digitonin.
Stock solution of 1mM in 70% ethanol was kept at 4°C.

Ins(1,4,5)P₃ and analogues.
All analogues were provided as the triethylammonium salts freeze dried solids at 0.25- 1.0 μmoles. Stock solutions of 1 mM in Milli-Q water were kept at -20°C and subsequent dilutions were carried out with ICB.

Fura-2 AM & Fura-2 free acid.
A 3x 10⁻³M solution of Fura-2 AM was prepared by dissolving in dry DMSO and stored at -20°C. A 1mM Stock solutions of Fura-2 free acid were prepared by dissolving in Milli-Q water and sub-aliquots of 20μl were stored at -20°C wrapped in aluminium foil.

Oligomycin.
5mg/ml solutions in ethanol were prepared and stored at -20°C.
All other agonists and reagents were prepared daily as required.

Decavanadate.

The species of vanadate present in aqueous solution is strongly dependent upon the pH of that solution and the concentration of vanadate present. At pH 7.2, vanadate (1.25mmol/l) exists as 50% tetramer, 30% monomer, 10% dimer and 10% other species. At pH 3.75, only decavanadate exists, (Föhr et al., 1989). 0.5M Stock solutions of monovanadate were prepared by dissolving sodium ortho-vanadate (4.6g) in 50ml of 1M KOH. Solutions of KCl (150mmol/l; 2.2g/250ml) and 20mmol/l mops (1.155g/250ml) were prepared in the same flask and the pH adjusted to 7.2. Decavanadate (5mmol/l) was prepared by the addition of 1ml of monovanadate to 99ml of KCl/Mops mixture and the pH titrated to 3.75 giving a distinctive yellow colour of the decavanadate in solution and prior to use the pH was titrated back to 7.2, (Föhr et al., 1989). Decavanadate shows characteristic UV absorbance, and using a UV spectrophotometer it appears as a broad peak between 350 and 400nm.

Ca²⁺ sponge.

Commercially available chelating resin (Chelex 100) does not sufficiently lower metal ion contamination from solutions of Ca²⁺ indicator dyes, (Meyer et al., 1990). As a result a heptadentate DTPA-based resin was prepared.

DTPA anhydride (12g, 33.6mmol) was suspended in a mixture of 100ml dry distilled DMSO and 400 ml glacial acetic acid. Dry aminoethyl Bio-Gel P-2 (16g) was then added and the mixture stirred and refluxed for 4 hours at 131°C. The resulting resin was filtered and washed twice with DMSO, twice with 0.1M NaOH, twice with 0.1M HCl and finally with 100 ml Milli-Q water, (Meyer et al., 1990). The resulting resin was left to dry and was then ready for use.
2.2 Methods.

2.2.1 Blood collection.

New Zealand white female rabbits 3.5-4.5kg were used. Rabbits were sedated with an intramuscular injection of 0.25ml/kg Hypnorm (0.32mg fentanyl citrate/ml and 10mg fluanisone/ml). After 30 minutes, 38ml of blood was collected into plastic tubes, from the ear artery, into 3.2% trisodium citrate (9:1, v/v) using a 19 gauge needle. This was followed by gentle inversion of the tubes.

2.2.2 Preparation of washed platelets.

Washed rabbit platelets were prepared according to the method for human platelets described by Poll et al (1986). This method is a modification of the original one described by Blackwell et al (1982). The collected blood was centrifuged at 185g for 10 minutes which gave rise to two layers. The platelet rich plasma (PRP) is the top layer and this was retained, discarding the lower red blood cell layer. To the PRP, PGI₂ (300ng/ml) was added and mixed by gentle inversion, the PRP was then centrifuged at 1250g for 15 minutes to give a platelet pellet. After removing the plasma, the pellet was resuspended in HBT and 100ng/ml PGI₂ was added to the suspension. The platelet suspension was centrifuged once again at 1250g for 15 minutes giving a washed platelet pellet.

The platelet suspension, after the final wash was left for 60-90 minutes to allow the elevated cAMP levels (due to PGI₂ addition) to return to normal and full platelet function to return.
2.2.3 Preparation of permeabilised platelets.

2.2.3.1 Determination of the free [Ca^{2+}] of ICB.

2ml aliquots of ICB were placed in a cuvette, 1µM fura-2 free acid was added and the calcium concentration of the buffer was determined fluorometrically. Maximal and minimal fluorescence, \((F_{\text{max}}\text{ and } F_{\text{min}})\), were determined and these values used in the equation in the later section 2.2.6. This gives the free Ca^{2+} concentration \([Ca^{2+}]_f\). \(F_{\text{max}}\) was obtained by the addition of 10mM Ca^{2+}, this excess Ca^{2+} binds to the free fura in the cell suspension thus giving a maximal fluorescence. The pH of the suspension was then rendered alkaline with 60-80µl of 2M NaOH and 100-200µl of 50mM EGTA was added to reduce the \([Ca^{2+}]_f\) producing a drop in fluorescence to a minimum. Further additions of 50mM EGTA should not produce a further drop in fluorescence. However, if a drop is observed, then sufficient EGTA has not been used and a further aliquote should be added. The changes in fluorescence were recorded and used to give actual Ca^{2+} concentrations in nM (see later section 2.2.6).

EGTA (40-100µl) of 10mM was added to the above working buffer, giving a buffered ICB. A 2ml aliquot of this buffered ICB was placed in a clean cuvette with 1µM fura-2 free acid and its \([Ca^{2+}]_f\) was determined. If the free concentration exceeded 200nM, then a further small addition of EGTA (5-10µl of 10mM) was necessary to the working ICB. The aim of this procedure was to reduce the calcium concentration in ICB to mimic intracellular calcium concentrations, thus, concentrations of 100-150nM \([Ca^{2+}]_f\) were essential.

Batches of stock ICB were found to require similar amounts of EGTA to reduce \([Ca^{2+}]_f\) to between 100-150nM suggesting that the major contaminating source of Ca^{2+} was the ICB's constituent salts.
Whenever ICB is used it refers to a buffer whose Ca\(^{2+}\) content has been buffered to between 100-150nM, unless otherwise stated.

2.2.3.2 Permeabilisation techniques.

2.2.3.2.1 Chemical.

Platelets were washed as described in sections 2.2.2. The suspension was centrifuged at 1250g for 15 minutes and the resulting pellet was resuspended in ICB. The suspension was centrifuged once again and the pellet resuspended to 5mls in ICB and allowed to equilibrate at room temperature for 20-30 minutes. Saponin 40\(\mu\)g/ml (40\(\mu\)l of 5mg/ml stock) was added and the platelets were mixed for 1 minute and pelleted a final time using the above conditions, and resuspended in ICB to give a corrected final cell count of 10\(^9\) platelets/ml. The permeabilised platelets were then left to recover for 60 minutes prior to use.

When permeabilising using \(\alpha\)-toxin, a similar procedure is followed as above. Platelets were washed as described in section 2.2.2, and the suspension was pelleted as above. The pellet was resuspended in buffer A and centrifuged as above. The resulting pellet was resuspended in the same buffer and \(\alpha\)-toxin (100 U/10\(^7\)cells) was added to the cell suspension and left in contact for 10 minutes. The suspension was then centrifuged and the final pellet resuspended in the high K\(^+\) buffer to a corrected cell count of 10\(^9\) cells/ml, after which the cells were left to recover for 60 minutes. The cells were then ready for use.
2.2.3.2.2 Electrical.

Platelets were washed as described in section 2.2.2, and were pelleted once more. The resulting pellet was resuspended in ICB and centrifuged, at 1250g, as above. The pellet was resuspended in ICB at a concentration of 5×10^9 cells/ml. 500μl aliquots were placed in the chamber of the electroporator, already containing a marker such as 1μM lucifer yellow or 500cpm ^{3}P[H]InsP$_3$, and exposed to a number of cycles of high voltage discharge (5-15 cycles at 2-5kV), after permeabilisation all the aliquots were pooled and the cell count corrected to 10^9 platelets/ml. The cells were then ready for use.

2.2.4 Resealing of electropermeabilised platelets.

Platelets were washed as in section 2.2.2, electroporated as above and the aliquots combined. The platelet suspension was then removed and kept at 37°C. At predetermined time points, 0, 30 and 60 minutes, aliquots of 500μl were removed to test for resealing and incorporation of lucifer yellow or ^{3}P[H]InsP$_3$ into the platelets by UV spectrophotometry or liquid scintillation.

2.2.4.1 To test for resealing of electropermeabilised platelets.

Platelets were washed as in section 2.2.2, loaded with 14C]-5-HT, washed a further once in HBT and twice in ICB and resuspended to 5×10^9 cell/ml. 500μl aliquots were then porated as above, pooled together and kept at 37°C. At predetermined time points, 0, 30 and 60 minutes, 100μl aliquots were removed and challenged with 1mM Ca$^{2+}$ and 14C]-5-HT release was determined (see later section 2.2.7).
2.2.5 Preparation of platelet membranes.

2.2.5.1 Preparation of crude platelet membranes.

Platelets were isolated and washed twice in HBT as in section 2.2.2 and then two times in ICB. Prior to disruption the platelets were centrifuged at 1250g for 15 minutes and resuspended to 10^9 cell/ml in ICB containing 10μM leupeptin and 10μM pepstatin. The platelet suspension was then rapidly freeze-thawed three times by placing in liquid nitrogen and subsequently at 37°C. The resulting suspension was centrifuged at 25 000g for 60 minutes, and the pellet resuspended in ICB containing 10μM leupeptin. The protein concentration of the platelet membrane suspension was determined using the Bio-rad Protein assay (see 2.2.11).

2.2.5.2 Preparation of a pure platelet membrane.

Platelets were isolated and washed as in section 2.2.2, the platelet pellet was suspended in buffer C to a small volume of 5mls. 1ml aliquots were kept on ice and sonicated for 5x 10 seconds. Subsequently, the sonicated aliquotes were pooled together to give the platelet homogenate. The platelet homogenate was centrifuged at 2000g for 30 minutes and the resulting supernatant was kept aside while the pellet was resuspended in buffer C and resonicated as above. The resulting sonicated suspension was centrifuged at 3000g for 30 minutes and the supernatant combined with that of the first sedimentation giving a complete homogenate of platelet membranes. The complete homogenate was then centrifuged at 60 000 for 60 minutes, the resulting pellet was resuspended in 1 ml of buffer C and the protein content determined. The suspension was
subsequently diluted in the storage buffer (buffer D), according to the final protein concentration required, and stored as 500μl aliquots at -70°C.

2.2.6 \(\text{Ca}^{2+} \) measurements in permeabilised platelets.

2.2.6.1 \(45\text{Ca}^{2+} \) release assay from permeabilised platelets.

2.2.6.1.1 \(45\text{Ca}^{2+} \) uptake and the investigation of permeabilisation.

Washed platelets were prepared as described as in section 2.2.2 and were permeabilised with 20μg/ml, 4μg/ml and 80μg/ml saponin. 15μCi \(45\text{Ca} \) (100μl of 1 in 10 dilution of stock) was added and uptake into the cells was determined by removing duplicate 100μl aliquots, into separate tubes, at timed intervals of 0, 10, 30, 60, 90, 120, 150 and 180 minutes. \(45\text{Ca} \) uptake was terminated by the addition of 250μl of silicon oil mixture (55%: 45% of fluid 556 and fluid 550), to each tube and the cells were centrifuged through the silicon oil (16 000g, 5 minutes), resulting in the separation of the aqueous and oil phases and giving rise to a pellet which contains the unreleased \(45\text{Ca} \). After centrifugation, the aqueous layer was removed and the tubes inverted, for 20 minutes, to allow the oil to run from the tube, leaving the platelet pellet at the bottom of the tube. 1ml of optiphase scintillent was then added to each tube, and the amount of \(45\text{Ca} \) determined by liquid scintillation.

This initial method of centrifuging the platelets through silicon oil proved to be problematic. The platelets were not pelleting in the conventional manner but smearing all over the tube. Subsequently, making it difficult to separate the aqueous layer from the oil layer and not resulting in an intact pellet at the bottom of the tube (possibly due to the adhesive nature of stimulated platelets). The density of the oil was modified to a lower density to allow the easier
movement of cells through the oil, and to a higher density to allow the more uniform movement with a longer time for centrifugation. However, in both cases complete pellet separation proved to be difficult. Thus, an alternative method was employed to achieve separation of the stimulated platelets from their bathing medium. This was achieved using a cell harvester with GF-B filter strips. The platelet suspension was filtered through these strips, and the stimulated platelets with their associated radioactivity would remain on the filter strips. The rest of the unassociated radioactivity going to waste. The amount of 45Ca associated with the stimulated platelets was subsequently determined by liquid scintillation.

2.2.6.1.2 Calculation for InsP$_3$- or analogue-induced 45Ca release.

\[\% \text{ 45Ca release induced by InsP$_3$ or analogue} = \frac{T_b - IP}{T_b - I} \]

Where:

- T_b is the cpm loaded into permeabilised, untreated platelets ($100\mu l; 10^9$ cells/ml);
- IP is the cpm remaining in permeabilised platelets ($100\mu l; 10^9$ cells/ml) after challenging with InsP$_3$ or analogue (10nM -100μM) for 3 minutes;
- I is the cpm remaining in permeabilised platelets ($100\mu l; 10^9$ cells/ml) after ionomycin treatment (30μM).

\[\% \text{ Ionomycin-induced 45Ca release} = \frac{T_b - I}{T_b} \]
Where T_b is the cpm loaded into permeabilised, untreated platelets ($100\mu l; 10^9$ cells/ml); I is the cpm remaining in permeabilised platelets ($100\mu l; 10^9$ cells/ml) after ionomycin treatment (30μM).

2.2.6.2.3 45Ca$^{2+}$ release from permeabilised platelets.

Platelets were isolated, washed and permeabilised as in section 2.2.3, resuspended in ICB and loaded with 15μCi 45Ca and left for 60-90 minutes (as above). After this time platelets ($100\mu l; 10^9$ cells/ml) were in contact with 3μM InsP$_3$, for 0, 5, 15, 30, 45, 60, 180, 300 and 600 seconds, at 4°C, 20°C and 37°C and the cell associated 45Ca, for the time course, determined by rapid filtration as above. 100% release was determined by 30μM ionomycin and all results were expressed as a percentage of ionophore-releasable 45Ca, see above.

2.2.6.1.4 Optimum cell number.

Washed platelets were prepared as in section 2.2.2, and were resuspended to a cell count of 10^8, 2x 10^8, and 10^9 platelets/ml in ICB. The platelets were then permeabilised with 40μg/ml saponin and incubated with 15μCi 45Ca (see section 2.2.3) for 60-90 minutes. 100μl aliquotes of the permeabilised platelets were then stimulated with 3μM InsP$_3$ for 3 minutes, and the associated radiolabel isolated by rapid filtration. The percentage uptake, and release of 45Ca by the cells by the agonist were determined as above.

2.2.6.1.5 Platelet integrity upon saponin treatment.

Platelets were isolated and washed as in section 2.2.2, loaded with $[^{14}$C]5-HT (see section 2.2.7) and washed a further two times in HBT, twice in ICB and
resuspended to 10⁹ cells/ml in ICB, as in section 2.2.2. Platelets were then permeabilised with varying saponin concentrations of 5, 10, 20, 40 and 80μg/ml saponin for 1 minute, and [¹⁴C]5-HT release, by the permeabilised platelets, was determined as in section 2.2.7.

2.2.6.1.6 Analogue-induced ⁴⁵Ca-release.

Platelets were washed and permeabilised as in section 2.2.3, resuspended in ICB at 10⁹ cells/ml, and loaded with 15μCi ⁴⁵Ca and left for 60-90 minutes (as above). After this time platelets (100μl; 10⁹ cells/ml) were challenged with a dose range of the analogue (10nM-100μM) for 3 minutes at 4°C or 20°C, to give a dose response curve. The cell associated ⁴⁵Ca radiolabel was isolated by rapid filtration, and determined by liquid scintillation. An InsP₃ dose response curve (10nM-30μM) was also constructed daily in order to assess platelet responsiveness. 100% release was determined by 30μM ionomycin and all results were expressed as a percentage of ionophore-releasable ⁴⁵Ca, see above.

2.2.6.1.7 Testing for antagonistic activity.

Platelets were washed and permeabilised as in section 2.2.3, resuspended in ICB at 10⁹ cells/ml and loaded with 15μCi ⁴⁵Ca for 60-90 minutes (as above). After this time platelets (100μl; 10⁹ cells/ml) were challenged with mixtures of analogue (10nM-100μM) and InsP₃ (300nM at 4°C and 3μM at 20°C) for 3 minutes at 4°C or 20°C to give a dose response curve. ⁴⁵Ca release was terminated after 3 minutes by rapid filtration and ⁴⁵Ca determined by liquid scintillation. An InsP₃ dose response curve (10nM-30μM) was also constructed daily in order to assess platelet responsiveness. 100% release was determined
by 30μM ionomycin and all results were expressed as a percentage of ionophore-releasable 45Ca, see above.

2.2.6.2 Fluorometric measurements.

2.2.6.2.1 Platelet preparation.

Platelets were isolated and washed as described in section 2.2.2. The platelets were resuspended in ICB to a corrected cell number of 5x 10⁹ cell/ml and left to recover for 45 minutes. Platelets were permeabilised with either saponin (40μg/ml for 1 minute) or electrically (5-15 cycles at 5kV) (see section 2.2.3) and resuspended to 10⁹ cells/ml. 2mls aliquots of these permeabilised platelets were placed in a quartz cuvette and 1μM fura-2 free acid added. The Ca²⁺ signal was calibrated, by obtaining the F_{max} and F_{min} (see section 2.2.3.1), and the basal Ca²⁺ concentration of the permeabilised platelet suspension in the cuvette was buffered to between 100-200nM. The changes in fluorescence, upon agonist addition, were recorded using a PTi fluorometer (excitation 340 and 380 nM, emission 510nM; 4nm slit width) fitted with a thermostated cuvette compartment and a stirring attachment.

2.2.6.2.2 Calibration of the fluorescence.

This was carried out prior to the experiment by measuring the maximal fluorescence (F_{max}) and the minimum fluorescence (F_{min}). F_{max} was obtained by the addition of 10mM Ca²⁺. This excess Ca²⁺ binds to the free fura in the cell suspension thus giving a maximal fluorescence. The pH of the suspension was then rendered alkaline with 60-80μl of 2M NaOH and 100-200μl of 50mM EGTA was added to reduce the $[\text{Ca}^{2+}]_c$, producing a drop in fluorescence.
to a minimum. Free Ca\(^{2+}\) measurements using fluorescent indicators rely on the change in fluorescent properties following Ca\(^{2+}\) binding to report the degree of Ca\(^{2+}\) saturation of the indicator. At equilibrium, this is related to the free [Ca\(^{2+}\)] according to the mass action equation

\[
K_d = \frac{[X] \times [Ca^{2+}]}{[CaX]}
\]

which gives;

\[
[Ca^{2+}] = K_d \times \frac{[CaX]}{[X]}
\]

where;

X is the fluorescent indicator which binds Ca\(^{2+}\); K\(_d\) is the dissociation constant of the fluorescent indicator.

Using the fluorescent dye Fura-2 AM, two wavelengths can be used to carry out [Ca\(^{2+}\)]\(_i\) measurements and obtain signals which are proportional to Ca\(^{2+}\)- bound and Ca\(^{2+}\)- free indicator. The ratio of fluorescence at the two wavelengths is directly related to the ratio of the two forms of dye and therefore can be used to calculate [Ca\(^{2+}\)]\(_i\). The equation which relates measured Ca\(^{2+}\)- bound/ Ca\(^{2+}\)-free fluorescence ratio (R) to [Ca\(^{2+}\)]\(_i\) is similar to that of the single-wavelength equation;

\[
[Ca^{2+}]_i = K_d \times \frac{R - R_{\text{min}} \times S_{\text{b2}}}{R_{\text{max}} - R} \times S_{\text{D}}
\]

where;

R\(_{\text{max}}\) is the fluorescence ratio under saturating Ca\(^{2+}\); R\(_{\text{min}}\) is the fluorescence ratio under free Ca\(^{2+}\) conditions; S\(_D\)/S\(_{\text{b2}}\) is the ratio of fluorescence values of
Ca\(^{2+}\) bound/ Ca\(^{2+}\) free indicator measured at the wavelength used to monitor the Ca\(^{2+}\) free concentration.

The main advantage of dual wavelength indicators such as Fura-2 AM is that the absolute concentration of the indicator within the cell is not vital as a ratio of bound/ free indicator is used, thus equivalent loading of cells between days is not essential (Grynkiewicz et al., 1985).

2.2.6.2.3 Modifications on the original technique.

Intact washed platelets were suspended in different buffers prior to permeabilisation. ICB (buffered Ca\(^{2+}\) to 100-150nM and unbuffered), HBT, Buffers A and B were used. In addition, preloading with fura-2 AM, permeabilisation of platelets in the cuvette and electroporation of cells were investigated.

2.2.7 Assessment of permeabilised platelet function. \([^{14}C]\)5-HT release assay.

5-HT is accumulated into platelet dense granules by several mechanisms, against a concentration gradient (Pletscher, 1986). This phenomenon is utilized in this assay and upon incubating platelets with \([^{14}C]\)5-HT, accumulation into the dense granule is achieved. Upon activation, dense granules release their contents which includes the radiolabel.

2.2.7.1 Platelet preparation.

Platelets were isolated and washed as described in section 2.2.2. The pellet was subsequently resuspended to a cell number of 8x10\(^8\)cells/ml and incubated with
200nCi/ml [¹⁴C]5-HT at 37°C for 30 minutes. This was followed by washing the platelets twice in HBT to remove any extracellular [¹⁴C]5-HT and twice in ICB (or high K⁺ buffer A; depending on the experiment). The washed platelets were permeabilised either, electrically (5-15 cycles at 5kV) or with saponin (40μg/ml for 1 minute) (see results). 500μl aliquots of the permeabilised platelets were transferred to Eppendorf tubes and stimulated with the appropriate agent for 10 minutes at 37°C. Release was terminated by removing 500μl aliquots into ice-cold Eppendorfs containing 40μl of 100mM EGTA. The samples were centrifuged at 12 000g for 5 minutes and two 200μl aliquots of the supernatent were removed into 4 mls of liquid scintillent and the amount of [¹⁴C]5-HT was determined by liquid scintillation. Percentage release from platelets was then calculated using the following equation (Holmsen & Dangelmaier, 1989):

\[
\% [¹⁴C]5-HT\text{ release} = \frac{T_s - B_o}{T_c - B_o} \times 100
\]

where,

- \(T_c \) is counts per minute (cpm) in the same volume of untreated, uncentrifuged platelets;
- \(T_s \) is the cpm obtained after centrifugation of stimulated platelets;
- \(B_o \) is the cpm due to the extracellular [¹⁴C]5-HT in untreated, centrifuged platelets.

2.2.7.2 Electroporated cells:

Platelets were isolated and washed in HBT (as in section 2.2.2) and loaded with 200nCi [¹⁴C]5-HT, as above. The washed platelets were then washed twice in HBT, to remove any excess [¹⁴C]5-HT, and twice in ICB, finally resuspended to 10⁹ cells/ml in ICB and left for one hour to recover. 1ml aliquots of the intact platelets were transferred to the perspex chamber of the electroporator and a
current was passed over the cells for 5-10 seconds at varying intensities and number of cycles (5-15 cycles at 2-5kV). The treated platelets were then removed from the perspex chamber, and [14C]5-HT release assay was carried out on 100μl aliquots of the permeabilised cells (as above).

2.2.7.3 Saponin permeabilised cells.

Platelets were isolated washed in HBT (as in section 2.2.2), loaded with 200nCi [14C]5-HT, as above. The platelets were then washed two times in HBT and finally resuspended in HBT to 4x10^8 cells/ml. The platelets were then left for an hour to rest and prior to use diluted 1 in 3 with High K⁺ buffer, (Brass and Joseph, 1985). 500μl aliquots were transferred into eppendorf tubes, treated with saponin, 5μg/ml-80μg/ml to ascertain the effect of saponin on platelet 5-HT content (see results). Subsequently, permeabilised platelets were treated with an agonist and the [14C]5-HT release ability of each agonist was evaluated (as above).

2.2.8 Ca²⁺ measurements in platelet membranes.

2.2.8.1 ⁴⁵Ca²⁺ release assay in platelet membranes.

2.2.8.1.1 ⁴⁵Ca²⁺ uptake in platelet membranes.

Platelet membranes, crude or pure were prepared as in section 2.2.5 and were used in these experiments. Platelet membranes were loaded with 15μCi ⁴⁵Ca and uptake into the membranes cells was determined by removing duplicate 100μl aliquots at 0, 10, 15, 30, 60, 120 and 180 minutes. The amount of membrane associated ⁴⁵Ca determined by rapid filtration of the suspension on a Brandell
harvester using GF-B filter strips. The radioactivity was then determined by liquid scintillation and the time-course of 45Ca uptake was determined.

2.2.8.1.2 45Ca$^{2+}$ release from platelet membranes.

Platelet membranes (crude or pure) were prepared as in section 2.2.5 and loaded with 15μCi 45Ca for 90-120 minutes. 100μl aliquots of these membranes were incubated with a dose range of InsP$_3$ (10nM-30μM) for 3 minutes and 45Ca release was terminated by rapid filtration as above. 100% release was determined by 30μM ionomycin and all InsP$_3$ induced 45Ca release was expressed as a percentage of ionophore-releasable 45Ca (see section 2.2.6.1).

2.2.8.1.3 The effect of heparin on InsP$_3$ induced 45Ca release.

Platelet membrane preparations, crude or pure were prepared as above and loaded with 15μCi 45Ca for 90-120 minutes. 100μl aliquots of these membranes were incubated with a dose range of heparin (100ng/ml-100μg/ml) for 3 and 5 minutes, followed by 10μM InsP$_3$ for 3 minutes. 45Ca release was terminated by rapid filtration, and the amount of 45Ca release determined by liquid scintillation, using the equations in section 2.2.6.1.

2.2.8.2 Fluorometric measurements from platelet membranes.

2.2.8.2.1. Calibration of the fluorescence.

The Ca$^{2+}$ content of ICB was determined as in section 2.2.3 and adjusted to 100-200nM Ca$^{2+}$. Platelet membranes were prepared as in section 2.2.5. The membrane suspension was then centrifuged at 25 000 rpm for 30 minutes and the protein concentration of the membrane suspension was determined. The
resulting pellet was then resuspended, in ICB, at varying protein concentrations of 0.1mg/ml, 0.3mg/ml and 0.95mg/ml. 2mls of membranes were then transferred to a quartz cuvette and placed in the thermostated compartment of the fluorometer and stirred. 1μM fura-2 free acid was then added and the fluorescence signal was calibrated using excess Ca²⁺ (~ 10mM), to give the maximal signal, and excess EGTA (100-200μl of 50mM) with alkali (60-80μl of 2mM) to give the minimum fluorescence. The changes in fluorescence were recorded on a PTi fluorometer as before and the actual [Ca²⁺] was thus calculated according to the equation of Grynkiewicz et al (1985).

2.2.8.2.2 Ca²⁺ measurements in platelet membranes.

Platelet membranes were prepared as in sections 2.2.5. Platelet membranes were centrifuged at 25000 rpm for 30 minutes and the protein concentration of the membrane suspension was determined. The resulting pellet was then resuspended, in ICB, at a protein concentration of 0.95mg/ml. 2mls of membranes were then transferred to a quartz cuvette and placed in the thermostated compartment of the fluorometer and stirred. 1μM fura-2 free acid was then added and the fluorescence signal was calibrated. Agonists were then added to subsequent 2ml aliquotes of membranes in the cuvette, and changes in Ca²⁺ were recorded over time on a PTi fluorometer.

2.2.9 Methods in the study of myo-inositol 1,4,5-trisphosphate metabolism.

2.2.9.1 [PH]InsP₃ metabolism.
Platelets were washed and permeabilised, with 40μg/ml saponin, as in section 2.2.3 and were left to recover for 60 minutes. After 60 minutes recovery time, 50nCi [PH]-InsP₃ was added to 100μl aliquots of permeabilised platelets and
metabolism was allowed to proceed. Metabolism was terminated after 0, 1, 3 and 10 minutes by the addition of 500μl of ice cold chloroform/ methanol (1:1) with added 1% HCl, 200μl chloroform, 200μl chloroform/ methanol (2:1) and 100μl water, (Ward et al., 1992). The samples were then centrifuged at 1400rpm for 5 minutes and the aqueous layer retained. The organic layer was re-extracted with a further 500μl chloroform/ methanol (1:1) with 1% HCl, 100μl chloroform and 100μl water. The sample was centrifuged as above and the aqueous layers combined. The combined aqueous samples were then neutralized to pH 7.5 using 200μl 1mM Hepes, 10M KOH (≈ 100-200μl) and 10μl universal indicator (to check pH), dried down using a speed vac and finally reconstituted to 200μl with Milli-Q water. 100μl aliquots were either injected on the HPLC, or stored at -20°C for later analysis on an HPLC.

2.2.9.1.1 HPLC Elution gradient.

<table>
<thead>
<tr>
<th>Time(min)</th>
<th>A%</th>
<th>B%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>61</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>66</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

A is Milli-Q water; B is phosphate buffer.

Ammonium hydrogen orthophosphate buffer (1.25M) was prepared by dissolving 165 grams in 800 mls Milli-Q water. The pH was then adjusted to
3.8 using orthophosphoric acid and the final volume made to 1 ltr, (Ward et al., 1992).

2.2.9.1.2 The effect of InsP₃ metabolic enzyme inhibitors on [³H]-InsP₃ metabolism.

Platelets were washed and permeabilised, with 40μg/ml saponin, as in section 2.2.3 and left to recover for 60 minutes. 100μl Aliquots of the permeabilised platelets were preincubated with a dose range (0, 3, 10 and 30μM) of the agent [Ins(1,3,5)PS₃, L-Ins(1,4,5)PS₃] or vehicle for 5 minutes, then followed by the addition of 50nCi [³H]-InsP₃. Metabolism was allowed to proceed and terminated after 0, 1, 3 and 10 minutes as above, and the inositol phosphates extracted as above and injected onto an HPLC separation column.

2.2.9.2 Methods to incorporate [³²P]gamma-ATP into myo-inositol 1,3,4,5-tetrakisphosphate.

2.2.9.2.1 [³²P]-incorporation into Ins(1,3,4,5)P₄.

Platelets were washed and permeabilised, with 40μg/ml saponin, as in section 2.2.3 and left to recover for 60 minutes. 100μl Aliquots of the permeabilised platelets were then incubated with 1μCi [³²P]gamma-ATP for 1,3,5 and 10 minutes and incorporation was terminated by quenching with 500μl ice cold chloroform/ methanol (1:1) with 1% HCl, 200μl chloroform/ methanol (2:1), 200μl chloroform and 200μl water. The samples were centrifuged at 1400 rpm for 5 min, the aqueous layer retained and the organic layer re-extracted with 500μl chloroform/ methanol (1:1) with 1% HCl (as above). The samples were then centrifuged as above and the aqueous layers combined and neutralised to
pH 7.5 using 10μl universal indicator, 1mM Hepes and 10M KOH. The
samples were then treated as above.

2.2.9.2.2 The effect of InsP₃ metabolic enzyme inhibitors on [³²P]gamma-ATP
incorporation.

Platelets were washed and permeabilised, with 40μg/ml saponin as in section
2.2.3 and left to recover for 60 minutes. 100μl aliquotes of the permeabilised
platelets were pretreated with a dose range (3-30μM) of the analogue
[Ins(1,3,5)PS₃ or L-Ins(1,4,5)PS₃ or vehicle] for 5 minutes then 1μCi
[³²P]gamma-ATP was added and incorporation of [³²P]gamma-ATP was
terminated at 1,3,5 and 10 minutes (as above) and the inositol phosphates
extracted, see earlier.

2.2.10 Studies on whole platelets.

2.2.10.1 Fluorometric Ca²⁺ measurements.

2.2.10.1.1 Platelet preparation.
Platelets were isolated and washed and prepared as in section 2.2.2. The platelet
pellet was resuspended to a corrected cell count of 8x 10⁸cell/ml and incubated
with 2.5μM Fura-2 AM for 30 minutes at 37°C. The cell suspension was
washed twice in HBT, with the addition of 100nM PGI₂, to remove any excess
fura-2. Finally, the platelet count was adjusted to 2x 10⁸ platelets/ml, in HBT,
and they were left to recover for 60-90 minutes.

2ml aliquots of platelet suspension was placed in a thermostatted cuvette (at
37°C) fitted with a stirrer. The Ca²⁺/fura 2 fluorescence was calibrated as
described above (Grynkiewicz et al., 1985). The changes in [Ca2+]; were recorded using a PTi fluorometer; excitation 340 & 380, emission 510nM, 4nm slit width.

2.2.10.1.2 Calibration of the fluorescence.

Calibration of the Ca2+-Fura fluorescence was carried out as described by Grynkiewicz et al (1985). Prior to carrying out an experiment, fluorescence was calibrated by measuring the maximal fluorescence (F\textsubscript{max}) obtained by lysing platelets with 50\mu M digitonin in the presence of 1mM Ca2+. This causes cell lysis, releasing intracellular fura-2, which comes into contact with excess calcium and binds to it giving a maximal fluorescence. The minimum fluorescence was obtained by rendering the platelet lysate alkali ≥ 8.5, with ≈ 80\mu l of 2M NaOH and chelating the calcium with excess EGTA (100-200\mu l of 50mM), causing a drop of fluorescence to a minimum. [Ca2+]; was then determined using the equation in section 2.2.6.2.

2.2.10.2 Dense granule release.

Platelets were isolated and washed as described in section 2.2.3. The platelet pellet was resuspended to 8x 108cells/ml and incubated with 200nCi [14C]5-HT for 30 minutes at 37°C. Platelets were washed twice, with the addition of PGI\textsubscript{2}, to remove any extracellular 5-HT and the cell count adjusted to 2x 108 platelets/ml and left to recover for 60-90 minutes. 500\mu l aliquots of the platelet suspension were transferred into eppendorf tubes and stimulated with a dose range (10nM-30\mu M) of the appropriate agonist and the assay was carried out as in section 2.2.7.
2.2.10.3 Agonist-induced InsP₃ production from intact platelets.

2.2.10.3.1. Sample preparation.

Platelets were isolated and washed as described in section 2.2.3. The platelets were washed a further 2 times in HBT and the final cell count adjusted to 10⁶ cell/ml. The platelets were then left to recover for 60-90 minutes. Aliquots of 500μl were placed in aggregometer cuvettes and the platelets were stimulated with 300nM PAF, with continuous stirring at 37°C. Activation was terminated after 5 seconds with the addition of 100μl ice cold 20% perchloric acid. Proteins were allowed to sediment on ice for 20 minutes, followed by centrifugation at 2000g for 15 minutes at 4°C. The supernatents were retained and titrated to pH 7.5 with 1.5M KOH containing 60mM Hepes buffer and 5μl of universal indicator. Any precipitate KClO₄ was removed by sedimentation at 2000g for 15 minutes and the supernatent retained for assay.

2.2.10.3.2 Preparation of InsP₃ standards for [³H]InsP₃ binding assay.

A series of eight working [³H]InsP₃ standards were prepared ranging from 0.19-25pmol/100μl, by a serial dilution of the 25pmol standard, from an Amersham assay kit, into Milli-Q water. In order to minimise loss of phosphates, plasticware was used throughout the assay, also acidic conditions can hydrolyse and scramble phosphorylated inositols thus neutralization was essential prior to the assay.
2.2.10.3.3 [3H]InsP₃ production.

The samples and standards, from above, were assayed for InsP₃ using the D-myo-inositol-1,4,5-trisphosphate assay system from Amersham. Provided in this kit are; binding protein, assay buffer, tracer and standard. The reagents in table 3 below were added together in eppendorf tubes, ensuring that the binding protein was the last to be added. The tubes were then vortexed and incubated for 15 minutes on ice, followed by centrifugation at 2000g for 10 minutes at 4°C giving a pellet which contained the bound [3H]InsP₃. 100μl aliquots of Milli-Q water and 4 mls of scintillent cocktail were added to each tube, and the radioactivity per sample determined by a β-scintillation counter.

<table>
<thead>
<tr>
<th></th>
<th>Volume in μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc</td>
<td>NSB</td>
</tr>
<tr>
<td>Buffer</td>
<td>50</td>
</tr>
<tr>
<td>H₂O</td>
<td>100</td>
</tr>
<tr>
<td>Standard</td>
<td>-</td>
</tr>
<tr>
<td>Sample</td>
<td>-</td>
</tr>
<tr>
<td>Tracer</td>
<td>50</td>
</tr>
<tr>
<td>Binding prot</td>
<td>-</td>
</tr>
</tbody>
</table>

Tc is the total counts in cpm; NSB is the nonspecific binding; Bo is the zero standard; STD is the standard; Spl is the sample. The amount of InsP produced per sample was calculated according to the assay kit, and in all calculations the cpm for NSB has been subtracted from all other counts.

Table 3. Showing the reagents required for [3H]InsP₃ assay.
2.2.11 Protein assay.

The Bio-rad protein assay was used to determine the protein content of platelet preparations. The Bio-rad assay is a dye binding assay based on the differential colour changes of a dye in response to various concentrations of protein, utilising the absorbance maximum of the acidic solution of coomassie brilliant blue G-250 (used in the assay) which shifts from 465nm to 595 nm when binding to a protein occurs, (Bradford, 1976). Thus, this assay was used as the absorbance of the dye-protein complex is more stable it is much easier to carry out, requiring only one reagent and a short incubation time and finally, it is free from most of the interferences which limit the application of the other assays.

2.2.11.1 Sample preparation.

Samples of platelets were washed twice in BSA free HBT and resuspended to the appropriate cell number of 10^8, 3×10^8 or 10^9 cells/ml. The suspensions were then exposed to a rapid freeze thawing process for maximum cell disruption by immersion in liquid nitrogen and defrosting at 37°C in a water bath. Duplicate 100µl aliquots were assayed against a standard curve.

NOTE

The number of times each experiment was performed is given in the respective figure legends, and where possible, the data are given as the mean ± SE. When error bars are not seen on a figure, they are smaller than the symbol size.
RESULTS
3.1 \(^{45}\text{Ca}-\text{mobilisation by InsP}_3\) and analogues to develop structure/activity relationships and to aid identification of an InsP\(_3\) receptor antagonist.

3.1.1 Optimising \(^{45}\text{Ca} \text{ release assay conditions.}\)

3.1.1.1 The effect of saponin on platelet integrity.
In order to investigate the effect of saponin on platelets, platelets were loaded with \([^{14}\text{C}]5\text{-HT}\), suspended in ICB buffer having \([\text{Ca}^{2+}]_o\) of 100-200nM and treated with a dose range of saponin, for set time intervals after which time \([^{14}\text{C}]5\text{-HT}\) release was determined (figure 10).

It was found that the low concentrations of saponin (5, 10 and 20\(\mu\text{g/ml}\)) had an insignificant effect on platelet \([^{14}\text{C}]5\text{-HT}\) loss over the 10 minute incubation time period (figure 10). 40\(\mu\text{g/ml}\) saponin was a little more disruptive where incubations of 5 minutes caused 35% of dense granule contents to be released reaching a maximum of 45% release at 10 minutes. Worse still was 80\(\mu\text{g/ml}\) saponin where 40% release occurred after incubations of 1 minute, which increased with time reaching a maximum of 65% after 10 minute incubations.

A concentration is required that will permeabilise the cells but have no adverse effect on the platelet structure, intracellular stores and platelet function, thus a concentration of 20\(\mu\text{g/ml}\), 40\(\mu\text{g/ml}\) and 80\(\mu\text{g/ml}\) were used for further investigation.

3.1.1.2 Optimal saponin concentration for \(^{45}\text{Ca}\) loading.
Platelets were permeabilised with 20\(\mu\text{g/ml}\), 40\(\mu\text{g/ml}\) and 80\(\mu\text{g/ml}\) saponin for 1 minute and \(^{45}\text{Ca}\) uptake determined at set time points over a period of 3 hours. With all the saponin concentrations tested, \(^{45}\text{Ca}\) loading reached a plateau after 60 minutes and remained at this level for the following 2 hours (figure 11).

However 20\(\mu\text{g/ml}\) saponin only resulted in a maximal of
Figure 10. The effect of saponin on dense granule integrity. Platelets were loaded with [14C]5-HT and treated with various saponin concentrations, 5 (●), 10 (▲), 20 (▲), 40 (●) and 80μg/ml () for 1, 3, 5 and 10 minutes and degranulation was determined. Each point is mean ± SE of three determinations.
Figure 11. Optimal saponin concentration for 45Ca uptake and time course. Platelets were permeabilised with 20 (●), 40 (▲) and 80μg/ml (△) saponin for 1 minute and 45Ca uptake into permeabilised platelets was determined over a period of 3 hours. Each point is mean ± SE of three determinations.
20% loading compared with 40% when using 40µg/ml saponin and 50% when using 80µg/ml saponin. Therefore 20µg/ml, saponin although mild on platelets in terms of its integrity, produces low loading. Platelets treated with 80µg/ml saponin load only 10% better than those treated with 40µg/ml saponin, and when the other effects of saponin are taken into account (see above for 5-HT data) it was concluded that 40µg/ml saponin was the dose of saponin to use.

3.1.1.3 Time course of 3μM InsP₃-induced ⁴⁵Ca release.
Platelets loaded with ⁴⁵Ca were incubated with 3μM InsP₃ for different times (0-10 minutes) at 4°C, 20°C and 37°C and ⁴⁵Ca release was determined by rapid filtration of the cell suspension. At 37°C, InsP₃ release is maximal after 5 seconds and rapidly decreases to zero at 5 minutes, figure 12, at 20°C, InsP₃ release shows a different profile with maximal release occurring at 45 seconds reaching a plateau of 45% release after 60 seconds which gently decreases to 35% at 10 minutes. At 4°C, a peak of InsP₃-induced ⁴⁵Ca release is reached at 5 seconds, reaching a plateau of 62% release after 60 seconds and slowly decreasing to 57% at 10 minutes. For subsequent experiments, InsP₃-induced release was terminated at 3 minutes by rapid filtration.

3.1.1.4 Optimal cell number for ⁴⁵Ca release assay.
Platelets resuspended to 10⁸, 2x 10⁸ and 10⁹ platelets/ml were permeabilised with 40µg/ml saponin for 1 minute, loaded with ⁴⁵Ca for 60 minutes and stimulated with 3μM InsP₃ at 20°C for 3 minutes, figure 13. All the platelet preparations loaded ⁴⁵Ca to the same extent (40-45%), however with 10⁶cells/ml 3μM InsP₃ released only 3% of the loaded ⁴⁵Ca, 2x 10⁶cells/ml released 7% but 10⁹cells/ml released 37% of the loaded ⁴⁵Ca. It therefore appears that the greater the concentration of the cells the better the response. Thus, 10⁹ platelets/ml were used in this assay.
Figure 12. Time course of InsP$_3$-induced 45Ca-release at 4°C (•), 20°C (▲) and 37°C (▲). Permeabilised platelets were loaded with 45Ca, stimulated with 3μM InsP$_3$ for 5, 15, 30, 45, 60, 180, 300 and 600 seconds. 45Ca release at each of these time points and at the three temperatures was determined in order to ascertain the optimal contact time between InsP$_3$ and the permeabilised platelets. Each point is mean ± SE of three determinations.
Figure 13. Optimal cell number required for 45Ca release assay. Platelets were permeabilised and resuspended to 10^8, 2×10^8 and 10^9 cells/ml, loaded with 45Ca and subsequently challenged with 3μM InsP$_3$ for 3 minutes. 45Ca uptake (open bars) and subsequent release by InsP$_3$ (closed bars) were determined by rapid filtration. Each point is mean ± SE of three determinations.
Permeabilised platelets exhibit ATP-dependent sequestration of 45Ca. Ionomycin (30μM) release 90±3% (n=10) of sequestered 45Ca, suggesting that the Ca$^{2+}$ was intravesicular.

3.1.2 Inositol phosphate analogues and 45Ca release.

3.1.2.1 InsP$_3$ and its enantiomer L-myo-inositol 1,4,5-trisphosphate (L-InsP$_3$).

At 20°C, InsP$_3$ shows full activity releasing 80 ±4% of loaded 45Ca, however L-InsP$_3$ did not release 45Ca thus having no activity, see figure 14. InsP$_3$ is the naturally occurring active compound that binds to the InsP$_3$-receptor. However, L-InsP$_3$ does not have the ability to bind the receptor or binds only very weakly, thus rendering it unable to release Ca$^{2+}$, see appendix for structures (n=6, mean ±SE). Thus InsP$_3$-induced Ca$^{2+}$-release from permeabilised platelets was found to be stereospecific.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC$_{50}$ at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP$_3$</td>
<td>1.14±0.2μM</td>
</tr>
<tr>
<td>L-InsP$_3$</td>
<td>≥30μM</td>
</tr>
</tbody>
</table>

3.1.2.2 6-positional modification.

Myo-inositol-6-deoxy 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P$_3$], its phosphorothioate analogue, myo-inositol-6-deoxy 1,4,5-trisphosphorothioate [6-deoxy-Ins(1,4,5)PS$_3$] and its two synthetic precursors, myo-inositol-6-
Figure 14. The dose response curves for 45Ca-release from permeabilised rabbit platelets by D-InsP$_3$ (●) and its enantiomer L-InsP$_3$ (▲) at 20°C. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with InsP$_3$ or analogue for 3 minutes and the cell associated 45Ca determined by rapid filtration. Each point is mean ± SE of three determinations.
Figure 15. Dose response curves to InsP$_3$ (●), 6-deoxy-Ins(1,4,5)P$_3$ (▲) and its phosphorothioate analogue, 6-deoxy-Ins(1,4,5)PS$_3$ (▲) for their ability to release 45Ca from permeabilised rabbit platelets. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with InsP$_3$ or analogue for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
deoxy-2,3-cyclohexylidene 1,4,5-trisphosphate [6-deoxy-2,3-cyclohex(1,4,5)P₃] and myo-inositol-6-deoxy-2,3-cyclohexylidene 1,4,5-trisphosphorothioate [6-deoxy-2,3-cyclohex(1,4,5)PS₃] were tested for their ⁴⁵Ca-release ability.

6-deoxy-Ins(1,4,5)P₃ is capable of releasing small amounts of ⁴⁵Ca showing 40±2% release at 30μM, see figure 15, thus having an EC₅₀ of ≥30μM. In comparison, its phosphorothioate analogue, 6-deoxy-Ins(1,4,5)PS₃, releases a maximum of 8±1% ⁴⁵Ca at 30μM therefore it can be said to be a very weak agonist. (n=3, mean ± SE)

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC₅₀ at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP₃</td>
<td>1.14±0.09μM</td>
</tr>
<tr>
<td>6-deoxy-Ins(1,4,5)P₃</td>
<td>≥30μM</td>
</tr>
<tr>
<td>6-deoxy-Ins(1,4,5)PS₃</td>
<td>≥30</td>
</tr>
</tbody>
</table>

The synthetic precursors of these two compounds follow the same pattern with the parent phosphate 6-deoxy-2,3-cyclohex-Ins(1,4,5)P₃ releasing 9±1.4% at 30μM and its phosphorothioate analogue 6-deoxy-2,3-cyclohex-Ins(1,4,5)PS₃ releasing 3±1.5% at 30μM, thus these two compounds are also very weak agonists, considering their Ca²⁺ release abilities, (n=3, mean±SE), see figure 16.

Removal of the 6-OH of InsP₃ as shown in 6-deoxy-Ins(1,4,5)P₃ leads to a substantial loss in activity (EC₅₀ of ≥30μM) and the substitution of the phosphate with a phosphorothioate leads to the complete loss of activity,
Figure 16. Dose response curves to InsP\(_3\) (●), 6-deoxy-2,3-cyclohex-Ins(1,4,5)P\(_3\) (▲) and its phosphorothioate analogue, 6-deoxy-2,3-cyclohex-Ins(1,4,5)PS\(_3\) (▼). for their ability to release \(^{45}\)Ca from permeabilised rabbit platelets. Saponin permeabilised platelets were loaded with \(^{45}\)Ca in the presence of mitochondrial uptake inhibitors, incubated with InsP\(_3\) or analogue for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
6-deoxy-2,3-cyclohex-Ins(1,4,5)P$_3$ with EC$_{50}$ of 30µM. The synthetic precursors of these two analogues show no activity, and this is possibly due to the bulky cyclohexyldiene group on positions 2- and 3- preventing receptor binding. Further, these compounds did not modify 3µM InsP$_3$-induced ⁴⁵Ca-release, making them inactive analogues and not possessing antagonistic activity.

3.1.2.3 2-positional modification.

Myo-inositol 2,2-difluoro 1,4,5-trisphosphate [Ins(2,2)F$_2$(1,4,5)P$_3$] was tested for its ⁴⁵Ca release ability in comparison to InsP$_3$.

The maximal ⁴⁵Ca release induced by Ins(2,2)F$_2$(1,4,5)P$_3$ (83 ± 2.1%) was the same as that for InsP$_3$, this analogue having an EC$_{50}$ of 0.63 ± 0.09µM compared to the EC$_{50}$ of InsP$_3$ of 1.14 ± 0.1µM (n=3, mean ± SE), see figure 17.

Ins(2,2)F$_2$(1,4,5)P$_3$ appears two to be two fold more potent then InsP$_3$ at releasing ⁴⁵Ca, at 20°C and the
Figure 17. The dose response curves to InsP₃ (●) and Ins(2,2)F₂(1,4,5)P₃ (▲) for their ability to release ⁴⁵Ca from permeabilised rabbit platelets. Saponin permeabilised platelets were loaded with ⁴⁵Ca in the presence of mitochondrial uptake inhibitors, incubated with InsP₃ and Ins(2,2)F₂(1,4,5)P₃ for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
Table 1: EC50 values of various phosphoinositides at 20°C.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC50 at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP3</td>
<td>1.14 ± 0.1μM</td>
</tr>
<tr>
<td>Ins(2,2)F2(1,4,5)P3</td>
<td>0.63 ± 0.09μM</td>
</tr>
</tbody>
</table>

retention of 45Ca release activity after modification at the 2-position indicates the minor role played by this 2-OH in Ca2+ mobilisation.

3.1.2.4 Phosphorothioate analogues of InsP3.

Myo-inositol 1,4,5-trisphosphorothioate [Ins(1,4,5)PS3], myo-inositol-1-phosphate 4,5-bisphosphorothioate [Ins(1)P(4,5)PS2] and D/L-myoinositol-1-phosphorothioate 4,5-bisphosphate [D/L-Ins(1)PS(4,5)P2] were tested for their 45Ca-release ability.

InsP3 and all the above analogues were equally efficacious in their ability to release sequestered 45Ca (figure 18, n=3, mean ± SE). However at 20°C, Ins(1)PS(4,5)P2 was a more potent stimulus with an EC50 of 0.65 ± 0.1μM (for the racemic mixture D/L-Ins(1)PS(4,5)P2 the EC50 was 1.3 ± 0.1μM), Ins(1,4,5)PS3 was the next potent with an EC50 of 0.8 ± 0.1μM followed by Ins(1)P(4,5)PS2 with an EC50 of 0.85 ± 0.09μM, see figure 18.

At 20°C, InsP3 is the least potent with an EC50 of 0.97 ± 0.11μM (n=3), this could be due to the fact that the phosphorothioate functional groups are resistant to metabolism. Thus, it is possible that these phosphorothioate analogues are in the vicinity of the receptor for a longer period of time, increasing the likelihood
Figure 18. The effect of substituting one or more phosphate groups with phosphorothioates on the InsP$_3$ molecule in terms of their ability to release 45Ca from permeabilised rabbit platelets. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with InsP$_3$ (\bullet), Ins(1)P(4,5)PS$_2$ (Δ), Ins(1)PS(4,5)P$_2$ (\circ) or Ins(1,4,5)PS$_3$ (Δ) for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
of receptor occupation and activation. In contrast, \(\text{InsP}_3 \) is metabolised more rapidly at 20°C. Thus, is not present for long periods of time in the vicinity of the receptor and is unable to mobilise as much Ca\(^{2+} \) (see page 120).

3.1.2.5 Positional phosphate modifications of \(\text{InsP}_3 \).

\[
\begin{align*}
\text{Compound} & \quad \text{EC}_{50} \quad \text{at 20°C} \\
\text{InsP}_3 & \quad 0.97 \pm 0.11 \mu \text{M} \\
\text{Ins}(1,4,5)\text{PS}_3 & \quad 0.8 \pm 0.1 \mu \text{M} \\
\text{Ins}(1)\text{P}(4,5)\text{PS}_2 & \quad 0.85 \pm 0.09 \mu \text{M} \\
\text{D/L-Ins}(1)\text{PS}(4,5)\text{P}_2 & \quad 1.3 \pm 0.1 \mu \text{M} \\
[\text{Ins}(1)\text{PS}(4,5)\text{P}_2] & \quad 0.65 \pm 0.1 \mu \text{M}
\end{align*}
\]

D/L-\text{Myo-inositol 1,3,4-trisphosphate [Ins}(1,3,4)\text{P}_3\), \text{myo-inositol 1,3,5-trisphosphorothioate [Ins}(1,3,5)\text{PS}_3\) and \text{L-myos-inositol 1,4,5-trisphosphorothioate [L-Ins}(1,4,5)\text{PS}_3\) were tested for their Ca\(^{2+}\)-mobilisation ability.

D/L-\text{Ins}(1,3,4)\text{P}_3 \text{ releases } ^{45}\text{Ca weakly giving } 62 \pm 5 \% \text{ at } 30 \mu \text{M, having an EC}_{50} \geq 10 \mu \text{M (n=3, mean } \pm \text{ SE). However, this analogue is considered as a full agonist as the dose response curve dose not plateau but maintains an upward trend. \text{Ins}(1,3,5)\text{PS}_3 \text{ was ineffective in releasing sequestered } ^{45}\text{Ca with } 30 \mu \text{M releasing } 12 \pm 1.2 \% \text{ at } 4\text{°C. L-Ins}(1,4,5)\text{PS}_3, \text{ the enantiomer of \text{Ins}(1,4,5)\text{PS}_3 (see section 3.1.2.4) was partly effective in releasing } ^{45}\text{Ca with } 100 \mu \text{M releasing } 42 \pm 3 \% \text{ of the total } ^{45}\text{Ca sequestered (n=3, mean } \pm \text{ SE),}}
Figure 19. The 45Ca release ability of some positionally modified InsP$_3$ (•) analogues D/L-Ins(1,3,4)P$_3$ (♦), Ins(1,3,5)PS$_3$ (▲) and L-Ins(1,4,5)PS$_3$ (△). Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with InsP$_3$ or analogue for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
Figure 20. The effect of the metabolic enzyme inhibitors, L-Ins(1,4,5)PS₃ and Ins(1,3,5)PS₃, on InsP₃-stimulated ⁴⁵Ca-release at (a) 4°C and (b) 37°C. Saponin permeabilised platelets were loaded with ⁴⁵Ca in the presence of mitochondrial uptake inhibitors and co-incubated with a dose range of the analogue (open bars) or vehicle (closed bars) at 4°C (v/4) or 37°C (v/37) and InsP₃ (100nM at 4°C and 30μM at 37°C) for 3 minutes, v/20 is control at 20°C, and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
see figure 19. This analogue is a full agonist, although this may be due to the potentially small presence of contaminating D-isomer in this compound.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC$_{50}$ at 4°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP$_3$</td>
<td>0.18 ± 0.1µM</td>
</tr>
<tr>
<td>D/L-Ins(1,3,4)P$_3$</td>
<td>≥30µM</td>
</tr>
<tr>
<td>Ins(1,3,5)PS$_3$</td>
<td>≥100µM</td>
</tr>
<tr>
<td>L-Ins(1,4,5)PS$_3$</td>
<td>≥30µM</td>
</tr>
</tbody>
</table>

In addition, D/L-Ins(1,3,4)P$_3$ did not inhibit InsP$_3$-induced 45Ca-release at 4°C or 20°C thus showing no antagonistic effects. In contrast to this, Ins(1,3,5)PS$_3$ and L-Ins(1,4,5)PS$_3$ did potentiate 3µM InsP$_3$-induced 45Ca-release at 37°C but had no effect on 100nM InsP$_3$-induced 45Ca release at 4°C, indicating that these compounds affect the metabolism of InsP$_3$, see figure 20.

This is supported by later data (see section on metabolism) where these two compounds were found to be InsP$_3$ 5-phosphatase inhibitors.

3.1.2.6 Miscellaneous inositol phosphate analogues.

Scy/fo-inositol 1,2,4-trisphosphate [scy/fo-Ins(1,2,4)P$_3$], myo-inositol-4-methylene carboxylate 3,5-bisphosphate [Ins(4)CO(3,5)P$_2$] and myo-inositol-1-phosphate 4,5-pyrophosphate [Ins(1)P(4,5)pyrophosphate] were examined for their Ca$^{2+}$-release ability in comparison to InsP$_3$.

Scy/fo-Ins(1,2,4)P$_3$ (figure 21) is equally efficacious as InsP$_3$
Figure 21. The dose response curve to InsP₃ (●) and scyllo-Ins(1,2,4)P₃ (▲) for their ability to release ⁴⁵Ca from permeabilised platelets. Saponin permeabilised platelets were loaded with ⁴⁵Ca in the presence of mitochondrial uptake inhibitors, incubated with an InsP₃ or analogue for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
in releasing sequestered ^{45}Ca at 20°C, giving a maximal release of $78 \pm 3\%$ with an EC$_{50}$ of $0.94 \pm 0.07\mu\text{M}$ (n=3, mean ± SE).

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC$_{50}$ at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP$_3$</td>
<td>$1.1 \pm 0.1\mu\text{M}$</td>
</tr>
<tr>
<td>scyllo-Ins(1,2,4)P$_3$</td>
<td>$0.94 \pm 0.07\mu\text{M}$</td>
</tr>
</tbody>
</table>

Ins(4)CO(3,5)P$_2$ and Ins(1)P(4,5)pyrophosphate did not have the capacity to release ^{45}Ca, furthermore neither analogue inhibited InsP$_3$-induced ^{45}Ca release at 20°C. Ins(4)CO(3,5)P$_2$ does not possess a phosphate group on the 1-position, in addition, it has a phosphate on the 3-position and a bulky methylene carboxylate on the 4-position rather than a phosphate group, all of these factors could contribute to the lack of activity. As for Ins(1)P(4,5)pyrophosphate, the correct positions are occupied but the 4,5-vicinal phosphates which are deemed essential for activity are coupled together to form a pyrophosphate system, which in principle could mimic the conformation adopted by InsP$_3$ in chelating a metal ion at the 4,5-bisphosphate.

3.1.2.7 Myo-inositol 1,3,4,5-tetrakisphosphate.

[Ins(1,3,4,5)P$_4$] and a phosphorothioate analogue, myo-inositol-3-phosphorothioate 1,4,5-trisphosphate [Ins(3) PS(1,4,5)P$_3$] were tested for their Ca$^{2+}$-release ability.

Ins(1,3,4,5)P$_4$ is a naturally occurring metabolite of InsP$_3$ and releases ^{45}Ca with a lower potency than InsP$_3$, 103
giving 54 ± 2% ⁴⁵Ca release at 30μM and an EC₅₀ of ≥10μM (n=3, mean ± SE). This implies that Ca²⁺ release upon InsP₃-stimulation can be attributed in the main to InsP₃ with Ins(1,3,4,5)P₄ playing a very minor role, see figure 22.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC₅₀ at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP₃</td>
<td>1.15 ± 0.1μM</td>
</tr>
<tr>
<td>Ins(1,3,4,5)P₄</td>
<td>≥10μM</td>
</tr>
<tr>
<td>Ins(3)PS(1,4,5)P₃</td>
<td>≥10μM</td>
</tr>
</tbody>
</table>

Ins(3)PS(1,4,5)P₃, a phosphorothioate analogue of Ins(1,3,4,5)P₄, initially synthesised as an inhibitor of InsP₃ 3-kinase, is also weak in releasing ⁴⁵Ca, giving 51 ± 1% release at 30μM and an EC₅₀ of ≥10μM (n=3, mean ± SE). The ⁴⁵Ca release profiles of the two compounds are different in that although low doses of Ins(1,3,4,5)P₄ do not release ⁴⁵Ca, at 3μM and up to 30μM a rapid elevation is observed in % release (figure 22). In contrast, Ins(3)PS(1,4,5)P₃ is weak at releasing ⁴⁵Ca and only slowly rises to reach 51 ± 1%, close to that of Ins(1,3,4,5)P₄.

3.1.2.8 Inositol tetrakisphosphate analogues.

Myo-inositol 1,2,4,5-tetrakisphosphate [Ins(1,2,4,5)P₄] and its synthetic precursor myo-inositol-3,6-dibenzoyl 1,2,4,5-tetrakisphosphate [Ins(3,6)Bz₂(1,2,4,5)P₄] were examined for their Ca²⁺-release ability in comparison to InsP₃.

Ins(1,2,4,5)P₄ is a full agonist, as potent as InsP₃ in releasing ⁴⁵Ca,
Figure 22. The dose response curve to InsP₃ (●), its natural metabolite Ins(1,3,4,5)P₄ (△) and its phosphorothioate analogue Ins(3)PS(1,4,5)P₃ (▲) for their ability to release ⁴⁵Ca from permeabilised platelets. Saponin permeabilised platelets were loaded with ⁴⁵Ca in the presence of mitochondrial uptake inhibitors, incubated with a InsP₃ or analogue for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
giving maximal release of \(72 \pm 5\%\) at \(30\mu M\) with an \(EC_{50}\) of \(0.53 \pm 0.04\mu M\) (\(n=3\), mean \(\pm\) SE), this is in contrast to \(\text{Ins}(1,3,4,5)P_4\) which is weak at releasing \(^{45}\text{Ca}\), see figure 23.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(EC_{50}) at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{InsP}_3)</td>
<td>(1.1 \pm 0.09\mu M)</td>
</tr>
<tr>
<td>(\text{Ins}(1,3,4,5)P_4)</td>
<td>(\geq 10\mu M)</td>
</tr>
<tr>
<td>(\text{Ins}(1,2,4,5)P_4)</td>
<td>(0.53 \pm 0.04\mu M)</td>
</tr>
<tr>
<td>(\text{Ins}(3,6)Bz_2(1,2,4,5)P_4)</td>
<td>(\geq 30\mu M)</td>
</tr>
</tbody>
</table>

\(\text{Ins}(3,6)Bz_2(1,2,4,5)P_4\), the synthetic precursor of \(\text{Ins}(1,2,4,5)P_4\) was completely inactive in releasing \(^{45}\text{Ca}\). This could be due to steric hindrance caused by the presence of the large benzoyl groups on the 3- and 6-positions, however more likely is the occupation of the 6-OH which is known to be essential for activity (see later).

3.1.2.9 Inositol tetrakisphosphate analogues.

\(\text{Myo-inositol 1,3,4,6-tetrakisphosphate [Ins (1,3,4,6)P}_4\) and its phosphorothioate analogue, \(\text{myo-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)PS}_4\) were examined for their \(Ca^{2+}\)-release ability in comparison to \(\text{InsP}_3\).

\(\text{Ins}(1,3,4,6)P_4\) releases sequestered \(^{45}\text{Ca}\) from permeabilised platelets with a lower potency than \(\text{InsP}_3\), releasing \(58 \pm 3\%\) \(Ca^{2+}\) at \(30\mu M\) in comparison to \(\text{Ins}(1,3,4,5)P_4\) which releases \(54 \pm 2\%\) \(Ca^{2+}\) (at 20°C). The phosphorothioate
Figure 23. The dose response curve to InsP₃ (●), Ins(1,3,4,5)P₄ (▲) and some
Ins(1,3,4,5)P₄ analogues, Ins(1,2,4,5)P₄ (▲) and Ins(3,6)BZ₂(1,2,4,5)P₄ (●) for
their ability to release ⁴⁵Ca from permeabilised platelets. Saponin permeabilised
platelets were loaded with ⁴⁵Ca in the presence of mitochondrial uptake
inhibitors, incubated with a InsP₃ or analogue for 3 minutes at 20°C and release
was determined by rapid filtration. Each point is mean ± SE of three
determinations.
analogue Ins(1,3,4,6)PS$_4$, is weaker than its parent phosphate and 100μM releases 49± 4% Ca$^{2+}$, see figure 24.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC$_{50}$ at 4°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP$_3$</td>
<td>0.18± 0.1μM</td>
</tr>
<tr>
<td>Ins(1,3,4,6)P$_4$</td>
<td>≥ 10μM</td>
</tr>
<tr>
<td>Ins(1,3,4,6)PS$_4$</td>
<td>≥ 30μM</td>
</tr>
</tbody>
</table>

3.1.3 Partial agonists.

3.1.3.1 Scyllo-inositol 1,2,4,5-tetakisphosphate [scyllo-Ins(1,2,4,5)P$_4$] and its phosphorothioate analogue scyllo-inositol 1,2,4,5-tetakisphorothioate [scyllo-Ins(1,2,4,5)PS$_4$] were examined for their Ca$^{2+}$-release ability in comparison to InsP$_3$.

Scyllo-Ins(1,2,4,5)P$_4$ is a full agonist releasing 85% of the sequestered 45Ca and appearing to be more efficacious than InsP$_3$ having an EC$_{50}$ of 0.1± 0.05μM in comparison to InsP$_3$ which gives a maximal release of 79% and an EC$_{50}$ of 1.14± 0.19μM, see figure 25 (n=3, mean ± SE).

The phosphorothioate analogue scyllo-Ins(1,2,4,5)PS$_4$ exhibited a low intrinsic activity, releasing a maximal of 61.7± 11% of the total 45Ca, having only 78% of the intrinsic activity or efficacy of InsP$_3$. This indicates that this analogue,
Figure 24. The dose response curve to InsP$_3$ (○) and some naturally occurring inositol phosphates Ins(1,3,4,6)P$_4$ (▲) and its phosphorothioate analogue Ins(1,3,4,6)PS$_4$ (△) for their ability to release 45Ca from permeabilised platelets. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with a InsP$_3$ or analogue for 3 minutes at 4°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
Figure 25. The dose response curve to InsP$_3$ (○), scyllo-Ins(1,2,4,5)P$_4$ (▲) and its phosphorothioate analogue scyllo-Ins(1,2,4,5)PS$_4$ (△) for their ability to release 45Ca from permeabilised platelets. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with a InsP$_3$ or analogue for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
scyllo-Ins(1,2,4,5)PS₄, is a partial agonist. However, scyllo-Ins(1,2,4,5)PS₄ did not inhibit InsP₃-induced ⁴⁵Ca-release at 20°C.

3.1.3.2 L-chiro-inositol 2,3,5-trisphosphate [L-chiro-Ins(2,3,5)P₃] and its phosphorothioate analogue L-chiro-inositol 2,3,5-trisphosphorothioate [L-chiro-Ins(2,3,5)PS₃] were examined for their Ca²⁺-release ability in comparison to InsP₃.

L-chiro-Ins(2,3,5)P₃ is a full agonist releasing 82% of the loaded ⁴⁵Ca and having an EC₅₀ of 1.9 ± 0.1μM compared to InsP₃ [EC₅₀ of 1.04 ± 0.08μM and a maximal release of 80%, see figure 26 (n=3, mean ± SE)].

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC₅₀ at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP₃</td>
<td>1.04± 0.08μM</td>
</tr>
<tr>
<td>L-chiro-Ins(2,3,5)P₃</td>
<td>1.9± 0.1μM</td>
</tr>
<tr>
<td>L-chiro-Ins(2,3,5)PS₃</td>
<td>≥30μM</td>
</tr>
</tbody>
</table>

L-chiro-Ins(2,3,5)PS₃, a phosphorothioate analogue, displayed low intrinsic activity, giving maximal ⁴⁵Ca release of 42.3± 6%, thus having 52%
Figure 26. The dose response curve to InsP$_3$ (●), L-chiro-Ins(2,3,5)P$_3$ (▲) and its phosphorothioate analogue L-chiro-Ins(2,3,5)PS$_3$ (△) for their ability to release 45Ca from permeabilised platelets. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with a InsP$_3$ or analogue for 3 minutes at 20°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
of the activity of InsP₃ and hence is a partial agonist. Further, L-chiro-
Ins(2,3,5)PS₃ did not produce an inhibition of InsP₃-induced ⁴⁵Ca-release.

3.1.3.3 *Myo*-inositol 1,4,6-trisphosphate [Ins (1,4,6)P₃] and its
phosphorothioate analogue *myo*-inositol 1,4,6-trisphosphorothioate
[Ins(1,4,6)PS₃] were examined for their Ca²⁺-release ability in comparison to
InsP₃.

Ins(1,4,6)P₃ is a weak full agonist giving a maximal release of 75% at 30μM,
with an EC₅₀ of 2.07± 0.08μM compared to LSP₃ which has an EC₅₀ of 0.18±
0.04μM and a maximal release of 82%, see figure 27 (n=3, mean ± SE).

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC₅₀ at 4°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsP₃</td>
<td>0.18± 0.04μM</td>
</tr>
<tr>
<td>Ins(1,4,6)P₃</td>
<td>2.07± 0.08μM</td>
</tr>
<tr>
<td>Ins(1,4,6)PS₃</td>
<td>≥30μM</td>
</tr>
</tbody>
</table>

Upon phosphate modification to a phosphorothioate to give Ins(1,4,6)PS₃, a
substantial loss in activity was observed. Ins(1,4,6)PS₃ gives a maximal ⁴⁵Ca
release of 21.1% ± 0.4%, having 25% of the intrinsic activity of InsP₃, thus is
a partial agonist.

In contrast to two partial agonists above, L-*chiro*-Ins(2,3,5)PS₃ *scyllo-
Ins(1,2,4,5)PS₄ tested for inhibitory effects on InsP₃-induced ⁴⁵Ca-release,
Ins(1,4,6)PS₃ produces a dose dependent inhibition of 300nM InsP₃-induced
⁴⁵Ca release, such that 100μM
Figure 27. The dose response curve to InsP$_3$ (•), Ins(1,4,6)P$_3$ (▲) and its phosphorothioate analogue Ins(1,4,6)PS$_3$ (▲) for their ability to release 45Ca from permeabilised platelets. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, incubated with a InsP$_3$ or analogue for 3 minutes at 4°C and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
Figure 28. The dose response curve to InsP$_3$ (●) and Ins(1,4,6)PS$_3$ (▲) for their ability to release 45Ca from permeabilised platelets and the effect of Ins(1,4,6)PS$_3$ on InsP$_3$-induced 45Ca release (▲). Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, inhibition of InsP$_3$-induced 45Ca release was observed upon co-incubations of Ins(1,4,6)PS$_3$ (300nM- 100μM) with 300nM InsP$_3$ at 4°C in a dose dependent manner such that 100μM Ins(1,4,6)PS$_3$ produced ≈ 50% inhibition. Each point is mean ± SE of three determinations.
Ins(1,4,6)PS₃ produced approximately 50% inhibition, see figure 28.

3.1.4 Inhibitors of InsP₃-induced ⁴⁵Ca-release.

3.1.4.1 The effect of heparin on InsP₃-induced ⁴⁵Ca-release.

Heparin (100ng/ml- 100μg/ml) did not induce ⁴⁵Ca-release from permeabilised platelets loaded with ⁴⁵Ca, in addition, heparin (100ng/ml- 100μg/ml) incubated with permeabilised platelets for 5, 10 and 30 minutes did not induce inhibition of 3μM InsP₃ induced ⁴⁵Ca-release at 20°C, see figure 29. Further, heparin of lower molecular weight (3000) did not cause any inhibition of InsP₃-induced Ca²⁺ mobilisation.

3.1.4.2 The effect of Decavanadate on InsP₃-induced ⁴⁵Ca-release.

Decavanadate inhibits 3μM InsP₃-induced ⁴⁵Ca-release at 20°C, with an IC₅₀ of 7.82± 0.4μM (n=3, mean ± SE), see figure 30. Sodium orthovanadate, the precursor of decavanadate was inactive, having no impact on InsP₃-induced Ca²⁺-mobilisation.

3.1.4.3 The effect of Benzene 1,2,4-trisphosphate on InsP₃-induced ⁴⁵Ca-release.

Benzene 1,2,4-trisphosphate (1- 500μM) did not produce an inhibition of 3μM InsP₃ induced ⁴⁵Ca-release at 20°C, in addition, benzene 1,2,4-trisphosphate (1-100μM) did not produce the inhibition of 300nM InsP₃ induced ⁴⁵Ca-release at 4°C, see figure 31.
Figure 29. The effect of heparin on InsP₃-induced ⁴⁵Ca release. Saponin permeabilised platelets were loaded with ⁴⁵Ca in the presence of mitochondrial uptake inhibitors, co-incubations of vehicle (closed bars), or heparin, 300nM-100μM (open bars), with 300nM InsP₃ at 4°C. Each point is mean ± SE of three determinations.
Figure 30. The inhibition of 3µM InsP₃-induced ⁴⁵Ca-release at 20°C by a dose range of decavanadate. Saponin permeabilised platelets were loaded with ⁴⁵Ca in the presence of mitochondrial uptake inhibitors, were incubated with decavanadate (0.1- 30µM) for 3 minutes and subsequently challenged with 3µM InsP₃ for 3 minutes. Each point is mean ± SE of three determinations.
Figure 31. The effect of benzene trisphosphate on InsP$_3$-induced 45Ca release. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors, co-incubations of vehicle (closed bars), or benzene trisphosphate, 300nM- 500μM (open bars) with 300nM InsP$_3$ at 4°C. Each point is mean ± SE of three determinations.
3.1.5 The effect of temperature on InsP$_3$-induced Ca$^{2+}$ release.

Dose response curves for InsP$_3$-induced 45Ca release determined at 4°C, 20°C and 37°C show a shift of the response to the right with increasing temperature. At 4°C, a full dose-response curve is observed with an EC$_{50}$ of 0.18± 0.1μM (n=6, mean ± SE), but this is reduced at 20°C having an EC$_{50}$ of 1.14± 0.2μM (n=6, mean ± SE), and by 37°C the lower concentrations tested (10nM- 1μM) release no Ca$^{2+}$, and the remaining curve is very shallow (EC$_{50}$ ≥10μM), see figure 32 (n=6, mean ± SE).

<table>
<thead>
<tr>
<th>Temperature</th>
<th>EC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°C</td>
<td>0.18± 0.1μM</td>
</tr>
<tr>
<td>20°C</td>
<td>1.14± 0.2μM</td>
</tr>
<tr>
<td>37°C</td>
<td>≥10μM</td>
</tr>
</tbody>
</table>

3.1.6 The effect of temperature on scyllo-Ins(1,2,4,5)P$_4$-induced 45Ca release.

scyllo-Ins(1,2,4,5)P$_4$ dose response curves at 4°C and 20°C are identical, giving maximal release of 90± 3% 45Ca with an EC$_{50}$ of 0.1± 0.05μM (n=3, mean ± SE) whereas at 37°C, the EC$_{50}$ is reduced to 5.1± 0.2μM with 30μM giving 66± 2.5% 45Ca release, see figure 33.
Figure 32. The effect of temperature on InsP$_3$-induced 45Ca release. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors and challenged with InsP$_3$ for 3 minutes at 4°C (•), 20°C (▲) and 37°C (△) and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
Figure 33. The effect of temperature on scyllo-Ins(1,2,4,5)P$_4$-induced 45Ca release. Saponin permeabilised platelets were loaded with 45Ca in the presence of mitochondrial uptake inhibitors and challenged with scyllo-Ins(1,2,4,5)P$_4$ for 3 minutes at 4°C (●), 20°C (▲) and 37°C (△) and release was determined by rapid filtration. Each point is mean ± SE of three determinations.
3.1.7 **45Ca release by non-inositol phosphate compounds.**

3.1.7.1 **45Ca-release ability of cyclic ADP-ribose (cADPR), the endogenous activator of the ryanodine receptor.**

cADPR (100nM- 3µM) did not elicit 45Ca-release in permeabilised platelets at 20°C. In addition, ADP-ribose (ADPR), is also ineffective in mobilising Ca2+.

3.1.7.2 **45Ca-release by the direct activation of protein kinase C by phorbol esters and diacylglycerol (DAG).**

Phorbol myristate acetate, PMA, (1- 300nM) and DAG (3- 300nM) did not mobilise 45Ca at 4°C or 20°C, in addition, both PMA and DAG did not attenuate or enhance 300nM or 3µM InsP3-induced 45Ca release at 4°C and 20°C respectively.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>ECso</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°C</td>
<td>0.1± 0.05µM</td>
</tr>
<tr>
<td>20°C</td>
<td>0.1± 0.05µM</td>
</tr>
<tr>
<td>37°C</td>
<td>5.1± 0.2µM</td>
</tr>
</tbody>
</table>
3.2 PH\text{InsP}_3 metabolism by the 5-phosphatase and the 3-kinase enzymes at 4°C, 20°C and 37°C, and the effect of inositol phosphate analogues on PH\text{InsP}_3 metabolism.

3.2.1 Investigation of PH\text{InsP}_3 metabolism in permeabilised platelets at 4°C, 20°C and 37°C.

PH\text{InsP}_3 metabolism by the two enzymes, the 5-phosphatase and the 3-kinase was examined, as shown in section 3.1.5, PH\text{InsP}_3-induced 45Ca release changes with temperature, PH\text{InsP}_3 being more potent in releasing 45Ca at 4°C than at 37°C. The EC$_{50}$ of PH\text{InsP}_3-induced 45Ca release can be seen on page 12017.

This loss in potency is attributed to metabolism. In order to confirm this hypothesis, PH\text{InsP}_3 metabolism at the three temperatures, 4°C, 20°C and 37°C was investigated.

The rate of PH\text{InsP}_3 metabolism was found to be temperature dependent and the order of the rate of metabolism was 37°C $>$ 20°C $>$ 4°C, figures 34, 35 and 36.

At 4°C, PH\text{InsP}_3 metabolism is very slow and by 3 minutes, over 70% of PH\text{InsP}_3 remains, at 10 minutes the major metabolite present being Ins(1,4)P$_2$ and overall very little Ins(1,3,4,5)P$_4$ is produced (\approx 5%), see figure 34.

At 20°C a very different profile can be seen. By 1 minute, a substantial amount of metabolism has occurred, giving rise to Ins(1,4)P$_2$ and Ins(1,3,4,5)P$_4$; Ins(1,3,4)P$_3$ is produced from Ins(1,3,4,5)P$_4$ at 3 minutes and the major metabolite at this time is Ins(1,4)P$_2$. At 10 minutes little PH\text{InsP}_3 remains, the major metabolites being Ins(1,3,4)P$_3$ and PH\text{InsP}_1.
Figure 34. HPLC separation of [PH]InsP$_3$ metabolites at 4°C. 100μl Platelets were challenged with [PH]InsP$_3$ at 4°C and metabolism was terminated at 0, 1, 3 and 10 minutes. The phosphates were then extracted and separated on an anion exchange column. (a) [PH]InsP$_3$ standard; (b) 1 min.; (c) 3 min.; (d) 10 minutes. Traces are representative of three separate experiments.
Figure 35. HPLC separation of [3H]InsP₃ metabolites at 20°C. 100μl samples of platelets were challenged with [3H]InsP₃ at 20°C and metabolism was terminated at 0, 1, 3 and 10 minutes. The phosphates were then extracted and separated on an anion exchange column. (a) [3H]InsP₃ standard; (b) 1 min.; (c) 3 min.; (d) 10 minutes. Traces are representative of three separate experiments.
Figure 36. HPLC separation of $[^3H]$InsP$_3$ metabolites at 37°C. 100μL samples of platelets were challenged with $[^3H]$InsP$_3$ at 37°C and metabolism was terminated at 0, 1, 3 and 10 minutes. The phosphates were then extracted and separated on an anion exchange column. (a) $[^3H]$InsP$_3$ standard; (b) 1 min.; (c) 3 min.; (d) 10 minutes. Traces are representative of three separate experiments.
Figure 37. The effect of temperature 4°C (▲), 20°C (●) and 37°C (●) on (a) loss of [3H]InsP₃; (b) InsP₂ accumulation; (c) Ins(1,3,4,5)P₄ accumulation (d) Ins(1,3,4)P₃ accumulation, and (e) InsP₁ accumulation. Each point is mean ± SE of three determinations.
However at 37°C [³H]InsP₃ is metabolised very rapidly with only 20% [³H]InsP₃ remaining at 1 minute, the major metabolite at this time being Ins(1,4)P₂, a peak corresponding to Ins(1,3,4)P₃ is present but it only constitutes 10% of the total counts, and at 10 minutes InsP₁ is the only metabolite left. Thus metabolism at the three temperatures follows very different metabolic patterns and at 4° and 37°C very little Ins(1,3,4,5)P₄ and hence little Ins(1,3,4)P₃ is produced.

Thus for any subsequent metabolism studies, platelets were maintained at 20°C as this shows the greatest range of metabolites over the 10 minute span.

3.2.2 The effect of inositol phosphate analogues on [³H]InsP₃ metabolism.

Two inositol phosphate analogues, L-Ins(1,4,5)PS₃ and Ins(1,3,5)PS₃ have been shown in a preliminary fashion to have an effect on the metabolism of [³H]InsP₃, see figure 20. This inhibitory activity that was investigated in this study. InsP₃ metabolism is complex and proceeds via two enzymes a 5-phosphatase and a 3-kinase. These two compounds can be used as tools to elucidate the significance of enzyme inhibition and the possibility of isozymes.

An inhibition of InsP₃ metabolism by both L-Ins(1,4,5)PS₃ and Ins(1,3,5)PS₃ was observed, being maximal at 10 minutes, see figures 38, 39 and 40. The effect of each analogue on inositol phosphate metabolism and production is shown in figure 41 and 42. From figure 41 it can be seen that L-Ins(1,4,5)PS₃ produces a dose dependent conservation of InsP₃ (compared to control), thus inhibiting InsP₃ metabolism; it produces a reduction in Ins(1,4)P₂ production (compared to control), hence inhibiting Ins(1,4)P₂ formation from InsP₃ via the 5-phosphatase
Figure 38. HPLC separation of $[^{3}H]$Ins$_3$ metabolites at 10 minutes in the presence of 3μM L-Ins(1,4,5)PS$_3$ and Ins(1,3,5)PS$_3$. Platelets were incubated with analogue for 5 minutes and challenged with $[^{3}H]$Ins$_3$, see methods. (a) $[^{3}H]$Ins$_3$ standard; (b) control Ins$_3$ metabolism; (c) L-Ins(1,4,5)PS$_3$; (d) Ins(1,3,5)PS$_3$. Traces are representative of three separate experiments.
Figure 39. HPLC separation of [3H]InsP$_3$ metabolites at 10 minutes in the presence of 10µM L-Ins(1,4,5)PS$_3$ and Ins(1,3,5)PS$_3$. Platelets were incubated with analogue for 5 minutes and challenged with [3H]InsP$_3$, see methods. (a) [3H]InsP$_3$ standard; (b) control InsP$_3$ metabolism; (c) L-Ins(1,4,5)PS$_3$; (d) Ins(1,3,5)PS$_3$. Traces are representative of three separate experiments.
Figure 40. HPLC separation of [\(^{3}H\)]InsP\(_{3}\) metabolites at 10 minutes in the presence of 30\(\mu\)M L-Ins(1,4,5)PS\(_{3}\) and Ins(1,3,5)PS\(_{3}\). Platelets were incubated with analogue for 5 minutes and challenged with [\(^{3}H\)]InsP\(_{3}\), see methods. (a) [\(^{3}H\)]InsP\(_{3}\) standard; (b) control InsP\(_{3}\) metabolism; (c) L-Ins(1,4,5)PS\(_{3}\); (d) Ins(1,3,5)PS\(_{3}\). Traces are representative of three separate experiments.
enzyme. L-Ins(1,4,5)PS₃ also causes a dose dependent reduction in the amount of Ins(1,3,4,5)P₄ produced (compared to control) via the 3-kinase enzyme, but causes an inhibition of Ins(1,3,4)P₃ production (from Ins(1,3,4,5)P₄) compared to control. With L-Ins(1,4,5)PS₃ both levels of Ins(1,4)P₂ and InsP(1,3,4)P₃ are reduced, and from this a clear picture emerges, where the inhibition of the 5-phosphatase enzyme is observed. Thus L-Ins(1,4,5)PS₃ is acting as a 5-phosphatase inhibitor.

However regarding the effect of L-Ins(1,4,5)PS₃ on the 3-kinase enzyme, a definite effect is not apparent. Although an inhibition of Ins(1,3,4,5)P₄ production is observed, the levels are above that of the control, with the highest dose of 30µM L-Ins(1,3,5)PS₃ reducing levels to control levels.

Ins(1,3,5)PS₃ causes a dose dependent inhibition of InsP₃ metabolism, figure 42, with 30µM bringing levels of InsP₃ to the same levels of the control. It also produces a reduction in the amount of Ins(1,4)P₂ produced (compared to control), thus, inhibiting the 5-phosphatase enzyme. Ins(1,3,5)PS₃ causes an elevation in Ins(1,3,4,5)P₄ levels (above control), and a reduction in the amount of Ins(1,3,4)P₃ produced (compared to control), 30µM Ins(1,3,5)PS₃ causes levels of Ins(1,3,4)P₃ to be reduced to the same level as control.

3.2.3 Metabolism of [³²P]-Ins(1,3,4,5)P₄.

3.2.3.1 [³²P] incorporation into Ins(1,3,4,5)P₄.

In order to investigate the effect of the two enzyme inhibitors L-Ins(1,4,5)PS₃ and Ins(1,3,5)PS₃ on the 3-kinase enzyme specifically, [³²P]-ATP loaded platelets were used. After 10 minutes of incubation of the permeabilised platelets with [³²P]-ATP, no
Figure 41. The effect of vehicle (●) or L-Ins(1,4,5)PS₃, 3μM (■), 10μM (▲) and 30μM (▲) on (a) [³H]InsP₃; (b) InsP₂ accumulation; (c) Ins(1,3,4,5)P₄ accumulation and (d) Ins(1,3,4)P₃ accumulation. Each point is mean ± SE of three determinations.
Figure 42. The effect of vehicle (●) or Ins(1,3,5)PS₃ 3µM (○), 10µM (▲) and 30µM (▲) on (a) [³H]InsP₃; (b) InsP₂ accumulation; (c) Ins(1,3,4,5)P₄ accumulation and (d) Ins(1,3,4)P₃ accumulation. Each point is mean ± SE of three determinations.
sign of $[^{32}\text{P}]-\text{Ins}(1,3,4,5)\text{P}_4$ was detected. The traces obtained showed a clutter of undefinable peaks, representing $[^{32}\text{P}]-\text{ATP}$, between the retention times of $t=0$-60 minutes. InsP_3 appears in our system at 55-57 minutes and $\text{Ins}(1,3,4,5)\text{P}_4$ appears at 62-65 minutes. These areas were covered by the messy $[^{32}\text{P}]-\text{ATP}$ peaks and it was not possible to establish the peak for $[^{32}\text{P}]-\text{Ins}(1,3,4,5)\text{P}_4$ from amongst them. In addition, because of the large amounts of $[^{32}\text{P}]-\text{ATP}$ needed to carry out this experiment, it was not possible to reduce $[^{32}\text{P}]-\text{ATP}$ which would in turn help resolve the peaks of interest. Furthermore, it was possible that the amount of intrinsic InsP_3 available may not be enough to be detected after phosphorylation by $[^{32}\text{P}]-\text{ATP}$ and to this end exogenous $30\mu\text{M}$ InsP_3 was added at the same time of $[^{32}\text{P}]-\text{ATP}$ was added, again $[^{32}\text{P}]-\text{Ins}(1,3,4,5)\text{P}_3$ was not detected.

3.2.3.2 The effect of inositol phosphate analogues on $[^{32}\text{P}]-\text{incorporation into Ins}(1,3,4,5)\text{P}_3$.

In order to push metabolism via the 3-kinase pathway and increase the possibility of $[^{32}\text{P}]-\text{ATP}$ induced phosphorylation of InsP_3, 5 minute pre-incubations of the permeabilised platelet with $30\mu\text{M}$ of the known 5-phosphatase inhibitors, $\text{L-Ins}(1,4,5)\text{PS}_3$ or $30\mu\text{M}$ $\text{Ins}(1,3,5)\text{PS}_3$ (see scheme) was investigated.

\[
\begin{align*}
\text{InsP}_3 + [^{32}\text{P}]-\text{ATP} & \longrightarrow [^{32}\text{P}]-\text{Ins}(1,3,4,5)\text{P}_4 + \text{ADP}
\end{align*}
\]

\textbf{Scheme 1.} $[^{32}\text{P}]-\text{incorporation into Ins}(1,3,4,5)\text{P}_4$ upon InsP_3 phosphorylation.

Upon phosphate sample analysis on the HPLC, a peak for $[^{32}\text{P}]-\text{Ins}(1,3,4,5)\text{P}_4$ was not present, indicating that $[^{32}\text{P}]-\text{ATP}$ phosphorylation of InsP_3 had not
occurred via the 3-kinase enzyme and that $[^{32}P]$-incorporation into InsP$_3$ to produce $[^{32}P]$-Ins(1,3,4,5)P$_4$ had not occurred.

3.3 Platelet functional responses. Dense granule release induced by InsP$_3$ in permeabilised platelets.

3.3.1 InsP$_3$ induced Dense granule release in permeabilised platelets.

3.3.1.1 Saponin permeabilisation of platelets suspended in ICB.

Upon saponin permeabilisation of platelets resuspended in ICB with [Ca$^{2+}$]$_r$ 100-200nM (with 5μg/ml, 10μg/ml and 20μg/ml saponin), the amount of [14C]5-HT loss upon permeabilisation was found to be dose dependent and time dependent, with the low concentration of 5μg/ml saponin causing no degranulation upon stimulation with 1mM Ca$^{2+}$, thus having no permeabilisation effect, 10μg/ml saponin showing 20% 5-HT release at 10 minute permeabilisation upon Ca$^{2+}$ treatment and 20μg/ml showing considerable degranulation with 1mM Ca$^{2+}$ at 5 minutes and above. The platelets do not degranulate with saponin treatment unless the highest concentration is used, 20μg/ml, for 10 minutes (see figure 43). Hence 20μg/ml saponin causes sufficient permeabilisation at the longer time incubations of 5 and 10 minutes. However, at 10 minutes, substantial loss of 5-HT occurs with just vehicle treatment, therefore 5 minute incubations were used for any subsequent experiments.
Figure 43. The effect of saponin permeabilisation, 10μg/ml (a) and 20μg/ml (b) on vehicle- (open bars) and on 1mM Ca$^{2+}$- (closed bars) induced [14C]5-HT release. Platelets permeabilised with saponin 10μg/ml and 20μg/ml for 3, 5 and 10 minutes, challenged with vehicle or 1mM Ca$^{2+}$ for 3 min. and [14C]5-HT release determined. Each point is the mean ± SE of 3 determinations.
3.3.1.2 The effect of a dose range of Ca\(^{2+}\) on 20μg/ml saponin permeabilised platelets (5 minute incubations).

In order to establish that the above response to Ca\(^{2+}\) is a real response and not an anomaly a dose response effect to Ca\(^{2+}\) was investigated. A dose dependent rise in \([^{14}C]\)5-HT was observed (see figure 44) upon challenging platelets permeabilised with 20μg/ml saponin for 5 minutes with a dose range of Ca\(^{2+}\), 300nM- 100μM.

3.3.1.3 The effect of a dose range of EGTA on 20μg/ml saponin permeabilised platelets (5 minute incubations).

In order to ascertain the correlation between dense granule release and EGTA, \([^{14}C]\)5-HT release, by a dose range of Ca\(^{2+}\), was determined in 20μg/ml saponin permeabilised platelets in the presence of 30μM or 3μM EGTA. In the presence of both EGTA doses, Ca\(^{2+}\) produced a dose dependent increase in degranulation, and this was in turn dependent on the amount of EGTA present. The lower EGTA dose producing a smaller chelation effect on the Ca\(^{2+}\) added, thus producing overall higher amounts of \([^{14}C]\)5-HT release and 30μM EGTA producing a greater chelation effect, with the dose ranges of Ca\(^{2+}\) releasing less \([^{14}C]\)5-HT, see figure 45.

3.3.1.4 The effect of a dose of InsP\(_3\) on saponin permeabilised platelets.

In platelets permeabilised with 10μg/ml and 20μg/ml saponin for 3, 5 and 10 minutes, 10μM InsP\(_3\) produced a \([^{14}C]\)5-HT release above vehicle levels and greater release occurred with 20μg/ml saponin compared to 10μg/ml saponin, see figure 46. However, a large enough window did not exist between
Figure 44. The effect of a dose range of Ca$^{2+}$ on [14C]5-HT release in saponin permeabilised platelets. Platelets permeabilised with 20μg/ml saponin, challenged with Ca$^{2+}$ (300nM- 100μM) (open bars) or vehicle (closed bars) and [14C]5-HT release determined. Each point is the mean ± SE of 3 determinations.
Figure 45. The effect of (a) 30μM and (b) 3μM EGTA on Ca²⁺- (open bars) or vehicle- (closed bars) induced [¹⁴C]5-HT release. Platelets permeabilised with saponin 20μg/ml were treated with EGTA and then challenged with a dose range of Ca²⁺ (100nM- 100μM). Each point is the mean ± SE of 3 determinations.
the vehicle control and treated preparations to carry out any dose dependent studies with InsP₃ or analogues and this method was rejected.

3.3.1.5 Saponin permeabilisation of platelets suspended in high K⁺ buffer.

[¹⁴C]5-HT released upon 1mM Ca²⁺ in platelets treated with different saponin concentrations (5μg/ml, 10μg/ml, 15μg/ml and 20μg/ml) was found to be dose dependent with 5μg/ml and 10μg/ml saponin causing very little dense granule release, 20μg/ml saponin causing extensive degranulation in the presence of vehicle only but 15μg/ml saponin at 5 minutes producing 12% release with vehicle and 35% release upon challenging with 1mM Ca²⁺. Thus, 15μg/ml saponin concentration was used for the subsequent studies.

3.3.1.6 The effect of a dose range of EGTA on 15μg/ml saponin permeabilised platelets (3 minute incubations).

Upon treating platelets with a dose range of EGTA in the presence or absence of 10μM InsP₃ (3 minute incubations), it was observed that at high EGTA concentrations, both vehicle and 10μM InsP₃ treated platelets release comparable amounts of [¹⁴C]5-HT, however as the [EGTA] decreases, and reaches 20μM, a small difference in release appears and this increases with decreasing [EGTA], giving rise to a window of 15 % at 3μM EGTA, see figure 47.
Figure 46. The use of different saponin concentrations, (a) 10µg/ml and (b) 20µg/ml in permeabilising platelets. Platelets were permeabilised with saponin for 3, 5 and 10 minutes then treated with vehicle (open bars); 1mM Ca$^{2+}$ (closed bars) and 10µM InsP$_3$ (crosshatch) and [14C]5-HT release was determined. Each point is the mean ± SE of 3 determinations.
Figure 47. The effect of 3 minute incubations of 10μM InsP₃ on [¹⁴C]5-HT loaded permeabilised platelets in the presence of a dose range of EGTA. Platelets were loaded with [¹⁴C]5-HT, permeabilised with 20μg/ml saponin, treated with a dose range of EGTA and vehicle (○), or 10μM InsP₃ (▲), and [¹⁴C]5-HT release was determined. Each point is the mean ± SE of 3 determinations.
3.3.1.7 The effect of a dose range of InsP₃ on 15μg/ml saponin permeabilised platelets (3 minute incubations) in the presence of 30 or 10μM EGTA.

Platelets stimulated with a dose range of InsP₃ (300nM-300μM) for 3 minutes in the presence of 30μM or 10μM EGTA did not produce a dose dependent increase in [¹⁴C]5-HT as expected. This could be on account of the [EGTA] being too high, and although a separation between InsP₃ treated and untreated platelets dense granule release was observed above, this may have been missed by choosing such a small range of [EGTA].

3.3.1.8 The effect of increasing contact time between platelets and agonist.

The longer incubation times when permeabilised platelets treated with a dose range of EGTA (1-300μM) in the presence and absence of 10μM InsP₃ (5 and 7 minutes) had no effect on the magnitude of the window of separation between treated and control preparations (see figure 48), in fact it appears to have an opposite effect with only 10% separation occurring at 20μM EGTA.

Thus due to a small window between treated and untreated preparations, dense granule release can not be used to assess platelet function.

3.3.1.9 Investigation of electroporation of platelets suspended in ICB.

[¹⁴C]5-HT release, upon challenging platelets exposed to 2.2, 2.5, 3.5 and 5 kV at 5 and 10 cycle repetitions to varying concentrations of Ca²⁺ was a measure of permeability. At 2.2, 2.5 and 3.5 kV 5 and 10 cycles, [¹⁴C]5-HT release was not detected. At 5 kV both with 5 and 10 cycles, Ca²⁺ caused a dose dependent [¹⁴C]5-HT release indicating that the platelets were permeabilised, see figure 49.
Figure 48. The effect of 5 minute incubations of 10μM InsP₃ on [¹⁴C]5-HT loaded permeabilised platelets in the presence of a dose range of EGTA. Platelets were loaded with [¹⁴C]5-HT, permeabilised with 20μg/ml saponin, treated with a dose range of EGTA and vehicle, (●), or 10μM InsP₃ (▲), and [¹⁴C]5-HT release was determined. Each point is the mean ± SE of 3 determinations.
Figure 49. Ca$^{2+}$-induced $[^{14}\text{C}]5$-HT release in electroporated platelets at $t=0$ after poration (closed bars) and $t=60$ min. after poration (open bars) using (a) 5; (b) 10 and (c) 15 cycles at 5kV. $[^{14}\text{C}]5$-HT release. Each point is the mean ± SE of 3 determinations.
3.3.1.10 Investigation of resealing of electroporated platelets suspended in ICB.

Platelets porated with 5, 10 and 15 cycles of 5kV were challenged with Ca²⁺ (300nM-1μM) immediately after poration (t=0) and after 30 minutes (t=30) and one hour incubations at 37°C (t=60).

Platelets were responsive to Ca²⁺ at t=0 minutes releasing [¹⁴C]5-HT, but not after 30 minutes at 37°C, t=30 minutes, nor at t=60 minutes at 37°, see figure 49, indicating that after poration the platelets were permeable to Ca²⁺ ions and after 30 and 60 minutes at 37°C they were not, which raises the possibility of the platelets having resealed.

3.3.1.11 Investigation of the function of resealed electroporated platelets suspended in ICB.

Platelets electroporated with 10 cycles of 5kV did not respond to PAF (10nM-300nM), see figure 50. In addition, after incubations at 37°C for 30 minutes and 1 hour these permeabilised platelets also did not respond to PAF and [¹⁴C]5-HT release could not be detected in the presence or absence of 1mM Ca²⁺.

3.3.1.12 Investigation of the function of resealed electroporated platelets suspended in high K⁺ buffer.

Platelets resuspended in high K⁺ buffer and electroporated with 5, 10 and 15 cycles of 5kV did not respond to PAF (10nM-300nM). In addition, after incubations at 37°C for 30 minutes and 1 hour, PAF did not evoke a response and [¹⁴C]5-HT release could not be detected.

Thus although apparent resealing takes place in so far as the platelets
Figure 50. PAF-induced [\(^{14}\)C]5-HT release in (a) intact and (b) electroporated platelets. Platelets loaded with [\(^{14}\)C]5-HT were stimulated with (a) PAF (10-300nM) or (b) electroporated 10 cycles at 5kV and then challenged with PAF (10-300nM), [\(^{14}\)C]5-HT release is then determined. Each point is the mean ± SE of 3 determinations.
Figure 5. To assess permeabilisation and resealing of electroporated cells. Platelets loaded with [14C]5-HT and (a) intact platelets challenged with PAF (10-300nM) (open bars) or vehicle (closed bars), (b) electroporated platelets (10 cycles at 5kV) challenged with PAF (10-300nM) at t=0 after poration and (c) electroporated platelets (10 cycles at 5kV) challenged with PAF (10-300nM) at t=60 after poration and [14C]5-HT release determined. Each point is the mean ± SE of 3 determinations.
not responding to millimolar Ca2+ after incubations at 37°C in contrast to the responses to Ca2+ observed immediately after permeabilisation. However, the preparation is not responsive to PAF after 30-60 minutes incubations at 37°C, indicating a breakdown in the signalling system. Thus with electroporation, platelets appear to permeabilise and possibly reseal but with the loss of platelet functional responses to extracellular agonists such as PAF, see figure 51.

3.4 Investigating the effects of the Ca2+-influx inhibitor SKF 96365 on platelet function.

Ca2+ entry is thought to play an important role in Ca2+ elevation following receptor activation. SKF 96365 is an inhibitor of receptor-mediated calcium entry and has been used in this study to investigate the role played by extracellular Ca2+ in platelet activation.

3.4.1 The effect of SKF 96365 on Ca2+ release by PAF in intact Fura-loaded platelets.

Platelets loaded with the fluorescent indicator Fura-2, and challenged with PAF (3-300nM) produced a dose dependent elevation in [Ca2+] with 3nM PAF producing a 1μM rise in [Ca2+]. This dose was subsequently used to probe the effect the influx inhibitor would have on Ca2+ elevation, figure 52.

90 second pre-incubations of the platelets with a dose range of SKF 96365 (1-100μM) and then challenged with 3nM PAF, this produced a dose dependent inhibition of a 3nM PAF response with an IC50 of 21.1 ± 1.1μM (n=3, mean ± SE) and a reduction in Ca2+ elevation with 90% inhibition being achieved at 100μM SKF 96365, see figure 52.
Figure 52. Inhibition of PAF-induced elevation of cytosolic calcium concentration by SKF 96365. Fura-2 AM loaded platelets were incubated with SKF 96365 for 90 seconds prior to stimulation with 3nM PAF. Each point is the mean ± SE of 3 determinations. Inset shows representative traces of the dose dependent inhibition of 3nM PAF-induced Ca^{2+}-elevation by a: vehicle, b: 3μM SKF 96365, c: 10μM SKF 96365, d: 30μM SKF 96365, e: 100μM SKF 96365
Figure 53. Inhibition of 3nM PAF-induced [14C]5-HT release by SKF 96365. [14C]5-HT loaded intact platelets were incubated with SKF 96365 for 90 seconds (open bars), or vehicle (closed bars), prior to activation by 3nM PAF. Each point is the mean ± SE of 3 determinations.
3.4.2 The effect of SKF 96365 on dense granule release.

90 Second pre-incubation of platelets with SKF 96365 (1-100μM) produced a dose dependent inhibition of dense granule release when platelets loaded with [1^4C]5-HT were challenged with 3nM PAF. Maximal inhibition was achieved with 10μM SKF 96365 with an IC\textsubscript{50} of 100nM±20nM (n=3, mean ± SE), see figure 53.

3.4.3 The effect of SKF 96365 on InsP\textsubscript{3} production.

90 Second pre-incubations of platelets with a dose range of SKF 96365 (1-100μM) produced a dose dependent inhibition of InsP\textsubscript{3} production when stimulated with 300nM PAF, having an IC\textsubscript{50} of 24.3±3.2μM (n=3, mean ± SE), see figure 54. Levels of InsP\textsubscript{3} rise from 4±2.7 pmol basal to 9.1±2.9 pmol InsP\textsubscript{3}/10^9 platelets upon maximal stimulation.

3.4.4 Studies on permeabilised platelets.

3.4.4.1 45Ca release induced by SKF 96365.

SKF 96365 (1-100μM) challenged permeabilised platelets (20°C) had no capacity to mobilise Ca2+ from InsP\textsubscript{3}-sensitive stores (see figure 55), in 45Ca-loaded permeabilised platelets, in comparison to InsP\textsubscript{3} which releases a maximum of 75-80% 45Ca at 30μM, which has an EC\textsubscript{50} of 1.15±0.9μM.
Figure S4. Inhibition of 300nM PAF-induced InsP₃ production by SKF 96365. Platelets were incubated with SKF 96365 for 90 seconds prior to activation by 300 nM PAF and InsP₃ production was determined. Inset shows InsP₃ levels at basal and maximum stimulation. All values have been obtained by subtracting the basal pre-PAF from those obtained after PAF-stimulation. Each point is the mean ± SE of 3 determinations.
Figure 55. Dose response curves to InsP$_3$ (•) and SKF 96365 (▲) for their ability to release sequestered 45Ca from saponin permeabilised platelets. Permeabilised platelets were loaded with 45Ca, stimulated with a dose range of InsP$_3$ or SKF 96365 for 3 minutes at 20°C and 45Ca release was determined by rapid filtration. Each point is the mean ± SE of 3 determinations.
3.4.4.2 The effect of SKF 96365 on InsP\textsubscript{3} and Ins(1,3,4,5)P\textsubscript{4}-stimulated \(^{45}\text{Ca}\) release.

SKF 96365 (1-100μM) had no effect of both 3μM InsP\textsubscript{3} and 10μM Ins(1,3,4,5)P\textsubscript{4} \(^{45}\text{Ca}\)-induced mobilisation at 20°C (see figure 56 and 57). 3μM InsP\textsubscript{3} releases 68±2% (n=3, mean ± SE) of the sequestered \(^{45}\text{Ca}\), whereas 10μM Ins(1,3,4,5)P\textsubscript{3} release 28±3% (n=3, mean ± SE) of the loaded \(^{45}\text{Ca}\) (at 20°C), figure 58.

3.5 The use of crude platelet membranes for examining InsP\textsubscript{3}-induced \(\text{Ca}^{2+}\) release.

3.5.1 \(^{45}\text{Ca}\) release assay.

3.5.1.1 Optimal cell number and protein concentration for \(^{45}\text{Ca}\).

The amount of \(^{45}\text{Ca}\) taken up into the membrane preparation was directly proportional to the protein concentration, with the greater protein concentration having a greater amount of \(^{45}\text{Ca}\) associated with it. Thus for subsequent experiments platelets were suspended to \(10^9\) cell/ml and later freeze/thawed for membrane preparation, figure 59.

<table>
<thead>
<tr>
<th>Platelets /ml</th>
<th>Protein conc. mg/ml</th>
<th>% (^{45}\text{Ca}) uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^8)</td>
<td>0.1</td>
<td>22±3</td>
</tr>
<tr>
<td>(2\times10^8)</td>
<td>0.3</td>
<td>31±1.6</td>
</tr>
<tr>
<td>(10^9)</td>
<td>0.95</td>
<td>38±2.1</td>
</tr>
</tbody>
</table>
Figure 56. The effect of SKF 96365 on 3μM InsP3-induced 45Ca-release. Saponin permeabilised platelets were incubated with vehicle (closed bars), or SKF 96365 (open bars) for 90 seconds prior to challenge with 3μM InsP3 for 3 minutes at 20°C. 45Ca release determined by rapid filtration. Each point is the mean ± SE of 3 determinations.
Figure 57. The effect of SKF 96365 on 3μM Ins(1,3,4,5)P₄-induced ⁴⁵Ca-release. Saponin permeabilised platelets were incubated with vehicle (closed bars), or SKF 96365 (open bars) for 90 seconds prior to challenge with 10μM Ins(1,3,4,5)P₄ for 3 minutes at 20°C. ⁴⁵Ca release determined by rapid filtration. Each point is the mean ± SE of 3 determinations.
3.5.1.2 Time course of 45Ca uptake into crude platelet membranes.

45Ca uptake was time dependent reaching a plateau after 30 minutes of incubation with 45Ca. The plateau was maintained for over one hour which is sufficient to carry out a release experiment. The overall percentage of 45Ca uptake into these membranes, in comparison to uptake into permeabilised platelets, was found to be considerably less, 29% in comparison to 45%, figure 60.

3.5.1.3 InsP$_3$ dose response curve in crude membrane preparations.

Crude platelet membranes prepared on three separate occasions, when challenged with InsP$_3$, produced three different dose/response relationships, see figure 60. In addition, the dose response curves are nominal in that the EC$_{50}$ are very high indicating little receptor activation or the presence of a low receptor concentration. This with the afore mentioned inconsistency in response suggests that the platelet membrane preparations on the different days are different with respect to InsP$_3$ receptor concentration. The reason for this is not known. Thus, crude membrane preparation can not be used to study InsP$_3$- and analogue-induced 45Ca release.

3.5.1.4 The effect of heparin on InsP$_3$-induced 45Ca release.

Heparin (300ng/ml- 100μg/ml) caused a dose dependent inhibition in crude rabbit membranes and 100% inhibition was not achieved. However, comparable to the inconsistency of InsP$_3$-induced 45Ca experienced above, heparin tested on membranes prepared on separate occasions produced different degrees of
inhibition (see figure 61). Thus, an IC₅₀ value could only be obtained for each individual experiment and these could not be compared directly.

Figure 59. Time course of 45Ca uptake into crude platelet membrane preparations. Crude platelet membranes were prepared and 45Ca uptake at predetermined times was measured over a period of 2 hours. Each point is the mean \pm SE of 3 experiments.
Figure 60. Dose response curves to InsP$_3$ of three different crude membrane preparations. Crude membranes were prepared on three separate days, loaded with 45Ca and challenged with a dose range of InsP$_3$ for 3 minutes. This graph shows the variation in response to InsP$_3$ of the three separate preparations.
Figure 61. Inhibition of 3μM InsP3-induced 45Ca-release in crude platelet membranes by heparin. Crude platelet membranes loaded with 45Ca were pre-incubated with heparin (1μg/ml- 100μg/ml) for 3 minutes and then challenged with 3μM InsP3 for 3 minutes at 20°C. Graphs are results of two membrane preparations and show a marked variation in response.
DISCUSSION
4.1 Structure/activity relationships: The requirements of the InsP₃ receptor for Ca²⁺ release.

4.1.1 Structural requirements for Ca²⁺ release.

Intact platelets stimulated with InsP₃ did not release Ca²⁺. This indicates that these cells did not become permeable upon incubation with InsP₃ in ICB, and that they need to be permeable in order for InsP₃ to elicit a response. Upon saponin treatment, platelets became sensitive to InsP₃.

The ability of InsP₃ to mobilise Ca²⁺ from intracellular stores was found to be stereospecific, as demonstrated by a comparison of D-InsP₃ and L-InsP₃. D-InsP₃ released 75-85% of non-mitochondrial Ca²⁺ with an EC₅₀ of 1.14 ± 0.2 μM (at 20°C), whereas L-InsP₃ was unable to mobilise Ca²⁺ (at all concentrations examined). This is consistent with previous reports (Strupish et al., 1988) in which L-InsP₃ was found to be some 2000-fold weaker than D-InsP₃ and that it exhibited very low affinity for the InsP₃-binding site showing no partial agonism or antagonism at the InsP₃ receptor (Strupish et al., 1988; Polokoff et al 1988)

4.1.2 Temperature dependence of InsP₃-induced Ca²⁺ release.

InsP₃-induced Ca²⁺-release was found to be very temperature dependent. The EC₅₀ at 4°C, 20°C and 37°C were 0.18 ± 0.1 μM, 1.14 ± 0.2 μM and ≥10 μM respectively. Thus, approximately 50 fold more InsP₃ is required to release the same amount of ⁴⁵Ca at 37°C compared to 4°C.

The causes of this marked temperature dependence could include (a). a reduced binding affinity of ligand with receptor at 37°C, (b). temperature dependent loss
of intrinsic Ca2+ mobilisation, (c). a loss in the concentration of InsP\textsubscript{3} due to increased metabolism, (d). loss in activity of Ca2+-channel at 37°C.

In our system, optimal 45Ca release was observed at 4°C and the rank order for Ca2+-release is 4°C > 20°C > 37°C. This is reflected by the rates of InsP\textsubscript{3} metabolism, see later. The order of efficiency of metabolism is 37°C > 20°C > 4°C and greater 45Ca release at the lower temperatures is an indication of lower enzyme activity. Thus, at lower temperatures, a higher proportion of the exogenously applied InsP\textsubscript{3} is conserved. Because InsP\textsubscript{3} can reach a higher concentration at 4°C in the vicinity of the receptor, due to this reduced metabolism, it is capable of releasing a greater proportion of sequestered Ca2+. However, InsP\textsubscript{3} remains equally efficacious.

Our data suggests a rapid loss of InsP\textsubscript{3} at 37°C due to metabolism. However, it is still possible that other factors such as a. and b. above are contributing to these differences in EC\textsubscript{50} at 4°C, 20°C and 37°C. In order elucidate the role of metabolism in this apparent decrease in potency with increasing temperature, studies on metabolic-resistant analogues need to be carried out.

The initial curves for InsP\textsubscript{3}- and scyllo-Ins(1,2,4,5)P\textsubscript{4}-induced Ca2+ release at 20°C, indicate that the latter is apparently more potent than InsP\textsubscript{3} at mobilising Ca2+. However, upon studying the Ca2+ release profiles of scyllo-Ins(1,2,4,5)P\textsubscript{4} at 4°C, 20°C and 37°C, it was established that scyllo-Ins(1,2,4,5)P\textsubscript{4}-induced Ca2+ release is also temperature dependent. The EC\textsubscript{50} at 4°C, 20°C and 37°C are 0.1 ± 0.05μM, 0.1 ± 0.05μM and 5.1 ± 0.2μM respectively. At 4°C, InsP\textsubscript{3} and scyllo-Ins(1,2,4,5)P\textsubscript{4} were equally potent in their release ability. At 20°C, InsP\textsubscript{3} appears to be 10 fold less potent than scyllo-Ins(1,2,4,5)P\textsubscript{4} and at 37°C, InsP\textsubscript{3} appears to be only 2-fold less potent.
Of interest is the finding that the EC$_{50}$ for scyllo-Ins(1,2,4,5)P$_4$ at 4°C and 20°C are identical (0.1± 0.05µM). This may be due to metabolism, and scyllo-Ins(1,2,4,5)P$_4$ may be metabolised slowly at these two temperatures.

In addition, we can probably attribute the greater potency of scyllo-Ins(1,2,4,5)P$_4$ at 20°C, in comparison to InsP$_3$, to a metabolism effect, InsP$_3$ being metabolised at a faster rate than scyllo-Ins(1,2,4,5)P$_4$ at 20°C. This, presumably implies that scyllo-Ins(1,2,4,5)P$_4$ is a weaker substrate for the metabolic enzymes than InsP$_3$, or that it is even an inhibitor of these enzymes. The use of stable analogues of scyllo-Ins(1,2,4,5)P$_4$ may help elucidate the role of metabolism in this case. However, scyllo-Ins(1,2,4,5)PS$_4$, a stable phosphorothioate analogue of scyllo-Ins(1,2,4,5)PS$_4$, has been examined but found to be a partial agonist in this system and hence unable to define the role of metabolism here.

4.1.3 Phosphorothioate modification.

Phosphorothioate analogues are of considerable interest due to their resistance to intracellular phosphatases (Willcocks et al., 1988) and their potential use in investigating metabolism. A number of analogues of InsP$_3$ were synthesized in order to design a phosphatase resistant analogue. Three InsP$_3$ phosphorothioate analogues were examined, Ins(1,4,5)PS$_3$, Ins(1)P(4,5)PS$_2$ and D/L-Ins(1)PS(4,5)P$_2$ all of which were found to be full agonists, releasing Ca$^{2+}$ with similar potencies to InsP$_3$ with EC$_{50}$ of 0.8± 0.1µM, 0.85± 0.1µM and 0.65± 0.1µM respectively, at 20°C. All three compounds were thus as potent as InsP$_3$ in mobilising 45Ca at 20°C. Further, it appears that complete substitution of all the phosphates with phosphorothioates, as with Ins(1,4,5)PS$_3$, does not affect potency when comparing with selective substitution at the vicinal 4,5-
bisphosphate, as in \text{Ins}(1)\text{P}(4,5)\text{PS}_{2} and \text{D/L-Ins}(1)\text{P}(4,5)\text{P}_{2}. Thus, the substitution of phosphates with phosphorothioates causes only a slight loss in potency at the platelet receptor. Various studies have reported that \text{Ins}(1,4,5)\text{PS}_{3} is a persistent activator of \text{InsP}_{3}-receptor, being resistant to metabolism by the \text{InsP}_{3} 5\text{-phosphatase (Taylor et al., 1989; Wojcikiewicz et al., 1990; Safrany et al., 1991a). The enantiomer of \text{Ins}(1,4,5)\text{PS}_{3}, \text{L-Ins}(1,4,5)\text{PS}_{3}, was found to be inactive. This is consistent with the stereoselectivity displayed by the \text{InsP}_{3}-receptor, as previously discussed, where \text{L-InsP}_{3} was found to be inactive in comparison to \text{D-InsP}_{3}. In addition, this compound did not display any inhibitory effect on \text{InsP}_{3}-induced mobilisation. This is not a surprise, since \text{L-Ins}(1,4,5)\text{PS}_{3} was designed as a non-Ca2+ mobilising 5\text{-phosphatase inhibitor.}

Inositol phosphorothioates are finding considerable applications in studies of the polyphosphoinositide signalling pathway, (Potter, 1990b; Potter, 1993). Luckhoff and Clapham (1992) in their recent work give a direct demonstration of activation by \text{Ins}(1,3,4,5)\text{P}_{4} of a Ca2+-channel in endothelial cells using phosphorothioate analogues.

In all cases where the phosphorothioate analogue, \text{Ins}(1,4,5)\text{PS}_{3} has been used, its metabolic stability was crucial for these experiments. These compounds are proving to be valuable pharmacological and biochemical tools and will continue to help solve some of the problems encountered in PI signalling. For review of phosphorothioate analogues see (Potter, 1990a; Potter, 1991; Potter, 1993).

4.1.4 Positioanal modifications.

The role of the three phosphates (-1, -4 and -5) and the three hydroxyls (2-, 3- and 6-) in Ca2+ mobilisation has been investigated in rabbit platelets. This was
achieved by the availability of various ring modified and phosphate modified analogues in order to understand the contribution and significance of these phosphates and hydroxyl groups to Ca2+ mobilisation.

4.1.4.1 Modification at the 1-position.

The introduction of a phosphorothioate at the 1-position is tolerated as depicted in D/L-Ins(1)PS(4,5)P\textsubscript{2}. This compound is a potent agonist with an EC\textsubscript{50} of 0.65± 0.1\textmu M at 20°C. It appears, then, that small changes in the nature of the group on the 1-position have little effect on Ca2+-mobilising ability.

In addition, from the literature, a number of semisynthetic derivatives of InsP\textsubscript{3} substituted at the 1-position have been investigated (Henne et al., 1988) and it was shown that the introduction of glyco- and glycero-based large groups at this position does not produce a major loss in activity.

4.1.4.2 Modification at the 2-position.

Ins(2,2)F\textsubscript{2}(1,4,5)P\textsubscript{3} has two fluorine atoms replacing its axial 2-OH and the equatorial 2-hydrogen. The axial 2-fluorine is expected to mimic the axial 2-OH group, both sterically and electronically. This analogue was found to be as potent as InsP\textsubscript{3} in mobilising Ca2+ in permeabilised platelets, with an EC\textsubscript{50} of 0.63± 0.09\textmu M at 20°C, indicating that a major change to the 2-position in terms of functional group and ionic environment has little effect on receptor binding and mobilisation of Ca2+. Thus, this reveals that the 2-position plays a very minor role in InsP\textsubscript{3}'s action. These results are consistent with studies in SH-SY5Y neuroblastoma cells (Safrany et al., 1990; Safrany et al., 1992a) and the work of Hirata et al (1990; 1993).
Ins(1,2,4,5)P₄, a synthetic InsP₃ analogue, possesses an additional phosphate on the 2-position, as well as the phosphates on the 1-position and vicinal 4,5-position of InsP₃. This analogue was found to be a full agonist in permeabilised platelets with an EC₅₀ of 0.53 ± 0.04 µM at 20°C and is as potent as InsP₃. This supports the idea that the requirements for InsP₃ receptor binding are fulfilled by this analogue and represents the first observation that a charged anionic group at the 2-position does not affect activity to any great extent.

Figure 62. The structures of InsP₃ and the possible two binding modes of Scylo-Ins(1,2,4)P₃.

<table>
<thead>
<tr>
<th></th>
<th>InsP₃</th>
<th>scylo-Ins(1,2,4)P₃</th>
<th>comparison of -OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 axial</td>
<td>2 axial</td>
<td>5 equatorial</td>
<td>Different</td>
</tr>
<tr>
<td>3 equatorial</td>
<td>6 equatorial</td>
<td>6 equatorial</td>
<td>Same</td>
</tr>
<tr>
<td>6 equatorial</td>
<td>5 equatorial</td>
<td>5 equatorial</td>
<td>Same</td>
</tr>
</tbody>
</table>

Table 4. Comparison of the position and orientation of the hydroxyls of InsP₃ and Scylo-Ins(1,2,4)P₃
It is not apparent immediately how this molecule may interact with the InsP₃ receptor. However, it is possible to envisage two modes of scyllo-Ins(1,2,4)P₃ binding to the InsP₃ receptor, see figure 62.

Scyllo-Ins(1,2,4)P₃ and InsP₃ are the same in terms of the regiochemistry of their phosphates, see figure 63, but InsP₃ possesses an axial 2-OH which is replaced by an equatorial 5-OH in scyllo-Ins(1,2,4)P₃, see table 4. However, the equatorial 3-OH of InsP₃ is matched by the equatorial 6-OH of scyllo-Ins(1,2,4)P₃ and the equatorial 6-OH of InsP₃ is mimicked by the equatorial 3-OH of scyllo-Ins(1,2,4)P₃. Scyllo-Ins(1,2,4)P₃ is a full agonist as potent as InsP₃ in releasing Ca²⁺ with an EC₅₀ of 0.58±0.07µM. This maintained activity despite 2-OH modification, from axial to equatorial, indicates that the 2-OH is not essential for Ca²⁺ mobilisation and receptor occupation.

The introduction of large groups at the axial 2-position is tolerated, leading to a slight loss in activity (Hirata et al., 1990). The above data all indicate that the 2-position is relatively unimportant for receptor recognition and Ca²⁺ mobilisation in this study using permeabilised platelets.

4.1.4.3 Modification at the 3-position.

The role of the 3-OH of InsP₃ is of particular interest as it is the site of phosphorylation by InsP₃ 3-kinase, and its deletion would be of interest. However, 3-deoxy analogues were not available for evaluation in this study.

L-chiro-Ins(2,3,5)P₃ is modified at the 3-position, see figure 63, where the equatorial 3-OH of InsP₃ is replaced by an axial 1-OH of L-chiro-Ins(2,3,5)P₃ resulting in an inversion of stereochemistry.
Figure 63. The structures of InsP3 and L-chiro-Ins(2,3,5)P3

<table>
<thead>
<tr>
<th>InsP3</th>
<th>L-chiro-Ins(2,3,5)P3</th>
<th>comparison of -OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 axial</td>
<td>6 axial</td>
<td>same</td>
</tr>
<tr>
<td>3 equatorial</td>
<td>1 axial</td>
<td>Different</td>
</tr>
<tr>
<td>6 equatorial</td>
<td>4 equatorial</td>
<td>Same</td>
</tr>
</tbody>
</table>

Table 5. Comparison of the position and orientation of the hydroxyls of InsP3 and L-chiro-Ins(2,3,5)P3

This analogue relative to InsP3, has the same pseudo D-1,4,5- phosphates as InsP3 and the orientation of the 2- and 6-OH groups of InsP3 are the same as those of L-chiro-Ins(2,3,5)P3, see table 5. The 2- and 6-OH groups of InsP3 are the same as the 6- and 4-OH groups of L-chiro-Ins(2,3,5)P3 respectively. L-chiro-Ins(2,3,5)P3 shows full agonist properties with an EC50 of 1.9 ± 0.1μM at 20°C, and is only 1.7 -fold less potent than InsP3 at 20°C. This indicates that the 3-OH, surprisingly plays a minor role in InsP3 binding and Ca2+ release, especially when we consider that the action of the 3-kinase is at this position.

Safrany et al (1992b) and Liu et al., (1992) used SH-SY5Y neuroblastoma cells to evaluate this analogue and it was found to be a full agonist with an EC50 of
1.4 ± 0.3 μM whereas InsP3 has an EC50 of 0.09 μM, and this is in agreement with our findings.

The natural metabolite Ins(1,3,4,5)P4 was found to be weak in mobilising Ca^{2+} in permeabilised platelets, having an EC50 of ≥10 μM at 20°C, thus being ~10-fold less potent than InsP3. A phosphorothioate analogue of Ins(1,3,4,5)P4, Ins(3)PS(1,4,5)P3, designed as an Ins(1,3,4,5)P4 3-phosphatase inhibitor, was slightly less potent than the parent phosphate in mobilising Ca^{2+}, as seen in the dose response curves, with an EC50 of ≥10 μM. Ins(3)PS(1,4,5)P3 has the same phosphates as Ins(1,3,4,5)P4 at the 1-, 4- and 5-positions and, although it possess a phosphorothioate at 3-position, it might be expected to be as potent as Ins(1,3,4,5)P4. Ins(3)PS(1,4,5)P3 was shown to be slightly less potent than Ins(1,3,4,5)P4 at mobilising Ca^{2+} from the platelet InsP3 receptor. This suggests that substitution of a phosphate with a phosphorothioate at the 3-position of Ins(1,3,4,5)P4 does not have a significant effect on Ca^{2+} mobilisation activity.

Ins(1,3,4,5)P4 was found to mobilise Ca^{2+} in other cell systems. In SH-SY5Y neuroblastoma cells Ins(1,3,4,5)P4 induced Ca^{2+} release with an EC50 of 2 μM (Gawler et al., 1990) and although the mechanism of Ins(1,3,4,5)P4-induced Ca^{2+}-release is still a matter of controversy, Wilcox et al (1993), in studies using SH-SY5Y neuroblastoma cells have recently suggested that Ins(1,3,4,5)P4-induced Ca^{2+}-mobilisation is mediated through the InsP3 receptor.

Seewald et al (1990) found that 3-deoxy-Ins(1,4,5)P3 was a full agonist in NIH 3T3 cells (no reported EC50), and Kozikowski et al (1993ab), synthesized a series of deoxygenated analogues including 3-deoxy-Ins(1,4,5)P3 which showed full agonism with an EC50 of 1.56 ± 0.02 μM in SH-SY5Y neuroblastoma cells.
These results show that the 3-OH plays a relatively unimportant role in receptor binding and Ca\(^{2+}\)-mobilisation. However, the addition of a phosphate group at the 3-position [as in \(\text{Ins}(1,3,4,5)\text{P}_4\)] reduces the compounds ability to mobilise Ca\(^{2+}\). Replacement with a phosphorothioate group, as in \(\text{Ins}(3)\text{PS}(1,4,5)\text{P}_3\), further, but marginally reduces the ability for Ca\(^{2+}\) release.

4.1.4.4 Modification at the 4-position.

\(\text{InsP}_3\) analogues modified exclusively at the 4-position were not available for this study. However, several analogues having multiple modifications have been modified at the 4-position, see later.

\(\text{Ins}(1,3,5)\text{PS}_3\) does not possess a 4-phosphate moiety, but possesses 1-, 3- and 5-phosphorothioate groups. This analogue has no Ca\(^{2+}\)-mobilising activity, in permeabilised platelets, even at 10\(\mu\)M, having an EC\(_{50}\) of \(\geq 100\mu\)M at 20\(^\circ\)C. Although this is a phosphorothioate analogue, the lack of activity indicates to the possible importance of this 4-phosphate for activity. Polokoff et al (1988) found that the parent compound, \(\text{Ins}(1,3,5)\text{P}_3\) had low potency with an EC\(_{50}\) of 630\(\mu\)M in smooth muscle cells. It may be that phosphorothioate substitution of \(\text{Ins}(1,3,5)\text{P}_3\), as in \(\text{Ins}(1,3,5)\text{PS}_3\), will further reduce \(\text{Ins}(1,3,5)\text{P}_3\) potency. However, it is known that the vicinal 4,5-bisphosphate or a pseudo D-4,5-bisphosphate is necessary for activity in other cell systems and the lack of activity of this compound is most likely due to this.

4.1.4.5 Modification at the 5-position.

\(\text{InsP}_3\) analogues selectively modified at the 5-position were not available for this study, however, several analogues having multiple modifications have been modified at the 5-position, see later.
The natural product of dephosphorylation of InsP$_3$ by the 5-phosphatase enzyme, Ins(1,4)P$_2$, has been shown to be substantially weaker than InsP$_3$ in mobilising Ca$^{2+}$. This would suggest that it plays a minor role in Ca$^{2+}$-mobilisation in vivo (Potter, 1990bc)

D/L-myoinositol 1,4-bisphosphate-5-phosphorothioate [Ins(1,4)P$_2$(5)PS] (Potter, 1990b; Safrany et al., 1991a) was found to be a full agonist at the InsP$_3$ receptor and a potent mobiliser of Ca$^{2+}$ from permeabilised SH-SY5Y neuroblastoma cells, being only 7 fold less potent than InsP$_3$ at mobilising Ca$^{2+}$, where the EC$_{50}$ of InsP$_3$ is 0.11µM and for Ins(1,4)P$_2$(5)PS is 0.8µM.

4.1.4.6 Modification at the 6-position.

The role of the 6-OH, adjacent to the crucial vicinal 4,5-bisphosphate, was probed using 6-deoxy-Ins(1,4,5)P$_3$ and 6-deoxy-Ins(1,4,5)PS$_3$, where the 6-OH has been deleted in the first case and in addition, the phosphates replaced by phosphorothioates in the second case. Both of these analogues were weak as Ca$^{2+}$ mobilizers, showing substantial loss in activity, 6-deoxy-Ins(1,4,5)P$_3$ releasing a maximum of 40% 45Ca, with an EC$_{50}$ of ≥30µM at 20°C, being at least 30-fold less potent than InsP$_3$. Any activity expressed by 6-deoxy-Ins(1,4,5)P$_3$ is lost upon phosphorothioate replacement, for 6-deoxy-Ins(1,4,5)PS$_3$ releases maximally 8% Ca$^{2+}$ at 100µM.

6-deoxy-Ins(1,4,5)P$_3$ was found to be a full agonist in permeabilised SH-SY5Y neuroblastoma cells (Safrany et al., 1991b; Potter and Nahorski, 1992; Potter, 1993) some 70-fold less potent (EC$_{50}$ 6.4µM) than InsP$_3$ with an EC$_{50}$ of 6.4µM (InsP$_3$ EC$_{50}$ 0.1µM). However, in this study using permeabilised platelets 6-deoxy-Ins(1,4,5)P$_3$ was found to be a weak mobiliser of Ca$^{2+}$ with an EC$_{50}$ of
\[\geq 30 \mu \text{M} \]. In contrast to our data, 6-deoxy-Ins(1,4,5)PS\(_3\) was shown to be a partial agonist in SH-SY5Y cells (Safrany et al., 1993), mobilising \(\approx 50\% \) of the Ca\(^{2+}\) pool mobilised by InsP\(_3\).

Thus, modification at the 6-position appears to be important in Ca\(^{2+}\)-release, leading to substantial loss of activity.

4.1.4.7 Multiple modifications.

Ins(4)CO(3,5)P\(_2\) is modified at the 1-, 3- and 4-position. Ins(4)CO(3,5)P\(_2\) does not possess a 1-phosphate group of InsP\(_3\), the 3-hydroxyl is occupied by a phosphate and its 4,5-positions are occupied by a methylene carboxylate and a phosphate group respectively. This compound shows no ability to mobilise Ca\(^{2+}\) in rabbit platelets. This is possibly due to the absence of the 1-phosphate. In addition, it does not antagonise InsP\(_3\)-induced Ca\(^{2+}\) release.

Figure 64. The structures of InsP\(_3\) and Ins(1)P(4,5)pyrophosphate

Ins(1)P(4,5)pyrophosphate, in figure 64, is modified selectively at the vicinal 4,5-phosphates which are replaced by a pyrophosphate moiety. This analogue does not release Ca\(^{2+}\), even at high micromolar concentrations. In addition, it does not inhibit InsP\(_3\)-induced Ca\(^{2+}\)-release, which may suggest that it does not
interact or bind to the InsP₃ receptor. The 4,5-pyrophosphate group is a rigid structure with a similar size to the two phosphate groups it has replaced.

However, the inability of this analogue to activate the receptor may be attributed to the rigid structure of the former, where the pyrophosphate group is held tightly in its position and is unable to rotate or move to achieve a desirable conformation for binding to the InsP₃ receptor. It was thought that InsP₃ may adopt a conformation, when bound to its receptor or in solution, where the vicinal 4,5-bisphosphate system chelates a metal ion. Ins(1)P(4,5)pyrophosphate was synthesized to mimic this conformation in order to validate this idea. However, because this compound is inactive, it provides tentatitive evidence for a different conformation of InsP₃ when bound to the receptor. This is likely to be a conformation where the 4 and 5 phosphates are diametrically opposed as a result of ionic repulsion.

Inositol-1-phosphate, which does not possess the vicinal 4,5-phosphates, is unable to mobilise Ca²⁺ in permeabilised platelets, or to interfere with InsP₃-induced Ca²⁺-mobilisation. This lack of activity can be attributed to the absence of the 4,5-phosphates.

Thus, our experimental data with inositol phosphate analogues in which the vicinal 4,5-bisphosphate are absent, or modified, support previous findings with other cell systems. Similar attributes have been assigned to the 4,5-bisphosphate and the critical importance of the vicinal groups (Gawler et al., 1991) and the enhancing effects of the 1-phosphate group of InsP₃ in receptor binding are now well established and appreciated (Potter, 1991; Nahorski and Potter, 1992; Potter, 1993).
The synthetic precursor of 6-deoxy-Ins(1,4,5)P$_3$, 6-deoxy-2,3-cyclohex-Ins(1,4,5)P$_3$ has a bulky cyclohexylidene group on the 2- and 3-OH groups and shows no activity in terms of Ca$^{2+}$ release. The phosphorothioate derivative, 6-deoxy-2,3-cyclohex-Ins(1,4,5)PS$_3$, also has no activity. These synthetic precursors show complete loss of activity, in comparison to their parent compounds, 6-deoxy-Ins(1,4,5)P$_3$ and 6-deoxy-Ins(1,4,5)PS$_3$. This is possibly due to steric hindrance caused by the bulky cyclohexylidene group which may lead to ring distortion that may disrupt the correct conformation necessary for receptor binding. This is surprising, since modifications at the 2- and 3-positions do not effect potency and that these positions do not play a significant role in Ca$^{2+}$-mobilisation. Alternatively, and most likely, the size of the 2,3-cyclohexylidene group may just be too large to be tolerated by the receptor.

Ins(1,3,4,6)P$_4$ was originally identified as a natural metabolite of InsP$_3$ produced from the actions of a 6-kinase on Ins(1,3,4)P$_3$ (Shears et al., 1987; Stephens et al., 1990). In platelets, Ins(1,3,4,6)P$_4$ was found to be a full agonist, and to mobilise Ca$^{2+}$ with an EC$_{50}$ of 9.67 ± 0.5μM, this is some 8-fold less potent than InsP$_3$. On this basis it seems unlikely than it will have any significant role in cellular signalling and Ca$^{2+}$ release. However, this polyphosphate was shown to be a partial agonist of high efficacy in SH-SY5Y neuroblastoma cells, mobilising 80- 90% of the Ca$^{2+}$ pool mobilised by InsP$_3$, see Safrany et al (1993). The phosphorothioate analogue, Ins(1,3,4,6)PS$_4$, was also investigated in rabbit platelets, and was found to be a weak full agonist, mobilising Ca$^{2+}$ with an EC$_{50}$ of ≥30μM. This is consistent with our previous findings that substitution of a phosphate for a phosphorothioate reduces the compounds activity for Ca$^{2+}$-release.

When examining the chemical structure of Ins(1,3,4,6)P$_4$, it is not immediately apparent why it should be active at all. Ins(1,3,4,6)P$_4$ does not nominally
possess the essential vicinal 4,5-bisphosphate structure, nor does it possess a free 6-OH, which in this case is phosphorylated.

![Diagram of Ins(1,4,5)P3 receptor and Ins(1,3,4,6)P4 conformations](image)

Figure 65. Alternative binding conformations for Ins(1,3,4,6)P4

However, it is possible to envisage two potential binding conformations for Ins(1,3,4,6)P4 at the InsP3 receptor, A and B in figure 65. Both conformations mimic a number of important recognition features, namely, the 4,5-bisphosphate, the 1-phosphate group and the 6-hydroxyl group.

In conformation A, the 1- and 6-phosphates of Ins(1,3,4,6)P4 resemble the vicinal 4,5-bisphosphate of InsP3, and the 4-phosphate is in the position of the 1-phosphate of InsP3. In conformation B, again, the 6- and 1-phosphates of Ins(1,3,4,6)P4 resemble the vicinal 4,5-bisphosphate of InsP3. However, in this
case, it is the 3-phosphate that is in the position of the 1-phosphate of InsP₃, see figure 65.

Both conformations contain an extra phosphate at the 2-position of InsP₃ is apparent from figure 65. However, modifications at the 2-position do not have a significant effect on Ca²⁺-mobilisation, as discussed earlier and we know that scyllo-Ins(1,2,4,5)P₃ is highly potent. In addition, the conformation of the 3-hydroxyl (in the first binding conformation A) and the conformation of the 6-hydroxyl (in the second binding conformation B) are altered, both being axial, rather than equatorial as in the case of InsP₃. Thus, this compound can mimic the essential features necessary for InsP₃ receptor binding, namely the D-1,4,5-phosphates and the 6-OH.

On the basis that Ins(1,3,4,6)P₄ was found to be a partial agonist in neuroblastoma cells, with high intrinsic activity, it was thought that deletion of either of the 3- or 4-phosphates of Ins(1,3,4,6)P₄, and the further substitution of the phosphates with phosphorothioates may give rise to a partial agonist with lower intrinsic activity (see section on partial agonists).

Deletion of the 3-phosphate gives rise to D-Ins(1,4,6)P₃ and deletion of the 4-phosphate gives rise to L-Ins(1,3,4)P₃. According to this rationale, two such analogues (as their racemic mixtures) were synthesised, along with their phosphorothioate analogues (Mills et al., 1993).

D/L-Ins(1,3,4)P₃ was a full agonist with an EC₅₀ of ≥30μM at 4°C. This is in agreement with Irvine et al., (1986) who report an EC₅₀ of 9μM for the D-isomer, but in marked contrast to studies by Strupish et al., (1988), where D-Ins(1,3,4)P₃ is found to be virtually inactive in Swiss 3T3 cells.
Figure 66. The structures of InsP₃ and L-Ins(1,3,4)P₃

<table>
<thead>
<tr>
<th></th>
<th>InsP₃</th>
<th>L-Ins(1,3,4)P₃</th>
<th>comparison of -OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>axial</td>
<td>4 equatorial</td>
<td>Different</td>
</tr>
<tr>
<td>3</td>
<td>equatorial</td>
<td>5 equatorial</td>
<td>Same</td>
</tr>
<tr>
<td>6</td>
<td>equatorial</td>
<td>2 axial</td>
<td>Different</td>
</tr>
</tbody>
</table>

Table 6. Comparison of the position and orientation of the hydroxyls of InsP₃ and L-Ins(1,3,4)P₃

Polokoff et al (1990) also found D/L-Ins(1,3,4)P₃ to be some 400-fold less potent than InsP₃ (DiPersio et al., 1988; Gawler et al., 1990). Hirata et al (1993) have recently evaluated the Ca²⁺-release ability of the resolved enantiomers of Ins(1,3,4)P₃ and Ins(1,4,6)P₃. They conclude that the activities exhibited by these two compounds are due to L-Ins(1,3,4)P₃ and D-Ins(1,4,6)P₃ respectively. Furthermore, upon examination of the structure of L-Ins(1,3,4)P₃, it is possible to see a way of arranging the phosphates in a pseudo D-1,4,5-orientation as explained previously. The same is not evident for the D-enantiomer. Thus, it seems most likely that the activity exhibited by D/L-
Ins(1,3,4)P₃ in our cell system is due to the L-enantiomer, see figure 66. Table 6 shows the orientation of the ring hydroxyls in comparison to InsP₃.

We have shown the racemic mixture of Ins(1,3,4)P₃ to be a weak agonist. However, it is possible that upon phosphorothioate substitution, partial agonist activity may become apparent, see Ins(1,4,6)P₃ and Ins(1,4,6)PS₃.

![D-myo-inositol 1,4,5-trisphosphate](image1)

![D-myo-inositol 1,4,6-trisphosphate](image2)

Figure 67. The structures of InsP₃ and D-Ins(1,4,6)P₃.

Irvine *et al* (1986) report an EC₅₀ of 9µM for the D-isomer of Ins(1,3,4)P₃. This is not in agreement with other reports on the activity of this analogue, discussed above, along with our data. It is possible, because the source of this analogue was not synthetic, that D-Ins(1,3,4)P₃ was contaminated with InsP₃, Ins(1,3,4,5)P₄ and/or L-Ins(1,3,4)P₃. Under these circumstances, the activity observed by this analogue could be due to any of these contaminating compounds.

Ins(1,4,6)P₃ (Mills *et al*., 1993), see figure 67, was found to be a full agonist with an EC₅₀ of 2.07 ± 0.08µM at 4°C, and is 11-fold weaker than InsP₃ (InsP₃ EC₅₀ of 0.18µM at 4°C). Therefore, despite the differences in the orientation of the pseudo 2- and 3-OH of Ins(1,4,6)P₃, see table 7, the compound is still able to mobilise Ca²⁺ indicating that these two hydroxyls play a minor role in InsP₃.
binding and activation. It was also found that substitution of the phosphates with phosphorothioates rendered this analogue a partial agonist, see section on partial agonists.

<table>
<thead>
<tr>
<th>InsP3</th>
<th>Ins(1,4,6)P3</th>
<th>comparison of -OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 axial</td>
<td>3 equatorial</td>
<td>Different</td>
</tr>
<tr>
<td>3 equatorial</td>
<td>2 axial</td>
<td>Different</td>
</tr>
<tr>
<td>6 equatorial</td>
<td>5 equatorial</td>
<td>Same</td>
</tr>
</tbody>
</table>

Table 7. Comparison of the position and orientation of the hydroxyls of InsP3 and Ins(1,4,6)P3

Both L-Ins(1,3,4)P3 and D-Ins(1,4,6)P3 possess a pseudo D-1,4,5-orientation. But, are modified at the pseudo 2- and 6-OH for L-Ins(1,3,4)P3 (table 6), and pseudo 2- and 3-OH for Ins(1,4,6)P3 (table 7). Both these compounds were full agonists. This suggests that the modifications at the 2-, 3- and 6-hydroxyls do not significantly effect Ca2+-mobilisation. Indeed, this is in agreement with the data of Wilcox et al (1992) and Hirata, et al (1933) where it was found that both 3- and 6-OH are important in receptor binding, the 6-OH appears to be more important in Ca2+-mobilisation. Kozikowski et al (1993ab) also provide evidence for the crucial role for 6-OH.

In conclusion, then, we can see that in our system both L-Ins(1,3,4)P3 and Ins(1,4,6)P3 were found to be full agonists. However, phosphorothioate substitution of Ins(1,4,6)P3 has provided the best example of a partial agonist with low intrinsic activity, see section on partial agonists. This is in accordance with the original rationale involved in the synthesis of these analogues.
The synthetic precursor of Ins(1,2,4,5)P₄, Ins(3,6)Bz₂(1,2,4,5)P₄ does not mobilise Ca²⁺. This may be due to the presence of two bulky benzoyl protecting groups on the 3- and 6-positions. It is possible that these protecting groups are too large for the receptor to tolerate them. Alternatively, these groups may produce ring distortion, preventing receptor binding.

Figure 68. Summary of the structural requirements for activity at the platelet InsP₃ receptor
<table>
<thead>
<tr>
<th>Analogue</th>
<th>Platelets</th>
<th>Cell system</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-InsP₃</td>
<td>0.18± 0.1μM</td>
<td>0.12μM in SH-SY5Y (Safrany et al., 1992; Wilcox et al., 1993)</td>
</tr>
<tr>
<td></td>
<td>0.4μM in membranes (Adunyah and Dean, 1985)</td>
<td>0.3μM Swiss 3T3 cells (Irvine et al., 1986)</td>
</tr>
<tr>
<td>L-InsP₃</td>
<td>inactive</td>
<td>inactive in SH-SY5Y (Strupish et al., 1988); inactive in swiss 3T3 cells (Giese and Kirchner, 1988)</td>
</tr>
<tr>
<td>Ins(1,4,5)PS3</td>
<td>0.8± 0.1μM</td>
<td>2.5μM in SH-SY5Y (Safrany et al., 1991)</td>
</tr>
<tr>
<td>Ins(2,2)F₂(1,4,5)P₃</td>
<td>0.6± 0.09μM</td>
<td>0.41μM in SH-SY5Y (Safrany et al., 1990; Safrany et al., 1992)</td>
</tr>
<tr>
<td>L-chiro-Ins(2,3,5)P₃</td>
<td>1.9± 0.1μM</td>
<td>1.4± 0.3μM in SH-SY5Y (Safrany et al., 1992)</td>
</tr>
<tr>
<td>Ins(1,3,4,5)₄</td>
<td>≥ 10μM</td>
<td>2μM (Gawler et al., 1990; Ghiggeri et al., 1984; Kaiser et al., 1981) in SH-SY5Y; ≥ 30μM in swiss 3T3 cells (Irvine et al., 1986)</td>
</tr>
<tr>
<td>6-deoxy-Ins(1,4,5)P₃</td>
<td>≥ 30μM</td>
<td>6.4μM in SH-SY5Y (Safrany et al., 1991)</td>
</tr>
<tr>
<td>Ins(1)P(4,5)pyroP</td>
<td>inactive</td>
<td>inactive in SH-SY5Y (Noble et al., 1992)</td>
</tr>
<tr>
<td>D/L-Ins(1,3,4)P₃</td>
<td>≥ 30μM</td>
<td>120μM in smooth muscle cells (Polokoff et al., 1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥30μM in RBL cells (Hirata et al., 1993)</td>
</tr>
<tr>
<td>D/L-Ins(1,4,6)P₃</td>
<td>≥ 30μM</td>
<td>≥30μM in RBL cells (Hirata et al., 1993)</td>
</tr>
</tbody>
</table>

Table 8. Comparison of analogues studied in permeabilised platelets with other cells.
<table>
<thead>
<tr>
<th>Analogue</th>
<th>Platelets</th>
<th>Cell system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ins(1,3,4,6)P<sub>4</sub></td>
<td>9.67 ± 0.5 μM</td>
<td>Partial agonist in SH-SY5Y (Gawler et al., 1991)</td>
</tr>
<tr>
<td>6-deoxy-Ins(1,4,5)PS<sub>3</sub></td>
<td>≥30 μM</td>
<td>Partial agonist in SH-SY5Y (Safrany et al., 1993)</td>
</tr>
<tr>
<td>L-chiro-Ins(2,3,5)PS<sub>3</sub></td>
<td>partial agonist</td>
<td>Partial agonist in SH-SY5Y (Safrany et al., 1993)</td>
</tr>
<tr>
<td>Scyllo-Ins(1,2,4,5)PS<sub>4</sub></td>
<td>partial agonist</td>
<td>not known</td>
</tr>
<tr>
<td>Ins(1,4,6)PS<sub>3</sub></td>
<td>partial agonist</td>
<td>not known</td>
</tr>
</tbody>
</table>

Table 8. Comparison of the activities of the partial agonists found in platelets with different cell systems.
4.1.5 Partial agonists.

Partial agonism was displayed by several of the compounds studied, these being scyllo-Ins(1,2,4,5)PS$_4$, L-chiro-Ins(2,3,5)PS$_3$ and D/L-Ins(1,4,6)PS$_3$. Interestingly, scyllo-Ins(1,2,4,5)P$_4$, L-chiro-Ins(2,3,5)P$_3$ and Ins(1,4,6)P$_3$, the parent polyphosphates of each phosphorothioate analogue were all full agonists. Of the three phosphorothioates, only Ins(1,4,6)PS$_3$ caused a dose dependent inhibition of InsP$_3$-induced Ca$^{2+}$ release with 100μM Ins(1,4,6)PS$_3$ producing 50% inhibition.

In SH-SY5Y cells, receptor binding has been characterised, and it appears that the introduction of phosphorothioate groups causes a substantial reduction in agonist efficacy with only a small reduction in the receptor affinity, and because $[^{35}S]Ins(1,4,5)$PS$_3$ labels two populations of sites with similar affinity one of which is the InsP$_3$ receptor and the second is a site that displays low affinity for InsP$_3$ (Safrany et al., 1993). It is conceivable that InsP$_3$ receptors in platelets also possess these two affinity sites. As a result, it is tentatively suggested that the two partial agonists that show no antagonistic activities i.e scyllo-Ins(1,2,4,5)PS$_4$ and L-chiro-Ins(2,3,5)PS$_3$, are acting through this second low affinity site mobilising Ca$^{2+}$ and having no effect on the high affinity InsP$_3$ receptor. Thus, upon investigation of the effect of scyllo-Ins(1,2,4,5)PS$_4$ and L-chiro-Ins(2,3,5)PS$_3$ on InsP$_3$-induced Ca$^{2+}$-release, inhibition is not observed.

It is known that phosphorothioate substitution leads to changes in molecular size, hydrophobicity and charge distribution, any or all of which may contribute to producing a less than maximal response. Thus, we suggest that phosphorothioate substitution coupled with another perturbation are required for a compound to exhibit partial agonism. Partial agonist activity may be generated
by a suboptimal binding interaction produced by a D-1,4,5-trisphosphorothioate motif, in combination with another structural perturbation, such the presence of an additional equatorial 2-phosphorothioate group in scylo-Ins(1,2,4,5)PS₄, or the presence of an 3-axial hydroxyl of L-chiro-Ins(2,3,5)PS₃, or the equatorial 2-OH and axial 3-OH of Ins(1,4,6)PS₃, see figure 68.

It should be noted that for the second messenger cAMP phosphorothioate substitution has generated competitive cAMP antagonists, see Safrany et al (1993). These antagonists are Rp-cAMPS and cAMPS₂ (Parker Bothelo et al., 1988,ab) reviewed in Potter (1992).

Upon examining the structures of the three inositol phosphate partial agonists, it appears that they share a high degree of similarity between each other and with InsP₃, see figure 69. Scylo-Ins(1,2,4,5)PS₄ does have 1-, 4-, and 5-phosphorothioates. However, L-chiro-Ins(2,3,5)PS₃ and Ins(1,4,6)PS₃ do not nominally possess phosphates at the 1-, 4- and 5- positions, analogues to InsP₃, it is nevertheless possible to envisage binding conformations of these two compounds in which do they have phosphorothioates at these positions, see figure 69. Of the three partial agonists, scylo-Ins(1,2,4,5)PS₄ possessed the highest intrinsic activity, releasing 61.7 ± 11% ⁴⁵Ca. This was followed by L-chiro-Ins(2,3,5)PS₃, which possessed a lower intrinsic activity, releasing 42.3 ± 6% ⁴⁵Ca, and D/L-Ins(1,4,6)PS₃ being the partial agonist with the lowest intrinsic activity, releasing 21.1 ± 4% ⁴⁵Ca.

Ins(1,4,6)PS₃ (3- 100µM) produces 50% inhibition at 100µM, and it appears that inhibition of the InsP₃ response is only occurring at concentrations of 10µM and above. This is consistent with the dose response curve of Ins(1,4,6)PS₃.
where the curve appears to be in two phases. A low level of release is observed at concentrations up to 10\(\mu\)M. At concentrations above 10\(\mu\)M,

\[
\text{OH} \quad \text{PO}_2^\text{-X} \quad \text{PO}_2^\text{-X} \quad \text{PO}_2^\text{-X}
\]

\[
X=\text{O (8)} \\
X=\text{S (18)}
\]

\[
\text{OH} \quad \text{PO}_2^\text{-X} \quad \text{PO}_2^\text{-X} \quad \text{PO}_2^\text{-X}
\]

\[
X=\text{O (9)} \\
X=\text{S (19)}
\]

\[
\text{OH} \quad \text{PO}_2^\text{-X} \quad \text{PO}_2^\text{-X} \quad \text{PO}_2^\text{-X}
\]

\[
X=\text{O (10)} \\
X=\text{S (20)}
\]

Figure 69. The chemical structures and numbering of *scylo*-Ins(1,2,4,5)P4 (8); *scylo*-Ins(1,2,4,5)PS4 (18); L-cho-Ins(2,3,5)P3 (9); L-cho-Ins(2,3,5)PS3 (19); Ins(1,4,6)P3 (10) and Ins(1,4,6)PS3 (20).

a second phase of higher release is observed plateauing out at 100\(\mu\)M and it is at these concentrations that an inhibitory effect is observed. Alternatively, an inhibitory response may be occurring at the lower concentrations of 0.03-3\(\mu\)M, but is at such a weak level, that its effects are with the limits of error.
Thus, in order to synthesize further analogues that are partial agonists with even lower intrinsic activity, or even antagonists, it appears that all D-1,4-5-positions of InsP₃ need to be occupied by phosphorothioates, see figure 70. In addition, as mentioned above, it is possible the further modifications at the pseudo 2- and 3- positions of InsP₃, as seen in all three of the partial agonists, confer low intrinsic activity.

In this study 6-deoxy-Ins(1,4,5)PS₃ did not show partial agonism or affect InsP₃-induced ⁴⁵Ca release. However, the EC₅₀ for this analogue was too high and this may mask any partial agonist activity present. This is in contrast with reports using SH-SY5Y neuroblastoma cells (Safrany et al., 1993).

Further, Ins(1,3,4,6)P₄ which was also found to be a partial agonist in SH-SY5Y neuroblastoma cells (Potter and Nahorski, 1993; Gawler et al., 1991) was found to be a full agonist in permeabilised platelets (this thesis). An interpretation of the differences between the activities observed in platelets and neuroblastoma cells is the existence of tissue specific receptor populations (see summary of discussion).
Figure 70. The proposed structural requirements for partial agonist activity.
4.1.6 InsP$_3$-receptor antagonists and Inhibitors of InsP$_3$-induced Ca$^{2+}$-release.

4.1.6.1 Heparin.

Heparin is a polysulphated polysaccharide with a molecular weight between 6000 and 20,000, depending on its origin and preparation. It is a competitive reversible antagonist of InsP$_3$ binding at the InsP$_3$-receptor (Ghosh et al., 1986). In saponin permeabilised platelets, heparin up to 100μg/ml had no effect on InsP$_3$-induced Ca$^{2+}$-release. In this study two heparins, one with high molecular weight and the second with 3000 molecular weight were used and both were ineffective in inhibiting InsP$_3$-induced Ca$^{2+}$ release in permeabilised platelets.

This can be explained by the fact that stimulated platelets secrete antiheparin proteins. As early as 1955 Deutsch introduced the term platelet factor 4 (PF4) to describe a platelet protein with antiheparin activity (Rucinski et al., 1979). In addition, two further proteins secreted by platelets were found to possess weak antiheparin activity, these being β-thromboglobulin (βTG) and low-affinity platelet factor 4 (LA-PF4) (Rucinski et al., 1979). These antiheparin proteins act to inactivate heparin activity, and it can be envisaged that upon heparin incubations, these proteins will act to neutralise heparin and upon subsequent InsP$_3$-stimulation Ca$^{2+}$ release will occur as usual.

The only study on the effect of heparin on InsP$_3$-induced calcium mobilisation in permeabilised platelets was that of Rao and colleagues (Rao et al., 1991), and they found that high molecular weight (2-15 kDa) heparins have no inhibitory effects and only one of six low molecular weight heparins (4-6 kDa, sigma H5640) caused a significant inhibition of InsP$_3$-induced Ca$^{2+}$-mobilisation. They attribute this lack of inhibition to the way permeabilisation was achieved, using
low saponin concentration. However, other studies have used saponin to permeabilise cells (Ghosh et al., 1986) and this appears not to interfere with the inhibitory effects of heparin reported as having an IC$_{50}$ of $5\mu g/ml$. However, they do report that sensitivity to heparin increases with decreasing the molecular size.

In addition to inhibiting InsP$_3$ binding, heparin also inhibits InsP$_3$ 3-kinase activity, but it has no effect on InsP$_3$ 5-phosphatase activity or Ins(1,3,4,5)P$_4$ 5-phosphatase activity. In addition, it inhibits Ins(1,3,4,5)P$_4$ binding and its ability to mobilise Ca$^{2+}$ (Taylor and Richardson, 1991) and these effects severely limit the use of heparin as an InsP$_3$ receptor antagonist.

4.1.6.2 Decavanadate.

Decavanadate, a decameric vanadate cluster, inhibits InsP$_3$-induced Ca$^{2+}$-mobilisation (Föhr et al., 1989). In permeabilised rabbit platelets, decavanadate caused a dose dependent inhibition of InsP$_3$-induced 45Ca-release with an IC$_{50}$ of $7.82\pm 0.4\mu M$.

It has been found to inhibit competitively InsP$_3$-binding and to inhibit InsP$_3$-induced Ca$^{2+}$-release (IC$_{50}$ of $5\mu M$) (Strupish et al., 1991ab; Föhr et al., 1991). However, decavanadate was found to be non-specific in its inhibitory activity of InsP$_3$-binding (Strupish et al., 1991ab). Decavanadate was also found to inhibit InsP$_3$ 3-kinase and Ins(1,3,4,5)P$_4$ 5-phosphatase (Strupish et al., 1991) in permeabilised SH-SY5Y neuroblastoma cells as well as inhibiting the specific binding of Ins(1,3,4,5)P$_4$ to cerebellar membranes and its ability to mobilise Ca$^{2+}$ from cerebellar microsomes, (Challis et al., 1991; Strupish et al., 1991ab).
Although decavanadate and heparin are potent and competitive antagonists at the InsP₃ receptor, they possess an array of other actions which limits their use as tools in investigating the InsP₃ signalling pathway and clearly small-molecule antagonists are required.

4.1.6.3 Benzene 1,2,4-trisphosphate.

Recently, a very loose structural analogue of InsP₃, benzene 1,2,4-trisphosphate (BzP₃) was shown to interact with the InsP₃ receptor where it inhibited InsP₃-binding to adrenal cortex microsomes with an IC₅₀ of 428μM and an 80% inhibition at 500μM (Poitras et al., 1993). In permeabilised rabbit platelets, we found that BzP₃ had no inhibitory effect on InsP₃-induced Ca²⁺-mobilisation at concentrations up to 500μM. This lack of activity, on the InsP₃ response, could be due to our different source of this compound, or that tissue specific receptors are present.

4.1.7 The InsP₃ receptor.

Limited information is available at present concerning the conformation(s) adopted by InsP₃ in solution, and there is no information relating to the conformation of this molecule in the bound state. An early study on pH effects on the conformation of InsP₆ in solution demonstrated that at neutral and alkaline pH, InsP₆ adopts the expected conformation of five equatorial and one axial phosphate groups, whereas at acidic pH the cyclohexane ring "flips" to give reverse conformation with one equatorial and five axial phosphate substituents stabilised by intramolecular hydrogen-bonding interactions (Challiss et al., 1991). This unusual conformation may also be adopted at acidic pH by other highly charged phosphorylated inositol derivatives, and the likelihood of
this occurrence will presumably increase with increasing the degree of phosphorylation. However, it is unlikely that this will be the case with InsP₃, due to the small number of phosphate groups in comparison to InsP₆. A more recent study of pH effects on the solution conformation of InsP₃ did not support this idea (Lindon et al., 1987). Thus, the distinct pH-dependence of InsP₃-receptor binding can not be explained by the predicted physical properties of the ligands. Furthermore, the difference may reside in the protein conformation and ionisation of titratable groups within the ligand-binding site of the receptor (Challiss et al., 1991).

The initial cloning of the cDNA for the InsP₃ receptor from mouse cerebellum has provided a substantial image of the receptor structure (Furuichi et al., 1989), and subsequent studies from other tissues has shown that the sequence of the receptor is highly conserved (Mikoshiba, 1993). Subsequent transfection of cDNA (Furuichi et al., 1989) and reconstitution (Ferris et al., 1989; Maeda et al., 1991; Kamata et al., 1992) experiments suggested that the cDNA actually encodes for a protein containing both the ligand binding site and Ca²⁺-channel activity. From these data it was concluded that the receptor is a Ca²⁺ channel (Nakade et al., 1991). The primary sequence of the receptor shares no homology with the voltage-operated Ca²⁺ channels on the plasma membrane (Furuichi et al., 1989), but shares a significant homology with the ryanodine receptor, for review see (Mikoshiba et al., 1993; Mikoshiba, 1993).

Patterns of Ca²⁺ release by InsP₃ suggested an intracellular localisation of the InsP₃ receptor in non-mitochondrial stores associated with microsomal fractions. However, there has been considerable debate over the intracellular localisation of this receptor (Mikoshiba, 1993; Mikoshiba et al., 1993). The InsP₃ receptor has been found to be present in multiple subcellular areas (Sharp et al., 1992).
and one study suggests that the receptor associates with the plasma membrane, suggesting the presence of receptor subtypes (Sharp et al., 1992). In addition, neuronal and non-neuronal receptors have been shown to exist (Danoff et al., 1991). Further, biochemical data demonstrated that InsP₃ binding has different characteristics in different tissues (Guillemette et al., 1988; Rossier and Putney, 1991; Südhof et al., 1991), and that different receptors may be expressed in different subcompartments (Südhof et al., 1991).

Three subtypes of the InsP₃ receptor from different genes have been identified (Südhof et al., 1991; Blondel et al., 1993; Mikoshiba et al., 1993; Mikoshiba, 1993) all having different affinities for InsP₃. Therefore it is possible that InsP₃-mediated Ca²⁺ release is directed by various forms of InsP₃ receptor (from the different genes) and these may possibly have different functional properties in Ca²⁺ release. There is then the possibility that intracellular Ca²⁺ signalling may be regulated in different ways dependent on different InsP₃ receptor transduction pathways, thus giving rise to multiple pathways for Ca²⁺-release.

4.1.7.1 Receptor regulation.

The InsP₃ receptor is regulated by pH, ATP, calcium and magnesium (Taylor and Richardson, 1991; Van Delden et al., 1993), and phosphorylation by PKA (Hajnoczky et al., 1993), PKC and Ca²⁺/calmodulin-dependent protein kinase II (Taylor and Richardson, 1991; Mikoshiba, 1993). Further, the membrane associated cytoskeletal protein, ankyrin, is also thought to play a role in receptor regulation where it was found to inhibit InsP₃ binding and InsP₃-mediated Ca²⁺ release (Bourguignon et al., 1993). ATP enhances InsP₃-dependent Ca²⁺ release (Mikoshiba et al., 1993), and ATP binding sites are located near the receptor phosphorylation sites (Ferris et al., 1992; Mikoshiba, 1993). Ca²⁺ is known to
play a pivotal role in InsP₃ binding, and InsP₃-induced Ca²⁺ flux shows a bell shaped curve depending on the Ca²⁺ concentration (Danoff et al., 1988; Varney et al., 1990). A recent report suggest that receptor activation which causes elevations in [Ca²⁺]ᵢ might result in the degradation of the N-terminal, InsP₃-binding part of the receptor mediated through an enzyme belonging to the calpain family (Magnusson et al., 1993).

PKA, PKC and CaM Kinase II phosphorylate the receptor, the former being the most efficient (Ferris et al., 1991). These enzymes phosphorylate three distinct serines (Ferris et al., 1991). PKA phosphorylation is associated with an alteration in the potency of InsP₃ in releasing Ca²⁺ and may increase the sensitivity of the calcium stores to InsP₃ (Ferris et al., 1992; Hajnoczky et al., 1993). Furthermore, a recent report suggests that the purified and reconstituted receptor autophosphorylates on serine and displays protein kinase-like activity (Ferris et al., 1992) and the physiological role for autophosphorylation is thought to be in modifying the response of the receptor to InsP₃, Ca²⁺ and ATP (Ferris et al., 1992). The InsP₃ receptor is the first ion channel protein complex to display serine autophosphorylation activity and it may be the first receptor of any sort for which serine kinase activity on other substrates and on the receptor itself to be recognised. Although the InsP₃ receptor does not appear to have a full protein kinase domain (Ferris et al., 1992), it does bind ATP with high affinity making it an ideal candidate for autophosphorylation.
4.1.8 Additional compounds investigated.

4.1.8.1 cyclic ADP-ribose (cADPR).

cADPR was first shown to mobilise Ca\(^{2+}\) in sea urchin eggs (Lee et al., 1989). Subsequently, cADPR has been found to be the endogenous activator of the non-skeletal ryanodine receptor (Galione, 1992; Meszaros et al., 1993) and in addition the ryanodine receptor has been cloned (Otsu et al., 1990) and like the InsP\(_3\)-receptor has been found to possess an intrinsic Ca\(^{2+}\) channel (Llach, 1985; Chen et al., 1993).

In this study cADPR and its precursor ADPR were both inactive in releasing Ca\(^{2+}\) in permeabilised platelets. This could be due to the possibility that platelets do not possess ryanodine receptors, as to date no evidence is available that suggests the presence of ryanodine receptor in platelets. Alternatively, cADPR may be rapidly hydrolysed in platelets, or that the receptors are present only in low numbers. Indeed, cADPR is very rapidly hydrolysed in cells as might be expected of a molecule with such potent Ca\(^{2+}\)-mobilising activity (Galione, 1992). In addition, a cADPR-hydrolysis enzyme activity has been found in rabbit brain extract (Rusinko and Lee, 1989).

4.1.8.2 Phorbol esters (PMA) and diacylglycerol (DAG).

It has been reported that phorbol esters, which are direct activators of isozymes of PKC, except PKC zeta, attenuate InsP\(_3\)-induced Ca\(^{2+}\)-release in electroporated rat pancreatic acinar cells (Arita et al., 1992). King and Rittenhouse suggest this is due to the enhancement of InsP\(_3\) hydrolysis in thrombin stimulated platelets (King and Rittenhouse, 1989). However, in human
and rabbit platelets, activation of PKC inhibits receptor induced InsP$_3$ formation and Ca$^{2+}$ elevation. Furthermore, inhibitors of PKC markedly stimulate receptor induced formation of InsP$_3$ and prolong the elevation of cytosolic Ca$^{2+}$ (Poll and Westwick 1986; Murphy et al, 1991; Murphy et al, 1992).

Yoshida and Nachmias (Suzuki et al., 1990) report that pretreatment of platelets with PMA before saponin treatment increases ATP-dependent 45Ca-uptake and that most of the sequestered 45Ca is released by InsP$_3$ or ionomycin.

In permeabilised rabbit platelets pretreatment with PMA or DAG had no effect on InsP$_3$-induced Ca$^{2+}$-mobilisation at concentrations up to 100μM and 100nM respectively, and they had no capacity to mobilise 45Ca alone. Activation of endogenous PKC by DAG is thought to regulate InsP$_3$ levels (Lin et al., 1990; Taylor, 1992; Thomas et al., 1992; Cobbold et al., 1993). Many authors have proposed that oscillations in InsP$_3$ levels are controlled at the level of the receptor/signal transduction apparatus through a cyclical activation of DAG-dependent PKC leading to feedback inhibition of InsP$_3$ formation by the inactivation of PLC which also results in lowering DAG levels. In addition, Brass and Laposata (Brass and Laposata, 1987) have found that OAG, a synthetic analogue of DAG, caused 45Ca-release from the dense tubular system. However, they found that the phorbol esters TPA did not duplicate this effect and they conclude that it is unlikely that the effects they observed from OAG were mediated through PKC.

It appears from the conflicting data available that the role of DAG in InsP$_3$-induced Ca$^{2+}$-release is still in contention, attenuating release in some cells whilst enhancing it in others. However, in our system, PMA and DAG did not mobilise Ca$^{2+}$ or influence InsP$_3$-induced Ca$^{2+}$-mobilisation.
4.2 Metabolism of [PH]InsP₃ and the effect of some enzyme inhibitors.

[PH]InsP₃ metabolism was examined at 4°C, 20°C and 37°C. Dramatically different metabolic profiles were observed at these three temperatures. At 4°C, [PH]InsP₃ is conserved to such a great extent, that it is still present at 10 minutes. In addition, at 4°C, very little Ins(1,3,4,5)P₄ and Ins(1,3,4)P₃ are formed throughout the 10 minute period. In marked contrast, at 20°C, substantial amounts of Ins(1,3,4,5)P₄ are formed after 1 minute, and Ins(1,3,4)P₃ being formed after 3 minutes. However, at 37°C, [PH]InsP₃ metabolism is completed by 3 minutes. Furthermore, at 37°C, Ins(1,3,4,5)P₄ is not detected at all, Ins(1,3,4)P₃ is formed, but only as a small proportion and by 10 minutes, only Ins(4)P₁ is left.

The temperature dependence of InsP₃ metabolism is a reflection of enzyme activity. At 4°C, enzyme activity is minimal thus maintaining higher levels of [PH]InsP₃ over a longer time scale. Whereas, enzyme activity is greater at 37°C, thus reducing [PH]InsP₃ levels rapidly. Furthermore, it is interesting to note that at 4°C and 37°C smaller amounts of Ins(1,3,4,5)P₄ and Ins(1,3,4)P₃ are formed. Whereas at 20°C, substantial amounts of Ins(1,3,4,5)P₄ and Ins(1,3,4)P₃ are formed during metabolism.

At 4°C, the reduction in these two metabolites may be attributed to the reduction in enzyme activities. However, at 37°C, this effect could be due to (a). the presence of greater Ins(1,3,4,5)P₄ 5-phosphatase activity at 37°C compared to 20°C. Thus, metabolising any Ins(1,3,4,5)P₄ formed at a greater rate, reducing the amounts of Ins(1,3,4,5)P₄ present. (b). It could be due to an increased InsP₃ 5-phosphatase activity, thus, directing the route of metabolism via Ins(1,4)P₂ and not Ins(1,3,4,5)P₄. (c). Alternatively, this could be a possible
indication of a reduced activity of InsP₃ 3-kinase, thus, reducing the amount of Ins(1,3,4,5)P formed or (d). an overall increase in 3-kinase activity such that Ins(1,3,4,5)P is not detected after just 1 minute. All these would result in smaller amounts of Ins(1,3,4,5)P₄ being formed from InsP₃, at 37°C. One approach we could adopt to establish if any of these enzymes are involved is by the use of selective enzyme inhibitors. In addition, the use of metabolic resistant analogues of inositol phosphates would reveal a temperature dependent metabolic effect.

The metabolic profile at 37°C is of considerable consequence, since the body operates at 37°C. If metabolism does occur with this profile in vivo, then metabolites such as Ins(1,3,4,5)P₄ and Ins(1,3,4)P₃ will play an insignificant role in signalling and Ca²⁺-mobilisation. This then invokes the possible roles Ins(1,3,4,5)P₄ and Ins(1,3,4)P₃ may have in vivo. It is possible that under normal conditions, these metabolites do not play a role in cellular signalling, and are only of any significance in disease states where an overproduction of these metabolites occurs, see later.

For any subsequent experiment to investigate metabolism, platelets were maintained at 20°C as this shows the widest range of metabolites over the 10 minute period.

Pretreatment of permeabilised platelets with two inositol phosphate analogues, L-Ins(1,4,5)PS₃ and Ins(1,3,5)PS₃, produced a dose dependent inhibition of [³²P]InsP₃ metabolism with a concomitant potentiation of InsP₃-induced ⁴⁵Ca-release.

Preincubation with L-Ins(1,4,5)PS₃ (3- 30μM) produced a high degree of conservation of InsP₃, a reduction in the amount of InsP₂ formed, an increase in
the amount of Ins(1,3,4,5)P$_4$ formed and a reduction in Ins(1,3,4)P$_3$
accumulation. In contrast, Ins(1,3,5)PS$_3$ (3- 30µM) did not affect InsP$_3$ levels,
however, a reduction in InsP$_2$ accumulation, an increase in Ins(1,3,4,5)P$_4$
formation and reduction in Ins(1,3,4)P$_3$ production was observed.

It is apparent from these studies that the two analogues, L-Ins(1,4,5)PS$_3$ and
Ins(1,3,5)PS$_3$, are inhibitors of InsP$_3$ 5-phosphatase, as indicated by the
reduction in InsP$_2$ formation with both analogues. In addition, it appears that L-
Ins(1,4,5)PS$_3$ also inhibits Ins(1,3,4)P$_3$ formation (acting on and inhibiting
Ins(1,3,4,5)P$_4$ 5-phosphatase) whereas Ins(1,3,5)PS$_3$ does not. This would
confirm the findings of Majerus et al, (Connolly et al., 1985; Connolly et al
1986; Majerus et al., 1991; Majerus, 1992), that in platelets two 5-phosphatase
enzymes are present. One responsible for the dephosphorylation of InsP$_3$ and the
second for Ins(1,3,4,5)P$_3$ dephosphorylation.

L-Ins(1,4,5)PS$_3$ also appears to inhibit 3-kinase. As a result of the inhibition of
InsP$_3$ 5-phosphatase, metabolism will be enhanced via the InsP$_3$ 3-kinase route
and an increased formation of Ins(1,3,4,5)P$_4$ is expected. However, with L-
Ins(1,4,5)PS$_3$, 30µM preincubation gives the same amount of Ins(1,3,4,5)P$_4$ as
control indicating that metabolism via this route is minimal and inhibited. In
addition, levels of InsP$_3$ are maintained higher than control suggesting that
metabolism of InsP$_3$ by both InsP$_3$ 5-phosphatase and 3-kinase is inhibited.

In the presence of Ins(1,3,5)PS$_3$, increased formation of Ins(1,3,4,5)P$_4$ suggests
that InsP$_3$ 3-kinase is functional and not affected. Ins(1,3,5)PS$_3$ is not a
substrate for 3-kinase, probably due to the presence of a phosphorothioate group
on the 3-position. Making it a selective, non-Ca$^{2+}$ mobilising inhibitor of InsP$_3$
5-phosphatase.
The phosphorothioate analogue of InsP$_3$, Ins(1,4,5)PS$_3$, was found to be a potent inhibitor of InsP$_3$ 5-phosphatase. Because it is known that the D-isomers of InsP$_3$ analogues are substrates for 5-phosphatase, and that L-InsP is a weak inhibitor of 5-phosphatase, it was thought that the phosphorothioate analogue of L-Ins(1,4,5)P$_3$ would prove to be a more potent inhibitor than the parent compound. Thus, L-Ins(1,4,5)PS$_3$ was originally synthesized as 5-phosphatase inhibitor. A clear picture has emerged from our work to confirm this hypothesis, and L-Ins(1,4,5)PS$_3$ was found to inhibit both InsP$_3$ 5-phosphatase and Ins(1,3,4,5)P$_4$ 5-phosphatase.

The novel analogues investigated in this study thus provide new tools with which InsP$_3$ metabolism and function can be modulated, as they are potent InsP$_3$ 5-phosphatase inhibitors. Due to the lack of specific InsP$_3$ receptor antagonists, specific enzyme inhibitors may help elucidate the functional significance of InsP$_3$ metabolism in signalling. Recently, reports indicate that disulfiram and its analogues inhibit InsP$_3$ 5-phosphatase at micromolar concentrations (Fowler et al., 1993). However, these compounds were found toxic to the cell and reduced cell proliferation significantly, and so can not be used to in vivo. In addition, a calmodulin inhibitor calmidazolium chloride appeared to inhibit the 5-phosphatase with an IC$_{50}$ of 100µM, however its actions were thought not to be through calmodulin inhibition (Fowler and Eriksson, 1993). Furthermore, Li$^+$ which is widely used in the treatment of affective disorders is thought to exert its actions through inhibiting the two enzymes, inositol 1-phosphatase and inositol monophosphatase thus disrupting the signalling mechanism.

A potentially important recent development is the recognition of a second dephosphorylation pathway of InsP$_3$ to myo-inositol 4,5-bisphosphate [Ins(4,5)P$_2$] in the presence of Li$^+$ in neural tissue (Hughes and Michell, 1993)
and receptor-stimulated accumulation of Ins(4,5)P₂ in the presence of Li⁺ was demonstrated. The significance of formation of Ins(4,5)P₂ is not yet known. Ins(4,5)P₂ can release Ca²⁺ from intracellular stores with 100 fold less potency than InsP₃. In addition, Ins(4,5)P₂ was shown to inhibit the calmodulin-dependent Ca²⁺-ATPase pump of erythrocytes (Hughes and Michell, 1993). A recent finding suggests that beryllium ions competitively inhibit inositol monophosphatase, being three times more potent than Li⁺ (Faraci et al., 1993). All these agents will help develop a clearer understanding of PI signalling.

The significance of defects in inositol phosphate metabolism at the 5-phosphatase enzyme is depicted in diseases such as Lowe's occulocerebrorenal syndrome (OCRL) where an inborn error in inositol phosphate metabolism has been implicated (Attree et al., 1992). Furthermore, HIV-infected lymphoblastoid cells show abnormal metabolism with chronically elevated levels of Ins(1,3,4,5)P₄ (Nye et al., 1992) and there is evidence that inositol monophosphatase activity is elevated in schizophrenic patients (Hughes and Michell, 1993). It is clear that selective 5-phosphatase inhibitors are required to investigate inositol phosphate metabolism and the putative role of Ins(1,3,4,5)P₄ and so far the two analogues investigated provide the best leads for further syntheses of more selective and potent enzyme inhibitors. A crucial need, however, is to make these inhibitors membrane permeable.

Purified platelet InsP₃ 3-kinase was shown to contain two polypeptides (53 and 36 kDa) both of which expressed activity (Lin et al., 1993) and the catalytic site was shown to be located at the C-terminal end of the protein. However, other data indicate that the two polypeptides are indeed two isozymes of InsP₃ 3-kinase (Lin et al., 1993). While the analogues investigated in this study did not suggest the presence of isozymes, nevertheless the
analogue may be nonspecific 3-kinase inhibitors thus showing no selectivity for the different isoforms. Still, considering that the purified InsP₃ 3-kinase has a higher affinity for InsP₃ (Km 0.76μM) than that of the platelet InsP₃ 5-phosphatase (Km 25μM) (Mitchell et al., 1989), the purification of this enzyme should facilitate further investigations concerning the possible role this enzyme plays in platelet function. The functional significance of InsP₃ 3-kinase has been studied and suggestions that InsP₃ 3-kinase may act as a regulator of the Ca²⁺-phosphoinositide signal transduction mechanism (Balla et al., 1991) have been proposed. It was found that in fibroblasts transfected with rat brain 3-kinase, the conversion of InsP₃ to Ins(1,3,4,5)P₄ is greatly increased, with a concomitant reduction in InsP₃ levels and the attenuation of the Ca²⁺ response (mobilisation and influx).
Figure 72. \(\text{InsP}_3\) and its metabolites. An up to date version of \(\text{InsP}_3\) metabolism and the various metabolites formed along the way taken from Hughes and Michell (1993).
4.3 Ca2+ entry and the effect of SKF 96365 in platelet signalling.

Cytosolic calcium elevation can occur by one of three ways; (i) the release from intracellular stores upon PIP\textsubscript{2} breakdown and InsP\textsubscript{3} and DAG production (Berridge, 1993); (ii) through voltage operated Ca2+ channels in which the developments of drugs that act as antagonists such as dihydropyridines and phenylalkylamines at the receptor site has greatly contributed to understanding this area; (iii) through receptor mediated Ca2+ entry (RMCE) of which little was understood until the recent development of two imidazol derivatives \([(+)\text{-}1\text{-}2,3\text{-}bis(4\text{-}methoxyphenyl)-methoxy)propyl]1\text{-}H-imidazol (SC 38249) and its 4-methoxyphentyl derivative SKF 96365, which have provided tools for the study of RMCE. SKF 96365 has been shown to inhibit Ca2+ influx having no effect on mobilisation in a variety of cells including platelets, neutrophils and endothelial cells (Merritt \textit{et al}., 1990a; Ciardo and Meldolesi, 1990; Chan and Greenberg, 1991).

In this study, using fura-loaded platelets, racemic SKF 96365, whose structure can be seen in figure 73, was found to dose-dependently inhibit PAF-induced Ca2+ release. In order to establish if inhibition is at the receptor or post-receptor level, the effect of SKF 96365 on InsP\textsubscript{3}-production upon PAF stimulation was measured and SKF 96365 was found to dose dependently inhibit InsP\textsubscript{3}-formation with a similar EC\textsubscript{50} to the inhibition of PAF-induced Ca2+ release in fura-loaded platelets. This suggests, contrary to the literature, that SKF 96365 is inhibiting Ca2+ release through the inhibition of InsP\textsubscript{3} formation. However, the contributions of Ca2+-influx and Ca2+-mobilisation to the Ca2+-release detected were not determined and it may be that InsP\textsubscript{3}-induced Ca2+-mobilisation plays a minor insignificant role in the Ca2+-response observed here. Thus, InsP\textsubscript{3} having a minor role, and that SKF 96365 is still exerting its effect through a major
inhibition of Ca\(^{2+}\) influx. This situation is further complicated by the finding that SKF 96365 causes a dose dependent inhibition of dense granule release at concentrations an order of magnitude lower than that observed with the inhibition of Ca\(^{2+}\)-release and InsP\(_3\) formation. It is possible that dense granule release is more sensitive to the other product of PIP\(_2\) hydrolysis, namely DAG, and inhibiting DAG formation may inhibit the platelet release reaction. Further, it is conceivable that SKF 96365 may have an intrinsic effect on some aspect of platelet function, by inhibiting adhesion, shape change or aggregation. Thus, preventing dense granule release.

Figure 73. The structure of SKF 96365

SKF 96365 did not mobilise Ca\(^{2+}\) from permeabilised platelets. In addition it did not effect InsP\(_3\)- or Ins\((1,3,4,5)\)P\(_4\)-induced Ca\(^{2+}\) release indicating that SKF 96365 does not possess the structural requirements for receptor binding.

These findings are consistent with our previous results where SKF 96365 was found to inhibit Ca\(^{2+}\) release through inhibiting InsP\(_3\)-production, possibly through inhibiting PIP\(_2\) hydrolysis. Merritt et al (1990ab) suggest in their initial studies that SKF 96365 can interfere with mobilisation of Ca\(^{2+}\) from intracellular stores, and Chan & Greenberg (1991) find that elevations in [Ca\(^{2+}\)]\(_i\)
are also inhibited with SKF 96365. However both of these groups report that this is a negligible effect not mediated through InsP₃.
The Ca²⁺-influx inhibitor in our system was not found to be selective in blocking Ca²⁺-release through RMCC, rather it was found to inhibit Ca²⁺ release induced by PAF and further investigations indicate that this effect is through inhibiting InsP₃ formation.

The indirect control InsP₃ has on Ca²⁺ entry is illustrated in the capacitative Ca²⁺ entry hypothesis. This is based on the finding that emptying intracellular Ca²⁺ stores is itself sufficient to activate Ca²⁺ entry (Irvine, 1992) based on the results using thapsigargin, an inhibitor of Ca²⁺-ATPase (Takemura et al., 1991). However, as a result of this hypothesis, a major question is left unanswered, and this is: How does the Ca²⁺ content of the intracellular stores communicate with the plasma membrane so as to control Ca²⁺ entry?

Principally three mechanisms have been proposed;

(i) The low luminal Ca²⁺ levels may stimulate the generation of a soluble second messenger that acts upon a receptor in the plasma membrane. Recent reports have isolated such a molecule which caused Ca²⁺ influx when applied to cells and was named CIF (Ca²⁺-influx factor) (Randriamampita and Tsien, 1993), further, Parekh et al., (1993) have also found the presence of a small diffusible messenger and they suggest that the molecule is not an inositol phosphate.

(ii) Low luminal Ca²⁺ may result in low free Ca²⁺ near the plasma membrane (Putney, 1986), and evidence shows that decreasing cytosolic Ca²⁺ can affect Ca²⁺ entry (Irvine, 1992). However, in experiments where [Ca²⁺]ᵢ is raised by
agonists such as thapsigargin, Ca2+ entry is still initiated despite the free Ca2+ near the plasma membrane being high (Irvine, 1992).

(iii) Communication could occur via a protein (or proteins) anchored in the ER such that its structure is modulated by luminal Ca2+ levels (Irvine, 1992). Other reports have proposed that InsP\textsubscript{3} may be directly involved in the control of Ca2+ entry. Intracellular applications of InsP\textsubscript{3} to sea urchin eggs, lacrimal gland cells and mast cells produce a response indicative of activation of both Ca2+ mobilisation and Ca2+ entry from the extracellular space (Putney, 1992). In addition Heparin, an InsP\textsubscript{3} receptor antagonist, blocks both phases of the [Ca2+]\textsubscript{i} signal. However, in some cases it appears that the presence of Ins(l,3,4,5)P\textsubscript{4} is necessary for the second Ca2+ entry phase. In most studies, InsP\textsubscript{3} applied directly to the plasma membrane does not increase their Ca2+ permeability. Furthermore, InsP\textsubscript{3} receptors have not been revealed on the plasma membrane of Purkinje cells. (Putney, 1992).

Ins(l,3,4,5)P\textsubscript{4} is rapidly formed whenever InsP\textsubscript{3} is produced in a cell, and whether or not it can control Ca2+ entry by interacting with specific receptors (see figure 74) is still controversial (Irvine, 1992). Irvine and colleagues were the first to propose a role for Ins(l,3,4,5)P\textsubscript{4} in the control of Ca2+ entry (Irvine et al., 1985; Irvine, 1988; Irvine, 1991). However, Bird et al., (1991) opposed this idea where they found that in mouse lacrimal cells InsP\textsubscript{3} without the presence of Ins(l,3,4,5)P\textsubscript{4} caused Ca2+ entry, and they argued that in previous experiments sufficient InsP\textsubscript{3} was not added to see this effect and in those cases Ins(l,3,4,5)P\textsubscript{4} was acting to protect InsP\textsubscript{3} from metabolism (Berridge and Irvine, 1989) and itself was being converted back to InsP\textsubscript{3} via a 3-phosphatase (Hoer et al., 1988; Kjeldsen et al., 1988; Shears, 1989; Bird et al., 1991).
Figure 74. The involvement of Ins(1,3,4,5)P_4 in Ca^{2+} entry. The interaction between the InsP_3 receptor and the Ins(1,3,4,5)P_4 receptor. a. resting cell; b. InsP_3 production and binding to its receptor causes Ca^{2+}-mobilisation and leads to a conformational change in the Ins(1,3,4,5)P_4 receptor; c. Ins(1,3,4,5)P_4 or InsP_3 binding to the Ins(1,3,4,5)P_4 receptor leads to; d. Ca^{2+}-entry.
Further studies by Smith et al., (1992) showed that although very high levels of InsP₃ do cause Ca²⁺ entry, Ins(1,3,4,5)P₄ additions could further enhance Ca²⁺ entry.

Luckhoff and Clapham in their work give a direct demonstration of activation by Ins(1,3,4,5)P₄ of a Ca²⁺-channel in endothelial cells (Luckhoff and Clapham, 1992). This effect is reversible and not mimicked by InsP₃, except at high doses and InsP₃ does not enhance this effect. However, Luckhoff and Clapham (1992) used a relatively high free Ca²⁺ (0.5µM) in order to see their channel, and at these concentrations, the Ca²⁺-channel is already partially activated, and this activation was further increased by increasing [Ca²⁺] up to 1mM.

Thus, although there is considerable evidence for the role of inositol phosphates in Ca²⁺ entry, the nature of this role and the specific inositol phosphates involved is much less clear. This is likely due, at least in part, to difficulties in assaying the effects of inositol phosphates on Ca²⁺ entry. Investigations into the effects of inositol phosphates on Ca²⁺ entry require methods for introducing these highly polar hydrophilic compound into the cells, while maintaining sufficient support of the plasma membrane to permit measurements of its permeability to Ca²⁺. The techniques most used are patch-clamp, both in whole cell and excised patch configurations and microinjection. Much of the confusion in the field of receptor-regulated Ca²⁺ entry is generated by reports of conflicting findings derived from studies with these different approaches, which may be in part attributable to the difficulties and problems inherent to each approach.
It is beyond any doubt that Ins(1,3,4,5)P$_4$ can do something. It binds to a receptor protein (Donié and Reiser, 1991; Cullen and Irvine, 1992), synergizes with InsP$_3$ to mobilise Ca$^{2+}$ (Joseph et al., 1987; Irvine and Moor, 1987), can effect Ca$^{2+}$ reuptake (Boynton et al., 1990) or cause Ca$^{2+}$ entry (Guse et al., 1991) for review see (Irvine, 1992; Irvine, 1991). However, experimental artifacts are being generated which hamper our understanding of the role of this molecule and the advent of inositol phosphate analogues that are capable of crossing cell membranes, such as lipophilic analogues, will no doubt help overcome the problems associated with accessibility of the compounds to the intracellular compartment without having to disrupt the plasma membrane. The variation in results regarding Ins(1,3,4,5)P$_4$ studies can also be overcome with the use of phosphorothioate analogue of Ins(1,3,4,5)P$_4$, namely Ins(1,3,4,5)PS$_4$ and Ins(3)PS(1,4,5)P$_3$. Ins(1,3,4,5)PS$_4$ is predicted to be resistant to 5-phosphatase metabolism and would help elucidate the ambiguous role played by Ins(1,3,4,5)P$_4$ in Ca$^{2+}$ entry.

4.4 The effects of InsP$_3$ and analogues on Ca$^{2+}$ release and the functional responses: dense granule release and aggregation.

4.4.1 Fluorescent studies on permeabilised platelets.

Since the advent of fluorescent dyes such as quin-2, fura-2 and fluo-3, they have been used extensively to measure Ca$^{2+}$-release induced by InsP$_3$ in a wide variety of cell membrane and permeabilised cell preparations (Guillemette and Segui, 1988; Debs et al., 1988; Champeil et al., 1989; Mohr et al., 1993). However, to date studies using fluorescent dyes and permeabilised platelets or platelet preparation have not been used to assess InsP$_3$-induced release of Ca$^{2+}$.

214
In this study we set out to develop a method for the use of fluorescent dyes for the detection of Ca\(^{2+}\) release in permeabilised platelets and two platelet membrane preparations, a crude and pure preparation, and both the acetoxymethyl ester and the free acid of fura-2 have been used in this study. In all cases, regardless of buffer, permeabilisation technique (electrical, saponin, streptolysin-O), the use of permeabilised platelets or membranes, the use of different Ca\(^{2+}\) chelators (EGTA, EDTA, BAPTA) or simply passing the buffer or source of water over a Ca\(^{2+}\)-chelating agent such as chelex or Ca\(^{2+}\)-sponge, InsP\(_3\)-induced Ca\(^{2+}\)-release was not detected (data not shown). Due to the low intracellular [Ca\(^{2+}\)] \(\approx\) 100\(\text{nm}\) and the high extracellular [Ca\(^{2+}\)] \(\approx\) 1\(\text{mM}\) it is essential to reduce the Ca\(^{2+}\) content of the platelet suspension buffer to avoid platelet activation upon permeabilisation. Further buffering is necessary in order to detect small [Ca\(^{2+}\)] elevations above basal upon agonist stimulation, where if basal [Ca\(^{2+}\)] was 1\(\mu\text{M}\), a 100\(\text{nM}\) rise in [Ca\(^{2+}\)] would not be easily detected.

In this study an appropriate buffering system could not be established on account of the sensitivity of the system to [Ca\(^{2+}\)]. Overbuffering with agents like EGTA and EDTA leads to the quenching of any signal produced upon InsP\(_3\) activation. On the other hand underbuffering leads to high [Ca\(^{2+}\)] present upon permeabilisation, which will mask any elevation in [Ca\(^{2+}\)] upon InsP\(_3\) addition. Thus an alternative method for reducing [Ca\(^{2+}\)] was investigated. Here the platelet buffer was passed over a Ca\(^{2+}\) chelators such as chelex or a Ca\(^{2+}\)-sponge in order to reduce the Ca\(^{2+}\) content. This was not found to have any additional benefits over the previous Ca\(^{2+}\)-chelators used, and Ca\(^{2+}\) release upon InsP\(_3\)-addition could not be detected (data not shown).

Various reports suggest leaving [Ca\(^{2+}\)] unbuffered, and after permeabilisation the buffer is supplemented with ATP which will initiate Ca\(^{2+}\)-uptake via the
Ca$^{2+}$-ATPase pump (Renard et al., 1992; Combettes et al., 1993; Hofer and Machen, 1993). However, in this study ATP did not initiate Ca$^{2+}$ uptake, and the platelets became fully activated upon permeabilisation. In addition, in most cases ATP added to the cuvette was found to quench the fluorescence signal. Other reports do not modify [Ca$^{2+}$] (Mohr et al., 1993; Hershey et al., 1993). In addition, ATP and Mg$^{2+}$ are excluded from the buffer as a result of the concern that ATP will inhibit InsP$_3$ binding to its receptor.

Furthermore, a recent report (Richardson and Taylor, 1993) suggests that Ca$^{2+}$ chelators such as EGTA, EDTA and BAPTA act to inhibit InsP$_3$-stimulated Ca$^{2+}$ release because they will act as competitive antagonists of InsP$_3$ binding to its receptor. These Ca$^{2+}$ chelators are often used to buffer the free [Ca$^{2+}$] of the various buffers in which the cells are suspended. Thus, these chelators will interfere with InsP$_3$ binding to its receptor and any subsequent Ca$^{2+}$ release or functional effect to be studied.

To date, there are little data available using fluorescent Ca$^{2+}$ studies in permeabilised platelets and in the light of this work, we will not be able to contribute to this deficiency.

4.4.2 Functional studies: aggregation and dense granule release.

It is widely accepted that in most cells InsP$_3$ mobilises Ca$^{2+}$ which leads to various functional responses and the same is true of platelets. InsP$_3$ has been shown to induce aggregation (Knezevic et al., 1992) and dense granule secretion (Brass and Joseph, 1985) from permeabilised platelets and our aim in this study was to set up such methods in order to assess the effect of InsP$_3$.
analogues on platelet function and to establish if a correlation between InsP₃-induced Ca²⁺ release and platelet functional responses exists.

Upon saponin permeabilisation of platelets, an aggregatory response was observed (data not shown). Although a previous report by Knezevic et al., (1992) suggest that there exists a narrow saponin concentration range which facilitates InsP₃-mediated responses, without leading to platelet activation, as shown in permeabilised platelets supplemented with 100μg/ml fibrinogen, this was not apparent in our study. An all or nothing effect was observed with saponin in our system where saponin either produced aggregation and permeabilisation at 5.25μg/ml or not at concentrations of 5μg/ml, where permeabilisation was not achieved as indicated by the lack of aggregation upon 1mM Ca²⁺ addition. Modifications to the suspension buffer in terms of Ca²⁺ buffering, salt constituents and a different permeabilising chemical did not cause permeabilisation without aggregation (data not shown).

Thus, aggregation could not be used to investigate the functional effects of inositol phosphate analogues due to the inherent aggregation produced upon permeabilisation.

InsP₃-induced dense granule release was also investigated using permeabilised platelets. Brass & Joseph (1985) use an EGTA buffered system to demonstrate that Ca²⁺ alone causes [¹⁴C]5-HT release and addition of InsP₃ shifted this curve to the left where InsP₃ causes an additional [¹⁴C]5-HT release, in our system, this separation between Ca²⁺ and InsP₃ induced dense granule release was also present (≈ 10-15% of total [¹⁴C]5-HT release). However, this window was too small for any further studies such as dose response curves to InsP₃ and analogues.
InsP$_3$ being hydrophilic requires permeabilised cell systems, in order to gain access to the intracellular compartment and although permeabilised cells are more physiological than membrane preparation, it is desirable to study these compounds in an intact cell system. Knight & Scrutton (1987) have used a high electric discharge to render platelets permeable. Furthermore, incubating cells at 37°C for 60 minutes reseals electroporated cells (Hughes and Crawford, 1990). This technique was used to encapsulate hydrophilic InsP$_3$ or analogues for the later investigation on Ca$^{2+}$ release, aggregation and dense granule release. Due to the small size of the platelet, a high electric field of 10-20kV is necessary (Knight and Scrutton, 1987; Hughes and Crawford, 1990; Daniel et al., 1992) with 10 cycles. This high voltage however could not be achieved by the electroporator available for this study, 5kV being the maximum attainable. Hence, the number of cycles was increased to compensate for this shortcoming. It was observed that upon electroporation, platelets did become permeable (as indicated by dense granule release due to Ca$^{2+}$ addition). However, upon incubating at 37°C for 60 minutes, all responsiveness of the platelets is lost.

A further complication is that platelet functional responses are optimal at 37°C. However, as demonstrated by the metabolism data in this thesis, InsP$_3$ is very rapidly metabolised at this temperature and this may hamper those studies where the local InsP$_3$ concentration at the receptor may be greatly reduced due to metabolism.

We attempted to set up a functional assay in platelets in order to assess the effects of InsP$_3$ and its analogues, especially the partial agonists and the 5-phosphatase enzyme inhibitors, on platelet function and to further elucidate the roles of InsP$_3$ in platelet activation and responses. Of interest would have been the effect of the partial agonists on function to see whether partial activation of
the platelets would occur, whether a smaller percentage of the dense granules would be released or if aggregation would be attenuated. However, when we consider the mechanisms of platelet activation, involving the many positive feedback mechanisms involved in activation and dense granule release it would appear that partial activation would not be possible. In addition, the significance of one metabolite over another in platelet activation and function could have been addressed by investigating the effect of the metabolic enzyme inhibitors, L-Ins(1,4,5)PS₃ and Ins(1,3,5)PS₃, on platelet function.

Research into PI signalling would substantially benefit from the synthesis of lipophilic analogues of InsP₃. These analogues would be capable of crossing cell membranes and the need for cell poration or membrane preparations would not be required. This would provide a more physiological environment for the study of these compounds. In addition, the cells would not be exposed to such harsh treatments such as a high electric field or detergents for poration which affect the cell's integrity and function.

4.5 Summary of the discussion.

We have been able to demonstrate stereospecific InsP₃-induced Ca²⁺-release from permeabilised platelets. D-InsP₃ is a potent full agonist with an EC₅₀ of 0.18 ± 0.01μM at 4°C (1.14μM at 20°C) and L-InsP₃ is completely inactive. In addition, InsP₃-induced Ca²⁺-release was shown to be temperature dependent, 4°C being the optimum temperature for release reactions probably due to the slow rate of metabolism at this temperature.

From this thesis, a structure/activity relationship has become apparent and it is possible to predict, to a limited extent, the activity of novel analogues in
permeabilised platelets from this relationship. The three phosphates at the 1-, 4- and 5-positions are essential for activity, and removal of any of these, especially the vicinal 4,5-bisphosphate, causes a substantial loss in activity. Of the hydroxyl groups, the 2- and 3-OH's do not appear to be important. However, deletion of the 6-OH causes a significant loss in activity indicating that this may be essential for receptor recognition or Ca\(^{2+}\)-mobilisation.

It appears that phosphate substitution with phosphorothioates decreases in intrinsic activity, although this is not always the case as in Ins(1,3,4,6)PS\(_4\) and Ins(1,4,5)PS\(_3\). In this study, three such analogues have been investigated, and these are important because it appears from their structures the requirements for InsP\(_3\)-binding are met in that they all possess pseudo 1-, 4- and 5- phosphates. They also possess an equatorial pseudo 6-OH of InsP\(_3\). The partial agonist with the highest intrinsic activity, \textit{scyllo}-Ins(1,2,4,5)PS\(_4\) possesses a phosphorothioate group at the 2-position. Ins(1,4,6)PS\(_3\) is a partial agonist possessing the lowest intrinsic activity. It mobilised a maximum of 20% of the sequestered \(^{45}\)Ca, and was able to antagonise the effect of InsP\(_3\).

To date, a specific selective antagonist at the InsP\(_3\) receptor is still not available. The two antagonists available, heparin and decavanadate, are large molecules, non-specific in their activity and possess other activities such as enzyme inhibition. Thus, our aim is to uncover small molecule antagonists, based on the structure of InsP\(_3\). From the data obtained with studies using partial agonists, we now have a better idea of the requirements for potency and intrinsic activity. We may be able to develop these to make partial agonists with even lower intrinsic activity, with the aim to develop an antagonist.

Studies using partial agonists indicate the possibility of tissue-specific InsP\(_3\) receptors. Ins(1,3,4,6)P\(_4\) and 6-deoxy-Ins(1,4,5)P\(_3\) were found to be partial
agonists in SH-SY5Y neuroblastoma cells (Gawler et al., 1991; Safrany et al., 1993) but were found to be full agonists in permeabilised platelets (this thesis). In addition, some analogues appear to be full agonists with low potency in permeabilised platelets, e.g. D/L-Ins(1,3,4)P$_3$ has an EC$_{50}$ of $\geq 30 \mu$M in permeabilised platelets. The Ca$^{2+}$-release profile by D/L-Ins(1,3,4)P$_3$ is probably due to the presence of the L-isomer, the D-isomer being completely inactive. Strupish et al., (1988) found that D-Ins(1,3,4)P$_3$ was presumably inactive in Swiss 3T3 cells and in permeabilised smooth muscle cells with an EC$_{50}$ of 120μM (Polokoff et al., 1988). The findings that the same analogues possess different activities in different tissues points towards the possibility of tissue specific receptors.

The calcium influx inhibitor, SKF 96365, was used to probe the role of Ca$^{2+}$ entry in InsP$_3$ signalling and to probe the contentious issue of the synergistic actions of InsP$_3$ and Ins(1,3,4,5)P$_4$ acting to elevate intracellular Ca$^{2+}$ with InsP$_3$ mobilising intracellular Ca$^{2+}$ and Ins(1,3,4,5)P$_4$ facilitating Ca$^{2+}$ entry. However, in our hands SKF 96365 was found not to be a pure Ca$^{2+}$-influx inhibitor, but it appeared to have an effect on PI signalling. It was capable of inhibiting PAF-induced InsP$_3$-production, Ca$^{2+}$-release and [14C]5-HT release which is a result of InsP$_3$-production and the subsequent Ca$^{2+}$-elevation. Consequently, we were unable to make as effective a use of this compound as we had initially hoped.

Platelets and platelet activation play an important role in coronary disease and thrombosis. Thus, modulating platelet function may have a role in controlling these diseases. Blocking platelet activation could be achieved by blocking receptor activation by the use of specific receptor antagonists. However, this is not feasible when considering the number of intrinsic molecules and agents
released by platelets and other immune cells that act to activate platelets and a large number of specific platelet antagonists would be required.

Alternatively, activation can be prevented by blocking the signalling mechanisms involved in platelet activation. Since most platelet agonists signal through PI, elevating InsP$_3$ levels and subsequently Ca$^{2+}$, modulating this aspect of platelet activation is a more viable proposition. Data from this thesis indicates the possibility of tissue specific receptors. Thus, uncovering a specific InsP$_3$ receptor antagonist for platelets would present a real possibility of modulating platelet activation and may have long term implications in diseases such as thrombosis. This in conjunction with the subsequent synthesis of lipophilic analogues of InsP$_3$ receptor antagonists would have great therapeutic pertinence.
APPENDIX I:

Names and structures of inositol phosphate analogues examined.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound & Structure</th>
<th>EC₅₀ and activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FA = full agonist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA = partial agonist.</td>
</tr>
</tbody>
</table>

1. D-myo-inositol 1,4,5-trisphosphate
 \[
 \text{D-Ins}\,(1,4,5)\text{P}_3
 \]
 - 0.18 ±0.1µM (4°C) FA
 - 1.14 ±0.2µM (20°C) "
 - ≥10µM (37°C) "

2. L-myo-inositol 1,4,5-trisphosphate
 \[
 \text{L-Ins}\,(1,4,5)\text{P}_3
 \]
 - ≥100µM (20°C) Inactive

3. D-myo-inositol 2,2-difluoro 1,4,5-trisphosphate
 \[
 \text{Ins}(2,2)\text{F}_2(1,4,5)\text{P}_3
 \]
 - 0.63 ±0.09µM (20°C) FA

4. D-myo-inositol 1,4,5-trisphosphorothioate
 \[
 \text{Ins}(1,4,5)\text{PS}_3
 \]
 - 0.8 ±0.1µM (20°C) FA
5. D-\textit{myo}-inositol-1-phosphate 4,5-bisphosphorothioate
\[
\text{Ins}(1)P(4,5)PS_2
\]
0.85 ±0.1\textmu M (20°C) FA

6. D/L-\textit{myo}-inositol-1-phosphorothioate
4,5-bisphosphate
\[
\text{Ins}(1)PS(4,5)P_2
\]
0.65 ±0.1\textmu M (20°C) FA

7. \textit{scyillo}-inositol 1,2,4-trisphosphate
\[
\text{scyillo-Ins}(1,2,4)P_3
\]
0.58 ±0.07\textmu M (20°C) FA

8. \textit{scyillo}-inositol 1,2,4,5-tetrakisphosphate
\[
\text{scyillo-Ins}(1,2,4,5)P_4
\]
0.1 ±0.05\textmu M (4° & 20°) FA
5.1 ±0.2\textmu M (37°C) "

9. \textit{L-chiro} 2,3,5-trisphosphate
\[
\text{L-chiro-Ins}(2,3,5)P_3
\]
1.9 ±0.1\textmu M (4°C) FA
10. D-myo-inositol 1,4,6-trisphosphate
 \(\text{Ins}(1,4,6)P_3 \)
 \[2.07 \pm 0.08 \mu M \text{ (4°C) FA} \]

11. L-myo-inositol 1,3,4-trisphosphate
 \(\text{L-Ins}(1,3,4)P_3 \)
 \[\geq 10 \mu M \text{ (4°C) FA} \]

12. D-myo-inositol 1,2,4,5-tetrakisphosphate
 \(\text{Ins}(1,2,4,5)P_4 \)
 \[0.53 \pm 0.04 \mu M \text{ (20°C) FA} \]

13. D-myo-inositol 1,3,4,5-tetrakisphosphate
 \(\text{Ins}(1,3,4,5)P_4 \)
 \[\geq 10 \mu M \text{ (20°C) FA} \]

14. D-myo-inositol 1,3,4,6-tetrakisphosphate
 \(\text{Ins}(1,3,4,6)P_4 \)
 \[9.67 \pm 0.5 \mu M \text{ (20°C) FA} \]
15. $\geq 10\mu M \ (4^\circ C) \ FA$

D-myo-inositol 1,3,4,6-tetrakisphosphorothioate

\[\text{Ins}(1,3,4,6)\text{PS}_4 \]

16. $\geq 10\mu M \ (4^\circ C) \ FA$

D-myo-inositol 3-phosphorothioate 1,4,5-trisphosphate

\[\text{Ins}(3)\text{PS}(1,4,5)\text{P}_3 \]

17. $\geq 30\mu M \ (20^\circ C) \ FA$

D-myo-inositol-6-deoxy 1,4,5-trisphosphate

\[6\text{-deoxygeno-Ins}(1,4,5)\text{P}_3 \]

18. $\geq 30\mu M \ (20^\circ C) \ PA$

scyllo-inositol 1,2,4,5-tetrakisphorothioate

\[\text{scyllo-Ins}(1,2,4,5)\text{PS}_4 \]

19. $\geq 30\mu M \ (20^\circ C) \ PA$

L-chiro-inositol 2,3,5-trisphosphorothioate

\[\text{L-chiro-Ins}(2,3,5)\text{PS}_3 \]
D-myo-inositol 1,4,6-trisphosphorothioate
\(\text{Ins}(1,4,6)_{\text{PS}_3} \)

\[\geq 30 \mu M \ (4^\circ C) \] PA

D-myo-inositol-6-deoxy 1,4,5-trisphosphate
6-deoxy-\(\text{Ins}(1,4,5)_{\text{P}_3} \)

\[\geq 100 \mu M \ (20^\circ C) \] Inactive

D-myo-inositol-6-deoxy-2,3-cyclohexylidine
1,4,5-trisphosphate
6-deoxy-2,3-cyclohex-\(\text{Ins}(1,4,5)_{\text{P}_3} \)

\[\geq 100 \mu M \ (20^\circ C) \] Inactive

D-myo-inositol-6-deoxy-2,3-cyclohexylidene
1,4,5-trisphosphorothioate
6-deoxy-2,3-cyclohex-\(\text{Ins}(1,4,5)_{\text{PS}_3} \)

\[\geq 100 \mu M \ (20^\circ C) \] Inactive

L-myo-inositol 1,4,5-trisphosphorothioate
L-\(\text{Ins}(1,4,5)_{\text{PS}_3} \)
25. D-myo-inositol 1,3,5-trisphosphorothioate
\[
\text{Ins}(1,3,5)^{3}\text{PS}_3
\]
≥ 100µM (20°C) Inactive

26. D-myo-inositol-1-phosphate 4,5-pyrophosphate
\[
\text{Ins}(1)^{1}\text{P}(4,5)^{2}\text{pyrophosphate}
\]
≥ 100µM (20°C) Inactive

27. D-myo-inositol 4-methylene carboxylate
\[
\text{Ins}(4)^{3}\text{CO}(3,5)^{2}\text{P}_2
\]
≥ 100µM (20°C) Inactive

28. D-myo-inositol-3,6-dibenzoyl 1,2,4,5-tetrakisphosphate
\[
\text{Ins}(3,6)^{2}\text{Bz}(1,2,4,5)^{4}\text{P}_4
\]
≥ 100µM (20°C) Inactive

29. D-myo-inositol 1-phosphate
\[
\text{Ins}(1)^{1}\text{P}
\]
≥ 100µM (20°C) Inactive
BIBLIOGRAPHY.

Blondel, O., Takeda, J., Janssen, H., Seino, S., and Bell, G. I. Sequence and functional characterisation of a third inositol trisphosphate receptor subtype, IP₃R-

Born, G. V. R. Quantitative investigations into the aggregation of blood platelets. 1962b, *J. Physiol.* 162:67P.

Doughney, C., McPherson, M. A., and Dormer, R. L. Metabolism of inositol
1,3,4,5-tetrakisphosphate by human erythrocyte membranes. 1988,
Biochem. J. 251:927-929.

Downes, C. P., Mussat, M. C., and Michell, R. H. The inositol trisphosphate
phosphomonoesterase of the human erythrocyte membrane. 1982,

Downes, C. P. and Wusteman, M. W. Breakdown of polyphosphoinositides and
not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol

Drummond, A. H. Lithium and inositol lipid-linked signalling mechanisms. 1987,
TIPS 8:129-133.

Enouf, J., Bredoux, R., Bourdeau, N., and Levy-Toledano, S. Two different Ca2+
transport systems are associated with plasma and intracellular human platelet

Enyedi, A., Sarkadi, B., Foldes-Papp, Z., Monostory, S., and Gardos, G.
Demonstration of two distinct calcium pumps in human platelet membrane vesicles.

Faraci, W. S., Zorn, S. H., Bakker, A. V., Jackson, E., and Pratt, K. Beryllium
competitively inhibits brain myo-inositol monophosphatase, but unlike lithium does
not enhance agonist-induced inositol phosphate accumulation. 1993, *Biochem. J.*
291:369-374.

Ferris, C. D., Huganir, R. L., Supattapone, S., and Snyder, S. H. Purified inositol
1,4,5-trisphosphate receptor mediated calcium flux in reconstituted lipid vesicles.

Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H.
Inositol 1,4,5-trisphosphate receptor is phosphorylated by cyclic AMP-dependent
175:192-198.

Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H.
Autophosphorylation of inositol 1,4,5-trisphosphate receptors. 1992, *J. Biol. Chem.*
267:7036-7041.

Ferris, C. D., Huganir, R. L., and Snyder, S. H. Ca2+-influx mediated by purified
IP3 receptor in reconstituted lipid vesicles is allosterically regulated by adenine

Fill, M. and Coronado, R. Ryanodine receptor channel of sarcoplasmic reticulum.

Föhr, K. J., Scott, J., Ahnert-hilgaer, G., and Gratzl, M. Charecterisation of the
inositol 1,4,5-trisphosphate-induced calcium release from permeabilised endocrine
cells and its inhibition by decavanadate and p-hydroxymercuribenzoate. 1989,

displaces inositol 1,4,5-trisphosphate (IP3) from its receptor and inhibits IP3
induced Ca2+ release in permeabilised pancreatic acinar cells. 1991, *Cell Calcium*
12:735-742.

Hajneczky, G., Gao, E., Nomura, T., Hoek, J. B., and Thomas, A. P. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+-mobilisation in permeabilised hepatocytes. 1993, Biochem. J. 239:413-422.

Lindon, J. C., Baker, D. J., Williams, J. M., and Irvine, R. F. Conformation of the identities of inositol 1,3,4-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the use of one-dimensional and two-dimensional n.m.r. spectroscopy. 1987, *Biochem. J.* 244:8759-8763.

Potter, B. V. L. Synthetic analogues of the second messenger D-myo-inositol-1,4,5-trisphosphate as a receptor agonist and inhibitors of the enzymes of the polyphosphoinositide pathway of signal transduction. 1993, Phosphorus Sulfur And Silicon And The Related Elements 76:143-146.

Richardson, A. and Taylor, C. W. Effects of Ca\(^{2+}\) chelators on purified inositol 1,4,5-trisphosphate (InsP\(_3\)) receptors and InsP\(_3\)-stimulated Ca\(^{2+}\) mobilization. 1993, J. Biol. Chem. 268:11528-11533.

Ringer, S. An investigation regarding the action of strontium and barium salts compared to the action of lime on the ventricle of the frogs heart. 1883, Practitioner 31:81-93.

Rusinko, N. and Lee, H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD\(^+\) into a cyclic metabolite with intracellular Ca\(^{2+}\)-mobilizing activity. 1989, J. Biol. Chem. 264:11725-11731.

Smith, P. M. Ins(1,3,4,5)P\textsubscript{4} promotes sustained activation of the Ca2+-dependent Cl- current in isolated mouse lacrimal cells. 1992, Biochem. J. 283:27-30.

246

PAPERS ARISING FROM THIS THESIS

Papers

Abstract