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Abstract

Optical-scale microstructures containing thin-film photonic crystals (TFPCs) are mod-
elled by transfer/scattering matrix methods, based on Fourier-series expansion of the
optical Bloch eigenmodes. The majority of the TFPCs considered consist of 2D ar-
rays of holes arranged in a triangular lattice, etched into high-index Al;Ga;-;As and
placed on a low-index oxidised substrate. These TFPCs can be easily fabricated by
standard electron-beam lithography techniques. Unlike most photonic crystal devices
that have been proposed, our ‘intra-pass-band’ TFPCs would work by exploiting the
somewhat surprising properties of propagating optical Bloch waves rather than directly
relying on photonic bandgaps. By numerical modelling, it is demonstrated that 2D-
patterned TFPCs can support highly dispersive high-Q quasi-guided and truly-guided
resonant modes, and the unusual properties of these modes are explained in terms of
their Bloch-wave compositions. Modal dispersion diagrams of TFPCs, showing the loci
of the resonant modes in in-plane wavevector space at fixed frequency, are calculated.
These so-called ‘resonance diagrams’, and variants thereof, are shown to be a useful
design tool for TFPC-based integrated optical components. It is suggested that TFPCs
may be a viable alternative to distributed Bragg reflectors in semiconductor vertical
cavity surface-emitting lasers, possessing potential advantages in terms of compact-
ness and ease of fabrication. The high angular and spectral dispersion of the resonant
modes implies that TFPCs could form the basis of a new family of compact devices for
performing such functions as wavelength-division multiplexing/demultiplexing, beam-
steering and frequency-selective filtering. Enhancement of nonlinear effects could also
be achieved in TFPC resonators, because in them a high cavity Q-factor and a low

in-plane group-velocity can be attained simultaneously.
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DBR: distributed Bragg reflector

WDM: wavelength division multiplexing

e VFFD: vector-field Fourier-decomposition
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Chapter 1

Introduction

It is a well-known fact that photonic crystals [9] are capable of suppressing the prop-
agation of light within certain frequency intervals or ‘band-gaps’. Photonic band-gap
crystals have been investigated by many researchers because they are intrinsically in-
teresting in terms of fundamental physics and have numerous potential applications. In
addition to this, a substantial number of groups are now beginning to realise that the
properties of propagating modes near the edge of a bandgap (i.e. within a passband)
can be as useful as modal suppression within a bandgap. In this thesis, we analyse intra-
passband resonant light propagation at near-infrared frequencies in thin-film photonic
crystals and we encounter and investigate several noteworthy effects. We have chosen
this type of photonic crystal because it can be fabricated easily on micrometric length-
scales, unlike its 3D-microstructured counterpart. The work presented here is based
entirely on numerical simulation, with constant regard to the practical limits of fab-
rication technology, guided by collaboration with several experimental groups (which

are listed in the Acknowledgements).

1.1 A review of Bloch wave optics

References [10] and [11] together provide a good introduction to Bloch wave optics. In
this section, we cover only the essentials necessary for understanding the subsequent
chapters. An optical Bloch wave is an electromagnetic mode of a microstructured
dielectric material in which the refractive index is a wavelength-scale periodic function
of position. Such microstructured materials are known as photonic crystals. Photonic
crystals occur in nature: certain fish scales [12], butterfly wings [13, 14], and sea mouse
spines [15] are coated with natural thin-film photonic crystals, to which their properties



of iridescence and highly angle-selective reflectance are attributable. They can also
be made artificially by processes such as reactive ion etching. The unusual optical
properties of photonic crystals can be described in terms of photonic dispersion surfaces

as follows.

1.1.1 Photonic dispersion surfaces

A photonic dispersion surface w(k) is, strictly speaking, the locus of all allowed modes
in the four-dimensional space (w, k), where w is the optical angular frequency and & is
the wavevector. The photonic dispersion surface of an ‘ordinary’ dielectric material of
refractive index 7 is a hypercone described by the equation nw? = c?(kZ + k2 + k2).
A three-dimensional ‘cross-sectional slice’ through this hypercone at constant angular
frequency w is a sphere in wavevector space. A photonic crystal can have a photonic
dispersion surface that is very different to the familiar hypercone. In fact, there will
generally be more than one dispersion surface, necessitating the subscript j to dis-
tinguish them, and these dispersion surfaces w;(k) can be split, buckled, stretched,
punctured, and squashed by altering the physical microstructure of the photonic crys-
tal. Because photonic crystals can manipulate photonic dispersion to such an extreme

extent, they are capable of controlling almost all aspects of light propagation.

Every point on the dispersion surfaces w;(k) must correspond to a ‘photonic Bloch
wave,’ because that is the only type of electromagnetic wave that can survive inside a
photonic crystal, in the ‘steady state’. A photonic Bloch wave can be defined to be such
that its vector wave-field has the same periodicity as the lattice of the crystal in which
it exists, after division by the phase factor exp(ik - r), where k is the fundamental
wavevector. Actually, even a transient wave can be constructed from Bloch modes,
provided that we use a linear combination having a continuous distribution of optical
frequencies, because the set of all Bloch modes is a so-called ‘complete set,” and can

therefore be used to expand any field function.

Photonic Bloch waves are named after their electronic analogue in solid-state physics,
from which the field of photonic crystals borrows most of its terminology. However,
the analogy between photonic crystals and semiconductor crystals cannot be stretched
very far: the wavefunction of light is a vector rather than a scalar, as in the case of a
non-relativistic electron. Also, photons in photonic crystals made from linear materials

do not interact, whilst electrons in semiconductors do.

10



1.1.2 The infinitesimal coupling model

Consider a dielectric material that is translationally invariant along axes y and 2z and
has a periodic variation in its electric permittivity ¢ along the z-axis with period A. In

this case, € can be expanded as a Fourier series as follows:

400
€= Y. emexp(iGme) (1.1)
m=—co

where Gy, = 2rm/A, which is the magnitude of the so-called ‘grating vector.” The
well-known Bloch theorem states, in this case, that fields inside the periodic material
must be expandable as a linear superposition of electromagnetic plane waves that have
wavevector components along the z-axis of the form k; + G,,. Let K be the 3D
wavevector of these constituent plane waves in general, then (K, Ky, K,) = (k; +
Gm,ky, k). Since the variation in € is only along the z-axis, the grating vector has
no components along the y and z axes. Let us focus on the limiting case in which the
modulation depth of € is infinitesimally small compared with the background value e,.
An ordinary plane wave solution of the form f = f, exp(i(kzz + kyy + k.2 — wt)),
where f is any particular nonzero field vector component, must still be valid in this
case, since ¢ is almost unmodulated. This plane wave has the familiar dispersion
equation ew? = k2 + k2 + k2, when working in units in which ¢ = 1,¢, = 1, and
o = 1. However, the Bloch theorem must also be valid because € is nevertheless
periodically modulated. Therefore, the dispersion equation of the material must be
€w? = K2+ KZ + K2, where K was defined above. This dispersion equation describes
a series of spheres populating the entire K, axis (because the index m in the grating
vector can be any integer), with the centres of any pair of adjacent spheres separated
by a distance G;. Although the dispersion surfaces are spherical (each with radius
w\/€), they can be represented on paper by plotting K, = (/K2 + K2 (which is the
radial coordinate in a plane perpendicular to the K, axis) against K, at constant
frequency w. The dispersion surfaces are shown in this way in Figure 1.1. The scalar
wave equation for a wave associated with any one of these dispersion surfaces can be
written as e,w?h, = (Kg + Kj + K 3) h., where h,, is any Fourier coefficient of the
magnetic field of the scalar wave. Let us take, as an example, waves associated with a
pair of immediately adjacent dispersion spheres. We will choose, arbitrarily, the sphere
centred on the origin of wavevector space and also the sphere centred on K, = —G.

The scalar wave equations for waves associated with these dispersion surfaces will be

eww?ho = (k2 + k2 + k2)ho (1.2)
eww?hy = ((kz + G1)? + k2 + k2)hy (1.3)

11
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one direction. A ‘full’ 3D band-gap is an extreme case in which the modal suppression
applies to all wavevector directions and all polarisation states. If the band-splitting
effect is not sufficient in extent to create a bandgap of any sort at our operational

optical frequency, then we will remain in the ‘intra-passband state’ regime.

1.1.7 Dispersion surface curvature and the effective mass tensor

The effective mass tensor m* for a general dispersion surface is defined to be
i 2 -1
m¥ = 1[0 w/ak,-ak,-] , (1.8)

in which w(k) is the equation of the relevant surface. Since the dispersion surface
curvature can be low at a passband edge, this equation implies that high effective
photon masses are attainable in their locality. This fact leads to the concept of ‘heavy
light’ [17].

Because the group velocity v, is equal to 0w/0k, i.e. the k- space gradient of the
dispersion surface, the group velocity components resolved along a particular direction
can be zero at a local dispersion minimum or maximum, implying that photons will
form standing waves in space at these points. Low group-velocity optical Bloch waves
can interact strongly with the materials constituting the photonic crystal (because
the interaction strength typically depends on the reciprocal of the magnitude of the
group velocity), thus enhancing nonlinear effects. This can be either very useful or a
nuisance, depending on the situation. For example, in high-power data transmission
and signal-processing applications, nonlinear effects can severely attenuate and distort
the waveform or even result in overheating of the apparatus. Equally, a nonlinear effect
may be the essential operational principle of a device that would be inconceivable in

linear optics.

Another effect that can occur near a band-edge is that the density of photonic states
may be sharply concentrated there, whilst the state density is reduced to zero in the
midst of a bandgap. This allows photonic crystals to control spontaneous emission,

either enhancing it at a band-edge or suppressing it entirely in a band-gap.

1.2 Practical photonic crystal microstructures

In practice, a photonic crystal can be classified in terms of its ‘internal’ and ‘external’

structure. The ‘internal structure’, in this context, refers to the three-dimensional

19



spatial refractive-index distribution of the crystal itself on an optical length-scale. A
real, physical photonic crystal must be truncated so that it has a finite extent in space,

and the way in which it is truncated determines what we will call its ‘external structure’.

The internal structure has three distinct aspects: lattice, basis, and defects. The ‘host
crystal’ microstructure is derived by convolving an abstract regular periodic lattice of
delta-functions with a suitable crystal basis, and any intentional deviations from this
otherwise regular host crystal, known as ‘defects,” may be accounted for by deleting

host-lattice points or by employing a different basis for some of them.

The internal structure may have a number of orthogonal axes of translational invari-
ance, and if it does then taking account of them can considerably simplify calculations.
In fact, not only does the presence of such translational invariance axes (TIAs) simplify
calculations, but also it considerably simplifies fabrication. Indeed, the fabrication of
photonic crystals having no TIAs that are intended to be employed at visible or near-
infrared frequencies pushes technology to or beyond its limits (especially when wide
bandgaps are desired), whilst those having one or two TIAs are much more manageable
and yet are still very useful. Note that crystals having 0, 1, and 2 TIAs are normally
respectively referred to as ‘3D’, ‘2D’, and ‘1D’, but careless use of this conventional
nomenclature can lead to ambiguity as to whether one is referring to the dimensional-
ity of the space spanned by the set of grating vectors (and therefore to the ‘internal’
structure), or whether the ‘external’ structure is being described (as ‘bulk’, ‘plane’, or

‘rod’ respectively).

1.3 General aim of this thesis

Photonic crystals in the intra-passband regime make full use of the dispersion manipu-
lating powers of photonic crystals, and they are the subject of this thesis. High-index-
contrast thin-film photonic crystals (TFPCs), in which the refractive index is a ‘strong’
globally periodic 2D or 1D function of in-plane position, and where the film is optically
thin, are worth investigating because the narrow separation between the upper and
lower interfaces imposes a very strict field resonance condition that selects only cer-
tain linear combinations of Bloch modes for lossless (guided) or low-loss (quasi-guided)
propagation within the film. This resonance condition, together with the strong angu-
lar and spectral dispersion properties of the underlying Bloch modes ensures that the
guided and quasi-guided modes of a TFPC may be both highly dispersive and highly
controllable, by virtue of the sensitivity of the Bloch modes to the internal structural
parameters and by the dependence of the resonance condition on both the Bloch modes
themselves and the thickness of the film.
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