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Abstract

This thesis reports the design, fabrication and characterisation of the first pho-
tonic bandgap fibre (PBGF) to be formed from two solid materials (two different
glasses). It also reports the characterisation of a bandgap fibre with a hollow
core, and the use of this fibre for delivery of high-power ultrashort optical pulses.
Finally, a novel feature of soliton propagation in solid-core photonic crystal fibres
is reported and explained.

The first all-solid PBGF was fabricated and characterised. The transmitted spec-
trum shows several low-attenuation windows, which stand out from the back-
ground by more than 30dB. The measured dispersion has shown anomalous region
in the transmission bands despite the huge normal dispersion from the material.
The bandgap formation in all solid PBGFs is attributed to antiresonances of the
high-index strands in the cladding.

A hollow-core photonic bandgap fibre designed for use in the 850nm wavelength
region is characterised. The fibre has a minimum attenuation of 180dB/km at
847nm wavelength. The low-loss mode has a quasi-Gaussian intensity profile.
The group-velocity dispersion of this mode passes through zero around 830nm,
and is anomalous for longer wavelengths. The slight departure from perfection
in the fibre fabrication leads to a splitting of the polarisation modes, and the
polarisation beat length is measured to vary from 4mm to 13mm across the band
gap. Comparing the operation of both solid-core and hollow-core bandgap fibres
sheds light on the operation of the hollow-core variety.

Femtosecond solitons at 800nm wavelength were transmitted over 5m of hollow-
core PBGF. At the soliton formation energy, the output pulses had a length
of less than 300fs and an output pulse energy of around 65nJ. The Raman-
shifted solitons, which were almost bandwidth-limited, had a constant bandwidth
of 3nm which is limited by the Raman spectrum of the gas inside the fibre.
Numerical modelling shows that the nonlinear phase shift is determined by both
the nonlinearity of air and by the overlap of the guided mode with the glass.

The cancellation of the soliton self-frequency shift in a silica-core photonic crystal
fibre with a negative dispersion slope was demonstrated. The results show that
stabilization of the soliton wavelength is accompanied by exponential growth of
Cherenkov radiation emitted by the soliton. The compensate for the Raman
frequency shift is attributed to the soliton spectral recoil from emitting the red-
shifted radiation.
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Chapter 1

Introduction

Modern optical fibres were one of the major technological successes of the 20th
century. After the first low-loss (< 20dB/km) single-mode fibre in 1970, this
technology has developed at an incredible pace. Now optical fibres have been the
key components of not only our sophisticated global telecommunication network
but also many non-telecom applications, such as beam delivery for medicine, ma-
chining and diagnostics, sensing and a host of other uses. After all the progress
in technology, the basic physics of optical fibres has remained unchanged since
the 19th century, and the remaining space for the improvement of optical fibre
performance is very small. The loss of a single-mode fibre, which is as low as
0.15dB/km in the 1.55um wavelength region, is limited mainly by the fundamen-
tal process of Rayleigh scattering. Although properties like optical nonlinearity
and group-velocity dispersion can be influenced to a limited extent by fibre de-
sign, they are largely depending on the material’s properties. It seemed that fibre
optics had reached perfection until the birth of photonic crystal fibres.

Since the 1980s, optical physicists have recognized that the ability to structure
materials on the scale of the optical wavelength, a fraction of a micrometre or less,
will allow the development of new optical materials known as photonic crystals [1].
Photonic crystals rely on regular morphological microstructure incorporated into
the material to radically alter its optical properties. When fibre optics embraced
this new idea, a new breed of fibre was born. Such fibres are known as photonic
crystal fibres (PCFs) [2][3], as they rely on the unusual properties of photonic
crystal structures in the cladding to deliver previously unimaginable performance



from an optical fibre waveguide. Depending on the properties of the microstruc-
ture in the cladding, the fibres guide light with different mechanisms: modified
total internal reflection (index-guiding PCFs) or band-gap guidance (photonic
band-gap fibres(PBGFs)). Over the last few years, PCFs have already demon-
strated some superior performances in several respects, which is leading to.new
phenomena and new applications, and they have greatly enriched the concepts of
fibre optics.

This thesis gives a detailed description of the basic physics and properties of
the new fibres, especially those guiding light by photonic band-gap guidance.
Chapter 2 provides an overview of fibre optics, in which I discuss conventional
fibres and index-guiding PCFs from a comparative point of view. Chapter 3
reviews some of the important progress that has been made regarding various
photonic crystal fibres over the last few years. Chapters 4 to 7 present the
new work done during the course of my PhD research. Chapter 4 describes the
fabrication and characterisation of a new type of PCF: all solid PBGF, in which
the band-gap guidance mechanisms is explained in detail. Chapter 5 describes
the linear properties of a hollow-core PBGF. Chapter 6 demonstrates high power
femtosecond soliton transmission by using a hollow-core PBGF. The origin of the
nonlinearity and the characteristics of soliton behaviour in hollow-core fibre are
discussed. Chapter 7 demonstrates the compensation of the soliton self-frequency
shift (SSFS) by strong soliton Cherenkov radiation in an index-guiding PCF with

engineered dispersion profile. Chapter 8 is the summary.



Chapter 2
Basics of optical fibres

This chapter briefly reviews the field of linear and nonlinear fibre optics. The
first two sections outline the guidance mechanism, fundamental parameters and
optical characteristics of conventional optical fibres and index-guiding photonic
crystal fibres (PCFs). The third section briefly discusses the nonlinear fibre
optics. The last section outlines the fabrication processes of conventional fibres.

2.1 Guiding mechanism

Modern optical fibre, born in the 1960s [4], normally consists of a central core
surrounded by a cladding layer and then protected by a thick jacket. The index
profile of a optical fibre, described generally by n(z,y) as shown in Fig.2.1, does
not change along the fibre axis (z). This translational invariance in the z direction
leads to the most important conserved quantity in fibre optics, 3, the propagation
constant.  is the z component of the wavevector nko, where n is the material
index and ko is the vacuum wavevector. Therefore 3 is always either equal to or
smaller than the absolute value of the wavevector, i.e. § < lc-;). It is convenient

to define the mode index nmode = B/ko-

The limited cross section area of an optical fibre makes all the possible values of 3
discretized. Each allowed [ corresponds to a possible light distribution in the fibre

and we call such a distribution a mode. Some modes are propagative in the core
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the whole structure, in most PCFs the jacketing material is pure silica or some
other lower grade glass whose material index is not lower than that of the core.
This means that in the jacketing layer there must be some modes whose mode
indices are the same as or very close to the core mode index and the core mode
can couple to these modes via the evanescent fields that exist in the cladding
structure. Such coupling is the origin of the confinement loss. By making the
cladding thicker to increase the physical displacement between the core and the
jacket layer or increasing the air filing fraction to reduce the evanescent field in
the cladding, we can reduce the confinement loss to the extent that it is much
smaller than that due to the other loss mechanisms.

2.2.2 Geometric symmetry and Birefringence

The geometric symmetry of the index profile of the fibre causes some mode de-
generacy, i.e. different field configurations share the same propagation constant 3
and any linear combination of these modes is still a possible mode with the same
8. For example, the fundamental mode of a circularly symmetric fibre, such as
conventional step-index fibre, consists of a pair of linearly polarized degenerate
modes which have identical field intensity distributions but perpendicular po-
larizations. It means that the fundamental mode of such a fibre could be any
polarization, which can be seen as a certain linear combination of the two linearly

polarized degenerate modes.

A typical index-guiding PCF, as shown in Fig.2.3(b), has 6-fold rotational sym-
metry. However such reduced rotational symmetry does not separate the two
linear polarized degenerate fundamental modes [9]. From Fig.2.6 we can see that
the rotation operations give us three degenerate linearly polarized modes and by
combining two of them we can compose another degenerate linearly polarized
mode which is perpendicular to the third one. In fact, any index profile with
rotational symmetry greater than 2-fold will have degenerate linearly polarized

modes.

In reality, the index profiles of fibres are not perfectly symmetrical and any de-
viation from perfect symmetry will cause coupling between degenerate modes.
For conventional fibre, very small imperfections are distributed along the fibre

in a random way, so the polarization at the output will be random no matter
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2.2.3 Dispersion

The propagation constant [ is a function of w, known as the dispersion relation.
Dispersion plays a critical role in the propagation of short pulses and all kinds
of nonlinear processes in fibres. For a monochromatic wave propagating in an
optical fibre, only the phase changes along the fibre and the intensity is constant.
The phase can be written as e“#*~“*) and the phase change propagates with
speed w/B. However, the absolute phase has little physical meaning because it
cannot be measured. The important thing is the phase difference. For example,
considering two equal amplitude monochromatic waves with different frequencies
w; and we propagating in the same direction in a fibre, there will be intensity
modulation because of the interference between the two waves. The intensity
modulation has the form of cos(AfBz — Awt) and it propagates at a speed of
Aw/AB, where Aw = w; — ws and AB = B; — B;. In reality optical signals,
usually pulses, are often composed of a group of frequencies very close to each
other around a central frequency wy and travel at a speed of (%)wzw, called the
group velocity. If the group velocity did not change with frequency, optical signals
would travel along the fibre without distortion. However, the group velocity does
change with wavelength. By expanding the propagation constant 3 in a Taylor
series about the central frequency wy, we can write a mathematical expression of

the dispersion:

Bw) = n(w)w/c = Fo + P1(w — wp) + %ﬂz(w —wo)?+ - (2.4)
where g
Prm = (W)w=wo (2.5)
and among them:
_d8_1 _mg_1 dn
ﬂl_%ﬁvg_ cg_c<n+wdw) (26)
do- 1 (. dn  dn
Pr=—"=- <2d—w- +WW) (2.7)

Here it is clear that (3, is inversely proportional to the group velocity v, and
B2, called the group velocity dispersion (GVD), is related to the group velocity
change with frequency. Likewise, (3, (4, etc. reflect higher-order GVD and we

call them 3rd-order dispersion, 4th-order dispersion and so on. In practice, it is

11
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