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Abstract

Production of quality injection moulded parts is a complex task that requires a deep under-
standing of the interaction between machine settings and in-mould parameters. This thesis
reports on the monitoring of the polymer dynamics during the injection cycle and proposes an
effective control scheme for the process.

The study is focused on an Arburg 25-tonne injection moulding machine which is hydraulically-
actuated. For the modelling and simulation of the filling and packing phases, the dynamics of
both the machine’s hydraulic circuit and the polymer (polypropylene) behaviour were investi-
gated. The simulations were validated on a modified version of the injection moulding machine
in which a specially instrumented mould was used.

To assess the extent of solidification of the part and identify phase changes during the cycle,
two monitoring methods were studied. One makes use of ultrasound transducers while the
other utilizes fast-response thermocouples. Both methods were found to enhance the control
of the process. The ultrasound feedback provided sufficient information for quick set up of the
controller in real time.

A hybrid minimal controller synthesis (MCS) controller was developed and evaluated experi-
mentally for the closed-loop control of flow and pressure trajectories. The algorithm does not
require a priori information about the plant dynamics. To reduce the MCS sensitivity to noise
in the feedback signals, a modification of the MCS is proposed and validated. This approach
is shown to enhance the performance of the machine.

A major disadvantage in conventional moulding is the difficulty in influencing the molecular
orientation at the core. Vibration of the melt polymer has been applied by previous researchers,
by means of additional injection cylinders, because control of fast-acting screw dynamics could
not be achieved with conventional control methods. A new method is proposed here, where
vibration of the screw in a conventional moulding machine is controlled by the hybrid MCS
algorithm.

The mechanical properties of tensile specimens produced with vibration were compared with
parts produced by conventional moulding. They show significant improvements; part warpage
is reduced by up to 30% and tensile modulus is increased by around 10%.
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Chapter 1

Introduction

1.1 Background

The injection moulding of thermoplastics is a widely used manufacturing process for the pro-
duction of low cost and lightweight material products. Parts are moulded efficiently on a
mass production scale with mechanical properties which often surpass those of metals. The
products range from low-quality simple-geometry parts to very complex ones with strict di-
mensional tolerances. Economic constrains have raised the need to increase productivity and
improve the automation of the injection moulding process. These parameters alongside with
the use of multi-cavity moulds have perplexed further the control of the process, where ad-
vanced control methods are necessary to meet the new specification tolerances. Therefore a
better understanding of the polymer melt behaviour during the process could aid the control of
the polymer viscosity in order to produce consistent parts with desired properties. Advanced
monitoring methods could be used to visualize in-mould parameters such as the melt polymer
dynamics and identify phase changes, estimate the extent of solidification of the part and alert

for process variations in real time.

Machine process parameters and polymer processing conditions are very interlinked and to-
gether have a great impact on the quality of the produced part. For the injection moulding
process, parameters of great importance are: injection speed, holding pressure, polymer pro-
cessing temperature, mould temperature and part cooling rate. Precise control of these param-
eters during the injection cycle, helps to control the polymer’s molecular structure in the cavity
and part final properties, that determine the physical appearance of the mouldings, such as
residual stresses, shrinkage and warpage. However in order to control the filling and packing
phases, the profile of the injection velocity and holding pressure should be optimized, while
maintaining the processing temperature of the polymer and mould temperature nominally con-
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