19F NMR sensors for the measurement of pH in biological systems

Jones, Brian George

Award date: 1995

Awarding institution: University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

Copyright of this thesis rests with the author. Access is subject to the above licence, if given. If no licence is specified above, original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC-ND 4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms.

Take down policy
If you consider content within Bath's Research Portal to be in breach of UK law, please contact: openaccess@bath.ac.uk with the details. Your claim will be investigated and, where appropriate, the item will be removed from public view as soon as possible.
19F NMR SENSORS FOR THE
MEASUREMENT OF pH IN
BIOLOGICAL SYSTEMS

Submitted by
Brian George Jones
for the degree of PhD
of the University of Bath
1995

The research work carried out in this thesis has been carried out in the School of Pharmacy and Pharmacology, under the supervision of Dr Michael D. Threadgill, Dr Sarah K. Branch and Dr Andrew S. Thompson.

Attention is draw to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior written consent of the author.

The thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purpose of consultation.

Brian G. Jones
19/12/95
19F NMR SENSORS FOR THE MEASUREMENT OF pH IN BIOLOGICAL SYSTEMS

Submitted by

Brian George Jones

for the degree of PhD

of the University of Bath

1995

The research work carried out in this thesis has been carried out in the School of Pharmacy and Pharmacology, under the supervision of Dr Michael D. Threadgill, Dr Sarah K. Branch and Dr Andrew S. Thompson.

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior written consent of the author.

The thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purpose of consultation.

Brian G. Jones

19/12/95
'19F NMR SENSORS FOR THE MEASUREMENT OF pH IN BIOLOGICAL SYSTEMS

Submitted by

Brian George Jones

for the degree of PhD

of the University of Bath

1995

The research work carried out in this thesis has been carried out in the School of Pharmacy and Pharmacology, under the supervision of Dr Michael D. Threadgill, Dr Sarah K. Branch and Dr Andrew S. Thompson.

Attention is draw to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior written consent of the author.

The thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purpose of consultation.

[Signature]

19/12/95
The research work carried out in this thesis has been carried out in the School of Pharmacy and Pharmacology, under the supervision of Dr Michael D. Threadgill, Dr Sarah K. Branch and Dr Andrew S. Thompson.

Attention is draw to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior written consent of the author.

The thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purpose of consultation.

[Signature]
19/12/95
ABSTRACT

Intracellular pH (pH_i) is one of the most important factors which influence metabolic processes in cells and affects the sensitivity of tumour cells to drugs. Measurement of pH_i is important in biochemistry and drug design. The potential of acidic and basic trifluoromethylheterocycles to act as pH sensors, through change of 19F chemical shift with state of ionisation, has been studied.

Intracellular pH is currently estimated (i) by microelectrodes, (ii) by pH-sensitive fluorescent compounds, (iii) by 31P NMR of endogenous "inorganic" phosphate. The 19F nucleus has many NMR properties which are particularly suitable for biological NMR studies. It has nuclear spin \(I = \frac{1}{2} \) and high sensitivity (0.833 \(\times \) 1H; 12.6 \(\times \) 31P). Fluorine chemical shifts are very sensitive to changes in its environment and it has a wide chemical shift range (0-960 ppm), allowing fluorinated compounds to be clearly recognised in spite of the line-broadening which is associated with biological studies.

Several series of trifluoromethylheterocycles have been synthesised, including 3,5-bis(trifluoromethyl)pyrazoles, \(\omega \)-(trifluoromethyl)pyrazolyl- and \(\omega \)-(trifluoromethyl-1,2,4-triazolyl)-alkanols, 2-(trifluoromethyl)benzimidazoles, 2-(trifluoromethyl)imidazopyridines and a 5-(trifluoromethyl)oxazole. Several synthetic routes towards 4-substituted 3,5-bis(trifluoromethyl)pyrazoles were investigated but none were successful. Studies of the condensation reactions of 1,1,1,5,5,5-hexafluoropentane-2,4-dione with aryl- and acylhydrazines have lead to revision of published structures of the products.

Measurements of 19F chemical shift against pH in aqueous solution have been made to establish the pK_a values of the acid-base equilibria for the above compounds and other trifluoromethylheterocycles. Two pyrazoles and two imidazopyridines have pK_a close to physiological pH; ionisation causes a change in 19F chemical shift of up to 2.0 ppm.
ACKNOWLEDGEMENTS

I would like to thank Dr Mike Threadgill, Dr Sarah Branch and Dr Andrew Thompson for their continuous support and encouragement.

Thanks are also due to Mr David Wood and Mr Harry Hartell for provision of NMR spectra and for helpful advice regarding 19F NMR, and to Mr Chris Cryer (Bath) and Dr J. A. Ballantine (Swansea) for the mass spectral data. I would also like to thank Derry Wilman (CRC Centre for Cancer Therapeutics, Sutton) for his assistance with 19F NOE experiments and Professor S. P. Singh (India) for helpful discussion and for supplying 3-(pyridin-4-yl)-5-(trifluoromethyl)pyrazole.

I wish to thank the postgrads and postdocs of labs 3.5 / 3.7 for their friendship and for sharing both chemical knowledge and chemicals.

I also acknowledge the financial support from EPSRC.

Finally, I wish to thank Julie.
CONTENTS

Abstract i
Acknowledgements ii
Contents iii
Lists of Figures, Schemes and Tables vi
Abbreviations xiii

Chapter 1 The Study of Intracellular pH 1

Chapter 2 The Regulation of Intracellular pH in Cells 11
2.1 Buffering of pH 11
2.2 The Sodium / Proton Antiporter 12
2.3 Bicarbonate Transport System 16
2.3.1 Introduction 16
2.3.2 The Sodium-Dependent Bicarbonate / Chloride Ion Antiporter 17
2.2.3 The Sodium-Independent Bicarbonate / Chloride Ion Antiporter 18
2.4.4 The Bicarbonate / Chloride Ion Symporter 19
2.2.5 Inhibition of Bicarbonate / Chloride Ion exchange 19
2.4 Proton pumps 20
2.5 Proton Channels 20

Chapter 3 Measurement of pH in Biological Systems 22
3.1 Measurement of Homogenates 22
3.2 Radiolabelled Weak Acids / Bases 22
3.3 Positron Emission Tomography of Weak Acids 24
3.4 Luminescence 24
3.4.1 Fluorescent Weak Acids / Bases 25
3.4.2 pH-Dependent Fluorescence Absorption / Excitation Spectra 25
3.4.3 Proton-Controlled "on-off" Switching of Fluorescence 28
3.5 Colourimetry, Using pH-Sensitive Dyes 31
3.6 Microelectrodes 32
3.7 Electron Paramagnetic Resonance 33
3.8 Nuclear Magnetic Resonance 34
3.8.1 Introduction 34
3.8.2 31P NMR 34
3.8.3 1H NMR 38
3.8.4 15N NMR 40
3.8.5 19F NMR 40

Chapter 4 Aims of the Study 51

Chapter 5 Pyrazoles 54
5.1 3,5-Bis(trifluoromethyl)pyrazole and Related Compounds 54
5.1.1 3,5-Bis(trifluoromethyl)pyrazole 54
5.1.2 Alkylation of 3,5-Bis(trifluoromethyl)pyrazole 56
5.1.3 Alkylation of 1,1,1,5,5,5-Hexafluoropentane-2,4-dione 59
5.1.4 Alternative Disconnections Towards the Synthesis of 3-Substituted Derivatives of 1,1,1,5,5,5-Hexafluoropentane-2,4-dione 59

5.1.4.1 Trifluoroacetylation of Trifluoromethyl Enol Ethers 60
5.1.4.2 Trifluoroacetylation of Trifluoromethyl Ketones 69
5.1.4.3 Reduction of β-(Trifluoroacetyl)vinyl Ethers 82
5.1.4.4 Synthesis of 3-(Dimethylaminomethylene)-1,1,1,5,5,5-hexafluoro-2,4-dione and Related Compounds 88
5.1.5 The Reaction of 1,1,1,5,5,5-Hexafluoropentane-2,4-
dione with Substituted Hydrazines

5.2 Trifluoromethylpyrazoles 102
5.2.1 4-Alkyl-3(5)-Trifluoromethylpyrazoles 102
5.2.2 3-Alkyl-5-Trifluoromethylpyrazoles 105

Chapter 6 2-(Trifluoromethyl)benzimidazoles and 2-
(Trifluoromethyl)imidazopyridines

Chapter 7 Triazoles, Imidazoles and Pyrroles 111
7.1 Triazoles 111
7.2 Imidazoles 115
7.3 Pyrroles 120
7.3.1 Transition Metal-Induced Transformations of 5,6-
Dihydro-4H-1,2-Oxazines and the Synthesis of 2-
Trifluoromethylpyrroles 120
7.3.2 Synthesis of 3-Alkyl-2,5-Bis(trifluoromethyl)pyrroles 126

Chapter 8 pH Studies 130
8.1 Introduction 130
8.2 Pyrazoles 130
8.3 Benzimidazoles and Imidazopyridines 136
8.4 Pyridines 139
8.5 Triazoles 141

Conclusion 143
Experimental 145
References 201
Appendix 212
LIST OF FIGURES, SCHEMES AND TABLES

Figures

Figure 1 Equilibrium of bicarbonate and carbonic acid in the blood plasma. Page 11
Figure 2 Carbonic anhydrase catalysed equilibrium of carbonic acid with carbon dioxide in blood plasma. Page 11
Figure 3 A schematic representation of the sodium / proton antiporter. Page 13
Figure 4 Structures of amiloride and ethylisopropylamiloride. Page 14
Figure 5 The pH\textsubscript{i} dependence of the activity of the sodium / proton antiporter. Page 15
Figure 6 A schematic representation of the sodium-dependent bicarbonate / chloride ion antiporter. Page 18
Figure 7 A schematic representation of the sodium-independent bicarbonate / chloride ion antiporter. Page 19
Figure 8 Structure of R(+)\textendash\{(5,6-dichloro-2,3\textsubscript{i},9,9α-tetrahydro-3-oxo-9α-propyl-1H-fluoren-7-yloxy)acetic acid (B-3(+)). Page 20
Figure 9 Structures of quin 2 and quene 1. Page 25
Figure 10 Fluorescence quantum yield vs pH. Page 28
Figure 11 Structures of aminomethyltetraphenylporphyrin-tin(iv) derivatives. Page 29
Figure 12 Structures of aminomethylbipyridyl-ruthenium(ii) complexes. Page 30
Figure 13 Structure of \textit{p-tert-}butylcalix[4]arenec-linked ruthenium(ii) trisbipyridyl complexess. Page 31
Figure 14 Structure of Neutral Red. Page 32
Figure 15 Structures of aldonitrane and related compounds. Page 34
Figure 16 The phosphate buffer system. Page 35
Figure 17 N-Substituted derivatives of imidazole and their corresponding pKₐ values. Page 39
Figure 18 Structures of Ro 07-0741 and CCI-103F. Page 41
Figure 19 Structure of difluoro-derivatives of 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Page 42
Figure 20 Structures of fluorinated derivatives of the chelator o-aminophenol-N,N,O-triacetic acid. Page 43
Figure 21 Structure of the 4-chlorophenyl ester of 2-amino-4,4-difluoro-3-methylbutanoic acid. Page 45
Figure 22 Structures of 4-fluoroaniline derivatives. Page 46
Figure 23 Structure of 6-FPOL. Page 47
Figure 24 Structure of 3-(N-(4-fluoro-2-trifluoromethylphenyl)-sulphamoyl)propanoic acid. Page 48
Figure 25 Structure of 1-fluoro-2,6-bis(methylene-imidoacetate)benzene. Page 49
Figure 26 ¹H NMR spectra of dione (62) at 20.5°C (A), 100°C (B) and 150°C Page 93
Figure 27 ¹⁹F NMR spectra of dione (62) at 20.6°C (A), -50.1°C (B) and -90.2°C. Page 94
Figure 28 ¹H-¹H COSY and NOESY correlations of alkenyloxazole (115). Page 117
Figure 29 H-F NOE correlations of alkenyloxazole (115). Page 118
Figure 30 ¹⁹F chemical shift (ppm) of 3,5-bis(trifluoro-methyl)-pyrazole (2) vs pH. Page 132
Figure 31 ¹⁹F chemical shift (ppm) of 3-(trifluoro-methyl)pyrazole-4-propanol (80) vs pH. Page 134
Figure 32 19F chemical shift (ppm) of 2-(3-trifluoromethylpyrazol-4-yl)ethanol (84) vs pH.

Figure 33 19F chemical shift (ppm) of 2-(5-trifluoromethylpyrazol-3-yl)ethanol (92) vs pH.

Figure 34 19F chemical shift (ppm) of pyrazoles (80, 84, 92) vs pH.

Figure 35 19F chemical shift (ppm) of 3-(pyridin-4-yl)-5-(trifluoromethyl)pyrazole vs pH.

Figure 36 19F chemical shift (ppm) of 2-(trifluoromethyl)imidazo-[4,5-b]pyridine (96) vs pH.

Figure 37 19F chemical shift (ppm) of 2-(trifluoromethyl)imidazo-[4,5-c]pyridine (97) vs pH.

Figure 38 19F chemical shift (ppm) of 3-(trifluoromethyl)pyridine vs pH.

Figure 39 19F chemical shift (ppm) of 3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (108) vs pH.

Schemes

Scheme 1 Page 54
Scheme 2 Page 55
Scheme 3 Page 57
Scheme 4 Page 57
Scheme 5 Page 58
Scheme 6 Page 58
Scheme 7 Page 59
Scheme 8 Page 60
Scheme 9 Page 60
Scheme 10 Page 61
Scheme 11 Page 61
Scheme 12 Page 62
Scheme 13 Page 63
Scheme 14 Page 64
Scheme 15 Page 65
Scheme 16 Page 66
Scheme 17 Page 67
Scheme 18 Page 67
Scheme 19 Page 68
Scheme 20 Page 68
Scheme 21 Page 69
Scheme 22 Page 69
Scheme 23 Page 70
Scheme 24 Page 71
Scheme 25 Page 71
Scheme 26 Page 72
Scheme 27 Page 73
Scheme 28 Page 74
Scheme 29 Page 75
Scheme 30 Page 75
Scheme 31 Page 76
Scheme 32 Page 77
Scheme 33 Page 78
Scheme 34 Page 79
Scheme 35 Page 80
Scheme 36 Page 80
Scheme 37 Page 81
Scheme 38 Page 81
Scheme 39 Page 82
Scheme 40 Page 83
Scheme 41 Page 84
Tables

Table 1

Table 2

Table 3

Table 4 pKₐ values of pyrazoles (entries (a-d) are from a report by Elguero et al.110 and entries (e-l) are from a report by Habracken et al.185).

Table 5 pKₐ values of benzimidazoles (entries (a-c) are from a report by Weast186 and entry (d) is from a report by Elguero et al.158).

Table 6 Reported186 pKₐ values of pyridines.

Table 7 Summary of pKₐ values.

Table 8 Data for 3,5-bis(trifluoromethyl)pyrazole (2).

Table 9 Data for 3-(trifluoromethyl)pyrazole-4-propanol (80).

Table 10 Data for 2-(3-trifluoromethylpyrazol-4-yl)ethanol (83).
Table 11 Data for 2-(5-trifluoromethylpyrazol-3-yl)ethanol (91).
Table 12 Data for 3-(pyridin-4-yl)-5-(trifluoromethyl)-pyrazole.
Table 13 Data for 2-(trifluoromethyl)imidazo[4,5-b]pyridine (95).
Table 14 Data for 2-(trifluoromethyl)imidazo[4,5-c]pyridine (96).
Table 15 Data for 3-(trifluoromethyl)pyridine.
Table 16 Data for 3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (107).
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-AA</td>
<td>9-aminoacridine</td>
</tr>
<tr>
<td>APTRA</td>
<td>o-aminophenol-N,N,O-triacetic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BCECF</td>
<td>2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein</td>
</tr>
<tr>
<td>BCECF-AM</td>
<td>acetoxymethyl ester of 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein</td>
</tr>
<tr>
<td>CI</td>
<td>chemical-ionisation</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMO</td>
<td>5,5-dimethylloxazolidine-2,4-dione</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EI</td>
<td>electron-impact</td>
</tr>
<tr>
<td>EIPA</td>
<td>ethylisopropylamiloride</td>
</tr>
<tr>
<td>EPR</td>
<td>electroparamagnetic resonance</td>
</tr>
<tr>
<td>ether</td>
<td>diethyl ether</td>
</tr>
<tr>
<td>ETOB</td>
<td>ethyl 4,4,4-trifluoro-3-oxobutanoate</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>n-FBAPTA</td>
<td>1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid</td>
</tr>
<tr>
<td>6-FPOL</td>
<td>6-fluoropyridoxol</td>
</tr>
<tr>
<td>FRIM</td>
<td>fluorescence ratio imaging microscopy</td>
</tr>
<tr>
<td>3-FSA</td>
<td>3-fluorosalicylaldehyde</td>
</tr>
<tr>
<td>HMDS</td>
<td>hexamethyldisilazane</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoramide</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>lithium hexamethyldisilazide</td>
</tr>
<tr>
<td>MDR</td>
<td>multidrug resistance</td>
</tr>
<tr>
<td>MEM</td>
<td>2-methoxyethoxymethyl</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MEMCl</td>
<td>2-methoxyethoxymethyl chloride</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrum</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhauser enhancement</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear Overhauser enhancement spectroscopy</td>
</tr>
<tr>
<td>PCr</td>
<td>phosphocreatine</td>
</tr>
<tr>
<td>PDE</td>
<td>phosphodiester</td>
</tr>
<tr>
<td>pH_e</td>
<td>extracellular pH</td>
</tr>
<tr>
<td>pH_i</td>
<td>intracellular pH</td>
</tr>
<tr>
<td>P_i</td>
<td>inorganic phosphate</td>
</tr>
<tr>
<td>PIET</td>
<td>photoinduced electron transfer</td>
</tr>
<tr>
<td>PME</td>
<td>phosphomonoester</td>
</tr>
<tr>
<td>PPA</td>
<td>phenylphosphonic acid</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PTSA</td>
<td>p-toluene sulphonic acid</td>
</tr>
<tr>
<td>quene 1</td>
<td>8-[bis(ethoxycarbonylmethyl)amino]-6-methoxy-2-[trans-2-[bis(ethoxycarbonylmethyl)amino]styryl]quinoline</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SNARF-1</td>
<td>carboxy seminaphthorhodafluor-1</td>
</tr>
<tr>
<td>SNR</td>
<td>signal to noise ratio</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyldiphenylsilyl</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TFAA</td>
<td>trifluoroacetic anhydride</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>tlc</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TMSCl</td>
<td>trimethylsilyl chloride</td>
</tr>
<tr>
<td>TMSO</td>
<td>trimethylsiloxy</td>
</tr>
</tbody>
</table>
CHAPTER ONE

Almost exactly 110 years ago T. H. Huxley, in his anniversary address as President of the Royal Society, said "What an enormous revolution would be made in biology, if physics or chemistry could supply the physiologist with a means of making out the molecular structure of living tissues comparable to that which the spectroscope affords to the inquirer into the nature of the heavenly bodies". By the discovery of nuclear magnetic resonance (NMR), physics has provided the basic method and chemistry has provided the extensive background for exploration in biological systems.

The opening chapter of this report describes research areas where the measurement of intracellular pH (pH_i) has become important. Chapter Two is concerned with the mechanisms of pH_i regulation thought to be used by a cell. Chapter Three discusses the methods currently available for the determination of pH_i. Chapter Four describes the design requirements of a ^{19}F NMR sensor of pH_i and discusses the aims of the project. Chapters Five, Six and Seven discuss the design and synthesis of some fluorine containing compounds. Chapter Eight describes the method of evaluating the potential of the fluorine containing heterocycles to act as sensors of pH and reports the results of these tests.

1. The Study of Intracellular pH.

In clinical practice today, there is much information about suspected lesions available which is gained from imaging methods. However, for differential diagnosis it is important to have functional or physiological information. The pH_i and extracellular pH (pH_e) of the tissue are two interesting parameters in this regard.
Myocardial ischaemia commonly arises from a partial restriction of coronary blood flow. This results in both a decrease in the supply of oxygen to the tissues and a reduction in the removal of metabolites, such as lactic acid. Depending on the severity of the restriction of coronary blood flow, the pH\textsubscript{i} has been reported2,3 to drop from the normal value of around 7.24 to values as low as 6.0 to 6.2 or even 5.7, while pH\textsubscript{e} was somewhat higher. Similar reductions in pH\textsubscript{i} have been reported5,6 in cases of cerebral ischaemia.

NMR information about ischaemic tissues regarding the levels of biogenetic metabolites shows a decrease in phosphocreatine and nucleoside triphosphate and a corresponding increase in inorganic phosphate7. These changes often resemble those observed during the untreated growth of experimental tumours. Over 60 years ago, studies of glucose consumption in tumour slices incubated aerobically showed a high rate of lactic acid production8. Some normal tissues, for example exercising muscle, also produce large amounts of lactic acid which is rapidly removed. However, in the case of tumours with poorly organised vasculature, there is inadequate elimination of protons from the interstitial space9,10. This copious production of lactic acid was for many years thought to result in a decrease in the pH\textsubscript{i}. It has been confirmed12,13,14,15,16 that the pH\textsubscript{i} (pH = 7.2 - 7.7) of several rodent tumours is higher than that of the pH\textsubscript{e} (pH = 5.9 - 7.4). This is in contrast to normal tissues in which the pH\textsubscript{i} (pH = 7.0 - 7.4) is lower than the pH\textsubscript{e} (pH = 7.3 - 7.8). That is, the proton gradient is reversed and is invariably12 a major difference between tumour and normal tissue.

It appears that tumour cells are able to regulate their pH\textsubscript{i} under the acidic conditions encountered interstitially within solid tumours. There are three major mechanisms which allow cells to regulate their pH\textsubscript{i} under acidic conditions (these mechanisms are discussed in more detail later): (i) The buffering capacity of the cytosolic and organellar contents; (ii) the sodium / proton exchanger; (iii) the sodium-dependent chloride ion / bicarbonate
exchanger. In cells surrounded by an acidic environment in which the concentration of bicarbonate is reduced, the role of the sodium / proton exchanger may be particularly important in controlling pH \(\text{pH}_t \). Agents that inhibit the operation of this exchanger show considerable potential for causing pH-dependent cytotoxicity, selectively killing cells in the acidic regions of solid tumours. Rational development of these agents requires greater understanding of tumour pH and its regulation.

Tissue oxygenation is also a major factor in the sensitivity of many non-surgical treatments of malignancies. Hypoxic cells are relatively resistant to radiotherapy and certain types of chemotherapy. In the mechanism of radiotherapy, oxygen is thought to play an important role in the production of cytotoxic DNA species \(17 \). Tissue oxygenation depends principally on the oxygen availability and the respiration rate of cells. When the percentage oxygen saturation of the blood is plotted against the partial pressure of blood, the curve obtained is called the oxygen dissociation curve. Release of oxygen into the tissues is mostly dependent on the shape of this curve, which can be shifted through changes in pH. Other forms of chemotherapy have been able to exploit hypoxia in tumours, for example the bioreductively activated 2-nitroimidazole drugs \(18, 19 \). There can, therefore, be an advantage in selectively increasing the level of hypoxia in tumours \(20 \). There are various measures which can be taken to increase the level of hypoxia in tumours. These include the administration of a vasodilator such as hydralazine, a drug which binds to oxyhaemoglobin and shifts the dissociation curve to the left.

Data on parameters such as pH in tumours have mostly been derived from rodent tumours. This may not adequately represent the multitude of neoplastic tumours encountered in humans \(13 \). Also the data available on human tumours are sparse and often contain significant errors associated with the techniques currently used for measurement \(13 \).
In many NMR studies on small rodents, a factor affecting experimental results is stress. It has been demonstrated quantitatively21 that the stress of alignment of the rodent within a vertical magnet is superimposed on the stress of hypoxia. This parameter was rarely addressed in early studies and one should, therefore, be cautious about interpretations of NMR data obtained from such experiments because of potential complications.

Problems encountered in the literature are often a consequence of the difficulties in the accurate measurement of pH. It is possible that tumour pH may be a characteristic property of tumour lines rather than individual lesions. Larger tumours may achieve more acid pH values than smaller, better vasculated tumours. Some may maintain a higher glycolytic rate than others under hypoxic conditions, thus leading to the production of more lactic acid17,22.

Spontaneous cell death has been observed within regions of solid tumours23. The deficiency of nutrients and acidic conditions may contribute to this cell death and necrosis24. However, as already discussed, many cells are known to survive these conditions and are an important cause for the failure of conventional therapies. Acidity may be a factor that could be exploited therapeutically to destroy such cells.

It is now an established fact that an acidic environment greatly increases the thermosensitivity of tissue, inhibits the recovery of tissue from thermal damage and perhaps inhibits the development of thermotolerance24,25,26,27. Response to hyperthermia appears to be a function of pH\textsubscript{r} rather than pH\textsubscript{e}28. Thus an increase in the thermosensitivity of tumour cells may be achieved by lowering pH\textsubscript{r}. The inhibition of the sodium / proton antiporter has already been mentioned briefly and hyperthermia represents a further exploitation.

Potent and specific inhibitors of sodium / proton exchange have been developed28. Using such compounds, it has been demonstrated that blocking
extrusion of protons from cells produces a lowering of the pH, and an increase in thermosensitisation. Importantly, this increase in thermosensitisation was found to be greater in an acidic environment than in a neutral environment. This suggests that the acidic pH of tumours may be exploited to increase preferentially the thermal damage in tumours relative to normal tissue.

The use of agents which cause acute acidification of cells in the presence of a low pH reduces the development of thermotolerance. Without these agents, heat treatment would be expected to be selectively toxic only to cells which have become acutely acidic within solid tumours. The mechanisms by which heat treatment kills cells is not fully understood, although increased fluidity in cell membranes and protein denaturation are believed to play a primary role.

Further, heat treatment leads to rapid fall in pH in many solid tumours. This effect appears to be the due to vasoconstriction and coagulation necrosis which results in a marked decrease in blood flow and thus further reduces the accumulation of metabolites.

Any improvements to be made on the selectivity of anti-cancer drugs must be based on differences distinguishing tumours cells from normal tissue. Many of these differences can be detected by the studying the interaction of a drug with its active site. Measurements of the pH of tumours have allowed greater understanding of the activity or lack of activity of many drugs. For example, the mechanism underlying the cytotoxicity of 5-fluorouracil is controversial. 5-Fluorouracil and its derivatives are known to be incorporated into DNA. However their adopted geometry when bound to guanine is pH-dependent and is the basis of much of this controversy. Determination of the physiological pH was vital for the binding studies which highlighted a discrepancy in results.

Anti-cancer drugs must be transported into the cells either by active transport or by passive diffusion and frequently undergo intracellular metabolism. Since
all these processes are dependent on the pH$_i$, the cytotoxicity of the drugs will also be dependent on the pH$_i$ and pHe. If a drug contains either acidic or basic functionalities and its uptake mechanism is passive diffusion, then transport will be enhanced by values of pHe that favour the non-ionised form of that compound.

During chemotherapy, tumour cells often lose their sensitivity to drugs. This is often due to an acquired multidrug resistance (MDR) and can occur over a broad range of drug classes and targets. MDR is often, but not always, associated with increased expression of the MDR protein or P-glycoprotein31,32,33. The most widely accepted hypothesis for the mode of action of MDR suggests that the protein actively expels drugs out of the cell. Also supported33 is the idea that the MDR protein can change the pH$_i$, thus altering the transmembrane partitioning or intracellular sequestration of drugs. Further studies to address this hypothesis will be helped by the accurate determination of the pH$_i$ of cells experiencing MDR relative to both non-MDR tumour cells and normal cells.

The measurement of pH$_i$ may provide valuable information on the metabolic state of a tissue and could assist in elucidating the chronology and extent of the effects observed following treatment of malignancies34. The absolute determination of pH$_i$ may be a significant marker of response to therapy35. Furthermore, pH$_i$ may give indirect information about the metabolic state of a tissue. An alkaline shift in pH$_i$ following treatment is coincident with increased blood flow and an increased cell proliferation rate36. It is likely that this improved blood flow to the tumour results in an increased lactic acid clearance17. An alkaline shift in tumour pH could also be the result of a decreased lactic acid production, indicating an improved oxygenation of the tissue.
It has also been observed that the pH$_i$ is positively correlated with the ratio of phosphocreatine to inorganic phosphate. That is, changes in pH$_i$ may be indicative of changes in metabolism of phosphate. However, in contrast to the detection of phosphate metabolites, changes in pH$_i$ have been detected at lower drug doses36. Using non-invasive methods, it should be possible to monitor tumour response to therapy following a low, relatively non-toxic "test-dose" of chemotherapy17. This would allow patients to avoid the systemic toxicities associated with a full course of therapy and would aid the clinician in selecting treatment protocols for the cancer patient37,38. However, it is important to consider the possibility of drug resistance being acquired by the cells.

The intracellular acidosis which has been reported2,3 during ischaemia of the heart muscle has already been mentioned. The effect of pH on contractile elements is of interest for studies of the other muscles in the human body. Measurement of pH$_i$ during and following periods of muscle exercise provides information about the health of the muscle5,39. Muscle contraction can occur under aerobic and / or anaerobic conditions. Even among healthy individuals, there will be large variations in the way they respond metabolically to the same work. Although there is diversity in normal individuals, there are still criteria available by which to identify disease conditions. A decrease in pH$_i$ is observed during dynamic exercise. This occurrence does not depend on the individual muscle or the type of exercise performed. The metabolic switch from aerobic to anaerobic energy supply is invariant and can be used to define normal response39. Additionally, the rate of recovery from this temporary acidosis following exercise provides characteristic indices for healthy muscle. Studies of pH$_i$ provide biochemical information about known muscle diseases and help to elucidate and characterise new diseases. Extensive studies on animals have aided this research and have allowed the design of models for human disease39.
pH\textsubscript{i} is an important factor in cellular homeostasis. Many cellular processes, such as enzyme activity, ion channel conductivities, membrane permeability and cell growth and development are sensitive to changes in pH\textsubscript{i}10,14,40,41.

The activities of a large number of enzymes, including those used in cellular metabolism, are pH\textsubscript{i}-sensitive. A popular example is phosphofructokinase, the rate-limiting enzyme of glycolysis40,42. It is commonly known that insulin is responsible for the stimulation of this enzyme. It does so by interacting with the sodium/proton antiporter in the plasma membrane, resulting in a rise in pH\textsubscript{i} which activates the enzyme40. The production of urea by hepatocytes is also pH\textsubscript{i}-dependent, although somewhat less so than the synthesis of glucose. Both of these processes are inhibited by intracellular acidification which would have important physiological consequences to the body43. It should be noted that, although insulin resulted in an increase in pH\textsubscript{i} under these conditions, this response is not general for all cell types. In fact, the observed response to the administration of insulin into skeletal muscle was a slight decrease in pH\textsubscript{i}44.

In addition to the effects of pH\textsubscript{i} on the permeability of a drug through a cell membrane discussed earlier, the conductivities of many ion-channels are also pH\textsubscript{i}-dependent. Interesting examples are the potassium channels in many excitable cells. A reduction of pH\textsubscript{i} in these cells blocks the potassium ion conductance and depolarises the membrane producing an action potential. pH\textsubscript{i}-sensitive potassium channels have been found in crayfish slow muscle fibres and in the squid giant axon40.

Changes in pH\textsubscript{i} have been shown to be important in cell growth and development10,14,41. Quiescent or dormant cells can be stimulated to reinitiate DNA synthesis and cell division by the addition of certain growth factors45,46,47,48. The effect of insulin on the sodium/proton antiporter in the stimulation of glycolysis in certain cell types has already been discussed. Insulin is known to act synergistically with many growth factors. It is not surprising,
therefore, to find that the stimulation of cells by growth factors is accompanied by a rise in pH, which is blocked by amiloride, an inhibitor of the sodium / proton antiporter.

The suggestion that the activation of the sodium / proton antiporter and the resulting elevation of pH may play a role in the stimulation of cell proliferation originated from the pioneering work of Johnson et al. on sea urchin eggs. It was discovered that fertilisation by sperm causes a rapid increase in the concentration of free cytoplasmic Ca²⁺, followed by a sustained increase in pH. Interestingly, the stimulation of respiration and motility in the sperm of the sea urchin also appears to be associated with a rise in pH. Conversely, at decreased pH, sperm respiration and motility are inhibited. In fact, intracellular alkalisation has been associated with the activation of the cell cycle in a wide range of organisms. This spans from the initiation of cell differentiation in slime mould to the mitogenic-stimulation of mouse quiescent fibroblasts. There is increasing reason to believe that research into the role of pH in the lower organisms may have an important significance to studies of cell proliferation in higher animals. A greater understanding of the involvement of the sodium / proton antiporter and pH in the initiation of cell growth and proliferation may be important in the study of tumour growth. Human tumour cells lacking the sodium / proton antiporter have lost or severely reduced their ability to grow tumours. The importance of these mechanisms in the design of anti-cancer agents once again becomes apparent.

Estimations of pH generally represent the pH of the cytoplasm. Also of interest is the estimation of the pH in subcellular compartments, which has been shown to be feasible. This may be carried out using ¹⁵N NMR of amino acids but experiments with ³¹P NMR have also identified two intracellular components with pH's of 7.1 - 7.3 and ≥6.0 which probably represent cytoplasm and vacuole, respectively. Both of these experiments have provided evidence for the intracellular localisation of various amino acids in acidic
organelles. In addition, the acidity of the vacuole relative to the cytoplasm is consistent with its lysosomal nature and the acidic pH optima of many enzymes associated with these organelles52.

There have been indications that exposure to sunlight may lead to an improvement of acne53. To investigate the possible reasons for the beneficial effect of sunlight, photobiological studies have been carried out on the bacterium held responsible for this skin disease53. Results indicate that exposure to near-uv light causes membrane damage, notably to the proton gradient generating system. Further investigations of the possible uv-induced effects on pH\textsubscript{i} would be of interest and are currently in progress53.

Described above, is a brief account of the research areas where pH\textsubscript{i} has become an important consideration. There is clearly a need for an accurate, non-invasive technique for the measurement of pH\textsubscript{i} in biological systems.
CHAPTER TWO

2. The Regulation of Intracellular pH in Cells.

2.1 Buffering of pH.

It was once believed that the pH\textsubscript{i} of mammalian cells depended only on the pH\textsubscript{e} and the membrane potential54. In this belief, it was assumed that protons, hydroxy ions and bicarbonate ions were passively distributed across the cell membrane. We now know this to be wrong. In reality, the level of pH\textsubscript{i} in mammalian cells is regulated within a narrow range that is compatible with cellular functions.

Normal plasma of the blood has a pH of 7.4 and is maintained under limits ±0.04-0.05 pH units55. In fact, the concentration of protons is regulated within narrower limits than that of any other electrolyte in the blood. The pH is regulated by the bicarbonate-carbon dioxide buffer system and is defended by the ratio of the dominant acid-base pair in the blood, bicarbonate : carbonic acid, as shown in Figure 1.

\[\text{H}^+ + \text{HCO}_3^- \rightleftharpoons \text{H}_2\text{CO}_3 \]

Figure 1. Equilibrium of bicarbonate and carbonic acid in the blood plasma.

Carbonic acid is, in turn, in equilibrium with carbon dioxide, in a process catalysed by the enzyme carbonic anhydrase, as shown in Figure 2.

\[\text{H}^+ + \text{HCO}_3^- \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{CO}_2 + \text{H}_2\text{O} \]

Figure 2. Carbonic anhydrase catalysed equilibrium of carbonic acid with carbon dioxide in blood plasma.

This relationship can be summarised by the Henderson equation (Equation 1).
where,

\[
[H^+] = \frac{K(\alpha P_{co_2})}{[HCO_3^-]}
\]

where, \(\alpha\) = solubility coefficient of CO₂
K = carbonic acid dissociation constant

Equation 1

More familiar is the negative logarithmic transformation of this equation to the Henderson-Hasselbalch equation (Equation 2) with the appropriate numeric equivalents of K and \(\alpha\).

\[
\text{pH} = 6.1 + \log \frac{[HCO_3^-]}{0.03P_{co_2}}
\]

Equation 2

In practical terms, the kidneys regulate the concentration of bicarbonate, while the lungs sensitively control the carbon dioxide tension (P_{co_2}).

The values of pHi commonly observed fall between the range 7.0-7.4, which is higher than would be expected if protons were passively distributed across the cell membrane. For a typical membrane potential of -59 mV, pHi should be 6.4. This value for pH is far too low for normal cellular function, clearly showing that protons are actively extruded from the cell.

An elaborate array of buffers are known to exist in the cell, principally haemoglobin, other proteins and dibasic phosphate (HPO_4^{2-}). The combined buffering capacity of cells has been determined to be between 10 and 50 mM per pH unit, depending on the cell type. However, buffering alone cannot account for the well maintained pH observed. There have been four membrane-bound ion-transport mechanisms reported to play a role in the regulation of pH.

2.2 The Sodium / Proton Antiporter.

The sodium / proton antiporter is ubiquitous in mammalian cells and is the
most widely studied membrane mechanism that is involved in the regulation of pH. The importance of this antiporter has already been stressed in the preceding chapter and it is clearly worthy of explanation in some detail. It is responsible for the reversible and electroneutral exchange of sodium ions (or lithium) for protons. Under physiological conditions, where protons are formed continuously intracellularly during metabolism, the antiporter operates to export protons from the cell, as illustrated in Figure 3.

![Figure 3. A schematic representation of the sodium / proton antiporter.](image)

The driving force for the extrusion of protons from the cell is produced by a large sodium ion gradient. This gradient is maintained by the extrusion of sodium ions back out of the cell by the sodium / potassium-ATPase. This can be demonstrated by the inhibition of the ATPase with ouabain, which eventually leads to a shut down of the antiporter. Much of the work carried out on the sodium / proton antiporter has been helped by highly potent inhibitors, such as ethylisopropylamiloride, which are derived from the diuretic drug, amiloride, as shown in Figure 4.
Amiloride and EIPA inhibit by competitively binding to the extracellular site which accommodates sodium ions.

The activity of the antiporter is known to be dependent on the external concentrations of both sodium ions and protons. If the external concentration of sodium ions or protons is increased, the rate of sodium / proton exchange increases. There have been various binding sites proposed for these cations, including a shared site in the kidney brush border membranes and distinct binding sites in many non-renal cells.

The influence of pH_i on the activity of the antiporter has been extensively studied. However, the interactions of internal sodium ions with the antiporter have received less attention. The activity of the antiporter may be measured as sodium ion influx or proton efflux, and ranges from maximum activity at acid pH_i values to no activity at pH_i values >7.5. This activity profile is characteristic of the sodium / proton antiporter and, therefore, its main function is to prevent intracellular acidification.

The shape of this pH_i-dependent activity profile varies between cell types. Figure 5 shows two extreme cases between which most other cell types lie. From the shape of the curve it is possible to predict that in the heart, a small variation in pH_i would result in a large change in sodium / proton antiporter
activity. This suggests that the cardiac cells are very sensitive to pH_i, relative to renal cells.

![Graph showing pH$_i$ dependence of the activity of the sodium/proton antiporter](image)

Figure 5. The pH$_i$ dependence of the activity of the sodium/proton antiporter (redrawn from a report by Frelin *et al.*).

Many suggestions have been made for the way in which the sodium/proton antiporter is regulated. The effects of some hormones and growth factors have already been mentioned. However, it should be noted that all of these observations were carried out in the absence of bicarbonate/chloride ion exchange. In mutant cells which lack sodium/proton antiporters this alkalisation does not occur and cells do not proliferate without artificial elevation of pH$_i$. In the presence of bicarbonate/chloride ion exchange growth factors fail to raise pH$_i$ in many cell types. The mode of action of these growth factors in the regulation of pH$_i$ is therefore complex and probably involves the stimulation of three acid-base transporters. The list of effectors of sodium/proton exchange is very long and varied. There have also been
proposed various mechanisms to achieve the activation of the antiporter, which can act simultaneously in the same cell60. Of the many activation pathways proposed, the three most widely accepted are:

(i) The C kinase pathway.
This is thought to account for the effect of many mitogens. The binding of the effector to specific membrane receptors activates phospholipase C via a pertussis-toxin-sensitive G protein. Inositol phospholipids are hydrolysed to release diacylglycerol which activates protein kinase C. This then may phosphorylate the antiporter protein56. The result is a shift of the pH\textsubscript{i}-activity profile to the right, leading to an increased activity of the sodium / proton antiporter in the alkaline range and thus a reduction in pH\textsubscript{i}.

(ii) The calcium-dependent pathway.
It has been observed in some cells, that an increase in intracellular concentration of calcium activates the sodium / proton antiporter. It has been suggested that a calcium-calmodulin protein kinase could mediate the calcium ion effect, although many other mechanisms involving calcium ions have been proposed56.

(iii) cAMP-dependent regulation.
Increased levels of cAMP lead to a decrease in the activity of the sodium / proton antiporter. The inhibitory effect is produced by a shift in the pH\textsubscript{i}-activity profile to the left. That is, an inverse of the mechanism of C kinase activation56.

2.3 Bicarbonate Transport Systems

2.3.1 Introduction

Anion exchange is also essential for the regulation of pH\textsubscript{i} and, at levels of pH\textsubscript{i} close to neutrality, may be more active than the sodium / proton antiporter in
some cell lines61. The understanding of the role of bicarbonate transport systems in the regulation of pH\textsubscript{i} is less advanced than that of the sodium / proton antiporter. This is because (i) there are several transport systems involved, (ii) until recently, there were no selective potent inhibitors of these systems available, and (iii) bicarbonate equilibrates with carbon dioxide which is volatile and is also able to modify pH\textsubscript{i}. Three major bicarbonate-dependent mechanisms of regulating pH\textsubscript{i} have been suggested. Not all of these systems are present in all cell types and the significance of each combination is not fully understood. They all appear to be under hormonal control, similar to mechanisms described for the sodium / proton antiporter62,63,64.

2.3.2 The Sodium-Dependent Bicarbonate / Chloride Ion Antiporter

The purpose of the sodium-dependent bicarbonate / chloride ion antiporter is to increase the pH\textsubscript{i} of the cell following an acid load. Its activity is dependent on intracellular chloride ions and extracellular bicarbonate and sodium ions (not lithium). It is electroneutral, meaning that one sodium ion and two bicarbonate ions are exchanged for chloride ions, or that one sodium ion and one bicarbonate ion are exchanged for a proton and a chloride ion. That is, the bicarbonate influx associated with the functioning of the system is accompanied by an influx of sodium ions. A schematic representation of this mechanism is given in Figure 6.
2.3.3 The Sodium-Independent Bicarbonate / Chloride Ion Antiporter

The inward gradient for chloride ions usually exceeds that for bicarbonate and it is often necessary for a system to catalyse the efflux of bicarbonate. One such system is the sodium-independent bicarbonate / chloride ion antiporter which under these conditions acts as a cell acidifying mechanism following an alkaline load. However, if the extracellular concentration of chloride ions is decreased the system then reverses and acts to increase the pH of the cell. The system is electroneutral and a schematic representation of this mechanism is given in Figure 7.
2.3.4 The Bicarbonate / Chloride Ion Symporter

This bicarbonate transport system is sodium-selective, independent of chloride ions and electrogenic. It was reported to act as a bicarbonate influx mechanism in bovine corneal endothelium leading to an increase in pH. Conversely, it has been claimed to mediate reabsorption of bicarbonate and sodium ions into the blood in the basolateral membrane of the renal proximal convoluted tubule.

2.3.5 Inhibition of Bicarbonate / Chloride Ion exchange.

Inhibition of the sodium / proton antiporter has been shown to increase the thermosensitivity of tumour cells, as discussed earlier. This thermosensitisation has been reported to be further enhanced by the inhibition of bicarbonate / chloride ion exchange. One of the most potent and specific inhibitors of bicarbonate / chloride ion exchange available is R\((+)-[\(5,6\)-dichloro-2,3,9,9\(a\)-tetrahydro-3-oxo-9\(a\)-propyl-1H-fluoren-7-yl)oxy]acetic acid \((\text{B-3}(+))\), illustrated in Figure 8.
When B-3(+) is used alone there is little change in the thermosensitivity of the tumour, suggesting that the role of bicarbonate / chloride ion exchange in the regulation of pH is relatively small. The use of bicarbonate / chloride ion exchange inhibitors in therapy should be considered with caution as they may even reduce the therapeutic index due to their toxicity effects.

2.4 Proton Pumps

There have been various proton pumps described which may play a role in the regulation of pH. Electrogenic proton-translocating ATPase pumps have been found in the mammalian distal nephron and in the turtle urinary bladder. Also, electroneutral potassium / proton exchange ATPase pumps are thought to be involved in gastric acid secretion. The energy for these proton pumps is provided by the hydrolysis of ATP. The examples given are all located in the cell membrane and are all efficient in the expulsion of protons from the cytosol. However, their role in the regulation of pH is not yet clear.

2.5 Proton Channels

Proton conductive pathways have been observed, for example in renal brush border membrane vesicles and in neurons. These channels will have a limited role in the regulation of pH under physiological conditions and under the extreme circumstances relative to the major systems of regulation.
Therefore, studies of these channels have received less attention.

The above account has described a large array of mechanisms at a cell's disposal for the strict regulation of \(\text{pH}_i \). Much of this knowledge has required the measurement of \(\text{pH}_i \). Furthermore, the very existence of these mechanisms illustrates the importance of \(\text{pH}_i \) to a cell. Therefore, the measurement of \(\text{pH}_i \) may provide important information about the metabolic state of a tissue and may also highlight areas for possible therapeutic exploitation of \(\text{pH}_i \).
CHAPTER THREE

3.1 Measurement of Homogenates.

One of the oldest methods for estimating pH, the measurement of the pH of cell lysate or homogenate, was first employed in 1912 by Michaelis and Davidoff71. The potentially serious problems of this technique were recognised early on. For example, production of lactic acid and carbon dioxide continue after cellular destruction and lead to a fall in pH. In addition, the mixing of intra- and extracellular fluids can lead to changes in pH because the solutions are of different pH and because the intra- and extracellular buffers become diluted. Finally, disruption of intracellular organelles makes it impossible to calculate the pH of the bulk intracellular fluid4.

3.2 Radiolabelled Weak Acids / Bases.

Twenty years ago the most popular method of estimating the pH\textsubscript{i} was to measure the distribution of a weak acid or base across the cell membrane. This relies on the observation that for some weak acids or bases, the permeability of a biological membrane to the non-ionised form is very much greater than the ionised form42. Weak acids will occur in higher concentrations in more alkaline compartments; for weak bases the opposite is true. There are several assumptions made for this method, including:

(i) It is based on a two compartment system representing intra- and extracellular spaces.

(ii) The dissociation constant is the same in both compartments.

(iii) No binding, active transport or metabolism of the indicator occurs.
Problems often associated with this method include:

(i) The preparation must be biopsied, causing damage to cells and a limit of one measurement per preparation.

(ii) To measure the intracellular concentration of the non-ionised form of the indicator, a correlation must be applied for contamination with extracellular fluid. For this purpose, markers of extracellular space must be used, for example $[^{14}\text{C}]$ inulin, $[^{14}\text{C}]$ sorbitol, $[^{36}\text{Cl}]$ and total tissue water ($[^{3}\text{H}]$HO). This can be carried out on parallel samples to those being used for pH determination but it is sometimes preferred to determine the extracellular space in the same samples49.

(iii) Binding to intracellular proteins means that measured intracellular concentrations are often higher than free concentrations. An underestimate of pH$_i$ occurs if a weak base binds and an overestimate if a weak acid binds42.

(iv) Only slow changes in pH$_i$ can be monitored due to the time it often takes the indicator to equilibrate between the intra- and extracellular compartments72.

(v) The method is sensitive to changes in cellular volume4.

(vi) Intracellular compartmentation may occur. For example, a weak acid will be excluded from acidic compartments (e.g. lysosomes) and will accumulate in relatively alkaline compartments (e.g. mitochondria). The proportion of the intracellular volume that these compartments occupy in different cell types could have important implications on the value of pH$_i$ measured.

(vii) Measurements usually have to be carried out in suspension. If the cells are attached to a solid surface, which is a condition often required45, then the remaining volume of extracellular fluid can be 20-30 times greater than the intracellular volume. This in itself poses a problem, but in addition, washing of the extracellular fluid results in leakage of the indicator.

These limitations mean that absolute values of pH$_i$ cannot be determined with certainty using this method. The major advantage of this method is cheapness and, despite the many uncertainties, it has found much use in the estimation of
pH. The most popular commercially available indicator is the radioactive weak acid, 5,5-dimethyloxazolidine-2,4-dione (DMO). Here, an increase in pH results in an increased accumulation of DMO anion intracellularly.

3.3 Positron Emission Tomography of Weak Acids.

The principle of this method is the same as for radiolabelled weak acids. DMO is once again the compound of choice, but the [11C] DMO isotope is used and detection is by positron emission tomography. The major application of this technique has been in the measurement of brain tissue pH, that is a composite value of pH and pHe. These measurements do not use extracellular markers as required for the calculation of pH. The main limitation associated with this technique is the short half life of the isotope (20.3 minutes).

3.4 Luminescence.

When a molecule undergoes electronic excitation, it can also be taken to a higher vibrational state. In this excited state, the molecule is subjected to collisions with surrounding molecules and gives up energy as it steps down the vibrational levels. If the molecule is able to retain the large energy difference between the excited electronic state and ground electronic state, then it may undergo spontaneous emission of fluorescent radiation. The characteristic fluorescent spectrum produced by many compounds has been exploited in the measurement of pH. There are three types of fluorescent pH probes; those which work on the same principle as radioactive weak acids/bases but use fluorescence as the method of detection, those which exhibit pH-dependent fluorescence absorption and/or excitation spectra, and those which have a proton-controlled fluorescence.
3.4.1 Fluorescent Weak Acids/Bases.

The weak base, 9-aminoacridine (9-AA) is the most popular fluorescent compound which partitions across the cell membrane according to the transmembrane pH gradient73. It was reported50 that uptake of 9-AA by sea urchin sperm cells results in a quenching of its fluorescence. This appears to be related to intracellular binding. In this example, the fluorescence served as a measure of the extracellular 9-AA and therefore simplified calculations of pH\textsubscript{i}.

3.4.2 pH-Dependent Fluorescence Absorption/Excitation Spectra.

One of the first fluorescent compounds to be used as a pH\textsubscript{i} probe was fluorescein. This exhibits a pH-dependent absorption spectrum between pH 3.0 and 8.0 with maxima at 435 and 495 nm, respectively42. Fluorescein found much use in the measurement of pH\textsubscript{i} until new improved fluorescent probes
were introduced. The design of the first alternative to fluorescein was based on the fluorescent indicator of calcium ion concentration, quin 2.

The new probe, 8-[bis(ethoxycarbonylmethyl)amino]-6-methoxy-2-[trans-2-[bis(ethoxycarbonylmethyl)amino]styril]quinoline, was named quene 1 and is illustrated in Figure 9. Quene 1 has excitation and emission maxima at 390 and 530 nm respectively, and shows a 30-fold increase in fluorescence between pH 5 and 9 with a pKs of 7.3. It is claimed that the fluorescence is insensitive to concentrations of calcium and magnesium ions up to 10^{-4} M and to concentrations of sodium and potassium ions up to 100-200 nM. The indicator is loaded into the cells as its tetra(acetoxymethyl) ester derivative which is hydrolysed in the cells to give the tetracarboxylate anion. The main limitation of this compound is its affinity for cations and a correction factor is often required for the pHi value. Also, some leakage of the probe has been reported.

A fluorescent probe which has found considerable use in recent years is 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Excitation and emission wavelengths are 495 and 525 nm, respectively, and the pKa is 6.98. The compound is loaded into cells as its membrane-permeable acetoxymethyl ester, BCECF-AM. As with the previous esters of probes, hydrolysis by intracellular esterases releases the BCECF, which will be charged and therefore trapped. Unfortunately, this method of administration is not applicable to bacteria due to a very slow rate of absorption. Once in the cell, the probe can give a good estimation of pHi. Calibration of pHi is required and is usually carried out with the potassium/proton ionophore, nigericin. Nigericin sets pHi equal to pHo and fluorescence is measured at varying pHo.

Recently, carboxy seminaphthorhodafluor-1 (SNARF-1) has emerged as a new pH-sensitive fluorescent probe. This has so far found use in pHi determination of multidrug resistant cells. The potential of this probe requires further
investigation, but the initial reports appear promising.

The advantages of pH-sensitive fluorescent probes include:

(i) They can be used to detect rapid, transient changes in pH_i.

(ii) Variations in pH_i can be detected in cell populations using spectrofluorimetry, but also in single cells using fluorescence microscopy15, or using flow cytometry23.

(iii) BCECF appears to have a relatively low toxicity towards most cell types53.

Problems often encountered with this method include:

(i) Leakage is a major limitation32,53. This will particularly affect the results of long term monitoring experiments. To avoid significant errors, appropriate countermeasures need to be taken. Due to the leakage into the supernatant, each sample needs to be resuspended immediately prior to investigation, however a 5% error in the pH_i value can be obtained after only 10 minutes53. Also, these measures reduce the time resolution of observations and can be inconvenient when studying rapid changes. Leakage of these probes could occur by passive diffusion or active transport. In the case of BCECF, the presence of 4/5 negative charges at physiological pH means that passive diffusion is unlikely. Evidence of an ATP-driven transport system involved in BCECF efflux has been suggested for many bacteria53.

(ii) Fluorescence can respond to changes other than in pH, such as altered partitioning between soluble and membrane phases, and changes in cell volume and organelles.

(iii) Fluorescence can be quenched by intracellular binding50.

(iv) It has been reported76 that a lipophilic fluorescent probe can catalyse photo-oxidation reactions.

The free acid form of BCECF has been used for the measurement of pH_e by fluorescent ratio imaging microscopy (FRIM)15. Under these conditions the maximum of the emission spectrum was found to be pH-sensitive while the
excitation spectrum was pH-insensitive below 440 nm. Thus, pH_e was determined from the ratio of the two values. The *in vivo* application of this technique shows particular promise, for example in showing the difference between normal and tumour pH_e.

3.4.3 Proton-Controlled "on-off" Switching of Fluorescence.

(i) Aminomethyltetraphenylporphyrin-Tin(IV) Derivatives\(^7\).

![Quantum Yield vs pH](image)

Figure 10. Fluorescence quantum yield vs pH (redrawn from a report by Grigg *et al.*\(^7\))

For certain complexes, its degree of protonation can determine how important fluorescence will be as a pathway by which to lose excess energy following an electronic transition to an excited state. This can be considered as a proton-controlled "on-off" switching of fluorescence. Grigg and Norbert\(^7\)\(^8\)\(^9\) have
synthesised a series of complexes which show luminescent pH sensor activity.

These have fluorescence quantum yield-pH profiles which are composed of two sigmoidal curves of opposite gradients. A typical curve shape is illustrated in Figure 10. Each of the gradients represents a different process of fluorescence quenching. The negative gradient is assignable to a photoinduced electron transfer (PIET) process which takes place between the amino group and the porphyrin moiety when the amino group is not protonated. Examples of these porphyrin-tin(IV) derivatives (I) are shown in Figure 11. The positive gradient is attributed to an axial ligand exchange process across the tin(IV) centre.

For these particular complexes, the proton-controlled changes in the quantum yield (ϕ) occur without alteration of fluorescence band position or vibrational fine structure of fluorescence.

As would be expected for the corresponding parent compound (II) where the amino group is absent, the ϕ-pH profile does not contain the negative gradient of the PIET process.

![Figure 11. Structures of aminomethyltetraphenylporphyrin-tin(IV) derivatives.](image)

R = alkyl, aryl
X,Y = Cl, OH, OAc

Figure 11. Structures of aminomethyltetraphenylporphyrin-tin(IV) derivatives.
(ii) Aminomethylbipyridyl-Ruthenium(II) Complexes

The complexes illustrated in Figure 12 show proton-controlled quenching of fluorescence by one of two possible mechanisms depending on the attached substituents.

For complex (a), the unprotonated form experiences quenching of luminescence by PIET. Conversely, the protonated forms of complexes (b) and (c) have a quenched luminescence by PIET. The protonated and unprotonated forms of complexes (d) and (e) show a negligible quenching of luminescence by PIET, but a substantial quenching arises on protonation due to the generation of a positive charge close to the [Ru(II)(bpy)₃]²⁺ luminophore. As before, a φ-pH profile can be constructed for each of these complexes. However, unlike the tin(IV) complexes, the emission maxima of the ruthenium (II) complexes also show pH-dependence. Therefore, two pKₐ values can be calculated for each compound corresponding to two different pH profiles.

These complexes are composed of a trisbipyridylruthenium(II) moiety acting as
the luminophore and free phenolic units of a calix[4]arene as the acid-base site and are illustrated in Figure 13.

![Figure 13. Structure of p-tert-butylcalix[4]arene-linked ruthenium(II) trisbipyridyl complexes.](image)

Formation of the phenolate anion(s) causes PIET between the ion(s) and the ruthenium (II) moiety with a quenching of luminescence. A single step \(\phi \)-pH profile can be constructed for each of these complexes and there is no pH-dependent shift in the wavelengths of the maxima in the spectra.

The potential for these complexes to act as pH probes has been demonstrated by Grigg and Norbert\(^{77,78,79}\). However, their application to biological studies has not been evaluated.

3.5 Colourimetry, Using pH-Sensitive Dyes.

It is well established that many compounds undergo a colour change in response to changes in pH. The most widely used colourimetric pH indicator is Neutral Red, as illustrated in Figure 14. This is a relatively non-toxic dye and
has a useful pH range of pH 6.0 (red) to pH 8.0 (yellow). It has the advantages that continuous recording can be made, and rapid changes in pH may be followed as the response of the dye to pH is almost instantaneous, and biopsy of the tissue is not normally required. However, a potential source of error, which affects quantitation of pH$_i$, is dye-protein binding, since this can affect the activity coefficient of the dye. Additionally, although Neutral Red is reported by most to be non-toxic, effects on glucose metabolism, oxygen consumption, aggregation by the formation of ATP-dye complexes, and systemic cardiovascular changes when the dye has been administered iv. at high concentrations have been reported. Further, the dye has shown a light-activated mutagenic effect through DNA binding, which has become the basis for using the dye in the treatment of recurrent herpes infection. This avid binding of many dyes means that the accurate measurement of pH$_i$ is not feasible.

![Figure 14. Structure of Neutral Red.](image)

3.6 Microelectrodes.

The principle of microelectrodes is identical to that governing "macro" pH-sensitive glass electrodes. The Hinke-type electrode was the initial breakthrough in microelectrode technology and was first described in 1967. Unfortunately the exposed length of pH-sensitive glass (several hundred micrometres) was too long for most types of cells. Thomas described in 1974 the 1µm recessed-tip type, but this responds rather slowly and is tedious to make.
In Zurich in 1981, a third type was developed, which depends on a pH-sensitive cocktail. This cocktail is an organic solution sensitive to pH which is held into the tip of a micropipette made hydrophobic by treatment with silanes. However, when the tip of the microelectrode is inserted into a cell, it is separated from the exterior by the cell membrane and hence the potential of the electrode will be determined not only by the pH, but also by the membrane potential. Therefore, a second electrode is needed to measure membrane potential alone and a "double-barrelled" version was developed in 1983. This electrode is very similar to the single-barrelled recessed tip electrode, except that the simultaneous measurement of the membrane potential and the pH gives a better indication of the intracellular location of the electrode tip.

This method is obviously rather destructive in nature and an inherent problem is that the measurements of pH provide a composite value of pH with contributions from the interstitial and intravascular pH which are expected to be at least 50% of the measured value. Although microelectrodes can sometimes give an estimate of pH (provided that damage to the cell by the probe is minimised), they tend to have a short and rather unreliable life.

3.7 Electron Paramagnetic Resonance.

It has been observed that the electroparamagnetic resonance (EPR) spectra of many radicals are sensitive to the pH of the medium. pH-sensitive nitroxy radicals have been put forward as the most promising for pH studies in biological systems. The EPR spectra of dihydro-imidazole and imidazolidine radicals appears to be particularly sensitive to pH, due to protonation of the N-3 atom of the radical heterocycle.

Berezina et al. investigated the potential of dihydroimidazoles for use as pH-sensitive probes. It was revealed that compounds such as the paramagnetic aldonitrane (I), shown in Figure 15, are limited to the pH range 2 to 5.
However, attachment of amine substituents into the 4-position allowed successful manipulation of the pKa to allow measurement in the pH range 3.3 to 7.8. Examples of the modified compounds (II, III) are shown in Figure 15.

Little biological work has been carried out on these compounds, therefore their suitability as pH indicators has yet to be determined.

![Structures of aldonitrane and related compounds](image)

Figure 15. Structures of aldonitrane and related compounds.

3.8 Nuclear Magnetic Resonance.

3.8.1 Introduction.

NMR spectroscopy is non-destructive, non-invasive, relatively non-perturbing and a fairly painless technique for patients. It has the advantage that a particular tissue can be monitored over a period of time. This can be useful for studying changes of pH in disease states before, during and after therapy. Its major limitation is expense. A variety of nuclei have been reported in the literature to show pH-dependent chemical shifts in the physiological range. These include, ^{31}P, ^1H, ^{15}N and ^{19}F.

3.8.2 ^{31}P NMR.

The naturally abundant ^{31}P nucleus has a fairly wide chemical shift range and
although it is only 0.066 fold as sensitive as 1H, it has proved to be particularly useful for biological NMR studies. Many phosphorus containing compounds occupy a central role in the bioenergetics of living cell39. In 1975, Moon and Richards83 were the first to demonstrate that the pH-sensitive 31P chemical shift of "inorganic phosphate" (P$_i$) could serve as a useful probe of pH$_i$ in biological systems.

Measurement of pH$_i$ is generally carried out by determining the difference in chemical shift between the endogenous P$_i$ resonance, which is regulated by the phosphate buffer system, and the resonance of endogenous phosphocreatine (PCr), which is insensitive to pH over the biological range52.

Initially, Moon and Richards used 2,3-diphosphoglycerate as the internal standard, but discovered that its chemical shift is influenced by other factors and that most systems do not contain significant concentrations. They suggested the use of PCr and ATP, although since then, ATP has also been proved unsuitable because of its dependence on the Mg$^{2+}$ concentration and the presence of other resonances which result in peak broadening.

In the phosphate buffer system, illustrated in Figure 16, the H$_2$PO$_4^-$ conjugate acid and the HPO$_4^{2-}$ conjugate base are in rapid exchange4 in the range pH 6.1 to pH 7.7. Hence, the corresponding 31P NMR signal appears as a single line at a chemical shift determined by the weighted mean of the relative concentrations of the two species, thus, by the pH of the solution.

$$\text{H}_2\text{PO}_4^- \rightleftharpoons \text{HPO}_4^{2-} + \text{H}^+$$

Figure 16. The phosphate buffer system.

An in vitro calibration curve is constructed by simple titration and, assuming that such an in vitro standardisation curve is applicable to intracellular fluid, pH$_i$ can be obtained from the chemical shift of P$_i$.

35
Limitations of this method include:

(i) For the accurate assignment of the \(P_i \) chemical shift, a reference signal is required. External standards should be avoided for biological studies because they may lie in a different field due to \(B_0 \) (strength of the applied magnetic field) inhomogeneity and local susceptibility effects\(^{35} \). \(PCr \) is the usual choice, but the concentrations of \(PCr \) are generally so low as to make the \(^{31}P \) signal undetectable in most tumours\(^{26,34} \) and in the kidney\(^87 \). It has been suggested that \(PCr \) resonances recorded in many tumour spectra are caused by adjacent muscle tissue, overlying skin or infiltrating lymphocytes and endothelial cells rather than the tumour itself\(^{22} \). If this is the case, then the position of the \(PCr \) peak is not "tumour specific" and may be experiencing a different \(B_0 \) field due to local susceptibility effects\(^{35} \). Therefore, the \(H_2O \) peak from the proton spectrum used for shimming is often the reference of choice. This is generally satisfactory provided that the reference signal is derived from the same region of tissue as the \(P_i \) signal. Unfortunately, this technique of referencing is not well understood by many research groups\(^{22} \). Alternative methods for reference include the glycerophosphorylcholine resonance but this requires the proton decoupling to resolve the peak. Decoupling requires energy which can be damaging to tissue.

(ii) The \(P_i \) peak is often not clearly visible. Low levels of \(P_i \) have been reported for many cell types\(^{88,89} \) and often in well perfused tissues\(^{90} \). The \(P_i \) may also be masked by phosphodiester (PDE) signals\(^{90} \). The peak is often broad and not resolved into intra- and extracellular compartments. This means that most measurements of \(pH_i \) by \(^{31}P \) NMR give a composite \(pH \) value with contributions from \(pH_i \), expected to be at least 85% of the total\(^{13} \), resulting in a large standard error\(^{16,91} \). When multiple \(P_i \) peaks do occur, assignment is usually unsuccessful\(^{26} \).
(iii) The P_i resonance can be influenced by factors other than the pH. The concentration of Mg^{2+} in some cell types is high enough to affect the chemical shift. The ionic strength, protein solvation and temperature can also have an influence. Uncertainty about the effects of substances on the chemical shift of P_i introduce errors between 0.1 and 0.5 pH units.

(iv) The cellular pH may extend beyond the pH range of P_i. For example, under severe hypoxia.

(v) Poor signal to noise ratio (SNR). This can be due to low concentrations of phosphorus and, to some extent, the relatively low sensitivity of ^{31}P. It introduces two major problems. Firstly, recognition of peaks becomes difficult and statistical methods are usually applied. Secondly, there is an uncertainty in the position of identified peaks. Poor line shapes and SNR's often mean that mathematical fitting of the data is necessary to measure the peak position. The broad base line introduced by the presence of the peaks from the phosphomonoesters (PME), PDE and phospholipids may result in an apparent shift in the P_i resonance. Additionally, the magnitude of this shift is expected to vary in different patients, in different tissues and also during tumour therapy where the contribution from PME and PDE will change with regression of the tumour.

pH_e can also be measured using ^{31}P NMR if an extracellular marker is used. This marker must have a distinct spectral peak position, be non-cytotoxic, have an appropriate pK_a and be largely excluded from the cell. Phosphonic acids, such as phenylphosphonic acid (PPA), have been proposed as extracellular markers in the study of perfused skeletal muscle. However, proof of their confinement in the extracellular fluid over prolonged perfusion periods has not been provided. Further, effects of PPA concentrations and exposure time on muscle contractability, for example, have not been assessed. In order to distinguish the pH of intra- and extracellular compartments using ^{31}P NMR, a
difference of at least 0.3 - 0.4 pH units is normally required. Another method used to distinguish pH_i and pH_e is by comparing spin-lattice relaxation times (T_1) for P_i.

3.8.3 \(^1\)H NMR.

Although \(^1\)H NMR has the advantage of high sensitivity, it is technically more difficult than less abundant nuclei because of the need to suppress the water and fat signals, and also because of the multiple overlapping of metabolite resonances. Surprisingly, despite its obvious drawbacks, \(^1\)H NMR has been used for pH_i determination.

\(^1\)H NMR studies of human erythrocytes have been carried out, where pH_i was estimated from the chemical shift of histidine resonances in haemoglobin. However, this method was not straightforward because of the acid dependence of the histidine chemical shifts on the oxy-deoxy status of the haemoglobin.

The first \(^1\)H NMR "probe" to be used for pH_i determination was based on the pH-dependent chemical shifts of imidazole protons. In the initial study, imidazole was introduced into erythrocytes by incubation. Calibration was carried out by \(^1\)H NMR measurements on cell lysates at pH values varied by the addition of aqueous hydrochloric acid or sodium hydroxide solutions and measured directly with a glass electrode. To select the peaks required, \(^1\)H NMR spectra were measured by either a spin-echo method or by a transfer of saturation technique. A single pulse technique is not suitable due to a large number of haemoglobin imidazole resonances which are also visible by this method. The resonances for imidazole 2-H and 4,5-H protons are all pH-dependent with the pK_a values determined to be 7.10 and 7.06 at 37°C respectively. The difference between these two values shows an error in the technique. This early study with erythrocytes highlighted a number of limitations associated with this method. Interactions with cellular substituents
were encountered which affected the imidazole 2-H and 4,5-H proton resonances differently. Also, initially there were two signals for the 2-H proton representing intra- and extracellular compartments. However, these signals coalesced with time into a single resonance peak, indicating that the membrane was sufficiently permeable to both ionised and non-ionised forms of the imidazole to eventually lead to an equilibrium between compartments.

The only other 1H NMR probe for pH$_i$, so far, is that developed by Ballesteros et al.97 This was based on imidazole, with modifications to decrease the membrane permeability of the ionised form and improve its performance as an extrinsic pH$_i$ probe. Acetate, malonate or succinate esters were introduced at the 1-position of imidazole, followed by cleavage to the corresponding acids to increase further the charge of the ionised compound at physiological pH. Examples of these imidazole derivatives are illustrated in Figure 17.

![Figure 17. N-Substituted derivatives of imidazole and their corresponding pK$_a$ values.](image)

It can be seen that some of these compounds still contain ester groups. These will generally be cleaved to the corresponding acids once inside the cell, however, not all cells are able to cleave methyl esters. Once again, the chemical shift of the imidazole 2-H proton showed pH-dependence with the pK$_a$ values shown in Figure 17.

It has been demonstrated97 that 1H NMR can be used for the measurement of pH$_i$. However, the technical expertise required and the large errors introduced
by using such an abundant nucleus, mean that accurate determination of pH in biological systems is not feasible by this technique.

3.8.4 15N NMR.

15N labelled compounds have been used for the measurement of pH using 15N NMR spectroscopy. 15N has the advantage that it shows very substantial chemical shift changes in response to pH. For example, in the measurement of cytoplasmic and vascular pH in *Neurospora*, using the N3- and N1-nitrogen chemical shifts of histidine, which are very sensitive to pH in the range pH 5 to pH 7.

Another NMR parameter that has been used for pH estimation is the line width of proton-coupled 15N resonances of α-amino acids and the guanidine group of arginine. In aqueous solution, the protons attached to these nitrogens undergo base-catalysed exchange with water protons and the rates of exchange increase with pH.

Unfortunately, the N1-nitrogen chemical shift is also dependent on ionic strength, and large quantities of polyphosphates may associate with basic amino acids, introducing an uncertainty of the order of 0.4 pH units. 15N labelled compounds are also very expensive.

3.8.5 19F NMR.

The naturally occurring 19F nucleus has many NMR properties which make it particularly suitable for biological NMR studies. It has a spin $\frac{1}{2}$ and relatively high sensitivity ($0.833 \times ^1H; 12.6 \times ^{31}P$). Its chemical shifts and relaxation times are very sensitive to changes in its environment and has a wide chemical shift range (0-960 ppm), allowing various fluorinated compounds to be clearly recognised in spite of the line broadening which is often associated with
biological studies. Fluorine is virtually absent from endogenous components of tissue, cells and biological media.

The suitability of 19F NMR for biological work has been shown by its considerable use in metabolism and disposition studies of fluorinated xenobiotics both in vitro and in vivo94,98,99,100. The ease of detecting fluorine in biological systems may be illustrated with an example. The tumour selective retention of fluorinated 2-nitroimidazole probes was demonstrated by 19F NMR in vivo18,37. Consider the two compounds shown in Figure 18.

![Figure 18. Structures of Ro 07-0741 and CCI-103F.](image)

Both the peak for the six fluorine atoms of CCI-103F and the peak for the single fluorine atom of Ro 07-0741 could be clearly identified in the in vivo 19F NMR spectra. The estimated practical limits for 19F detection in these studies was in the order of 10^7 atoms of 19F per gram of tissue or 2×10^{-4} molar equivalents of 19F. Moreover, the magnetic field used in the experiments was similar to those routinely used for whole body imaging instruments.

19F NMR chemical shifts are highly sensitive to changes in environment. These include pH, temperature, solvent and ionic strength100 in addition to the chemical and magnetic environment within the molecule itself.

In Chapter One the sensitivity of the 19F NMR spectrum of 5-fluorouracil to its
adopted geometry once incorporated into DNA was discussed29,30. 19F NMR has become an important probe of base pairing within DNA101 and for the labelling of mRNA102 and tRNA103.

Another exploitation of the sensitivity of 19F chemical shifts has been for the probing of various ions in biological systems. Difluoro-derivatives of 1,2-bis(\textit{\textit{\textit{o}}-aminophenoxy\textit{)}ethane-N,N,N',N'-tetraacetic acid (\textit{\textit{\textit{n}}}FBAPTA), shown in Figure 19, have chemical shifts which are highly sensitive to chelation by divalent cations (\textit{\textit{\textit{M}}^{2+}\textsuperscript{\textit{\textit{\textit{}}}86}}).

\textit{\textit{\textit{\textit{n}}}}FBAPTA (The position of the fluorine atom on each ring is denoted by \textit{n})

\textbf{Figure 19} Structure of difluoro-derivatives of 1,2-bis(\textit{\textit{\textit{o}}-aminophenoxy\textit{)}ethane-N,N,N',N'-tetraacetic acid.

An increased understanding of the sensitivity of 19F chemical shifts has allowed the design of more specific ion probes. Indicators for intracellular Mg2+ have been developed, based on the chelator \textit{\textit{\textit{\textit{o}}}-aminophenol-N,N,O-triacetic acid (APTRA)}104. Examples of these fluorinated derivatives are illustrated in Figure 20. These probes have been designed in such a way that chelation of magnesium leads to observation of separate resonances corresponding to complexed and free chelator. However, in most cases chelation of calcium only leads to a broadening and a slight shift of the resonance104.
Figure 20. Structures of fluorinated derivatives of the chelator o-aminophenol-N,N,O-triacetic acid.

These chelators have the advantage of providing a direct identification of the bound ions. Other methods for the measurement of divalent cations in biological systems include indirect calculations based on equilibrium systems, ion-sensitive microelectrodes and null point measurements using metallochromic dyes that are micro-injected into cells or placed into the extracellular space, with frequent lysis of cells. Virtually all of these methods are invasive in nature and require sample destruction prior to analysis. In contrast, NMR has considerable advantage as a non-invasive tool. Furthermore, the ability to carry out studies on opaque cell suspensions and tissues, inaccessible to fluorescent measurements, was highlighted by these cation probes.

The suitability of fluorinated compounds for use as biological probes can, therefore, be easily supported.

The 19F chemical shift can also be sensitive to pH, particularly if the fluorine atom is located near an acidic or basic functional group in a molecule. This phenomenon was first successfully exploited by Deutsch and Taylor in 1981, who have since developed a number of pH probes.

They initially used the 19F resonance of trifluoroethylamine for the
measurement of transmembrane pH gradients. At 25°C a single broad peak was observed due to rapid exchange of CF₃CH₂NH₂ across the membrane. It was necessary for the temperature to be lowered to 4°C before two separate signals could be observed. At this temperature, the pKₐ was 6.0, which was far from optimal. However, this early experiment showed that the development of fluorinated probes with pH-dependent chemical shifts is a worthwhile goal.

The next series of experiments investigated the ¹⁹F NMR resonances of fluorinated α-methylamino acids. In studies on human peripheral blood lymphocytes, (±)-2-amino-3,3-difluoro-2-methylpropanoic acid was used for the estimation of pHᵢ. The methyl ester of this compound was taken up readily by the cells and cleaved to release the free acid inside the cell. The amino acid was present at concentrations as high as 4-5 mM and pHᵢ determination was possible following relatively short measurement times (1-5 minutes). Unfortunately, leakage of the probe and interactions with intracellular potassium ions lead to complications. However, the results reported were comparable to those obtained using the distribution of radiolabelled DMO in parallel experiments.

In later work, a series of such probes were evaluated. The reported pKₐ values of these compounds are given in Table 1. As can be seen, these probes cover a large range of pKₐ values. In addition, they were specifically designed to be non-metabolisable and non-toxic. The measurements of pHᵢ with an accuracy of ±0.06 pH units required the simultaneous use of two of these probes.
Fluorinated Probe	pKₐ	change in δ₉/0.1 pH unit
α-trifluoromethylalanine methyl ester | <4 |
α-trifluoromethylalanine | 5.9 | 0.12
hexafluorovaline | 6.3 | 0.06
α-difluoromethylalanine methyl ester | 5.1 | 0.14
α-difluoromethylalanine | 7.3 | 0.09
α-monofluoromethylalanine methyl ester | 6.4 | 0.08
α-monofluoromethylalanine | 8.5 | 0.11

Table 1

The major limitation of these probes is the use of methyl esters. As mentioned earlier, not all cells are able to hydrolyse methyl esters. Deutsch and Taylor realised this problem and examined the 4-chlorophenyl esters of fluorinated α-methylamino acids. An example is illustrated in Figure 21, which was cleaved rapidly in cells which lack methyl esterases to generate high intracellular levels of the probe. No stereochemical information was provided in these reports. Different diastereoisomers will have different sensitivities of the ¹⁹F chemical shift to pH.

![Figure 21](image.png)

Figure 21. Structure of the 4-chlorophenyl ester of 2-amino-4,4-difluoro-3-methylbutanoic acid.

The next development by Deutsch and Taylor was the use of fluoroanilines as ¹⁹F NMR pH indicators. Probes were designed such that the fluorine atoms were directly attached to the aromatic ring. This class of compounds has pKₐ...
values ranging from pH 1 to 6 and total shifts of the 19F resonance from 5 to 15 ppm between the conjugate acid and base. Therefore, a series of probes was investigated with various functional groups attached for the modulation of the pK_a. Figure 22 illustrates the two main strategies used to shift the pK_a of compound (I).

As shown in compound (II), the addition of an electron donating group into the aromatic ring had little appreciable effect on the pK_a and was in the wrong direction. An electron withdrawing group such as a trifluoromethyl group would have been more appropriate. However, N-alkylation, as with compound (III) produced a pK_a slightly closer to physiological pH. The fluoroanilines are very sensitive to pH, with changes in chemical shift of up to 5 ppm per pH unit near the pK_a. This clearly demonstrates the great sensitivity of 19F chemical shift to pH. These examples of fluoroanilines are purely model compounds and have not yet been evaluated in situ.

![Figure 22. Structures of 4-fluoroaniline derivatives.](image)

Deutsch and Taylor virtually dominated all published research into 19F NMR pH probes in the 1980s but, lately, new probes have begun to appear from other research groups.
Recently demonstrated was the attachment of fluorinated pH indicators to carrier polymers as a means to targeting a probe. This has the advantage that the biological toxicity associated with the pH marker may be masked or altered upon coupling to non-toxic carrier polymers.

Macromolecules such as albumins, globulins, dextrans, and synthetic polymers (for example, polylysine) accumulate in tumour tissue because these tissues have a vascular network characterised by both enhanced permeability of the neovascularature and a lack of lymphatic recovery system. For example, Mehta et al. attached 1H NMR indicators, such as 3-fluorosalicylaldehyde (3-FSA), to various macromolecules, mainly dextrans. The polymer 3-FSA conjugates had chemical shift sensitivities of 1.36 to 1.41 ppm over a pH range of pH 5.5 to pH 8.5 and a physiological pK_a (ca. pH 7.0 to pH 7.2). Unfortunately, this response was not as good as that for the parent probe, 3-FSA which had a chemical shift sensitivity of 2.05 ppm over the pH range.

The same research group have recently reported another possible pH indicator based on the vitamin B6 analogue, 6-fluoropyridoxol (6-FPOL), shown in Figure 23.

\[
\text{6-FPOL}
\]

Figure 23. Structure of 6-FPOL

The 1H resonance of 6-FPOL was shown to be highly sensitive to pH, with a shift of 9.76 ppm between conjugate acid and base, and a pK_a of approximately 8.2 at 37°C. This shift appears to be independent of metal ion concentrations. It was demonstrated that 6-FPOL is permeable across the cell membrane of red
blood cells, with an exchange rate sufficiently slow to provide separate resonances for intra- and extracellular compartments. A sharp signal is observed for each compartment. These measurements on red blood cells compared favourably with those obtained from 31P NMR (pH$_i$) and pH electrodes (pH$_e$). Studies in vivo are currently in progress, however it would be expected that the sensitivity of detection may be hindered due to there only being one fluorine atom per molecule.

Frenzel et al.9 have recently suggested that 3-(N-(4-fluoro-2-trifluoromethylphenyl)sulphamoyl)propanoic acid could be a useful 19F NMR pH probe in biological systems. This compound, shown in Figure 24, contains a fluorine atom directly attached to the aromatic ring, which is very sensitive to changes in pH; 5.3 ppm per pH unit close to the pK$_a$. Also attached to the ring is a trifluoromethyl group which was reported to be "almost" unaffected by changes in pH, and was used as an internal standard. The pK$_a$ was found to be 7.16 (this is worth comparing with the attempt by Deutsch and Taylor107 to modulate the pK$_a$ of fluoroanilines, in Figure 22).

![Figure 24. Structure of 3-(N-(4-fluoro-2-trifluoromethylphenyl)-sulphamoyl)propanoic acid.](image)

As may be appreciated from Figure 24, this compound will be ionised at physiological pH. Consequently, the probe was reported to be distributed mainly in the extracellular space and thus provides a measurement of pH$_e$. The probe was tested by a study of tumour pH$_e$. Both the fluorine signals were clearly visible in vivo and provided values which were in good agreement to those provided by microelectrodes.
Finally, Plenio et al.109 reported that the 19F resonance of 1-fluoro-2,6-bis(methylene-iminodiacetate)benzene, shown in Figure 25, is highly sensitive to changes in pH. They suggested that this compound could be used as a pH probe. Unfortunately, this compound was originally designed as an indicator for metal ions with direct fluorine-metal interactions and is clearly not suitable for accurate pH determination in biological systems. However, this does highlight an important design consideration for 19F NMR pH probes. That is, the pH sensitive fluorine atoms must not be in close proximity to metal chelating functionalities. Further, the acid-base functional group must have limited interactions with cations other than protons.

![Figure 25 Structure of 1-fluoro-2,6-bis(methylene-iminodiacetate)benzene.](image)

Most of the studies discussed above have been limited to compounds possessing only one pH-sensitive atom. This can lead to relatively poor sensitivity of detection of the signal. Also, many of the examples contained fluorine atoms with neighbouring protons. H-F coupling constants are generally very large and can be observed as far as five bonds away. Coupling will result in splitting of peaks in the 19F NMR spectra and hence, poor SNR102. Also the use of an internal 19F chemical shift standard directly attached to the probe has only recently been investigated9. However, the chemical shifts of fluorine atoms in different chemical and magnetic environments will not be affected by pH by the same magnitude. Therefore, it is advisable to incorporate the reference fluorine atom(s) away from the acid-base centre to ensure pH-
insensitivity.

There is definitely a need for an accurate and non-invasive method for the determination of pH_i. The potential of fluorinated compounds to act as pH sensors in biological systems has been demonstrated. However, there is clearly a lack of understanding of the requirements necessary for the development of a pH probe suitable for biological studies. These requirements will be addressed in the next chapter.
4. Aims of the Study

The purpose of this study was to design and synthesise fluorine containing compounds and to evaluate their potential as 19F NMR pH$_i$ sensors for biological systems. In order to design a probe of this type, a number of requirements must be considered. The following section examines these requirements and assesses how they can be met.

(i) Easily detectable in biological systems.
This requires a strong signal in the 19F NMR spectrum with a good signal to noise ratio (SNR). The compound must, therefore, have a large number of chemically and magnetically equivalent pH-sensitive fluorine atoms. The SNR is also improved when the signal is a singlet. To avoid H-F coupling the fluorine atoms must be at least 4-5 bonds away from any protons. A slight line broadening may also appear if the fluorine atoms are very close to an element which has more than one naturally abundant isotope, for example chlorine. The isotope effect on 19F resonances can be illustrated with CFCI$_3$, a widely accepted 19F NMR chemical shift standard. Careful examination of the apparent singlet reveals four peaks in the characteristic pattern also observed in mass spectrometry.

(ii) Large sensitivity to changes in pH.
The sensitivity of a 19F resonance to pH is usually related to how close the fluorine is to the acid/base functional group. Many of the probes discussed earlier used a single fluorine atom directly attached to an aromatic ring. The acid/base group was either a heteroatom in the ring or another substituent. This produced a highly pH-sensitive 19F resonance. Unfortunately, using only one fluorine atom leads to poor SNR. If trifluoromethyl groups are used there will be a loss in pH-sensitivity. However, this may be worthwhile in order to
increase the SNR and the ease of detection, and thus improve the accuracy of measuring a shift. Greater shifts in ^{19}F resonances may also be obtained if protonation of the probe results in a large conformational change, for example going from an sp^3 centre to sp^2.

(iii) The influence of factors other than pH on the ^{19}F resonance must be limited.

^{19}F NMR probes specifically designed to chelate with metal ions have been discussed. Examination of these compounds reveals that carboxylic acid groups should be avoided.

(iv) pK_a values should be close to physiological pH.

Evaluation of a large number of compounds provides information about how different functional groups can influence the pK_a. This knowledge allows strategic selection of suitable synthetic targets and the careful modulation of their pK_a.

(v) An internal reference for ^{19}F NMR chemical shift determination.

The incorporation of pH-insensitive fluorine atoms into the probe provides a suitable reference peak. That is, fluorine atoms not positioned next to acids/base functional groups. It would be preferable if the signal was at a distinctly different chemical shift value to that of the pH-sensitive peak. A different number of equivalent fluorine atoms would also aid a positive peak assignment.

(vi) Good water solubility.

The presence of polar functional groups generally increases water solubility. However, groups which may interfere the ^{19}F sensitivity must be placed with care. The influence that the functional groups may have on the pK_a of the probe must also be considered. One possibility is to incorporate a polyether chain.
(vii) An ability to cross a cell membrane and accumulate inside the cell.
To increase cell membrane permeability a careful balance must be made in the choice of functional groups with respect to water solubility. If the probe is highly ionised it may not be able to penetrate the membrane. It may be useful to attach a targeting moiety to the probe. For example, a 2-nitroimidazole group would lead to an accumulation of the probe in hypoxic cells.

(viii) Low toxicity.
If the probe has many equivalent pH-sensitive fluorine atoms rather than just one, lower concentrations of the probe will be required to reach an adequate molar concentration of ^{19}F for detection.

Using these criteria, a series of model probes was designed as synthetic targets. Chemical synthesis has been towards azaheterocycles bearing one or more trifluoromethyl groups. An important synthetic consideration has been the incorporation of a "handle". This could be a point of attachment for linking to targeting moieties and pH-insensitive fluorine containing groups. The pKₐ values of many of these compounds has been characterised by ^{19}F NMR.
5. Pyrazoles.

5.1 3,5-Bis(trifluoromethyl)pyrazole and Related Compounds.

5.1.1 3,5-Bis(trifluoromethyl)pyrazole.

Elguero et al.110 have investigated the effects of a trifluoromethyl group on the acid-base properties of pyrazoles. It was reported that 3,5-bis(trifluoromethyl)pyrazole (2) has an acidic pK\textsubscript{a} value of 7.51 at 25°C, determined spectrophotometrically according to a method described by Ernst and Menashi111. This compound has six equivalent fluorine atoms and a pK\textsubscript{a} value close to physiological pH. Therefore, it is an ideal candidate for the probing nucleus of a 19F NMR pH-sensor. The preparation of 3,5-bis-(trifluoromethyl)pyrazole (2) has been reported to have been carried out by treatment of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) with hydrazine hydrate under various conditions112,113 and by dipolar cycloaddition of 2-diazo-1,1,1-trifluoroethane with 3,3,3-trifluoropropyne114. The pyrazole (2) was synthesised by the treatment of dione (1) with an equimolar amount of hydrazine hydrate in boiling ethanol, as shown in Scheme 1.

\[\text{F}_3\text{C} = \text{O} \quad \text{O} \quad \text{CF}_3 \]

\[1 \quad + \quad \text{C}_2\text{H}_5\text{OH} \quad \text{reflux} \quad \text{Yield 62\%} \]

\[\text{N}_2\text{H}_4\text{H}_2\text{O} \]

\[\begin{array}{c}
\text{H} \\
\text{F}_3\text{C} \\
\text{N} \\
\text{CF}_3
\end{array} \]

\[2 \]

Scheme 1
The volatile white solid was obtained in 62% yield. The yield of this reaction strongly depends on the distillation procedure, as observed recently by Venanzi et al.113. It has been suggested115 that the high volatility of pyrazole (2), compared to pyrazoles such as 3,5-dimethylpyrazole, is partly due to the weakening of N-H\textendash-H hydrogen bonds between two molecules. This is supported by experimental and theoretical calculations of their solid and gas phase geometries which show interactions between the fluorine atoms and the N1-H (attractive) and the N2 lone pair (repulsive). A possible mechanism for the synthetic reaction is illustrated in Scheme 2. The dione (1) is shown here in its enol form. β-Diketones exist in tautomeric equilibrium between the enol and
keto forms. It is known116 that electron withdrawing groups increase the content of the enol form, while solvents of high polarity will shift the equilibrium back slightly towards the keto form. The presence of two trifluoromethyl groups in dione (1) will have the greatest influence on the equilibrium; thus, the enol is the predominant form under these conditions.

The mechanism proceeds through 3,5-dihydroxypyrazolidine and 5-hydroxy-4,5-dihydropyrazole intermediates which have been characterised by Elguero \textit{et al.}117 using special stop-flow NMR techniques. The participation of the N1 lone pair in the elimination of the second water molecule is supported by the isolation of 5-hydroxy-4,5-dihydropyrazoles when the N1 atom is substituted by an electron-withdrawing group. The isolation of 5-hydroxy-4,5-dihydropyrazoles is a topic of discussion later in this chapter.

The pK\textsubscript{a} was determined by 19F NMR to be 7.55 at 25°C (see Chapter 8). 4-Substituted derivatives of bis(trifluoromethyl)pyrazole (2) would allow the attachment of the other necessary ingredients for a pH-probe such as, a targeting moiety, groups to increase water solubility in aqueous media and pH-insensitive fluorine atoms.

5.1.2 Alkylation of 3,5-Bis(trifluoromethyl)pyrazole.

It was proposed that the 4-position of pyrazole (2) may be activated by lithiation, followed by alkylation with a suitable electrophile.

Lithiation of heterocyclic compounds containing an N-H group usually only yields the N-lithio derivative118, but when the nitrogen is substituted, C-lithiation can often occur. If the N-substituent can later be removed, it serves as a protecting group for the N-H, thus maintaining the pK\textsubscript{a} of the new pyrazole close to that of the parent pyrazole. Katritzky \textit{et al.}118 have reported a method for a "one-pot" protection, lithiation and alkylation reaction of
pyrazole. Formaldehyde was used as a protecting group for the N-H of pyrazole in the synthesis of 3(5)-substituted pyrazoles, as shown in Scheme 3.

\[\text{HOCH}_2/\text{LiOCH} \]

In addition to this, it has been demonstrated by Tanaka et al.\(^\text{119}\) that lithiation of 1-phenyl-3,5-bis(trifluoromethyl)pyrazole (3) occurs in the 4-position of the pyrazole ring as well as in the ortho-position of the phenyl substituent, as shown in Scheme 4.

\[\text{LiOCH}_2/\text{LiOCH}_2 \]

Combining the methods of Katritzky et al.\(^\text{118}\) and Tanaka et al.\(^\text{119}\), the synthetic
route illustrated in Scheme 5 was devised. Unfortunately, this reaction sequence failed to yield any of the 4-substituted pyrazole (4). It is likely that the excess amount of paraformaldehyde and its unsuitability as a protecting group for the pyrazole (2) are to blame.

Therefore, a "multi-step" synthesis was devised, involving an initial step of N-H protection by lithiation and alkylation by the method of Katritzky et al.120, as shown in Scheme 6

Surprisingly, even this simple N-(dialkylamino)methyl protection of the electron-deficient pyrazole (2) did not work. Therefore, methods of incorporating a 4-substituent into the pyrazole (2) prior to ring closure were
examined.

5.1.3 Alkylation of 1,1,1,5,5,5-Hexafluoropentane-2,4-dione.

If a 4-substituted derivative of the bis(trifluoromethyl)pyrazole (2) is to be constructed by a condensation reaction similar to that shown in Scheme 1, then modification of the dione would be the next obvious solution.

A report by Wright and Coville, suggested that 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) may be alkylated with an alkyl halide. Heer, a co-worker, briefly investigated this option. The electron-withdrawing effect of the two trifluoromethyl groups of the dione (1) allowed a proton from the 3-position to be removed with ease using potassium carbonate. However, the resulting anion was so deactivated by the trifluoromethyl groups that it would not react with benzyl bromide.

5.1.4 Alternative Disconnections Towards the Synthesis of 3-Substituted Derivatives of 1,1,1,5,5,5-Hexafluoropentane-2,4-dione.

Scheme 7
An alternative point of disconnection is demonstrated by the retrosynthetic analysis shown in Scheme 7. Two possible nucleophiles are suggested in the second disconnection steps; a trifluoromethyl ketone anion (route A) and a trifluoromethyl enol ether nucleophile (route B).

5.1.4.1 Trifluoroacetylation of Trifluoromethyl Enol Ethers.

The trifluoroacetylation of enol ethers has been reported by Hojo et al. using trifluoroacetic anhydride (TFAA) and pyridine in DCM at room temperature (R.T.), as shown in Scheme 8.

The extension of this reaction to trifluoromethyl enol ethers had not been demonstrated. Therefore, this reaction was investigated as a potential route to 3-substituted derivatives of the dione (1).

The most conventional method of making an enol ether would be from the corresponding ketone. However, in 1992, Bégué et al. reported a more direct route to the synthesis of trifluoromethyl enol ethers. The preparation involves Wittig reaction of a phosphonium ylide with perfluoroalkyl acid derivatives, which in this case meant ethyl trifluoroacetate, as illustrated in Scheme 9. The phosphonium ylides can be prepared by treatment of the phosphonium salt with a suitably strong, non-nucleophilic base, such as sodium.
hydride in THF. A phosphonium salt can be made from its corresponding hydroxy compound via its halogenated derivative. The iodide salt was chosen in preference to the bromide salt because it is reputed to be more likely to crystallise.

Investigations into this reaction sequence began with a model compound. The hydroxy compound chosen for the trial run was 2-(2-methoxyethoxy)ethanol (5). Its conversion to the iodo derivative (6) was initially carried out by the addition of triphenylphosphine and iodine in the presence of pyridine, as shown in Scheme 10.

\[
\begin{align*}
\text{H}_3\text{CO} & \text{O} \quad \text{O} \quad \text{OH} \\
\text{(5)} & \quad \text{PPh}_3 / I_2 \\
\text{pyridine / DCM} & \\
\text{R.T.} & \\
\text{Yield 21\%} & \\
\text{H}_3\text{CO} & \text{O} \quad \text{O} \quad \text{I} \\
\text{(6)} & \\
\end{align*}
\]

Scheme 10

Investigations into this reaction sequence began with a model compound. The hydroxy compound chosen for the trial run was 2-(2-methoxyethoxy)ethanol (5). Its conversion to the iodo derivative (6) was initially carried out by the addition of triphenylphosphine and iodine in the presence of pyridine, as shown in Scheme 10.

\[
PPh_3 + I_2 \rightleftharpoons \text{Ph}_3\text{PI} \quad (7)
\]

Scheme 11
It is currently thought125 that such reactions involve the \textit{in situ} formation of triphenylphosphorus-diiodine (7), which then acts as the halogenating agent, Scheme 11.

However, the poor yield (21\%) of this reaction was not satisfactory and another approach was sought. As suggested in the mechanism of Scheme 11, despite the fact that iodide is a relatively efficient nucleophile, it is not able to substitute the hydroxy group without activation. Another mode of activation is forming the tosylate first, as shown in Scheme 12.

![Scheme 12](image)

This was carried out using a method reported by Prugh \textit{et al}.126. This method of tosylation is unconventional in that potassium hydroxide is used rather than pyridine. However, the reduced toxicity and the high yield of 94\%, suggest it could be a useful alternative. A simple exchange reaction to the iodo-compound (6) was carried out by the Finkelstein reaction, using sodium iodide in acetone, with a good yield of 71\%.

The conversion of iodo-compound (6) to the phosphonium salt (9) was accomplished with triphenylphosphine in toluene. As predicted, the phosphonium salt crystallised out and in high yield.
Running parallel with this trial set of experiments, investigations were carried out into suitable protecting groups for a hydroxy function at the non-reacting end of the compound. The 2-methoxyethoxymethyl ether (MEM ether) protecting group appeared to have ideal characteristics for the reaction sequence. It has been reported127 to be stable under a wide variety of conditions, including those of reactions attending the use of strong bases, reducing agents, organometallic agents, many oxidising agents, and mild acids.

Maintaining the use of compounds containing ether linkages (for enhanced water solubility of the pH-sensor compounds) as with the trial compound, 2-\((2-(2\text{-chloroethoxy})\text{ethoxy})\text{ethanol (10)}\) was chosen as a starting material. MEM protection of the hydroxy group was performed by the method of Corey et al.127, Scheme 13.

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\(\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{OH}
\end{array}\)}
\node at (2,0) {\(\text{MEMCl}\)}
\node at (4,0) {\(\text{EtN}^+\text{Pr}_2\)}
\node at (6,0) {\(\text{DCM}\)}
\node at (8,0) {\(\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{OMEM}
\end{array}\)}
\node at (10,0) {\(\text{MEM} = \)}
\node at (12,0) {\(\begin{array}{c}
\text{O} \\
\text{O} \\
\text{OCH}_3
\end{array}\)}
\end{tikzpicture}
\end{center}

\textbf{Scheme 13}

The result of this reaction was a very small quantity of product (11) and a mixture of dimers, as indicated by the NMR spectra. Due to the expense of the chlorohydrin (10), another starting material was used in the modification of reaction conditions and testing of the purity of the MEMCl. The hydroxy function of 3-chloro-1-propanol (12) was protected with a MEM group with ease in 98\% yield. This was followed by an exchange reaction to the iodo-compound (14), again using sodium iodide in acetone in good yield, as shown
in Scheme 14.

The moderate yield of the halogen-exchange reaction was explained by the NMR spectra, which indicated that some of the MEM protecting group had been lost, thus making it unsuitable for our reaction sequence. This was unexpected, considering the relatively high stability usually associated with this protecting group.

In a parallel series of experiments, the Wittig reaction was attempted with the model phosphonium salt (9), Scheme 15. However, no enol ether (16) was isolated. The spectra of the recovered material corresponded to the betaine intermediate (15), as illustrated in Scheme 15, or another intermediate compound with a very similar structure. The suspected intermediate compound was redissolved in toluene and heated under reflux for 23 h, but no change was observed. Sodium hydride (0.7 equivalents) and hexamethyldisilazane (HMDS) (0.05 molar equivalents) were added and heating was continued for 24 h, after which there was still no change.

The isolation and identification of an intermediate with a structure related to that of the betaine intermediate indicates that the problem does not lie with the reactivity of the alkylidene part of the phosphorane towards the carbonyl group of the ester function. Rather it is the collapse of the betaine to the enol ether.
and triphenylphosphine oxide. The only difference between this starting material and those described by Bégué et al.124, is the presence of an oxygen atom close to the reacting centre. Assuming that this was in fact the problem, an alternative starting material (22) was synthesised, as illustrated in Scheme 16.
Once again, a protected hydroxy function was desired, and the more robust benzyl ether group was chosen in preference to MEM ether. 1,3-Propanediol (17) was, therefore, a suitable starting place.

Benzyl ether protection of the hydroxy group is usually carried out by rather drastic conditions (e.g. PhCH₂Cl and KOH at 130-140°C) although milder conditions are now appearing. In the case of diols, most methods produce a mixture of mono- and disubstituted derivatives and therefore give lower yields and require separation. However, as shown in Scheme 16, the mono-protected diol (19) was synthesised exclusively. This was accomplished by first making
the acetal (18), 90% yield, followed by reduction with AlCl₃ / LiAlH₄ in ether, with a 94% yield. In this reaction the AlCl₃ acts as a Lewis acid and opens-up the acetal, as shown in Scheme 17. The resulting intermediate is then reduced by AlH₃ (alane) which is formed in situ. The steps to the phosphonium salt (22) were carried out as previously described, all with high yields.

Scheme 17

The Wittig reaction with the phosphonium salt (22) did eventually work after modification of the reaction conditions. This involved increasing the amount of HMDS to a total of 1.2 equivalents and replacing the THF, after 20 h, with toluene to allow a higher reaction temperature. The moderate yield of 46% was comparable to those reported by Bégué et al. for analogous compounds, Scheme 18.

Scheme 18

Following our proposed reaction sequence, the next step involved the
trifluoroacetylation of the enol ether (23) by the general method of Hojo et al.123, Scheme 19. Unfortunately, even with the addition of 4-dimethylaminopyridine and boiling, the enol ether (23) did not react.

\begin{center}
\includegraphics[width=\textwidth]{scheme19.png}
\end{center}

Scheme 19

A possible mechanism for this type of reaction could be that illustrated in Scheme 20. When R = H, as with the examples reported by Hojo et al.123, the reaction would be expected to work. When R = CF\textsubscript{3}, as with our examples, the electron-withdrawing effect of this trifluoromethyl group results in a decrease in the nucleophilicity of the double bond, hence reducing its reactivity towards the electrophilic centre of the acylpyridinium carbonyl group.

\begin{center}
\includegraphics[width=\textwidth]{scheme20.png}
\end{center}

Scheme 20
5.1.4.2 Trifluoroacetylation of Trifluoromethyl Ketones.

The classical method for the synthesis of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) is a Claisen-type reaction described by Henne et al. in 1947. This involved the treatment of ethyl trifluoroacetate with sodium ethoxide in ether followed by the addition of trifluoroacetone, and is shown in Scheme 21.

We anticipated that a substituted derivative of the dione (1) may be attained by replacing trifluoroacetone with a different trifluoromethyl ketone, as illustrated in Scheme 22. This could then be cyclised to the corresponding pyrazole with hydrazine hydrate in the usual way.

Using a simple method similar to that described by Archer et al., 5-methoxy-1,1,1-trifluoropentan-2-one (27) was synthesised, as shown in Scheme 23. This method used relatively harsh reaction conditions and only gave poor yields of the trifluoromethylketone (27). Further, the small amount of product (27) obtained was eventually lost in additional steps of purification. Consequently, another route was sought. The method of Archer et al. was reported in 1979. Since then, a large number of other methods have appeared in the literature and in 1991 a very good and extensive review by Bégué and Bonnet-
Delpon\(^{132}\) was published. Therefore, only the methods actually used in this study will be discussed here.

![Scheme 23](image)

A selection of newer methods available for the synthesis of trifluoromethyl ketones have been investigated. All of these methods had some limitations and problems were encountered with many.

In 1992, Zard et al.\(^{133}\) reported a method of synthesising trifluoromethyl ketones from acid chlorides, which has very recently been updated\(^{134,135}\). The reaction involves generation of a ketene from the acid chloride, which is then trapped with TFAA. Hydrolysis and decarboxylation yields the corresponding ketone, as illustrated in Scheme 24. This procedure was applied to 4-phenylbutanoic acid, which was converted \textit{in situ} to its acid chloride using oxalyl chloride in DCM, Scheme 25.
Unfortunately, a black tar-like mixture was produced following the "work-up" from which no trifluoromethyl ketone (28) could be isolated. Zard et al.133 reported that their procedure was impractical for the acid chloride of 2-phenylethanoic acid. Together with our result, this indicates that this reaction does not tolerate all functionalities.

Problems were also experienced using a method reported by Villuendas et al.136 in 1994. This method involves the lithiation of iodo-compounds with 1.1
equivalents of tert-butyllithium followed by treatment with a trifluoroacetylating agent. This procedure was tested using 1-iodo-3-(phenylmethoxy)propane (21), which was synthesised as described earlier. The attempted trifluoroacetylation is illustrated in Scheme 26.

Scheme 26

Once again, no trifluoromethyl ketone (29) was isolated. This may be due to the presence of an excess of base in the reaction mixture, resulting in lithiation on and around the benzyl moiety or possibly proton extraction from the solvent (ether). Moreover, the primary organolithium derivative initially formed may give rise to an intramolecular cyclisation reaction with the benzyl moiety. Therefore, this procedure proved to be unsuitable for our requirements.

The trifluoroacetylation of an ethyl ether followed by decarboxylation was described earlier in the synthesis of 5-methoxy-1,1,1-trifluoropentan-2-one (27) using the method of Archer et al. The yields in this reaction sequence were not satisfactory. Therefore, modified reaction conditions were developed based on this sequence. A trifluoromethyl ketone with a relatively low volatility for subsequent trial reactions was required. The ethyl ester (30) of 4-phenylbutanoic acid was prepared in the usual way in high yield. The ester (30) was trifluoroacetylated using lithium diisopropylamine (LDA) as the base and ethyl trifluoroacetate as the trifluoroacetyling agent with a very good yield. Decarboxylation of the β-keto ester (31) was carried out using water / lithium chloride as described by Langlois et al. The corresponding trifluoromethylketone (28) was produced in good yield and the reaction sequence is illustrated in Scheme 27.
A very versatile method for making trifluoromethyl ketones is described by Langlois et al.137. This involves the C-alkylation of ethyl 4,4,4-trifluoro-3-oxobutanoate (ETOB) with an alkyl halide, in which the ketone carbonyl of ETOB is masked.

The carbonyl function of ETOB was protected as the dioxole (32) by treatment with sodium ethoxide followed by 2-chloroethanol in 60\% yield. The anion was formed using LDA in HMPA / THF and an attempt to alkylate with the tosylate compound (20) failed, even in the presence of sodium iodide, Scheme 28.
This illustrated that the tosylate was not an adequate leaving group for the reaction and that an iodo-derivative was necessary. The commercially available 1-iodobutane was used to test the reaction. The desired alkylation product (33) was obtained in 84% yield, as illustrated in Scheme 29. The carbonyl group was deprotected using 1.5 equivalents of boron tribromide in hexane to give the β-keto ester (34) in 69% yield. This yield is an estimate from the 1H NMR. Enolisation meant that isolation and purification were difficult and, therefore, the crude material was carried forward to the next step. Decarboxylation was carried out with 1 equivalent of water in the presence of lithium chloride in DMF. Isolation and purification were straightforward at this stage and the trifluoromethyl ketone (35) was obtained in 13% yield, as shown in Scheme 29. The low yield was due to the high volatility of the product (bp 80°C).
At this stage it was realised that boron tribromide would be unsuitable for the deprotection of the ketone in the presence of a benzyl protection group. Therefore, a hydrazone protecting group was used for the ketone. The dimethylhydrazone (36) of ETOB was synthesised using the method of Langlois et al.137 in 77% yield, as illustrated in Scheme 30.

The 2-position of the hydrazone (36) was deprotonated using LDA in HMPA / THF and alkylated with the iodo-compound (21) with a good yield of 61%, as illustrated in Scheme 31.
Deprotection of the ketone was carried out in 81% yield by heating the hydrazone (36) with iodomethane in ethanol : water (95 : 5) for 3 days. Isolation and purification of the alkylated hydrazone (37) and the β-keto ester (38) were difficult, as described earlier for compounds (33) and (34). Column chromatography at each stage did "clean-up" the samples enough to allow relatively good 19F NMR spectra to be recorded. The peaks obtained were in good agreement with those reported by Langlois et al. for compounds with different alkyl chains. This meant that the reaction sequence was carried through to the trifluoromethyl ketone (39) for complete characterisation. The decarboxylation to the trifluoromethyl ketone (39) was carried out using water / lithium chloride in DMF with a 78% yield, as shown in Scheme 32.
This method of synthesising trifluoromethyl ketones was shown to be very versatile and applicable to compounds containing a variety of functionalities. The tumour-selective retention of fluorinated 2-nitroimidazoles has been demonstrated by Maxwell et al. We anticipated that the incorporation of a 2-nitroimidazole group into the pH-probe will allow the accurate determination of pH in hypoxic cells. To investigate whether or not this functionality may be introduced into a trifluoromethylketone, the iodo-derivative (41) was synthesised as illustrated in Scheme 33.
The initial step involved the N-alkylation of 2-nitroimidazole with 1,6-dibromohexane. The imidazole was deprotonated using 1 equivalent of potassium tert-butoxide in DMF at 130°C. Three equivalents of 1,6-dibromohexane were added at ambient temperature followed by further heating at 130°C. This procedure gave a 54% yield of the mono-addition product (40). The bromo-compound (40) was converted to its iodo-derivative (41) by the Finkelstein reaction using sodium iodide in dry acetone, with a high yield of 93%.

The hydrazone (36) was alkylated with the iodo compound (41), followed by deprotection of the ketone and decarboxylation to the corresponding trifluoromethyl ketone (44), as described earlier. For this example, the alkylated hydrazone (42) and the corresponding β-keto ester (43) were isolated with less difficulty and purified to a higher standard but this led to a low yield of 23% for the β-keto ester (43). This was partially compensated for by a high yield of 94% for the decarboxylation step, as illustrated in Scheme 34.
Scheme 34

Since this work was carried out, a method of deprotecting hydrazones of trifluoromethylketones has been reported by Felix et al.138. They used 20% HCl aqueous solution in ether. An example is illustrated in Scheme 35. This
may be a useful alternative to the iodomethane method which was often very long and messy.

Scheme 35

A small quantity of the 2-nitroimidazole trifluoromethylketone (44) was selectively reduced to the corresponding alcohol (45) using 0.5 molar equivalents of sodium borohydride in ethanol, as shown in Scheme 36.

Scheme 36

A number of attempts were made to trifluoroacetylate a trifluoromethyl ketone using a variety of reaction conditions. Firstly, a set of conditions were derived from the synthesis of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) as described by Henne et al. and was discussed earlier. The readily available potassium tert-butoxide was used as the base rather than sodium ethoxide formed in situ from ethanol and sodium. Ethyl trifluoroacetate was used as the trifluoroacetylation agent, ether was used as the solvent and the trifluoromethyl
ketone (39) was used as the substrate, as illustrated in Scheme 37. These reaction conditions failed to produce any of the desired β-diketone (46).

![Scheme 37](image)

The next attempt used LDA as the base in THF and ethyl thiotrifluoroacetate as the trifluoroacetylating agent, as illustrated in Scheme 38. The thio-derivative of ethyl trifluoroacetate was used because it contains a more efficient leaving group. These reaction conditions were also unsuccessful in producing a β-diketone (47).

![Scheme 38](image)
Finally, the base was changed back to potassium tert-butoxide. This was because from trifluoroacetylation reactions using LDA as the base, a colourless crystalline material was recovered which was had signals in the 1H NMR similar to a diisopropylamide and a signal in the 19F NMR consistent with a trifluoroacetamide. The high resolution chemical-impact (CI) mass spectrum showed a major (M + H)$^+$ peak at m/z 197.1027, corresponding to the molecular formula C$_8$H$_{14}$F$_3$NO. This suggests that either LDA or non-lithiated diisopropylamine reacts with the trifluoroacetylating reagent to produce N,N-diisopropyl-2,2,2-trifluoroacetamide. Therefore, to avoid any possible interference of the reaction by this side reaction, LDA was avoided. Lower yields for trifluoroacetylation reactions where LDA was used as the base have been reported139. Further, potassium tert-butoxide is soluble in THF. Again, ethyl thiotrifluoroacetate was used as the trifluoroacetylating agent, as illustrated in Scheme 39. Unfortunately, these reaction conditions failed to trifluoroacetylate the trifluoromethyl ketone (28).

Scheme 39

5.1.4.3 Reduction of β-(Trifluoroacetyl)vinyl Ethers.

Hojo et al.140 described the synthesis of β,β-bis(trifluoroacetyl)vinyl ethers (48), as illustrated in Scheme 40. It was anticipated that selective reduction of the vinylic double bond may be feasible. This would lead to a 3-substituted derivative (49) of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) which could
then be cyclised with hydrazine hydrate to the corresponding pyrazole (50). Furthermore, the ether group of pyrazole (50) is benzylic to the pyrazole ring. Therefore, if necessary, this bond may be cleaved by catalytic hydrogenation without affecting the ring.

To investigate the potential of this reaction sequence, 3,4-dihydro-2H-pyran (51) was trifluoroacetylated with TFAA and pyridine in DCM, as shown in Scheme 41. The 97% yield of this reaction is notably higher than that reported by Hojo et al.141

The trifluoroacetylpuran (52) was used as a model compound of β,β-bis(trifluoroacetyl)vinyl ethers (47), noting that the reduction potential of the two compound types will differ slightly.
Three possible outcomes of the reduction of pyran \((52)\) are illustrated in Scheme 42, the desired product from mono-reduction of the vinylic bond \((53)\), the product from mono-reduction of the ketone \((54)\) and the double-reduction product \((55)\).

Hydrogenation of carbonyl groups to the corresponding alcohol is usually carried out under mild conditions over platinum, Raney nickel or ruthenium. Therefore, these catalysts were not investigated. Hydride reducing agents such as \(\text{LiAlH}_4\) and \(\text{NaBH}_4\) were also avoided. Conversely, palladium is generally not very active for the hydrogenation of ketones. Its selectivity for the vinylic
group of enones has also been reported142.

Various conditions under which 10\% palladium on activated charcoal was used are listed in Table 2, together with other methods to be discussed later.

<table>
<thead>
<tr>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Pd / C, H\textsubscript{2} / CH\textsubscript{3}OH / R.T.</td>
<td>(55) in 98% yield</td>
</tr>
<tr>
<td>(b) Pd / C, H\textsubscript{2} / hexane / THF / R.T.</td>
<td>(55) in 100% yield</td>
</tr>
<tr>
<td>(c) Pd / C, H\textsubscript{2} / CH\textsubscript{3}OH / -78\degree C to -0\degree C</td>
<td>(55) in 100% yield</td>
</tr>
<tr>
<td>(d) Pd / C, H\textsubscript{2} / CH\textsubscript{3}OH / CH\textsubscript{3}CO\textsubscript{2}K / R.T.</td>
<td>(55) in 76% yield</td>
</tr>
<tr>
<td>(e) Bu\textsubscript{3}SnH / CuI / LiCl / THF / N\textsubscript{2}</td>
<td>starting material (52) recovered</td>
</tr>
<tr>
<td>(f) aqueous TiCl\textsubscript{3}</td>
<td>starting material (52) recovered</td>
</tr>
</tbody>
</table>

Table 2

Firstly, a general reduction in methanol at ambient temperature was carried out, entry (a). After 4 h, none of the starting material (52) was visible by t.l.c. Under these conditions, both the vinylic double bond and the carbonyl group were reduced to give the alcohol (55) in 98\% yield. Under these conditions, the reduction of a ketone would not be expected to occur142. If the first step of this double reduction involves the reduction of the vinylic double-bond to give ketone (53), then enolisation may occur, followed by further reduction. Thus, a second reduction could effectively remove the ketone functionality to give the alcohol (55). This mechanism is illustrated in Scheme 43. Further, the NMR spectra showed the presence of both diastereoisomers of alcohol (55).

Hydrogenation of an unsaturated compound takes place by adsorption of the compound onto the catalyst surface, followed by transfer of hydrogen from the catalyst to the molecule which is adsorbed onto it. When two functionalities are being reduced, there are two possible mechanisms. (i) The compound may be adsorbed onto the catalyst, during which both of the functionalities are reduced. (ii) The compound may be adsorbed onto the catalyst and one of the two functionalities is reduced, followed by desorption and then readsoption to
reduce the second functionality. This information together with the NMR data suggests that the two reduction steps were probably not simultaneous.

\[
\begin{align*}
\text{(52)} & \quad \text{[H]} \quad \text{(53)} \\
\text{(55)} & \\
\end{align*}
\]

Scheme 43

Attempts were made to reduce the amount of enolisation and to allow the isolation of the desired ketone (53). To investigate the effects of solvent polarity on the extent of enolisation, a similar reaction was carried out in hexane, using a small amount (5\%) of THF to aid solvation, entry (b). This produced the alcohol (55) in quantitative yield and in only 0.5 h.

The effect of temperature on the degree of enolisation was also investigated, entry (c). It was anticipated that lowering the temperature of the reaction mixture would reduce the rate of enolisation of the ketone (53) and allow the isolation of the ketone or, at least, allow the intermediate to be viewed by t.l.c.. The reaction was begun at -78\(^\circ\)C and maintained at this temperature for 3 h, after which t.l.c. indicated mostly starting material (52) together with a material with the same R\(_f\) value as the alcohol (55). The temperature of the reaction mixture was allowed to rise in 10\(^\circ\)C increments over a 3 h period, however, t.l.c. indicated little change until -10\(^\circ\)C was reached. No other spots appeared on the t.l.c. plate during this period and after 0.5 h at -10\(^\circ\)C, t.l.c.
indicated that there was no starting material (52) left. From the reaction mixture was isolated the alcohol (55) in quantitative yield.

The effect of the presence of potassium acetate on the selectivity of a reduction with Pd / C was briefly investigated. This approach also proved to be unsuccessful and the alcohol (55) was isolated in 76% yield, entry (d).

Another method of selective reduction investigated was with low-valent titanium species. Titanium (iii), conveniently available as TiCl₃, is a mild reducing agent in aqueous solution. The reagent has found particular use in the selective reduction of ene-diones, as illustrated in Scheme 44. Reactions such as those illustrated are usually complete within 0.25 h at ambient temperature. However, these conditions do not work for diesters, presumably because of the more negative reduction potential of esters versus ketones. In the case of the trifluoroacetylpyran (52), the α,β-unsaturated ketone portion of the compound favours this reaction, but the enol ether portion does not. The treatment of the trifluoroacetylpyran (52) with aqueous TiCl₃ resulted in the recovery of the starting material, entry (f) in Table 2. This suggests that the
The reduction potential of the trifluoroacetylpyran (52) is too negative for these conditions.

The selective reduction of \(\alpha,\beta \)-unsaturated ketones has been reported146 using \textit{in situ} generated hydridocuprates. The trifluoroacetylpyran (52) was treated with a mixture of \(\text{Bu}_3\text{SnH}, \text{CuI} \) and \(\text{LiCl} \) in DMF, however, only starting material was recovered, entry (e). The active reagent formed from this combination of reagents is thought to be a hydridohalocuprate species (56) arising as shown in Scheme 45146.

\[
\text{CuI} + \text{Bu}_3\text{SnH} \xrightarrow{\text{LiCl}} \text{X(H)CuLi} + \text{Bu}_3\text{SnX}
\]

\(\text{X} = \text{Cl, I} \)

\[
\text{Scheme 45}
\]

5.1.4.4 Synthesis of 3-(Dimethylaminomethylene)-1,1,1,5,5,5-hexafluoro-2,4-dione and Related Compounds.

The reason for the failure of attempted C-alkylations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) was attributed to the high stability of the easily formed anion due to the strong inductive effect of the two trifluoromethyl groups. Hannock \textit{et al.}147 reported a similar problem with the reaction of bis(perfluoroalkanesulphonyl)methanes (57) with aldehydes and
ketones (58), as illustrated in Scheme 46.

This problem was recently addressed by Zhu148. It was reported that bis(perfluoroalkanesulphonyl)methanes (57) may be condensed with aromatic aldehydes (59) in acetic anhydride to give 1-aryl-2,2-bis(perfluorosulphonyl)-ethylenes, as shown in Scheme 47. Furthermore, it was demonstrated148 that the carbon-carbon double bond in the condensation product (60) is very polar due to the strong electron-withdrawing groups. This should allow the addition of a nucleophile. So far, this has been demonstrated using dimethylphosphite as the nucleophile in benzene, Scheme 47.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Scheme_47}
\caption{Scheme 47}
\end{figure}

It was anticipated that 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) would condense with carbonyl compounds in a similar fashion to the bis-sulphonyl compounds (57) and subsequently undergo addition reactions with nucleophiles. This should lead to a 3-substituted derivative of dione (1) which
could then be cyclised with hydrazine hydrate to the corresponding pyrazole.

It was noted from the work of Zhu148 that the presence of an electron-withdrawing substituent in the 4-position of the aromatic ring led to lower yields of the condensation product (60). The carbonyl group of dimethylformamide (61) is relatively electron rich due to the positive mesomeric effect of the dimethylamino group. Therefore, to examine the required electrophilicity of the carbonyl compound, an equimolar mixture of the dione (1) and dimethylformamide (61) were heated in acetic anhydride for 16 h. A low melting yellow solid was isolated from the reaction mixture, which was shown to be 3-(dimethylaminomethylene)-1,1,5,5,6-hexafluoropentan-2,4-dione (62). The condensation product (62) was obtained with an excellent yield of 95% and the reaction is illustrated in Scheme 48.

![Scheme 48](image)

A possible mechanism for the reaction is illustrated in Scheme 49. An extensive NMR study has been carried out on the dione (62). The NMR data suggest that the structure of the condensation product (62) is closer to that of compound (63), which is also illustrated in Scheme 49.
The 1H NMR spectrum at 20°C in (CD$_3$)$_2$SO showed two sharp singlets at 2.78 and 3.54 ppm, corresponding to the two methyl groups. At 100°C, these signals became very broad and moved together slightly to resonate at 2.84 and 3.51 ppm. When 150°C was reached, the signals coalesced into a broad singlet resonating at 3.05 ppm. These data are illustrated in the 1H NMR spectra shown in Figure 26. As can be seen, there is an impurity visible in the 1H NMR spectra. The samples examined at high temperature were also examined at ambient temperature before and after raising the temperature. This was to evaluate the effects of high temperatures on the dione (62) when dissolved in (CD$_3$)$_2$SO. This indicated no significant further decomposition. It appears that the dione (62) may be sensitive to moisture, as reported by Zhu148 for the sulphonyl analogues (60). It would have been interesting to evaluate the potential of this compound to act as a 19F NMR pH-sensor. Unfortunately, this was not possible due to its moisture-sensitivity.

The 19F NMR spectrum of dione (62) at 21°C in CDCl$_3$ showed a sharp singlet
at -73.39 ppm. At -50°C, the singlet broadened and resonated at -72.94 ppm. In d_6-THF at 20°C, the sharp singlet was observed at -73.16 ppm. d_6-THF allowed the NMR to be run at -90°C, where the signal became very broad and resonated at -72.6 ppm. These data are illustrated in the 19F NMR spectra shown in Figure 27.

These data show that rotation about the newly formed carbon-carbon bond of the dione (62) is less restricted than rotation about the C-N(CH$_3$)$_2$ bond. A temperature of 150°C was required before the two separate signals for the two methyl groups would coalesce. If this is taken to be the coalescence temperature (T_c), then the free energy for the activation for the rotation (ΔG^\ddagger) may be calculated using Equation 3149. Where, T_c is expressed in Kelvin, R is the gas constant and $\Delta \nu$ is the frequency separation of the individual sharp lines at ambient temperature.

$$\Delta G^\ddagger = R \cdot T_c \left[23 + \ln(T_c/\Delta \nu) \right]$$

Equation 3

Thus, the free energy of activation for the rotation about the C-N(CH$_3$)$_2$ bond in dione (62) is approximately 81.92 kJmol$^{-1}$. It may also be assumed that the free energy of rotation for the carbon-carbon bond is less than this value.
Figure 26. 1H NMR spectra of dione (62) at 20.5°C (A), 100°C (B) and 150°C (C).
Figure 27. 19F NMR spectra of dione (62) at 20.6°C (A), -50.1°C (B) and -90.2°C (C).
Table 3

The general reaction illustrated in Scheme 50 was attempted with a variety of carbonyl-containing compounds (64), as listed in Table 3. Two major possible outcomes of the reaction could be the formation of the desired condensation product (65) or the formation of the corresponding acetal (66). Most of the carbonyl compounds (64) were chosen for testing the limitations of the reaction.

If a trifluoromethyl-containing aromatic group could be incorporated into the dione adduct (65), then it would serve as a relatively pH-insensitive reference.
peak in the 19F NMR spectrum. From the treatment of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) with 4-trifluoromethylbenzaldehyde in acetic anhydride was isolated a compound containing only one trifluoromethyl signal in the 19F NMR spectrum and a 1H NMR spectrum which suggested that the acetal (66) had formed, entry (a) in Table 3. The trifluoromethyl group in 3-trifluoromethylbenzaldehyde should have less of an electron-withdrawing effect on the aldehyde. However, this also led to the isolation of its corresponding acetal (66) under the same reaction conditions, entry (b).

Aliphatic aldehydes were also examined, entries (c-e) in Table 3. These compounds also failed to condense onto the dione (1), as indicated by their 19F NMR spectra. Once again, the corresponding acetals were shown by the 1H NMR spectra. The aliphatic aldehyde for entry (e) was synthesised by the mono-benzylation of 1,4-butanediol (67), followed by a Swern oxidation of the alcohol (68) to the aldehyde (69), both with very good yields, as illustrated in Scheme 51. Swern oxidations involve the use of an activated DMSO reagent. The most popular activator of DMSO is oxalyl chloride and the suitability of this reagent for the conversion of alcohols to aldehydes was demonstrated by the quantitative yield obtained here.
The more electron-rich carbonyl group of 4-benzyloxybenzaldehyde showed a much higher reactivity towards the dione (1), entry (f). The reaction mixture was carefully distilled and the \(^1\)H NMR spectra of the fractions did not show the presence of the corresponding acetal (66). The \(^19\)F NMR confirmed that the aldehyde had reacted with the dione (1), but showed a mixture of adducts. The mixture was examined by t.l.c. using a large number of solvent systems. However, most of the compounds were present as streaks. An attempt was made to separate the mixture by column chromatography, but no individual compound could be isolated. Closer inspection of the \(^1\)H and \(^19\)F NMR spectra suggested that a condensation reaction had occurred between the aldehyde and the dione (1), together with intramolecular cyclisation reactions involving the benzyl groups.

2-Thiophenecarboxaldehyde also reacted with the dione (1), entry (g). The \(^1\)H NMR spectra of the distillation fractions did not indicate the presence of an acetal (66). The \(^19\)F NMR spectra confirmed that a reaction had taken place, but showed the presence of a large number of adducts. Unfortunately, the mixture could not be separated by distillation or chromatography.

Finally, the reactivity of trifluoroacetophenone was examined, entry (h). This failed to react with the dione (1), as shown by \(^19\)F NMR, and the \(^1\)H NMR spectrum indicated the presence of the corresponding acetal (66).

5.1.5 The Reaction of 1,1,1,5,5,5-Hexafluoropentane-2,4-dione with Substituted Hydrazines.

McCleverty et al.\(^{112}\) have reported the synthesis of 3,5-bis(trifluoromethyl)-pyrazole (2). In the same report, the synthesis of 1-aryl and 1-aroyl-3,5-bis(trifluoromethyl)pyrazoles (76-79) was claimed by the reaction of substituted hydrazines (70) with 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) in
boiling ethanol. Since it is difficult to rationalise the spectroscopic data reported112 with the aromatic pyrazole claimed, and there are reports117,151 that 5-hydroxy-4,5-dihydropyrazoles are often isolated when the nitrogen atom is substituted with an electron-withdrawing group, a re-investigation of the reaction of dione (1) with hydrazines (70) was undertaken, as illustrated in Scheme 52.

\begin{align*}
\text{F}_3\text{C} & \quad \text{O} \quad \text{O} \\
\text{CF}_3 & \\
(1) & \\
C_2\text{H}_5 & \\
\text{reflux} & \\
\text{RNHNH}_2 & \\
(70) & \\
\end{align*}

Scheme 52

The synthesis of 3,5-bis(trifluoromethyl)pyrazole (2) from the treatment of dione (1) with hydrazine hydrate in boiling ethanol was discussed earlier. The 1H NMR is consistent with an aromatic pyrazole structure. The 4-H atom gives a resonance at 6.95 ppm, which is slightly broadened by coupling to fluorine. Only one 19F NMR signal is evident in pyrazole (2), owing to rapid site
exchange of the NH proton. The electron-impact (EI) mass spectrum of this pyrazole shows an abundant molecular ion at \(m/z \) 204, with no evidence of ions at higher mass (e.g. \(m/z \) 222 for the hydroxydihydropyrazole structure).

However, the \(^1\)H NMR spectra of the heterocycles formed from dione (1) and the substituted hydrazines (70) showed no signal in the region expected for the 4-H atom of an aromatic pyrazole (5.8-7.2 ppm)

McCleverty et al.\(^{112}\) also report no signals in this region but claim that 4-H resonates at approximately 3.6 ppm; no integral or multiplicity data were given. The extensive study by Tensmeyer and Ainsworth\(^{153}\) of substituent effects on the chemical shifts of pyrazoles does not support this assignment. In our work, the signals in the region 3-4 ppm comprised two doublets, the integral of each doublet corresponding to one proton. The coupling constants between these doublets were >14 Hz, typical values for geminal coupling. Thus these signals can be assigned to a prochiral CH\(_2\) group in an asymmetric environment. Broad resonances due to OH were also observed. On the bases of these data, the hydroxydihydropyrazole structures (72-75) are proposed rather than the pyrazoles (76-79) claimed\(^{112}\).

The EI mass spectra of the 5-hydroxydihydropyrazoles (72-75) at 70 eV ionisation energy revealed abundant molecular ions. The molecular ion of 1-benzoyl-3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxypyrazole (74) was present in the EI spectrum only at 1% abundance but abundant ions were observed at \(m/z \) 326 (M) in the CI spectrum and at \(m/z \) 327 (M + H) in the positive ion fast atom bombardment (FAB) spectrum. Dehydration was not favoured (giving M - 18) but loss of \(\cdot \text{CF}_3 \) gave highly abundant peaks at (M - 69) in all cases. The reported interpretation\(^{112}\) of similar data, representing the ions at highest mass as molecular clusters of (pyrazole + H\(_2\)O), is unlikely under EI conditions.

Various conditions for the dehydration of 5-hydroxy-4,5-dihydropyrazoles (72-
75) to the corresponding pyrazoles (76-79) were investigated. Dehydration of 3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(4-nitrophenyl)pyrazole (72) was achieved by treatment with a small quantity of acid in boiling ethanol for 4 days. This method proved to be very effective for this example and the corresponding pyrazole (76) was obtained in high yield, as illustrated in Scheme 53. The presence of the acid will favour the protonation of the hydroxy group, creating a better leaving group.

\[
\begin{align*}
\text{HCl} \\
\text{C}_2\text{H}_5\text{OH} \\
\text{reflux/4d} \\
\text{Yield 96%}
\end{align*}
\]

For 3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(pentafluorophenyl)-pyrazole (73), the presence of acid did not lead to dehydration. Therefore, an alternative method was investigated involving a better leaving group. The hydroxypyrazole (73) was treated with acetic anhydride and acetic acid under reflux for 16 hours. The corresponding pyrazole (77) obtained in good yield, as illustrated in Scheme 54. These reaction conditions led to the conversion of the hydroxy group to an acetoxy group which acts as an efficient leaving group for the dehydration.
For the dehydration of 1-benzoyl-3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxypyrazole (74), relatively non-nucleophilic conditions are required. Consider the mechanism illustrated in Scheme 55.

The ability of a nucleophile to attack the carbonyl group is affected by the pKₐ of the resulting anionic leaving group. The pKₐ of 3,5-bis(trifluoromethyl)pyrazole (2) is 7.55 at 25°C (see Chapter 8). This value may be compared to p-nitrophenol, which is known to be a good leaving group and has a pKₐ value of 7.15. It was anticipated that formation of the mesylate of hydroxypyrazole (74) would allow dehydration to occur, without elimination of the pyrazole. Thus, hydroxypyrazole (74) was treated with triethylamine and methane sulphonyl chloride in DCM, as illustrated in Scheme 56. A large mixture of products was obtained, but none of the corresponding acylpyrazole (78) was isolated. It is likely that the acylpyrazole (78) may have been made but was degraded during the "work-up".
However, similar reaction conditions did lead to the dehydration of 3,5-bis(trifluoromethyl)-4,5-dihydro-1-(2,4-dinitrophenyl)-5-hydroxypyrazole (75) to the corresponding pyrazole (79), as illustrated in Scheme 57.

5.2 Trifluoromethylpyrazoles.

5.2.1 4-Alkyl-3(5)-Trifluoromethylpyrazoles.

In Section 5.1.4.3, the synthesis of 5-trifluoroacetyl-3,4-dihydro-2H-pyran (52) by the trifluoroacetylation of 3,4-dihydro-2H-pyran was described and is illustrated in Scheme 41. It was observed that trifluoroacetylpuran (52) contains a masked 1,3-diketone. Condensation of trifluoroacetylpuran (52) with hydrazine hydrate produced 3-(trifluoromethyl)pyrazole-4-propanol (80) in high yield, as illustrated in Scheme 58. Furthermore, this condensation revealed a ω-hydroxyalkyl function as a leaving group, thus obviating the need
for earlier introduction and possible protection of the hydroxy group. The trifluoromethylpyrazole (79) has a single resonance peak in the 19F NMR which is sensitive to pH. The pK$_a$ value was determined by 19F NMR to be 12.07 at 25°C (see Chapter 8). To ensure that the hydroxy group could be derivatised without interference from the pyrazole, the corresponding benzoate ester (81) was formed in the usual way, as illustrated in Scheme 58.

Since this work was carried out, Tang and Hu154 have reported the synthesis of 3-(trifluoromethyl)pyrazole-4-propanol (80) by the addition of the expensive iodopentafluoroethane across the enol ether of 3,4-dihydro-2H-pyran, in the presence of sodium dithionitrite, and treatment of the pentafluoroethyl-tetrahydropyran with hydrazine.
It was anticipated that 3-trifluoroacetyl-4,5-dihydrofuran (82) would undergo a condensation reaction with hydrazine hydrate, analogous to that performed by 5-trifluoroacetyl-3,4-dihydro-2H-pyran (52). The trifluoroacetylfuran (82) was synthesised by the treatment of 2,3-dihydrofuran with TFAA and pyridine in DCM. However, treatment of the five-membered ring compound with hydrazine did not give the expected pyrazoleethanol (84) directly. Under essentially the same conditions as described for trifluoroacetylpryan (52), a quantitative yield of the dimer (83) was formed. In this dimer, one molecule of the fully condensed aromatic pyrazole (84) has intercepted another molecule where the elimination of water from the intermediate is not complete. It is noteworthy that no material could be isolated where ethanol, rather than the pyrazoleethanol (84), has reacted as the incoming nucleophile, despite the much higher concentration of the former. The dimer (83) readily formed the target trifluoromethylpyrazole (84) upon reflux in the presence of a trace of acid, as illustrated in Scheme 59.

![Scheme 59](image-url)
In a control experiment, it was demonstrated that pyrazole (84) was not converted into the dimer (83) under the condensation conditions. This indicates that the dimer had not been formed from two molecules of the trifluoromethylpyrazole (84). The pKₐ value of trifluoromethylpyrazole (84) was determined by ¹⁹F NMR to be 11.97 at 25°C (see Chapter 8).

5.2.2 3-Alkyl-5-Trifluoromethylpyrazoles.

In an approach to 3-alkyl-5-trifluoromethylpyrazoles, ring formation from hydrazine and an α,β-acetylenic ketone was investigated. In this case, it was not possible to design a process in which the hydroxyalkyl group was revealed during the condensation reaction and it was necessary to assemble an appropriate trifluoromethyl ketone containing the alcohol in a protected form. Butan-3-ynol (85) was protected as its TBDPS ether (86), essentially by the method of Delome et al. This allowed formation of the acetylenic carbanion by treatment with butyl lithium at low temperature. Addition of 2,2,2-trifluoroethyl trifluoroacetate as the electrophile afforded the TBDPS-protected acetylenic trifluoromethylketone (88) in high yield. Other electrophilic trifluoroacetylation agents, such as trifluoroacetic anhydride, ethyl trifluoroacetate and ethyl thiotrifluoroacetate were considerably less effective. Condensation of this ketone (88) with hydrazine hydrate formed the TBDPS-protected pyrazole-5-ethanol (90) in virtually quantitative yield. Unexpectedly, however, it proved impossible to remove the silyl protecting group with fluoride under any conditions under which the product hydroxyethylpyrazole (92) could be isolated, as illustrated in Scheme 60. Repetition of the sequence using O-benzyl-protection was more successful. The alcohol (86) was benzylated, essentially by the method of Johnson et al., to give the ether (87). As before, formation of the acetylenic anion and trifluoroacetylation, with 2,2,2-trifluoroethyl trifluoroacetate, gave the ketone (89) in very high yield. Condensation with hydrazine hydrate in boiling ethanol afforded the protected 3,5-disubstituted pyrazole (91). Exposure of the hydroxy group was effected
by hydrogenation under acidic conditions to afford the target trifluoromethylpyrazoleethanol (92) with substituents in the desired 3,5-arrangement, as illustrated in Scheme 60. The pKₐ value of trifluoromethylpyrazole (92) was determined by 19F NMR to be 12.79 at 25°C (see Chapter 8).

![Scheme 60]

The reaction sequences towards the synthesis of 4-substituted-3,5-bis(trifluoromethyl)pyrazoles were generally unsuccessful. The deactivating nature of a trifluoromethyl group was a hindrance in many of the reactions. The condensation reactions of carbonyl compounds with 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1) were carried out towards the end of this study and are probably the most promising development towards the synthesis of a 3-substituted derivative of dione (1). The synthesis of trifluoromethylpyrazoles has been much more successful. Convenient and generally high yielding synthetic routes have been developed to trifluoromethylpyrazoles carrying ω-hydroxyalkyl substituents.

106
CHAPTER SIX

6. 2-(Trifluoromethyl)benzimidazoles and 2-(Trifluoromethyl)imidazopyridines.

Smith et al.157 have reported the synthesis of 2-(trifluoromethyl)benzimidazole (93) from the condensation reaction of the corresponding diamine with trifluoroacetic acid (TFA), as illustrated in Scheme 61.

\begin{center}
\begin{tikzpicture}
\node (a) {\textbf{Scheme 61}};
\node (b) at (0,0) {\textbf{amine} \hspace{1cm} \textbf{TFA} \hspace{1cm} \textbf{amine}};
\node (c) at (0,0.5) {\textbf{amine} \hspace{1cm} \textbf{TFA} \hspace{1cm} \textbf{amine}};
\node (d) at (0,-0.5) {\textbf{amine} \hspace{1cm} \textbf{TFA} \hspace{1cm} \textbf{amine}};
\node (e) at (0,1) {\textbf{amine} \hspace{1cm} \textbf{TFA} \hspace{1cm} \textbf{amine}};
\node (f) at (0,-1) {\textbf{amine} \hspace{1cm} \textbf{TFA} \hspace{1cm} \textbf{amine}};
\end{tikzpicture}
\end{center}

The acidic pK\textsubscript{a} value of 2-(trifluoromethyl)benzimidazole (93) was reported158 to be 8.13. This value is too alkaline to act as a pH sensor in biological systems. It was anticipated that inclusion of a fluorine atom or a trifluoromethyl group into the benzene ring may lower the pK\textsubscript{a} value closer to the physiological pH range. Smith et al.157 described the synthesis of 5-fluoro-2-(trifluoromethyl)benzimidazole (94) by the condensation reaction of the corresponding diamine with TFA in the presence of aqueous dilute acid. They157 obtained the benzimidazole (94) with a low yield (32\%). A much improved set of reaction conditions for the synthesis of the benzimidazole (94) and related compounds has been devised.

4-Fluorobenzene-1,2-diamine was heated with TFA under reflux for 5 days. The excess TFA was removed by evaporation. 1H and 19F NMR indicated the presence of partial condensation products. Therefore, the crude material was sublimed at high temperature to complete the condensation. This straightforward method produced 5-fluoro-2-(trifluoromethyl)benzimidazole.
(94) in high yield, as illustrated in Scheme 62.

![Scheme 62]

Using similar reaction conditions, 2,5-bis(trifluoromethyl)benzimidazole (95) was synthesised in very high yield, as illustrated in Scheme 63.

![Scheme 63]

Unfortunately, both of these benzimidazoles (94, 95) were insufficiently soluble in aqueous media to allow determination of the pKₐ values by ¹⁹F NMR.

It was predicted that 2-(trifluoromethyl)imidazopyridines may have appropriate pKₐ values and have better solubilities in water. 2-(Trifluoromethyl)imidazo-[4,5-b]pyridine (96) and 2-(trifluoromethyl)imidazo[4,5-c]pyridine (97) where synthesised by condensation of the corresponding diamine with TFA. Once again, pyrolysis was necessary to complete the elimination and both compounds were obtained in very high yield, as illustrated in Scheme 64. As predicted, both compounds were sufficiently soluble in aqueous media to allow determination of their pKₐ values by ¹⁹F NMR, as shown in Scheme 64 (see Chapter 8).
Doherty159 reported briefly the synthesis of 2,6-bis(trifluoromethyl)imidazo-[4,5-b]pyridine (99), as illustrated in Scheme 65.

They159 implied that the mono-trifluoroacetylated intermediate (98) is isolated before pyrolysis in aqueous acid to form the imidazopyridine (99).
A high yielding set of reaction conditions have been developed for the synthesis of 2-(trifluoromethyl)benzimidazoles and 2-(trifluoromethyl)-imidazopyridines. The pKₐ values of the imidazopyridines (96, 97) are very promising. Furthermore, both sets of compounds have many positions available for attachment of other substituents, such as groups to modulate the pKₐ value and groups to increase the solubility in aqueous media. Therefore, 2-(trifluoromethyl)benzimidazoles and 2-(trifluoromethyl)imidazopyridines are ideal candidates for further development as ¹⁹F NMR pH-sensors. It is unfortunate that this work was carried out towards the end of the study.
CHAPTER SEVEN

7. Triazoles, Imidazoles and Pyrroles.

7.1 Triazoles.

A 1,2,4-triazole bearing trifluoromethyl groups in the 3- and 5-positions would provide a symmetrical compound with 6 fluorine atoms which would be equivalent in the 19F NMR spectrum. A functionalised substituent could occupy the N-4 position without affecting the symmetry. The synthesis of symmetrical 3,5-bis(trifluoromethyl)-4-alkyl-1,2,4-triazoles has been described by Reitz and Finkes160. The technique involves the synthesis of 2,5-bis(trifluoromethyl)-1,3,4-oxadiazole (101) from the corresponding diacylhydrazine (100), followed by condensation with a suitable amine. In a modification of the technique used by Reitz and Finkes160, 1,2-bis(trifluoromethyl)hydrazine (100) was cyclised to form the oxadiazole (101) in good yield by dehydration with phosphorus pentoxide at high temperature, as illustrated in Scheme 66. The pyrolysis is carried out without the use of solvent. Therefore, it is essential that the reactants are intimately mixed.

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{O} \\
\text{O} & \quad \text{C}_2\text{H}_5
\end{align*}
\quad \xrightarrow{(i) \text{N}_2\text{H}_4\cdot\text{H}_2\text{O}}
\quad \frac{\text{C}_2\text{H}_5\text{OH} / \text{K}_2\text{CO}_3}{\text{H}^+}
\quad \xrightarrow{(ii) \text{TFA} / \text{TFAA}}
\quad \text{H}
\quad \text{N}
\quad \text{N}
\quad \text{O}
\quad \text{CF}_3

\text{(100)}
\]

\[
\xrightarrow{\text{P}_2\text{O}_5, \ 300^\circ\text{C}}
\quad \text{Yield 73%}
\]

\[
\begin{align*}
\text{N} & \quad \text{N}
\end{align*}
\quad \text{O}
\quad \text{CF}_3

\text{(101)}
\]

Scheme 66
Other methods for the synthesis of oxadiazoles from the corresponding diacyl hydrazines have been reported161,162. The use of \(\text{SO}_3 \) (in oleum) as the dehydrating agent has been described by Vasilier \textit{et al.}161. Milder conditions have been reported by Sitzman \textit{et al.}162 for the synthesis of \(\text{SF}_5 \) containing 1,3,4-oxadiazoles, which should be applicable to trifluoromethyloxadiazoles. These conditions involve dehydration with either phosphorus pentachloride and / or phosphorus oxychloride in refluxing DCM. The techniques described above avoid the use of high temperatures. This may be desirable in the presence of certain functional groups.

As with all fluorinated heterocycles in this report, it was desirable to introduce a functionalised substituent into the triazole. At first, a condensation reaction between the oxadiazole (101) and unprotected 2-(2-aminoethoxy)ethanol (102) was attempted. This resulted in the isolation of N-(2-(2-hydroxyethoxy)ethyl)-2,2,2-trifluoroacetamide (104) rather than the desired triazole (103), as illustrated in Scheme 67.

\[\text{N—N (101)} + \text{H}_2\text{N—O—C(CH}_3\text{)OH (102)} \rightarrow \text{N—N (103)} \]

\[\text{CH}_3\text{OH / reflux} \]

\[\text{In the presence of TFA} \]

\[\text{Yield 96€} \]

Scheme 67

It is likely that acetamide (104) was produced from the reaction of the amine
with TFA (either residual or a decomposition product). To avoid possible interference in the reaction from the hydroxy group, an O-protected hydroxyalkylamine was synthesised. Once again, the relatively robust benzyl protection group was chosen. 3-Benzhydroxypropyamine was synthesised from the mono-O-benzyl-protected propane-1,3-diol (19). Activation of the alcohol as the tosylate (20) was achieved as described earlier and illustrated in Scheme 16. Substitution with the anion derived from trifluoroacetamide served to introduce the nitrogen atom, giving N-(3-(phenylmethoxy)propyl)-2,2,2-trifluoroacetamide (105) in very high yield. Selective hydrolytic deprotection under basic conditions afforded the required O-benzyl-protected hydroxypropylamine (106) in good yield, as illustrated in Scheme 68.

![Scheme 68](image)

The amine (106) was condensed with the oxadiazole (101) with a yield which is comparable to those reported by Reitz and Finkes for other 4-substituted
3,5-bis(trifluoromethyl)-1,2,4-triazoles. Exposure of the hydroxy group was effected by hydrogenation under acidic conditions to afford 3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (108) in high yield, as illustrated in Scheme 69.

![Scheme 69](image)

Triazole (108) gave a single resonance peak in the 19F NMR spectrum. The position of the peak was sensitive to pH, but only over a very narrow chemical shift range. Furthermore, the pK$_a$ of the conjugate acid was estimated to be approximately 4, which is too acidic for the pH-sensor requirements (see Chapter 8).
A mono-trifluoromethyltriazole could have a more appropriate pK$_a$ value and may show a greater sensitivity in its 19F chemical shift to pH (c.f. the greater pH-sensitivity shown by mono-(trifluoromethyl)pyrazoles (80, 84, 92) compared to bis(trifluoromethyl)pyrazole (2)). The synthesis of a trifluoromethyltriazole was briefly investigated towards the end of this study. Unsymmetrical 1,2,4-triazoles are commonly made by thermal condensation of an acylhydrazine with a (thio)amide (the Pellizzari reaction163) or by condensation of a diacrylamide with hydrazine (the Einhorn-Brunner reaction164). It was anticipated that the synthesis of trifluoromethyltriazole (111) could involve the reaction of trifluoroacetylhydrazine (109) with thiobenzamide (110), as illustrated in Scheme 70. Unfortunately, none of the desired triazole (111) was isolated under these conditions.

Scheme 70

7.2 Imidazoles.

An imidazole bearing a trifluoromethyl group in the 2-position and a functionalised substituent in the 5-position was required for evaluation as a 19F NMR pH-sensor. The synthesis of 2-trifluoromethylhistamine (114) has been
reported by Cohen et al.165 involving Bamberger cleavage of histamine (112), followed by cyclisation with boiling TFAA and acid-catalysed hydrolysis of the side chain benzamide. Cohen et al.165 also noted the formation a major unidentified side-product. An attempt to reproduce this reaction led to the isolation and characterisation of the side product as a trifluoromethyl-4-alkenyloxazole which is formed by an interesting alternative cyclisation, as illustrated in Scheme 71.

As expected166, Bamberger fragmentation of histamine (112) gave \textit{S}-1,2,4-tris(benzamido)butene (113). Treatment with boiling TFAA, followed by methanol, gave a poorly soluble solid in moderate yield. The high resolution Cl mass spectrum showed a major (M + H)$^+$ peak at m/z 492.1535, corresponding to the molecular formula C$_{27}$H$_{20}$F$_3$N$_3$O$_3$. 19F NMR showed only one singlet at δ -58.89; thus one trifluoromethyl group or two equivalent trifluoromethyl groups are present. The 1H NMR spectrum revealed the presence of only one CH$_2$ (δ 4.19) and one alkene proton, along with fifteen aromatic protons and
two NH protons. Hence one of the CH$_2$ of the triamide (113) has become involved in the reaction. A 1H-1H COSY spectrum indicated coupling from the CH$_2$ to the vinylic-H and the upfield NH, as illustrated in Figure 28. No coupling was evident between the alkene-H and either NH. These data show compound (115) to have the alkenyloxazole structure shown. A 1H-1H NOESY experiment gave a cross peak between the downfield NH (δ 10.5) and the CH$_2$ showing Z stereochemistry about the carbon-carbon double bond, as shown in Figure 28.

Figure 28. 1H-1H COSY and NOESY correlations of alkenyloxazole (115).
Figure 29. H-F NOE correlations of alkenyloxazole (115).

An NOE enhancement was observed in the ^{19}F signal of the trifluoromethyl group on irradiation at the ^1H frequency of the alkene-^1H but not on irradiation at the ^1H frequency of the CH_2, which corroborated this structural assignment, as illustrated in Figure 29. The converse NOE experiment, involving irradiation at the δ_F of the trifluoromethyl group, showed enhancement of the ^1H signals of the downfield NH, the vinylic-^1H and, more weakly, to the 2,6-$^1\text{H}_2$ of one benzamide, shown in Figure 29.
To rationalise this unexpected cyclisation, a mechanism such as that shown in Scheme 72 is proposed. Acylation of the triamide (113) at the more sterically accessible enamine position is followed by nucleophilic attack of the amide oxygen on the trifluoromethyl ketone. Trifluoroacetylation of the tetrahedral intermediate at oxygen provides an excellent leaving group for the 1,4-elimination to afford the alkenyloxazole (115).

After numerous attempts, these reactions did not produce any of the required 2-trifluoromethylhistamine (114).
7.3 Pyrroles.

A trifluoromethylated pyrrole bearing a functionalised substituent would be an interesting candidate for evaluation as an acidic ^{19}F NMR pH-sensor. Although some pyrroles possessing a perfluoroalkyl group have been prepared by classical methods, such as Knorr condensation, more specific approaches have been developed to meet more complicated design requirements. The synthesis of trifluoromethylpyrroles has been carried out by direct trifluoromethylation or by the use of trifluoromethyl-containing synthetic precursors. Direct trifluoromethylation is usually carried out by electrochemical or photochemical techniques which require special equipment. Other direct methods involve highly reactive, often very hazardous reagents, for example bis(perfluoroalkanoyl)peroxides. Most methods involving trifluoromethyl-containing synthetic precursors require high temperatures and pressures in thick-walled reaction vessels.

7.3.1 Transition Metal-Induced Transformations of 5,6-Dihydro-4\H-1,2-Oxazines and the Synthesis of 2-Trifluoromethyl Pyrroles.

Reißig et al. have reported the synthesis of 1,2-oxazines. They have demonstrated that such compounds contain the required carbon backbone, at the correct oxidation level, for the corresponding pyrroles or dicarbonyl derivatives, as illustrated in Scheme 73. The cleavage of N-O bonds with molybdenum hexacarbonyl has been well supported. Reißig et al. showed that treatment of 1,2-oxazines with molybdenum hexacarbonyl in boiling acetonitrile may lead directly to the formation of the corresponding pyrrole, as illustrated in Scheme 73.
They suggested that this reaction may be applied to 3-(trifluoromethyl)-1,2-oxazines with one example. This involved the treatment of 5-methyl-5,6-dihydro-3-(trifluoromethyl)-6-(trimethysiloxy)-4H-1,2-oxazine (119) with molybdenum hexacarbonyl in the presence of trifluoroacetic acid (TFA) in boiling acetonitrile. The result was the isolation of the corresponding 2-(trifluoromethyl)pyrrole (120), as illustrated in Scheme 74.

The pyrrole formed in this reaction has a trifluoromethyl group next to a free N-H group and an alkyl substituent in the 4-position. If a compound with a functionalised alkyl substituent could be provided by this reaction, then it would be an ideal candidate for evaluation as a 19F NMR pH-sensor. In the design of a reaction sequence for the synthesis of a 2,4-disubstituted pyrrole, the possibility of revealing a hydroxyalkyl group during ring cleavage with molybdenum hexacarbonyl was investigated.
Reißig et al.176 described the synthesis of 4,4a,5,6,7,8a-hexahydro-3-(trifluoromethyl)pyrano[4,5-e]-1,2-oxazine (124) involving the $[4\pi + 2\pi]$ cycloaddition reaction of 1,1,1-trifluoro-2-nitroso-2-propene (123) with 3,4-dihydro-2H-pyran (51). Treatment of 1-bromo-3,3,3-trifluoropropan-2-one (121) with hydroxylamine in a two-phase system (CHCl$_3$ / H$_2$O) and careful distillation gave the α-bromooxime (122) which is converted \textit{in situ} to the nitroso alkene (123) by treatment with base. From the deterioration of an NMR sample, it was observed that the α-bromooxime (122) is sensitive to light. Reißig \textit{et al.}176 reported a low yield (31\%) for the cycloaddition reaction, which was attributed to the relatively low reactivity of nitrosoalkenes towards Z enol ethers. However, considering that reaction usually takes five days for completion, the low yield is more likely to be due to decomposition of the starting material by light. As predicted, the yield of the reaction was increased dramatically using essentially the same reaction conditions described by Reißig \textit{et al.}176 but keeping the reaction mixture in darkness, as illustrated in Scheme 75. 1H NMR indicated that only the \textit{cis}-isomer of the pyrano-1,2-
oxazine (124) had formed. The coupling constant between the bridgehead protons is 2.5 Hz. From this information, the protons could be axial-equatorial or equatorial-equatorial. However, an equatorial-equatorial arrangement of the protons would required the ring bonds to be axial-axial which is extremely unlikely for this compound. Furthermore, an axial-equatorial arrangement of the bridgehead protons would be expected from a [4π + 2π] cycloaddition reaction. Unfortunately, treatment of the oxazine (123) with molybdenum hexacarbonyl in the presence of TFA failed to produce any of the desired pyrrole (125).

The one example of a 2-(trifluoromethyl)pyrrole described by Reißig et al. involved a 6-(trimethylsiloxy)-1,2-oxazine (119). The trimethylsiloxy group (TMSO) may play an important role in this reaction. Therefore, a reaction sequence leading to a 6-(trimethylsiloxy)-1,2-oxazine was devised. The target compounds are illustrated in Scheme 76.
Trimethylsilyl enol ethers may be prepared from the aldehyde using the method described by Corey et al. The aldehyde (69) corresponding to the trimethylsilyl enol ether (127) shown in Scheme 76 was synthesised as described in Chapter Five and in Scheme 51. The enolate of the aldehyde (69) was formed using lithium hexamethyldisilazide (LiHMDS) and was trapped with trimethylchlorosilane (TMSCl). However, the 1H NMR of the crude material did not contain the characteristic signals of the vinylic protons of a silyl enol ether. Rather, it suggested that the corresponding acetal (126) had formed, as illustrated in Scheme 77. Elimination of one of the TMSO groups was attempted by distillation of the crude material at high temperature. The 1H NMR of the distillation fractions indicated that elimination of a TMSO group had occurred. However, this was accompanied by decomposition, possibly
involving an intramolecular cyclisation of the enol ether into the benzyl group.

A further investigation into the reactivity of the nitrosoalkene (123) was carried out. This involved the generation in situ of the nitrosoalkene (123), followed by treatment with ethyl 4,4,4-trifluoro-3-oxobutanoate (ETOB) in THF at room temperature. A pale yellow solid was recovered from the reaction mixture. The 1H and 19F NMR spectra were consistent with that of ETOB. Therefore, the solid recovered from the reaction mixture was probably the sodium salt of ETOB. The CI mass spectrum showed a major $(M + H)^+$ peak at m/z 185, a moderate sized peak at m/z 310 and a small peak at m/z 264. The major peak represents ETOB. Two products expected from this reaction are the adduct (128) and its cyclised derivative (129), as illustrated in Scheme 78. It is possible that these compounds are represented in the CI mass spectrum by the two smaller peaks m/z 310 and 264, respectively.

![Scheme 78](image-url)
7.3.2 Synthesis of 3-Alkyl-2,5-Bis(trifluoromethyl)pyrroles.

A suitable precursor for the synthesis of a 3-alkyl-2,5-bis(trifluoromethyl)-pyrrole (130) could be the corresponding 2,5-diketone (131), as illustrated by the retrosynthetic analysis of Scheme 79.

Kitazume et al.181 reported a microbial carbon-carbon bond formation between 2,2,2-trifluoroethanol and an α,β-unsaturated ketone, as illustrated in Scheme 80.

It was anticipated that a similar microbial carbon-carbon bond forming reaction may be induced between 2,2,2-trifluoroethanol and an α,β-unsaturated trifluoromethyl ketone (132) to produce a 1,6-bis(trifluoromethyl)carbinol (133). The alcohol may be oxidised using the Dess-Martin182 reagent (135). The planned reaction sequence is illustrated in Scheme 81. The synthesis of β-alkyl-α,β-unsaturated trifluoromethyl ketones (132) has been reported by Linderman et al.183,184. This involves the reduction of the corresponding acetylene followed by oxidation of the alcohol back to the ketone using the Dess-Martin reagent (135). The synthesis of two α,β-unsaturated
trifluoromethyl ketones (88, 89) was described in Section 5.2.2 and in Scheme 60. A reduction of 6-((1,1-dimethylethyl)diphenylsilyloxy)-1,1,1-trifluorohex-3-yn-2-one (88) was carried out using lithium aluminium hydride. This led to the elimination of the silyl protection group. However, the relatively more robust benzyl-protected acetylene (89) was reduced under essentially the same reaction conditions to provide the \(\alpha,\beta\)-unsaturated alcohol (136).

![Scheme 81](image)

The Dess-Martin reagent (135) was prepared in two steps from 2-iodosobenzoic acid, as illustrated in Scheme 82.

![Scheme 82](image)

This reagent allowed the successful oxidation of the \(\alpha,\beta\)-unsaturated alcohol
(136) to the corresponding ketone (137) in good yield. Unfortunately, the microbial transformation using bakers' yeast failed to produce the required carbinol (138), as illustrated in Scheme 83.

Scheme 83

A trifluoromethylated pyrrole bearing a functionalised substituent was not
obtained from either of the synthetic routes described. However, it is possible that 3-(trifluoromethyl)-1,2-oxazines may lead to other interesting chemistry. In the case of the microbial transformation described, it is likely that the presence of either the trifluoromethyl group or the benzyl group are not compatible with the reaction.
CHAPTER EIGHT

8. pH Studies.

8.1 Introduction.

Investigations were carried out into the potential of fluorinated pyrazoles, imidazopyridines, benzimidazoles, triazoles and pyridines to act as sensors of pH through variation of 19F chemical shift with state of ionisation and hence pH in aqueous media. This involved making NMR samples of each compound in a range of buffer solutions. Immediately before examining the 19F NMR spectrum, the pH of the solution was measured. Preliminary investigations revealed that the pK_a value was only slightly different when the experiments were carried out at 25°C rather than at 37°C. Therefore, for the initial evaluation of the compounds, the pH measurement of each solution and the NMR accumulations were all carried out at 25°C. It was also found that adjusting the ionic concentrations of the samples to a particular value had an insignificant effect on the pK_a value obtained. Deuterated solvents were not used and, therefore, the NMR samples were run without a deuterium lock. CFCI$_3$ was used as external chemical shift standard before and after each experiment and no drift was experienced. Each NMR sample was run three times and all the 19F chemical shift values obtained were plotted with the corresponding pH value.

8.2 Pyrazoles.

Unsubstituted pyrazole has an acidic pK_a value of 14.18110. The effect of a trifluoromethyl group on the acid-base properties of pyrazoles has been investigated by Elguero et al.110 (entries (a-d) in Table 4). The pK_a values in their report were determined spectrophotometrically according to a method described by Ernst and Menashi111. Habracken et al.185 investigated the effects
of a nitro-substituent on the absorption spectra of pyrazoles. The report by Habracken et al.185 also discusses the effects of various substituents on the pK\textsubscript{a} value of pyrazoles (entries (e-1) in Table 4). The pK\textsubscript{a} values reported185 were once again obtained spectrophotometrically. The data of these two reports are combined in Table 4.

The 19F chemical shift of 3,5-bis(trifluoromethyl)pyrazole (2) was found to be pH-dependent between pH 5 and pH 10. The total shift observed in the 19F NMR spectrum over this pH range was 1.47 ppm. The data are listed in Table 8 in the Appendix and are illustrated in Figure 30. The curve shown in Figure 30, has a sigmoidal shape which is characteristic of one acid-base equilibrium. As the acidity of the medium decreases, there will be an increase in the degree of ionisation of the pyrazole, associated with proton loss. This increases the degree of negativity of the N-1 atom, resulting in an upfield shift in the 19F NMR spectrum. Hence, the curve has a positive gradient.

<table>
<thead>
<tr>
<th>pyrazole</th>
<th>acid pK\textsubscript{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) unsubstituted</td>
<td>14.18</td>
</tr>
<tr>
<td>(b) 3,5-dimethyl-</td>
<td>15.00</td>
</tr>
<tr>
<td>(c) 3(5)-(trifluoromethyl)-5(3)-methyl-</td>
<td>12.33</td>
</tr>
<tr>
<td>(d) 3,5-bis(trifluoromethyl)-</td>
<td>7.51</td>
</tr>
<tr>
<td>(e) 4-nitro-</td>
<td>9.67</td>
</tr>
<tr>
<td>(f) 3(5)-nitro</td>
<td>9.81</td>
</tr>
<tr>
<td>(g) 4-methyl-3(5)-nitro-</td>
<td>10.10</td>
</tr>
<tr>
<td>(h) 4-ethyl-3(5)-nitro-</td>
<td>10.09</td>
</tr>
<tr>
<td>(i) 3(5)-nitro-4-phenyl-</td>
<td>9.11</td>
</tr>
<tr>
<td>(j) 3(5)-nitro-5(3)-phenyl-</td>
<td>8.75</td>
</tr>
<tr>
<td>(k) 3(5)-nitro-5(3)-(4-nitrophenyl)-</td>
<td>7.59</td>
</tr>
<tr>
<td>(l) 3,5-dinitro-</td>
<td>3.14</td>
</tr>
</tbody>
</table>

Table 4. pK\textsubscript{a} values of pyrazoles (entries (a-d) are from a report by Elguero et al.110 and entries (e-l) are from a report by Habracken et al.185).
The pKₐ value is the pH value where half of the mixture is ionised. On the curve, this is the point of inflection, which is where the curve is changing from being concave upwards to being concave downwards. On a symmetrical sigmoidal curve, such as that shown in Figure 30, this is usually taken to be the point on the curve which falls halfway between the maximum and the minimum. Thus, the pKₐ value of bis(trifluoromethyl)pyrazole (2) is 7.55 at 25°C. This value is comparable to the value reported by Elguero et al. and shown in Table 4.

The pKₐ values of 3-(trifluoromethyl)pyrazole-4-propanol (80), 2-(3-trifluoromethylpyrazol-4-yl)ethanol (84) and 2-(5-trifluoromethylpyrazol-3-yl)ethanol (92) were also determined using ¹⁹F NMR. The report by Elguero et al. suggests that the absence of a trifluoromethyl group would lead to a large increase in the pKₐ value, as shown for entry (c) in Table 4. In fact, the pKₐ values of trifluoromethylpyrazoles (80, 84, 92) were shifted such that the
maxima of the corresponding pH-δF curves were beyond the practical limits of this technique. However, extrapolation of the curves allowed good estimates of the pKₐ values. The pKₐ value of 3-(trifluoromethyl)pyrazole-4-propanol (80) was estimated to be 12.07 at 25°C (Table 9 in the Appendix and Figure 31), while the pKₐ value of 2-(3-trifluoromethylpyrazol-4-yl)ethanol (84) was estimated to be 11.97 at 25°C (Table 10 in the Appendix and Figure 32). The slightly lower pKₐ value of pyrazole (84) compared to pyrazole (80) is probably due to a combination of effects. This may include the increasing degree of hyperconjugation (compare 4-methyl-3(5)-nitro-pyrazole, entry (g) in Table 4, with 4-ethyl-3(5)-nitro-pyrazole, entry (h)) and the increasing importance of the negative inductive effect of the hydroxy group. The pKₐ value of 2-(5-trifluoromethylpyrazol-3-yl)ethanol (92) was estimated to be 12.79 at 25°C, as illustrated in Table 11 in the Appendix and Figure 33. The different pKₐ values encountered when moving the ethanol group from the 4-position to the 3(5)-position is unexpected when compared the pKₐ value of 3(5)-(trifluoromethyl)-5(3)-methyl-pyrazole (entry (c) in Table 4). It is interesting that the total shifts with pH observed in the ¹⁹F NMR spectra for the trifluoromethylpyrazoles (80, 84, 92) (2.21 ppm, 2.09 ppm and 2.33 ppm, respectively) are significantly larger than that observed for bis(trifluoromethyl)pyrazole (2). The three δF-pH plots of trifluoromethylpyrazoles (80, 84, 92) are combined in Figure 34.

3-(Pyridin-4-yl)-5-(trifluoromethyl)pyrazole was kindly donated by Professor S. P. Singh, Kurukshetra University, Kurukshetra, India. The pKₐ value of this compound was determined by ¹⁹F NMR to be 9.49, as illustrated in Table 12 in the Appendix and Figure 35. The ¹⁹F chemical shift was sensitive the pH of the medium over the range pH 8 to pH 11 with a total shift in the ¹⁹F NMR spectrum of 2.04 ppm. This value suggests that it may be feasible to shift the pKₐ of a trifluoromethylpyrazole to a value close to that of physiological pH. This may also allow the greater total shift observed for trifluoromethylpyrazoles compared to bis(trifluoromethyl)pyrazoles to be
Figure 31. 19F chemical shift (ppm) of 3-(trifluoromethyl)pyrazole-4-propanol (80) vs pH.

Figure 32. 19F chemical shift (ppm) of 2-(3-trifluoromethylpyrazol-4-yl)ethanol (84) vs pH.
Figure 33. 19F chemical shift (ppm) of 2-(5-trifluoromethylpyrazol-3-yl)ethanol (92) vs pH.

Figure 34. 19F chemical shift (ppm) of pyrazoles (80, 84, 92) vs pH.
8.3 Benzimidazoles and Imidazopyridines.

The pKₐ values of a number of benzimidazoles are listed in Table 5. The acidic pKₐ value of unsubstituted benzimidazole is much lower than physiological pH, entry (a) in Table 5. The introduction of a trifluoromethyl group into the 2-position was reported¹⁵⁸ to raise the pKₐ value to 8.13, entry (d). If the reported¹⁵⁸ pKₐ value of 2-trifluoromethylbenzimidazole is correct, then the introduction of a trifluoromethyl group or a fluorine atom into the benzene ring would be expected to lower the pKₐ, possibly to a value closer to physiological pH. Furthermore, this may serve as an internal reference peak in the ¹⁹F NMR.

2,5-Bis(trifluoromethyl)benzimidazole (95) and 5-fluoro-2-(trifluoromethyl)-benzimidazole (94) were synthesised but are insufficiently soluble in aqueous media to allow determination of their pKₐ values by ¹⁹F NMR.
<table>
<thead>
<tr>
<th>benzimidazole</th>
<th>acidic pKₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) unsubstituted</td>
<td>5.52</td>
</tr>
<tr>
<td>(b) 2-ethyl-</td>
<td>6.18</td>
</tr>
<tr>
<td>(c) 2-phenyl-</td>
<td>5.23</td>
</tr>
<tr>
<td>(d) 2-trifluoromethyl-</td>
<td>8.13</td>
</tr>
</tbody>
</table>

Table 5. pKₐ values of benzimidazoles (entries (a-c) are from a report by Weast¹⁸⁶ and entry (d) is from a report by Elguero et al.¹⁵⁸.

Fortunately, 2-(trifluoromethyl)imidazopyridines (96, 97) were sufficiently soluble in aqueous media. The 19F chemical shift of 2-(trifluoromethyl)imidazo-[4,5-b]pyridine (95) was found to be pH-dependent between pH 1 and pH 8. The data are listed in Table 13 in the Appendix and are illustrated in Figure 36. As can be seen in Figure 36, the total shift is comprised of two sigmoidal curves, both with positive gradients. The two pKₐ values are 6.92 and approximately 2.2 at 25°C. The larger of the two sigmoidal curves, which has a pKₐ value of 6.92, represents the N-H of the imidazole. The smaller sigmoidal curve, which has an estimated pKₐ value of 2.2, could either correspond to the N-3 position, the N-7 position or to the basic pKₐ of the imidazole N-H. Considering reported¹⁸⁶ pKₐ values and pKₐ values determined in this study for pyridines, this pKₐ value probably represents the N-7 position. The total shift observed in the 19F NMR spectrum for the higher pKₐ value is 0.55 ppm, which is the difference between the minimum and maximum of the corresponding sigmoidal curve. The total shift observed in the 19F NMR spectrum for the lower pKₐ value is 0.23 ppm. The combined shift observed between pH 1 and pH 8 is 0.78 ppm. The acidic pKₐ value of the imidazole N-H is very close to physiological pH. Furthermore, the introduction of an alkyl substituent on the pyridine ring should result in a minor shift in the pKₐ value towards physiological pH.

The 19F NMR chemical shift of 2-(trifluoromethyl)imidazo[4,5-c]pyridine (97) was found to be pH-dependent between pH 2 and pH 10.5. The data are listed
in Table 14 in the Appendix and are illustrated in Figure 37. The total shift is comprised of one sigmoidal curve with a positive gradient and a downwards drift at lower pH values, probably associated with a second pKₐ. The pKₐ value of the sigmoidal curve is 8.78 at 25°C and is the acidic pKₐ of the N-H of the imidazole-portion of the compound. The total shift observed in the ¹⁹F NMR spectra is 0.87 ppm, which is the difference between the minimum and maximum of the sigmoidal curve.

Both of the imidazopyridines have very promising pKₐ values. It would be interesting to measure the pKₐ of a 4-, 5- or 7-trifluoromethyl derivative of 2-(trifluoromethyl)imidazo[4,5-c]pyridine (97). The presence of an extra trifluoromethyl group may lower the pKₐ to a value close to physiological pH.

![Figure 36. ¹⁹F chemical shift (ppm) of 2-(trifluoromethyl)imidazo-[4,5-b]pyridine (96) vs pH.](image)
8.4 Pyridines.

The reported pKₐ values of substituted pyridines are listed in Table 6. The effect of a trifluoromethyl group on the pKₐ was investigated. The 19F chemical shift of 4-(trifluoromethyl)pyridine was examined between pH 3 and pH 11. No shift in the position of the peak in the 19F NMR spectra was observed. It is likely that the pKₐ value lies below pH 3, which was considered to be too low to warrant further investigation.

The 19F chemical shift of 3-(trifluoromethyl)pyridine was also initially examined between pH 3 and pH 11. A slight upfield shift of the trifluoromethyl peak was observed. Therefore, further examinations of the 19F chemical shift were carried out at lower pH values. The data are listed in Table 15 in the Appendix and are illustrated in Figure 38. The 19F chemical shift of 3-(trifluoromethyl)pyridine was found to be pH-dependent between pH 1 and pH 4. The
sigmoidal curve has a positive gradient and the total shift between the minimum and maximum is 1.00 ppm. The pKₐ value is 2.67 at 25°C. As expected, this value is much lower than physiological pH. The presence of electron-donating groups on the pyridine ring would increase the pKₐ to a more suitable value.

<table>
<thead>
<tr>
<th>pyridine</th>
<th>pKₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsubstituted</td>
<td>5.25</td>
</tr>
<tr>
<td>4-amino-</td>
<td>9.11</td>
</tr>
<tr>
<td>2-benzyl-</td>
<td>5.13</td>
</tr>
<tr>
<td>2-ethyl-</td>
<td>5.89</td>
</tr>
<tr>
<td>3-methyl-</td>
<td>5.68</td>
</tr>
<tr>
<td>3-chloro-</td>
<td>2.84</td>
</tr>
</tbody>
</table>

Table 6. Reported pKₐ values of pyridines.

![Figure 38. ¹⁹F chemical shift (ppm) of 3-(trifluoromethyl)pyridine vs pH.](image-url)
8.5 Triazoles.

The 19F chemical shift of 3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (108) was examined between pH 0.02 and pH 10. Below pH 5, a slight downfield shift was observed. The data are listed in Table 16 in the Appendix and are illustrated in Figure 39. The total shift observed in the 19F NMR spectra was only 0.09 ppm. If the curve shown in Figure 39 is assumed to be a sigmoidal curve with a negative gradient, then the pKₐ value is approximately 4 at 25°C. Due to the very small shift observed, further examination of the pKₐ of this compound was not carried out.

![Figure 39. 19F chemical shift (ppm) of 3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (108) vs pH.](image)
<table>
<thead>
<tr>
<th>compound</th>
<th>pKₐ (25°C)</th>
<th>total shift of (^{19}\text{F} \text{ NMR}) signal (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5-bis(trifluoromethyl)pyrazole (2)</td>
<td>7.55</td>
<td>1.47</td>
</tr>
<tr>
<td>3-(trifluoromethyl)pyrazole-4-propanol (80)</td>
<td>12.07</td>
<td>2.21</td>
</tr>
<tr>
<td>2-(3-trifluoromethyl)pyrazol-4-yl)ethanol (84)</td>
<td>11.97</td>
<td>2.09</td>
</tr>
<tr>
<td>2-(5-trifluoromethyl)pyrazol-3-yl)ethanol (92)</td>
<td>12.79</td>
<td>2.33</td>
</tr>
<tr>
<td>3-(pyridin-4-yl)-5-(trifluoromethyl)pyrazole</td>
<td>9.49</td>
<td>2.04</td>
</tr>
<tr>
<td>2-(trifluoromethyl)imidazo[4,5-b]pyridine (96)</td>
<td>6.92 (2.2)</td>
<td>0.55 (0.23)</td>
</tr>
<tr>
<td>2-(trifluoromethyl)imidazo[4,5-c]pyridine (97)</td>
<td>8.67</td>
<td>0.87</td>
</tr>
<tr>
<td>3-(trifluoromethyl)pyridine</td>
<td>2.67</td>
<td>1.00</td>
</tr>
<tr>
<td>3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4\text{H}-1,2,4-triazole (108)</td>
<td>4</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 7. Summary of pKₐ values.

The pKₐ data discussed in this section are combined in Table 7. The trifluoromethylpyrazole showed the largest total shifts in the \(^{19}\text{F} \text{ NMR} \) spectra. It may be possible to modulate the pKₐ of these compounds to a more suitable value. The pKₐ of 3-(pyridin-4-yl)-5-(trifluoromethyl)pyrazole suggests that the attachment of two heterocycles to the pyrazole may result in a pKₐ value close to physiological pH. If such a compound could be constructed, then it would provide many more points of attachment for other substituents. The pKₐ values of 2-(trifluoromethyl)imidazopyridines (96, 97) are also very promising and warrant further investigation.
CONCLUSION

A variety of reaction sequences towards the synthesis of 4-substituted-3,5-bis(trifluoromethyl)pyrazoles have been attempted. The targets have been approached at three different oxidation levels. Many reactions in each approach were hindered by the deactivating nature of the trifluoromethyl group. Progress was made towards the synthesis 3-substituted derivatives of 1,1,1,5,5,5-hexafluoropentane-2,4-dione. This involved the condensation reaction of carbonyl compounds with the dione. Convenient and generally high yielding syntheses of three α-(trifluoromethylpyrazolyl)alkanols have been developed. 19F NMR pH studies of these compounds and other pyrazoles have provided information about the effects of various substituents on the pKₐ of the parent pyrazole.

A reinvestigation into a previous report of the claimed synthesis of 1-aryl and 1-aryloxy-3,5-bis(trifluoromethyl)pyrazoles was carried out. It was revealed that the reaction of substituted hydrazines with 1,1,1,5,5,5-hexafluoropentane-2,4-dione produces the corresponding 5-hydroxy-4,5-dihydropyrazoles, contrary to the previous report. A number of methods leading to the dehydration of these compounds to the corresponding aromatic pyrazoles have been developed.

The structure of a major unidentified side-product, from a report regarding the synthesis of 2-trifluoromethylhistamine, was determined using a variety of spectroscopic techniques. The compound was characterised as a 5-trifluoromethyl-4-alkenylloxazole.

Two 2-(trifluoromethyl)benzimidazoles and two 2-(trifluoromethyl)imidazopyridines were synthesised, all with high yields. The pKₐ values of the 2-(trifluoromethyl)imidazopyridines were found to be close to physiological pH. Furthermore, both sets of compounds have many positions available for attachment of other substituents, such as groups to modulate the pKₐ value,
groups to increase the solubility in aqueous media and targeting groups. Therefore, 2-(trifluoromethyl)benzimidazoles and 2-(trifluoromethyl)imidazopyridines are ideal candidates for further development as 19F NMR pH-sensors.
EXPERIMENTAL

General procedures.

NMR data were recorded on a Jeol FX90Q spectrometer (84.25 MHz 19F), a Jeol GX270 spectrometer (270.05 MHz 1H; 67.8 MHz 13C), a Jeol EX400 spectrometer (399.65 MHz 1H; 100.4 MHz 13C; 376.05 MHz 19F) and a Bruker AM 250 (1H→19F and 19F→1H heteronuclear NOE experiments). CFCI$_3$ was used as an internal standard for 19F NMR samples dissolved in (CD$_3$)$_2$SO, d$_6$-THF or CDCl$_3$ and as an external standard for samples dissolved in D$_2$O. Tetramethylsilane was used as an internal standard for 1H / 13C NMR samples dissolved in CDCl$_3$ or (CD$_3$)$_2$SO, and 3-(trimethylsilyl)propanoic acid-2,2,3,3-d_4 acid was used for samples dissolved in D$_2$O. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), qu (quintet) and m (multiplet). Non-phase sensitive two dimensional COSY and NOESY spectra (Jeol) were acquired with 16 scans. During data processing a 90°-shifted squared sine bell function was used in both $\omega 1$ (1024) and $\omega 2$ (512) dimensions. The FID in $\omega 2$ was zero-filled to 1K prior to Fourier transformations to give a 1K x 1K spectrum. Infrared spectra were recorded on a Perkin-Elmer 782 IR spectrometer, either as liquid film (film), Nujol mull (Nujol) or KBr disc (disc). Peak intensities in the IR spectrum are indicated by s (strong), m (medium) and w (weak). Mass spectra (MS) were obtained by electron-impact (EI), chemical-ionisation (Cl) or fast atom bombardment (FAB) using a VG7070 spectrometer and a ZAB-E spectrometer. Data are reported in the form m/z (intensity relative to base = 100) for selected ions.

Where repetitive experimental procedures were employed, only one description is provided. All solutions were aqueous unless stated otherwise. Solvents for reactions, extractions and chromatography were distilled from the indicated drying agents according to standard procedures: tetrahydrofuran, pentane.

145
(sodium/benzophenone); dichloromethane, chloroform (phosphorus (v) oxide); diethyl ether, toluene (sodium). Analytical thin layer chromatography was carried out on Merck Kieselgel 60F plates. Visualisation was accomplished by UV light, iodine, phosphomolybdic acid, or iron (m) chloride. Flash chromatography was performed using Merck Silica Gel 60 (0.040 - 0.063 mm) flash silica. Melting points and boiling points are uncorrected. Kugelrohr distillations were carried out in a Büchi GKR-51 apparatus and the boiling points given correspond to the Kugelrohr oven temperature.

pH Studies.

pH values were obtained using a Corning 240 pH meter and a 3.7 mm pH 0-14 Russell CLSCH11/1m electrode. Buffer solutions were made using the standard procedures of the British Pharmacopoeia 1988. 19F NMR data were recorded on a Jeol EX400 spectrometer at 376.05 MHz. 19F chemical shifts were recorded in parts per million (ppm) and were referenced relative to the 19F resonance peak of an external sample of CFCl$_3$ in CDCl$_3$ (0.00 ppm, 298 K). The 19F NMR spectra were collected between -100 ppm and 0 ppm using 131072 data points, providing 0.29 Hz per data point.
3,5-Bis(trifluoromethyl)pyrazole (2). 1,1,1,5,5,5-Hexafluoropentane-2,4-dione (6.45 g, 31.0 mmol) was added to hydrazine hydrate (1.5 ml, 31.0 mmol) in ethanol (60 ml) and acetic acid (0.05 ml). The mixture was boiled under reflux for 5 h and allowed to cool. The solvent was distilled off carefully at atmospheric pressure. The residue, in DCM (30 ml), was dried (MgSO₄) and the solvent was distilled off. Pentane (15 ml) was added and colourless crystals formed with scratching. Due to presence of an oil, the pentane was removed by distillation to yield 3.95 g (62%) of 3,5-bis(trifluoromethyl)pyrazole (2), after distillation (Kugelrohr). Data: colourless crystals; mp 69-70°C; bp 120-130°C (literature mp 71-72°C); ¹⁹F NMR (376 MHz, D₂O) -62.02 (s).

1-Iodo-2-(2-methoxyethoxy)ethane (6).

Method A:
To a solution of 2-(2-methoxyethoxy)ethanol (6.89 ml, 6.00 mmol) in anhydrous DCM (100 ml) and anhydrous pyridine (62.3 ml, 769 mmol), under a nitrogen atmosphere, was added triphenylphosphine (22.8 g, 9.00 mmol) followed by the slow addition of iodine (24.3 g, 100 mmol) at ambient temperature. When iodination was complete by t.l.c. (3.3 h), the reaction mixture was washed with saturated aqueous sodium metabisulphite solution (3 × 25 ml), saturated sodium hydrogen carbonate solution (3 × 25 ml) and brine (25 ml). The organic layer was dried (MgSO₄) and the solvent was evaporated. The residue was dissolved in ether (30 ml) and the triphenylphosphine oxide was removed by filtration through silica gel. The solvent of the filtrate was evaporated and the yellow oil was distilled (Kugelrohr) to yield 2.85 g (21%) of 1-iodo-2-(2-methoxyethoxy)ethane (6).
Method B:

To a stirred solution of 2-(2-methoxyethoxy)ethyl-4-methyl-benzenesulphonate (8) (12.7 g, 46.1 mmol) in anhydrous acetone (150 ml) was added sodium iodide (25.0 g, 167 mmol). The solution was stirred at ambient temperature in the dark and in a nitrogen atmosphere for 24 h. The reaction mixture was filtered and most of the acetone was evaporated. To the residue was added ether (90 ml) and water (100 ml) and the organic layer was washed with half saturated metabisulphite solution (2 x 25 ml) and brine (25 ml). After drying (MgSO₄), the solvent was evaporated and the crude material was distilled (Kugelrohr) to yield 7.70 g (71%) of 1-iodo-2-(2-methoxyethoxy)ethane (6).

Data: colourless oil; bp₂₀ 130-135°C (literature₁²₆ bp₁₀-₁₂ 107-109°C); ¹H NMR (270 MHz, CDCl₃) 3.26 (2H, m, CH₂CH₂-I), 3.38 (3H, s, CH₃OCH₂), 3.56 (2H, m, OCH₂CH₂-I), 3.64 (2H, m, CH₃OCH₂CH₂O), 3.75 (2H, m, CH₃OCH₂CH₂O); IR (film) 1120 (s).

2-(2-Methoxyethoxy)ethyl 4-methylbenzenesulphonate (8). 2-(2-Methoxyethoxy)ethyl-4-methylbenzenesulphonate (8) was synthesised essentially by the method described by Prugh's group. To a solution of 2-(2-methoxyethoxy)ethanol (6.54 ml, 50.0 mmol) in anhydrous ether (50 ml) was added powdered potassium hydroxide (2.80 g, 50.0 mmol). To this suspension was added 4-methylbenzenesulphonyl chloride (9.53 g, 50.0 mmol), with caution. Stirring was continued under a nitrogen atmosphere for 3 h. The reaction mixture was filtered and the filtrate was washed with water (2 x 20 ml) and dried (MgSO₄). The solvent was evaporated to yield 12.9 g (94%) of 2-(2-methoxyethoxy)ethyl 4-methylbenzenesulphonate (8). Data: colourless oil; IR (disc) 1365 (s), 1180 (s).
2-(2-Methoxyethoxyethyl)triphenylphosphonium iodide (9).

Triphenylphosphine (16.9 g, 64.0 mmol) was dissolved in anhydrous toluene (100 ml) and 1-iodo-2-(2-methoxyethoxy)ethane (6) (7.20 g, 31.0 mmol) in toluene (50 ml) was added. The mixture was boiled under reflux for 14 h under a nitrogen atmosphere. After cooling, a yellow oil separated and ether was added (50 ml). Crystals were produced by agitation of the oil and were filtered and washed with cold ether (10 ml) to yield 14.6 g (96%) of 2-(2-methoxyethoxyethyl)triphenylphosphonium iodide (9). Data: white solid; mp 101.5-102.5°C; ¹H NMR (270 MHz, (CD₃)₂SO) 3.06 (3H, s, CH₃O), 3.15 (2H, m, CH₃OCH₂CH₂O), 3.28 (2H, m, CH₃OCH₂CH₂), 3.69 (2H, dt, J = 20.9 Hz, J = 5.5 Hz, CH₂CH₂P), 3.96 (2H, m, OCH₂CH₂P), 7.77 (15H, m, Ph₃P).

1-Chloro-3-(2-methoxyethoxymethoxy)propane (13). A mixture of 3-chloro-1-propanol (3.30 g, 35.0 mmol) and MEMCl (5.99 ml, 52.5 mmol) in DCM (60 ml) was cooled to 0°C and N,N-diisopropylethylamine (9.1 ml, 52.5 mmol) was added dropwise. The colourless solution was allowed to warm gradually to ambient temperature and then was stirred for 3 h. The reaction mixture was washed with water (2 × 15 ml), 5% HCl solution (20 ml) and saturated sodium hydrogen carbonate solution (20 ml). The organic layer was dried (MgSO₄) and the solvent evaporated to yield 6.29 g (98%) of 1-chloro-3-(2-methoxyethoxymethoxy)propane (13) following distillation (Kugelrohr). Data: colourless liquid; bₚ₀,₇ 40-50°C; ¹H NMR (270 MHz, CDCl₃) 2.04 (2H, qu, J = 6.0 Hz, CH₂CH₂CH₂), 3.40 (3H, s, CH₃O), 3.6 (8H, m, CH₂O), 3.70 (2H, t, J = 5.9 Hz, CH₂Cl), 4.73 (4H, s, OCH₂O); IR (film) 1050 (s).
1-Iodo-3-(2-methoxyethoxymethoxy)propane (14). 1-Chloro-3-(2-methoxyethoxymethoxy)propane (13) (6.00 g, 32.8 mmol) was dissolved in anhydrous acetone (100 ml) and sodium iodide (10.0 g, 66.7 mmol) was added slowly producing a slight exotherm. The mixture was stirred at ambient temperature in the dark under a nitrogen atmosphere for 4 h. The reaction mixture was filtered and most of the solvent evaporated. The residue was redissolved in ether (100 ml) and washed with water (2 × 25 ml) and half saturated sodium metabisulphite solution (2 × 25 ml). The organic extracts were dried (MgSO₄) and the solvent was evaporated to yield 5.15 g (57%) of 1-iodo-3-(2-methoxyethoxymethoxy)propane (14). Data: yellow oil; ¹H NMR (270 MHz, CDCl₃) 2.06 (2H, m, CH₂CH₂CH₂), 3.40 (3H, s, CH₃O), 3.65 (10H, m, 4 × CH₂O and CH₂I), 4.73 (2H, s, OCH₂O).

(Z)-1,1,1-Trifluoro-2-ethoxy-4-(2-(2-methoxyethoxy))but-2-ene (16). The attempted synthesis of (Z)-1,1,1-trifluoro-2-ethoxy-4-(2-(2-methoxyethoxy)methyl)but-2-ene (16) led to the isolation of an intermediate. (2-(2-Methoxyethoxyethyl)triphenylphosphonium iodide (9) (7.39 g, 15.0 mmol) and HMDS (0.3 ml) were added to a suspension of sodium hydride (80% dispersion in oil, 0.43 g, 15.0 mmol) in anhydrous THF (40 ml). The mixture was boiled under reflux in a nitrogen atmosphere for 3 h. The deep red-brown slurry was cooled to ambient temperature and ethyl trifluoroacetate (1.78 ml, 15.0 mmol) in THF (5 ml) was added dropwise. The mixture was boiled under reflux for 16 h. The reaction mixture was cooled to ambient temperature and pentane (40 ml) was added. The suspension was filtered.
through silica gel (eluted with pentane : ether ; 97 : 3) and the solvents evaporated to give a mixture of triphenylphosphine oxide and the suspected intermediate (15). After analysis, the mixture was dissolved in anhydrous toluene (20 ml) and boiled under reflux for 23 h. T.l.c. indicated no change and sodium hydride (80% dispersion, 0.3 g) and HMDS (0.01 ml) were added and boiling under reflux was continued for 24 h. After cooling to ambient temperature, the suspension was filtered and the solvent of the filtrate was evaporated. The residue was columned (petroleum ether bp 40-60°C : ethyl acetate ; 2 : 1). Data: red-brown amorphous powder; \(^{1}\text{H NMR} (270 \text{ MHz}, (\text{CD}_3)_2\text{SO}) 3.32 (3\text{H, s, CH}_3\text{O}), 3.50 (2\text{H, t, } J = 4.2 \text{ Hz, CH}_2\text{O}), 3.74 (2\text{H, t, } J = 3.9 \text{ Hz, CH}_2\text{O}), 7.5 (15\text{H, m, Ph}_3\text{P}) ; ^{19}\text{F NMR} (84 \text{ MHz, CDCl}_3) -157.24 (s).

2-Phenyl-1,3-dioxane (18). A mixture of benzaldehyde (10.0 g, 94.2 mmol), propane-1,3-diol (7.89 g, 104 mmol) and 4-methylbenzenesulphonic acid (0.18 g, 0.90 mmol) in toluene (100 ml) was stirred and boiled under reflux in a Dean and Stark apparatus. After 1 ½ h the reaction mixture was allowed to cool to ambient temperature and then ether (100 ml) was added (1.4 ml of water had been produced of the 1.72 ml expected). This was washed with 0.6 M sodium hydrogen carbonate solution (3 × 15 ml) and the organic layer dried (MgSO\(_4\)). The solvents were evaporated and the crude yellow liquid was distilled (Kugelrohr) to yield 18.8 g (90%) of 2-phenyl-1,3-dioxane (18). Data: white crystals; mp <25°C; bp\(_{20}\) 145-155°C (literature\(^{29}\) bp\(_{12}\) 115°C); \(^{1}\text{H NMR} (270 \text{ MHz, (CD}_3)_2\text{SO}) 1.45 (1\text{H, dtt, } J_{\text{gem}} = 13.6 \text{ Hz, } J_{\text{B-D}} = 2.6 \text{ Hz, } J_{\text{B-C}} = 1.3 \text{ Hz, H}_{\text{ax(B)}}), 2.23 (1\text{H, m, } J_{\text{gem}} = 13.6 \text{ Hz, } J_{\text{A-D}} = 10.1 \text{ Hz, } J_{\text{A-C}} = 4.9 \text{ Hz, H}_{\text{eq(4)}}), 3.99 (2\text{H, m, } J_{\text{gem}} = 12.5 \text{ Hz, } J_{\text{D-A}} = 10.1 \text{ Hz, } J_{\text{D-B}} = 2.6 \text{ Hz, H}_{\text{ax(D)}}), 4.26 (2\text{H, m, } J_{\text{gem}} = 12.5 \text{ Hz, } J_{\text{C-A}} = 4.9 \text{ Hz, } J_{\text{C-B}} = 1.3 \text{ Hz, H}_{\text{eq(C)}}), 5.50 (1\text{H, s, H}_{\text{ax(E)}}), 151
7.35 (3H, m, Ar 2,4,6-H3), 7.48 (2H, m, Ar 3,5-H2); 13C NMR (68 MHz, (CD$_3$)$_2$SO) 25.75 (CH$_2$CH$_2$CH$_2$), 67.35 (CH$_2$CH$_2$O), 101.64 (O$_2$CCHR), 125.96 (Ar 4-C), 128.22 (Ar 3,5-C), 128.75 (Ar 2,6-C); IR (disc) 3020 (m), 1105 (s).

![3-(Phenylmethoxy)propan-1-ol](19)

3-(Phenylmethoxy)propan-1-ol (19). 3-(Phenylmethoxy)propan-1-ol (19) was synthesised essentially by the method described by Kozikowski’s group120. Cold, anhydrous ether (250 ml) was added cautiously to aluminium trichloride (24.4 g, 183 mmol) at 0°C resulting in a moderate exotherm. Following dissolution, lithium aluminium hydride (1.73 g, 48.7 mmol) was added portionwise to the mixture. Stirring was continued at 0°C for 30 min, followed by the dropwise addition of 2-phenyl-1,3-dioxane (18) (8.00 g, 48.7 mmol) in ether (50 ml). The suspension was allowed to warm to ambient temperature. After stirring for a further 2 h, the mixture was cooled to 0°C and quenched by the slow addition of 2 M sulphuric acid solution (250 ml). A heavy precipitate formed which required some agitation before stirring could be continued. After warming to ambient temperature, two layers formed. The layers were separated and the aqueous phase was extracted with ether (2 × 50 ml). The combined organic extracts were dried (MgSO$_4$) and the solvent evaporated to yield 7.63 g (94%) of 3-(phenylmethoxy)propan-1-ol (19) following distillation (Kugelrohr). Data: colourless liquid, bp 0.7 115-120°C; 1H NMR (270 MHz, CDCl$_3$) 1.83 (2H, qu, J = 5.9 Hz, CH$_2$CH$_2$CH$_2$), 3.66 (2H, t, J = 5.9 Hz, CH$_2$CH$_2$OH), 3.78 (2H, t, J = 5.7 Hz, BnOCH$_2$CH$_2$), 4.53 (2H, s, PhCH$_2$O), 7.33 (5H, m, PhCH$_2$O); IR (film) 3800 (br), 1100 (s), 745 (s), 705 (s); MS (EI) 166 (M$^+$, 7), 107 (100) 91 (96).
3-(Phenylmethoxy)propyl 4-methylbenzenesulphonate (20). 3-(Phenylmethoxy)propyl 4-methylbenzenesulphonate (20) was synthesised by the procedure described by Prugh's group. To a solution of 3-phenyimethoxy-1-propanol (19) (7.61 g, 45.8 mmol) in anhydrous ether (50 ml) was added powdered potassium hydroxide (2.60 g, 45.8 mmol). To this suspension was added 4-methylbenzenesulphonyl chloride (8.73 g, 45.8 mmol), with caution. Stirring was continued under a nitrogen atmosphere for 6 h. Another portion of powdered potassium hydroxide (2.00 g, 35.6 mmol) was added and stirring was continued for another 2.5 h. The reaction mixture was filtered and the filtrate was washed with water (2 × 25 ml) and dried (MgSO₄). The solvent was evaporated to yield 13.3 g (91%) of 3-(phenylmethoxy)propyl 4-methylbenzenesulphonate (20). Data: colourless crystals; mp <30°C (literature mp 37°C); ¹H NMR (270 MHz, CDCl₃) 1.88 (2H, qu, J = 6.1 Hz, CH₂CH₂CH₂), 2.45 (3H, s, ArCH₃), 3.52 (2H, t, J = 6.0 Hz, BnOCICOCH₂), 4.19 (2H, t, J = 6.2 Hz, CH₂CH₂OTs), 4.43 (2H, s, PhCH₂O), 7.30 (7H, m), 7.82 (2H, d, J = 8.3 Hz, 2,5-H₂, Ts); IR (Nujol) 1370 (s) 1185 (s); MS (Cl, iso-butane) 321 (M⁺ + H, 17), 181 (9), 155 (10), 107 (12), 91 (100).

1-Iodo-3-(phenylmethoxy)propane (21). To a stirred solution of 3-(phenylmethoxy)propyl 4-methylbenzenesulphonate (20) (6.00 g, 18.7 mmol) in anhydrous acetone (60 ml) was added sodium iodide (9.60 g, 64.2 mmol). The solution was stirred at ambient temperature in the dark and under a nitrogen atmosphere for 6 h. The reaction mixture was filtered and most of the acetone was evaporated. To the residue was added ether (50 ml) and water (10 ml) and the organic layer was washed with half saturated metabisulphite.
solution (2 x 15 ml) and brine (10 ml). After drying (MgSO₄), the solvent was evaporated and the crude material was distilled (Kugelrohr) to yield 4.87 g (87%) of 1-iodo-3-(phenylmethoxy)propane (21). Data: pale yellow liquid; bp₂₀ 150-165°C (literature¹⁸⁹ bp₇-₁₀ 123-130°C); ¹H NMR (270 MHz, CDCl₃) 2.09 (2H, qu, J = 6.6 Hz, CH₂CH₂CH₂), 3.31 (2H, t, J = 6.6 Hz, CH₂CH₂I), 3.54 (2H, t, J = 5.7 Hz, BnOCH₂CH₂), 4.53 (2H, s, PhCH₂O), 7.34 (5H, m, PhCH₂O), IR (film) 1110 (s), 740 (s), 705 (s).

3-(Phenylmethoxy)propyltriphenylphosphonium iodide (22).

Triphenylphosphine (9.20 g, 35.0 mmol) was dissolved in anhydrous toluene (60 ml) and 1-iodo-3-(phenylmethoxy)propane (21) (4.36 g, 15.8 mmol) in toluene (20 ml) was added. The mixture was boiled under reflux for 16 h under a nitrogen atmosphere. After cooling, a yellow oil separated and ether was added (50 ml). The crystals were produced by agitation of the oil and were filtered and washed to yield 7.94 g (93%) of 3-(phenylmethoxy)propyltriphenylphosphonium iodide (22). Data: white crystals; mp 94.5-95.0°C; ¹H NMR (270 MHz, (CD₃)₂SO) 1.89 (2H, m, CH₂CH₂CH₂), 3.82 (2H, m, BnOCH₂CH₂CH₂P), 4.51 (2H, s, PhCH₂O), 7.31 (5H, m, PhCH₂O), 7.72 (15H, m, Ph₃P).

(Z)-1,1,1-Trifluoro-2-ethoxy-5-(phenylmethoxy)pent-2-ene (23). (Z)-1,1,1-Trifluoro-2-ethoxy-5-(phenylmethoxy)pent-2-ene (23) was synthesised using a procedure based on that described by Bégué's group¹²⁴. 3-(Phenylmethoxy)propyltriphenylphosphonium iodide (22) (3.00 g, 5.57 mmol)
was added to a stirred suspension of sodium hydride (80% dispersion in oil, 0.17 g, 5.57 mmol) in anhydrous THF (20 ml). HMDS (0.2 ml, 1.50 mmol) was added to the mixture and a small exotherm was observed. The reaction mixture was boiled under reflux and under a nitrogen atmosphere. A pale orange colour was observed and, after 3 h, a further portion of HMDS (0.7 ml, 5.25 mmol) was added dropwise. This resulted in the formation of a deep red mixture which was boiled under reflux for 14 h and cooled. Ethyl trifluoroacetate (0.66 ml, 5.57 mmol) in THF (0.5 ml) was added slowly to the mixture at ambient temperature. The mixture was boiled under reflux for 7 d. T.l.c. showed that the reaction was proceeding very slowly, therefore the THF was distilled off under a nitrogen atmosphere and anhydrous toluene (15 ml) was added. The suspension was boiled under reflux for 7 d. After cooling, the reaction mixture was filtered and the solvent of the filtrate was evaporated. Pentane (40 ml) was added to the residue and the suspension was filtered. The solvent was evaporated from the filtrate to yield 0.71 g (46%) of (Z)-1,1,1-trifluoro-2-ethoxy-5-(phenylmethoxy)pent-2-ene (23) following distillation (Kugelrohr). Data: colourless liquid; bp₂₀ 140-145°C; ¹H NMR (400 MHz, CDCl₃) 1.30 (3H, t, <i>J</i> = 7.0 Hz, CH₃CH₂), 2.50 (2H, m, C=C-CH₂CH₂), 3.52 (2H, t, <i>J</i> = 6.4 Hz, BnOCH₂CH₂), 3.91 (2H, q, <i>J</i> = 7.0 Hz, CH₂CH₂), 4.52 (2H, s, PhOCH₂CH₂), 5.73 (1H, t, <i>J</i> = 7.3 Hz, CHCCH₂), 7.33 (5H, m, PhCH₂); ¹⁹F NMR (376 MHz, CDCl₃) -70.04 (s); IR (film) 1690 (s), 740 (s), 700 (s); MS (EI) 274.1138 (M⁺, 1) (C₁₄H₁₇F₃O ₂ requires 274.1181), 188 (2), 91 (100).

4-Methoxybutanoic acid (24). 4-Methoxybutanoic acid (24) was synthesised essentially by the method described by Archer's group¹³¹. A mixture of tetrahydrofuran-2-one (43.0 g, 500 mmol) in 2 M NaOH solution (500 ml) was stirred at ambient temperature for 2 d and was heated under reflux for 3.5 h. After cooling, the alkaline solution was washed with ether (3 × 50 ml) and the was solvent evaporated to give a white slurry. The slurry was dissolved in 10
M NaOH solution (75 ml) and was then treated alternately with dimethyl sulphonate (3 x 25 ml) and 10 M NaOH solution (3 x 25 ml). The mixture was heated to 90°C resulting in a moderate exotherm and the precipitation of a white solid. The temperature was maintained between 60-70°C for 1 h. After cooling, the reaction mixture was extracted with ether (3 x 100 ml) and the combined extracts were washed with brine (50 ml) and dried (MgSO₄). The solvent was evaporated to give a yellow oil which was distilled (Kugelrohr) to give a colourless oil, later found to still contain some lactone. The oil was dissolved in ether (100 ml) and washed with saturated sodium hydrogen carbonate solution (2 x 100 ml). The alkaline solution was then acidified and extracted with ether (3 x 100 ml). The organic extracts were dried (MgSO₄) and the solvent was evaporated to yield 3.93 g (7%) of 4-methoxybutanoic acid (24). Data: colourless oil; bp 125-130°C (literature 131 bp 8 103-105°C); \(^1\)H NMR (270 MHz, CDCl₃) 1.88 (2H, qu, \(J = 7.3\) Hz, CH₂CH₂CH₂), 2.43 (2H, t, \(J = 7.3\) Hz, CH₂CH₂CO₂H), 3.32 (3H, s, CH₃O), 3.41 (2H, t, \(J = 6.2\) Hz, CH₃OCH₂CH₂), 10.70 (1H, br, CO₂H); IR (film) 3000 (br), 1715 (s), 1150 (s).

\[\text{H}_3\text{CO} \equiv \text{CO}_2\text{H}_3\]

(25)

Ethyl 4-methoxybutanoate (25). Ethyl 4-methoxybutanoate (2) was synthesised essentially by the method described by Archer's group\(^{131}\). A solution of 4-methoxybutanoic acid (24) (20.8 g, 17.6 mmol) was heated for 16 h in ethanol (70 ml) and concentrated HCl (0.5 ml). Most of the solvent was removed by evaporation and to the remaining residue was added saturated sodium hydrogen carbonate solution (150 ml). The mixture was extracted with ether (5 x 50 ml) and the combined organic extracts were washed with brine (50 ml), dried (MgSO₄) and the solvent evaporated. The residue was distilled (Kugelrohr) to yield 2.57 g (67%) of ethyl 4-methoxybutanoate (25). Data: colourless oil; bp 170-175°C (literature\(^{131}\) bp 8 75-76°C); \(^1\)H NMR (270 MHz, CDCl₃) 1.26 (3H, t, \(J = 7.1\) Hz, CO₂CH₂CH₃), 1.82 (2H, qu, \(J = 6.4\) Hz,
CH₂CH₂CH₂), 2.31 (2H, t, J = 7.5 Hz, CH₂CH₂CO₂), 3.25 (3H, s, CH₃O), 3.34 (2H, t, J = 6.2 Hz, CH₃OCH₂CH₂), 4.06 (2H, q, J = 7.2 Hz, CO₂CH₂CH₃); IR (film) 1740 (s).

Ethyl 4-methoxy-2-(trifluoroacetyl)butanoate (26). Ethyl 4-methoxy-2-(trifluoroacetyl)butanoate (26) was synthesised essentially by the method described by Archer's group. Ethanol (0.01 ml) was added to a stirred slurry of NaH (80% dispersion in oil, 1.00 g, 42.0 mmol) in THF (10 ml) under a nitrogen atmosphere. This was followed by the dropwise addition of ethyl 4-methoxybutanoate (25) (1.60 g, 10.0 mmol) in THF (5 ml) and ethyl trifluoroacetate (1.45 ml, 12.0 mmol) in THF (10 ml). The mixture was heated under reflux for 2 h followed by stirring at ambient temperature for 48 h. After acidification with 2 M HCl, water (100 ml) was added and the aqueous layer was extracted with ether (3 x 100 ml). The combined organic extracts were washed with brine (50 ml) and dried (MgSO₄). The solvent was evaporated and the crude residue was distilled (Kugelrohr) to yield 2.66 g (69%) of ethyl 4-methoxy-2-(trifluoroacetyl)butanoate (26). Data: colourless oil; bp₂0 100°C (literature bp_13 85-86°C); ¹⁹F NMR (84 MHz, CDCl₃) -84.28 (s, hydrate?), -78.19 (s, keto), -67.40 (s, enol), IR (film) 2750 (br), 1790 (s), 1750 (s), 1170 (s), 700 (m).

5-Methoxy-1,1,1-trifluoropentan-2-one (27). 5-Methoxy-1,1,1-trifluoropentan-2-one (27) was synthesised essentially using the method described by
Archer's group131. A solution of ethyl 4-methoxy-2-(trifluoroacetyl)butanoate (26) (1.73 g, 7.16 mmol) in acetic acid : water (87 : 13) (2 ml) and concentrated HCl (0.02 ml) was heated under reflux for 16 h. The mixture was allowed to cool and then was carefully neutralised with potassium carbonate. Water (5 ml) was added and the mixture was extracted with ether (4 × 5 ml). The combined organic extracts were washed with 4% aqueous sodium hydrogen carbonate solution (10 ml), they were then dried (MgSO\textsubscript{4}) and the solvent was removed by evaporation. The crude material was distilled (Kugelrohr) to yield 0.50 g (41\%) of 5-methoxy-1,1,1-trifluoropentan-2-one (27). Data: colourless oil; bp 115-125°C at atmospheric pressure (literature131 bp 120-123°C); 1H NMR (270 MHz, CDCl\textsubscript{3}) 1.99 (2H, qu, \textit{J} = 6.4 Hz, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 2.83 (2H, t, \textit{J} = 7.0 Hz, CH\textsubscript{2}CH\textsubscript{2}COCF\textsubscript{3}), 3.33 (3H, s, CH\textsubscript{3}OCH\textsubscript{2}), 3.42 (2H, t, \textit{J} = 5.7 Hz, CH\textsubscript{2}OCH\textsubscript{2}CH\textsubscript{2}), 19F NMR (84 MHz, CDCl\textsubscript{3}) -77.40 (s); IR (film) 3250 (br), 1715 (s), 1400 (m), 1110 (m).

5-Phenyl-1,1,1-trifluoropentan-2-one (28). A solution of ethyl 4-phenyl-2-(trifluoroacetyl)butanoate (31) (3.00 g, 10.4 mmol) in anhydrous DMF (24 ml) was heated under reflux in the presence of lithium chloride (0.88 g, 20.8 mmol) and water (0.19 ml, 10.4 mmol) for 4.5 h. Water (12 ml) and DCM (100 ml) were added and the organic phase was washed with water (5 × 10 ml) and dried (MgSO\textsubscript{4}). Chromatography (hexane : ethyl acetate ; 5 : 1) of the evaporation residue gave a yellow liquid which was further purified by distillation (Kugelrohr) to yield 1.13 g (50\%) of 5-phenyl-1,1,1-trifluoropentan-2-one (28). Data: colourless liquid; bp\textsubscript{20} 100°C (literature190 bp\textsubscript{10} 90°C); 1H NMR (270 MHz, CDCl\textsubscript{3}) 2.01 (2H, qu, \textit{J} = 7.3 Hz, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}), 2.67 (2H, t, \textit{J} = 7.7 Hz, CH\textsubscript{2}CH\textsubscript{2}COCF\textsubscript{3}), 2.71 (2H, t, \textit{J} = 7.2 Hz, PhCH\textsubscript{2}CH\textsubscript{2}), 7.24 (5H, m, Ph); 19F NMR (376 MHz, CDCl\textsubscript{3}) -79.80 (s).
Ethyl 4-phenylbutanoate (30). 4-Phenylbutanoic acid (10.0 g, 60.9 mmol) was dissolved in ethanol (500 ml) and concentrated sulphuric acid (5 ml) was added cautiously. The solution was boiled under reflux for 3 h. The reaction mixture was allowed to cool to ambient temperature and most of the solvent was evaporated. Ether (250 ml) was added followed by the slow addition of saturated sodium hydrogen carbonate solution (50 ml), which resulted in a moderate exotherm. The mixture was stirred for 30 min then separated. The organic phase was washed with saturated sodium hydrogen carbonate solution (50 ml), water (2 x 50 ml) and brine (30 ml). The organic phase was dried (MgSO₄) and the solvent evaporated to yield 11.7 g (96%) of ethyl 4-phenylbutanoate (30). Data: pale yellow oil; ¹H NMR (270 MHz, CDCl₃) 1.21 (3H, t, J = 7.2 Hz, CO₂CH₂CH₃), 1.91 (2H, qu, J = 7.5 Hz, CH₂CH₂CH₂), 2.28 (2H, t, J = 7.7 Hz, CH₂CH₂CO₂), 2.61 (2H, t, J = 7.3 Hz, PhCH₂CH₂), 4.08 (2H, q, J = 7.1 Hz, CO₂CH₂CH₃); IR (film) 1740 (s).

Ethyl 4-phenyl-2-(trifluoroacetyl)butanoate (31). LDA (19.5 mmol) was prepared by the addition of n-butyl lithium (2.5 M solution in hexanes, 8.6 ml, 21.5 mmol) to a stirred solution of diisopropylamine (2.74 ml, 19.5 mmol) in THF (30 ml) at 0°C. After 15 min stirring, the temperature was reduced to -78°C and a solution of ethyl 4-phenylbutanoate (30) (2.50 g, 13.0 mmol) in THF (15 ml) was added dropwise. The mixture was stirred at -78°C for 30
min. A solution of ethyl trifluoroacetate (3.1 ml, 26.0 mmol) in THF (10 ml) was added dropwise. The mixture was maintained at -78°C for 20 min before being allowed to warm gradually to ambient temperature. After stirring for a further 24 h the reaction was quenched with 1 M aqueous HCl solution (15 ml). The organic phase was washed with water (10 ml) and brine (10 ml). The aqueous phase of the reaction mixture was extracted with ether (2 × 25 ml) and the organic extracts washed with brine (10 ml). The combined organic phases were dried (MgSO4) and the majority of the solvent was evaporated. The remaining solvent and TFA was removed by distillation (Kugelrohr) at atmospheric pressure yielding 3.00 g of ethyl 4-phenyl-2-(trifluoroacetyl)-butanoate (31). Data: yellow oil; NMR data includes values for the 10% enolisation of (31) observed; 1H NMR (400 MHz, CDCl3) 1.26 (2.7H, t, J = 6.7 Hz, CO2CH2CH3), 1.27 (0.3H, m, CO2CH2CH3, enol), 2.30 (2H, m, PhCH2CH2), 2.65 (1.8H, m, CH2CH2CHCO2Et(C0CF3)), 2.70 (0.2H, m, CH2CH2CCO2Et(CCF3OH), enol), 3.81 (0.9H, t, J = 7.3 Hz, CH2CHCO2Et(COCF3)), 4.21 (1.8H, q, J = 5.9 Hz, CO2CH2CH3), 4.24 (0.2H, q, J = 5.9 Hz, CO2CH2CH3, enol), 7.24 (5H, m, Ph), 12.91 (0.1H, s, OH, enol); 19F NMR (376 MHz, CDCl3) -84.01 (s, hydrate?), -77.10 (s, keto), -67.37 (s, enol); IR (film) 1750 (s), 1680 (s)

Ethyl 2-trifluoromethyl-4,5-dihydro-1,3-dioxole-2-acetate (32). Ethyl 2-trifluoromethyl-4,5-dihydro-1,3-dioxole-2-acetate (32) was synthesised essentially using the method described by Langlois's group137. Ethyl 4,4,4-trifluoro-3-oxobutanoate (7.94 ml, 54.3 mmol) was added to sodium hydride (80% dispersion in oil, 1.63 g, 54.3 mmol) in ethanol (40 ml). The mixture was stirred for 40 min and the solvent was evaporated to give an off white solid. Chloroethanol (10 ml) was added to the solid and the solution was boiled
under reflux for 2 d. After cooling to ambient temperature, ice (ca. 15 g) was added followed by 5 M HCl solution (0.5 ml). The aqueous layer was extracted with ether (3 × 20 ml) and the combined organic extracts were washed to neutrality with water (3 × 20 ml) followed by a wash with brine (20 ml). The organic phase was dried (MgSO₄) and the was solvent evaporated to yield 7.44 g (60%) of ethyl 2-trifluoromethyl-4,5-dihydro-1,3-dioxol-2-acetate (32) following distillation (Kugelrohr). Data: colourless liquid; bp 90-95°C (literature 137 bp 96-98°C); ¹H NMR (400 MHz, CDCl₃) 1.28 (3H, t, J = 7.3 Hz, CO₂CH₂CH₃), 2.89 (2H, s, RCH₂CO₂), 4.20 (6H, m, CH₂O); ¹⁹F NMR (376 MHz, CDCl₃) -84.16 (s); IR (film) 1750 (s), 1175 (s).

Ethyl 2-trifluoromethyl-4,5-dihydro-1,3-dioxol-α-(1-butyl)acetate (33). LDA (4.90 mmol) was prepared by the addition of n-butyl lithium (2.5 M solution in hexanes, 3.19 ml, 5.38 mmol) to diisopropylamine (0.69 ml, 4.90 mmol) at 0°C. After 15 min stirring, the temperature of the gel was reduced to -78°C and ethyl 2-trifluoromethyl-4,5-dihydro-1,3-dioxol-2-acetate (32) (1.00 g, 4.40 mmol) in anhydrous THF (8 ml) was added dropwise forming a yellow-brown solution which was stirred in a nitrogen atmosphere at -78°C for 1 h. HMPA (2.04 ml, 11.4 mmol) (caution: carcinogen) was added to the solution followed by 1-iodobutane (0.5 ml, 4.38 mmol) in THF (2 ml) after 15 min. The mixture was stirred at -78°C for 1 h before being allowed to warm to ambient temperature during a 16 h period. The reaction mixture was quenched by the addition of 2 M HCl solution (5 ml) and extracted with ethyl acetate (5 × 10 ml). The combined organic extracts were washed with half saturated sodium metabisulphite solution (2 × 15 ml) and washed to neutrality with water (3 × 15 ml). The solvent was evaporated and the residue was dissolved in ether.
(100 ml) and further washed with water (5 x 10 ml) to remove any HMPA. After drying (MgSO₄), the solvent was evaporated to yield 1.04 g (84%) of ethyl 2-trifluoromethyl-4,5-dihydro-1,3-dioxol-α-(1-propyl)acetate (33) following distillation (Kugelrohr). Data: pale yellow oil; bp 95-105°C; ¹H NMR (400 MHz, CDCl₃) 0.89 (3H, t, J = 7.0 Hz, CH₂CH₂CH₃), 1.27 (3H, t, J = 7.0 Hz, OCH₂CH₃), 1.2-1.8 (6H, m, CH₂CH₂CH₂CH₃), 2.97 (1H, dd, J = 3.1, 11.9 Hz, CHCO₂), 4.17 (6H, m, OCH₂CH₂O and CO₂CH₂CH₃), ¹⁹F NMR (376 MHz, CDCl₃) -81.20 (s); MS (El) 284.1234 (M⁺, 41) (C₁₂H₁₉F₃O₄ requires 284.1235), 239 (10).

Ethyl 2-(trifluoroacetyl)hexanoate (34). To a stirred solution of ethyl 2-trifluoromethyl-4,5-dihydro-1,3-dioxol-α-(1-butyl)acetate (33) (1.00 g, 3.50 mmol) in hexane (20 ml) at -10°C was added boron tribromide (5.25 ml, 5.25 mmol). After 1.5 h, water (10 ml) was added carefully. The mixture was extracted with ether (3 x 15 ml) and the combined organic extracts were washed to neutrality with water (5 x 10 ml) and then washed with brine (10 ml). After being dried (MgSO₄), the solvent was evaporated to yield 0.56 g (69%) of ethyl 2-(trifluoroacetyl)hexanoate (34). Data: yellow oil; ¹H NMR (400 MHz, CDCl₃) 0.92 (3H, t, J = 6.8 Hz, CH₂CH₂CH₃), 1.27 (3H, m, OCH₂CH₃), 1.35 (4H, m, CH₂CH₂CH₂CH₃), 3.85 (1H, m, CH, chiral centre), 4.22 (2H, q, J = 7.1 Hz, OCH₂CH₃); ¹⁹F NMR (376 MHz, CDCl₃) -78.32 (s, enol), -78.55 (s, keto); MS (EI) 241.0998 (M⁺, 28, ¹³C isotope) (¹³CC₅H₁₅F₃O₃ requires 241.1007), 240 (M⁺, 100), 239.0896 (M⁺-H, 46) (C₁₀H₁₄F₃O₃ requires 239.0895).
1,1,1-Trifluoroheptan-2-one (35). A solution of ethyl 2-(trifluoroacetyl)hexanoate (34) (0.55 g, 2.30 mmol) in anhydrous DMF (8 ml) was heated to 100°C in the presence of lithium chloride (0.28 g, 6.66 mmol) and water (0.11 ml, 3.33 mmol) for 2 h 15 min. The solution was allowed to cool to ambient temperature and water (4 ml) was added. The mixture was extracted with petroleum ether bp 40-60°C (4 × 10 ml) and the combined organic extracts were washed with water (5 × 10 ml) and with brine (10 ml). After being dried (MgSO₄), the solvent was evaporated to yield 0.05 g (13%) of 1,1,1-trifluoroheptan-2-one (35) following distillation (Kugelrohr). Data: colourless liquid, bp 80-85°C (literature191 bp 100°C); ¹H NMR (400 MHz, CDCl₃) 0.91 (3H, t, J = 6.7 Hz, CH₂CIL), 1.63 (4H, m, QfedfcQfeGHs), 2.04 (2H, qu, J = 7.3 Hz, CF₃COCH₂CH₂CH₂), 2.70 (2H, t, J = 7.3 Hz, CF₃COCH₂), ¹⁹F NMR (84 MHz, CDCl₃) -79.75 (s).

Ethyl 1,1,1-trifluoro-2-(dimethylhydrazono)butanoate (36). Ethyl 1,1,1-trifluoro-2-(dimethylhydrazono)butanoate (36) was synthesised essentially using the method described by Langlois's group.¹³⁷ A solution of ethyl 4,4,4-trifluoro-3-oxobutanoate (6.90 g, 37.5 mmol) and 1,1-dimethylhydrazine (2.75 g, 45.8 mmol) in ethanol (14 ml) was boiled under reflux for 20 h. After cooling, the solvent was evaporated to yield 6.50 g (77%) of ethyl 1,1,1-trifluoro-2-(dimethylhydrazono)butanoate (36) following distillation (Kugelrohr). Data: pale yellow liquid; bp₂₀ 85-90°C (literature¹³⁷ bp₁₇ 85-86°C); ¹⁹F NMR (84 MHz, CH₂CH₂OH) -70.44 (s).
Ethyl 5-(phenylmethoxy)-2-(2,2,2-trifluoro-1-(dimethylhydrazono)ethyl)-pentanoate (37). LDA (8.15 mmol) was prepared by the addition of n-butyl lithium (2.5 M solution in hexanes, 3.58 ml, 8.95 mmol) to diisopropylamine (1.14 ml, 8.15 mmol) in THF (15 ml) at 0°C. After 15 min stirring, the temperature was reduced to -78°C and ethyl 1,1,1-trifluoro-2-(dimethylhydrazono)butanoate (36) (1.68 g, 7.41 mmol) was added to the solution dropwise. After being stirred for 15 min at -78°C, the temperature of the reaction mixture was allowed to warm to 0°C for 30 min. The temperature was lowered to -78°C and 1-iodo-3-(phenylmethoxy)propane (21) (2.25 g, 8.15 mmol) in THF (5 ml) was added dropwise, followed immediately by HMPA (caution: carcinogen) (3.98 ml, 22.2 mmol). The temperature was allowed to warm to 0°C for 2 h and then to ambient temperature for 31 h. The reaction mixture was quenched by the addition of 10% aqueous HCl solution (10 ml) and stirring continued for 1 h. The mixture was extracted with ether (5 × 10 ml) and the combined organic extracts were washed with half saturated sodium metabisulphite solution (2 × 15 ml) and with water (3 × 10 ml). The organic phase was dried (MgSO₄) and the solvent was evaporated to yield 1.67 g (61%) of ethyl 5-(phenylmethoxy)-2-(2,2,2-trifluoro-1-(dimethylhydrazono)ethyl)pentanoate (37) after chromatography (DCM). Data: pale yellow liquid, ¹⁹F NMR (84 MHz, CDCl₃) -66.01.
Ethyl 5-(phenylmethoxy)-2-(trifluoroacetyl)pentanoate (38). To a solution of ethyl 5-(phenylmethoxy)-2-(2,2,2-trifluoro-1-(dimethylhydrazono)ethyl)pentanoate (37) (1.47 g, 3.93 mmol) in ethanol : water (95 : 5) (15 ml) was added iodomethane (3.67 ml, 59.0 mmol) and the mixture was boiled under reflux for 3 d. After cooling, the solvent and reagent were evaporated to give an orange liquid and white solid. DCM (50 ml) was added and the suspension was filtered. The solvent of the filtrate was evaporated to yield 1.06 g (81%) of ethyl 5-(phenylmethoxy)-2-(trifluoroacetyl)pentanoate (38) after chromatography (petroleum ether 40/60 : ethyl acetate ; 3 : 1). Data: dark green liquid, 19F NMR (84 MHz, CDCl₃) -83.84 (s, hydrate?), -77.84 (s, keto), -66.96 (s, enol).

6-(Phenylmethoxy)-1,1,1-trifluorohexan-2-one (39). A solution of ethyl 5-(phenylmethoxy)-2-(trifluoroacetyl)pentanoate (38) (1.02 g, 3.05 mmol) in anhydrous DMF (8 ml) was heated to 100°C in the presence of lithium chloride (0.26 g, 6.10 mmol) and water (0.06 ml, 3.05 mmol) for 3 h. The solution was allowed to cool to ambient temperature and water (4 ml) and DCM (20 ml) were added. The organic layer was washed with water (5 x 5 ml) and the solvent was evaporated to yield 0.62 g (78%) of 6-(phenylmethoxy)-1,1,1-trifluorohexan-2-one (39) after chromatography (petroleum ether 40/60 : ethyl acetate ; 2 : 1). Data: colourless liquid, 1H NMR (400 MHz, CDCl₃) 1.65 (2H, ca. qu, $J = 5.8$ Hz, CF₃COCH₂CH₂CH₂), 1.79 (2H, qu, $J = 7.9$ Hz, ca. qu, $J = 5.8$ Hz, CF₃COCH₂CH₂CH₂).
CH₃CH₂CH₂OBn), 2.75 (2H, t, J = 7.3 Hz, CF₃COCH₂CH₂), 3.49 (2H, t, J = 5.8 Hz, CH₂CH₂OBn), 4.49 (2H, s, OCH₂Ph), 7.33 (5H, m, PhCH₂O); ¹⁹F NMR (CDCl₃) -79.82 (s); MS (EI) 260.1010 (M⁺, 5) (C₁₃H₁₅F₃O₂ requires 260.1024), 107 (31), 91 (100).

1-(6-Bromohexyl)-2-nitroimidazole (40). A solution of 2-nitroimidazole (3.00 g, 26.5 mmol) in anhydrous DMF (150 ml) was treated with potassium tert-butoxide (3.13 g, 26.5 mmol) and the mixture was heated at 130°C for 20 min. The resulting solution was cooled to ambient temperature and treated with 1,6-dibromohexane (20 g, 79.6 mmol). The solution was heated at 130°C for 1.5 h. After being cooled, most of the solvent was removed by evaporation. Water (50 ml) was added to the residue and the mixture was extracted with DCM (3 x 50 ml). The combined organic extracts were washed with water (5 x 10 ml) and dried (MgSO₄) and the solvent was evaporated. Chromatography (hexane : ethyl acetate ; 4 : 3 to 1 : 1) yielded 3.99 g (54%) of 1-(6-bromohexyl)-2-nitroimidazole (40). Data: yellow oil; ¹H NMR (400 MHz, CDCl₃) 1.39 (2H, m, imidazole-CH₂CH₂CH₂CH₂CH₂CH₂Br), 1.52 (2H, m, imidazole-CH₂CH₂CH₂CH₂CH₂CH₂Br), 1.89 (4H, m, imidazole-CH₂CH₂CH₂CH₂CH₂CH₂Br), 3.41 (2H, t, J = 6.6 Hz, CH₂CH₂Br), 4.43 (2H, t, J = 7.3 Hz, imidazole-CH₂CH₂), 7.10 (1H, d, J = 1.1 Hz, imidazole 4-H), 7.15 (1H, d, J = 1.1 Hz, imidazole 5-H); IR (film) 1540 (s).

1-(6-Iodoheptyl)-2-nitroimidazole (41). To a stirred solution of 1-(6-
bromohexyl)-2-nitroimidazole (40) (3.94 g, 12.3 mmol) in anhydrous acetone (40 ml) was added sodium iodide (7.20 g, 48.0 mmol). The solution was stirred at ambient temperature in the dark and in a nitrogen atmosphere for 16 h. The reaction mixture was filtered and most of the acetone was evaporated. To the residue was added ether (50 ml) and water (10 ml) and the organic layer was washed with half saturated metabisulphite solution (2 × 15 ml) and brine (10 ml). After being dried (MgSO₄), the solvent was evaporated to yield 3.69 g (93%) of 1-(6-iodohexyl)-2-nitroimidazole (41). Data: pale yellow liquid; ¹H NMR (270 MHz, CDCl₃) 1.43 (4H, m, imidazole-CH₂CH₂CH₂CH₂CH₂I), 1.84 (4H, m, imidazole-CH₂CH₂CH₂CH₂CH₂CH₂I), 3.19 (2H, t, J = 6.8 Hz, CH₂CH₂I), 4.49 (2H, t, J = 7.3 Hz, imidazole-CH₂CH₂I), 7.12 (1H, d, J = 0.9 Hz, imidazole 4-H), 7.15 (1H, d, J = 1.1 Hz, imidazole 5-H).

Ethyl 2-(2,2,2-trifluoro-1-(dimethylhydrazono)ethyl)-8-(2-nitroimidazo-1-yl)octanoate (42). LDA (11.1 mmol) was prepared by the addition of n-butyl lithium (2.5 M solution in hexanes, 4.9 ml, 12.3 mmol) to diisopropylamine (1.56 ml, 11.1 mmol) in THF (5 ml) at 0°C. After 15 min stirring, the temperature was reduced to -78°C and ethyl 1,1,1-trifluoro-2-(dimethylhydrazono)butanoate (36) (2.29 g, 10.1 mmol) in THF (8 ml) was added to the solution dropwise. After stirring for 15 min at -78°C, the formation of a green anion was observed and the temperature was allowed to warm to 0°C for 40 min. The temperature was lowered to -78°C and 1-(6-iodohexyl)-2-nitroimidazole (41) (3.60 g, 11.1 mmol) in THF (7 ml) was added dropwise, followed immediately by HMPA (caution: carcinogen) (5.29 ml, 30.4 mmol). The temperature was allowed to warm to 0°C for 2 h and then to
ambient temperature for 19 h. The reaction mixture was quenched with 10% aqueous HCl solution (5 ml) and stirring continued for 30 min. The mixture was extracted with ether (5 x 20 ml) and the combined organic extracts were washed with half saturated sodium metabisulphite solution (2 x 20 ml) and with water (3 x 10 ml) to neutrality. The organic phase was dried (MgSO₄) and the solvent was evaporated to yield 2.80 g (66%) of ethyl 2-(2,2,2-trifluoro-1-(dimethylhydrazono)ethyl)-8-(2-nitroimidazol-1-yl)octanoate (42) after chromatography (hexane : ethyl acetate ; 2 : 1). Data: yellow oil; ¹H NMR (400 MHz, CDCl₃) 1.24 (3H, t, J = 7.3 Hz, CO₂CH₂CH₃), 1.38 (4H, m, imidazole-CH₂CH₂CH₂CH₂CH₂CH₂), 1.85 (6H, m, imidazole-CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂(C(NNMe₂)CF₃)CO₂Et), 2.62 (6H, s, NMe₂), 4.17 (2H, t, J = 6.41 Hz, imidazole-CH₂CH₂), 4.28 (1H, t, J = 7.02 Hz, CH₂CH(C(NNMe₂)CF₃)CO₂Et), 4.41 (2H, q, J = 7.6 Hz, CO₂CH₂CH₂CH₃), 7.10 (1H, d, J = 0.9 Hz, imidazole 4-H), 7.14 (1H, d, J = 0.9 Hz, imidazole 5-H); ¹⁹F NMR (376 MHz, CDCl₃) -66.25 (s); MS (Cl) 422.2015 (M⁺ + H, 100) (C₁₇H₂₇F₃N₅O₄ requires 422.2015), 392 (25), 324 (20).

Ethyl 2-(trifluoroacetyl)-8-(2-nitroimidazol-1-yl)octanoate (43). To a solution of ethyl 2-(2,2,2-trifluoro-1-(dimethylhydrazono)ethyl)-8-(2-nitroimidazol-1-yl)octanoate (42) (2.60 g, 6.17 mmol) in ethanol : water (95 : 5) (26 ml) was added iodomethane (5.8 ml, 92.5 mmol) and the mixture was boiled under reflux for 5 d. After cooling, the solvent and reagent were evaporated, and DCM (50 ml) was added. The suspension was washed with half saturated sodium metabisulphite solution (2 x 10 ml) and brine (10 ml). The organic phase was dried (MgSO₄) and the solvent was evaporated to yield 0.63 g (27%) of ethyl 2-(trifluoroacetyl)-8-(2-nitroimidazol-1-yl)octanoate.
(43) after chromatography (hexane : ethyl acetate ; 4 : 3 to 3 : 4). Data: dark red oil; 1H NMR (270 MHz, CDCl$_3$) 1.27 (3H, t, $J = 7.0$ Hz, CO$_2$CH$_2$CH$_3$), 1.37 (6H, m, imidazole-CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH(COCF$_3$)COC$_2$Et)), 1.95 (4H, m, imidazole-CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$), 4.22 (2H, q, $J = 7.1$ Hz, CO$_2$CH$_2$CH$_3$), 4.26 (1H, m, CH$_2$CH(COCF$_3$)COC$_2$Et), 4.41 (2H, t, $J = 7.5$ Hz, imidazole-CH$_2$CH$_2$), 7.09 (1H, d, $J = 0.9$ Hz, imidazole 4-H), 7.15 (1H, d, $J = 1.1$ Hz, imidazole 5-H); 19F NMR (376 MHz, CDCl$_3$) -84.02 (s, hydrate), -78.22 (s, keto), -67.26 (s, enol); MS (Cl) 380 (M$^+$ + H, 100), 350 (20), 333 (38).

2-Nitro-1-(8-oxo-9,9,9-trifluorononyl)imidazole (44). A solution of ethyl 2-(trifluoroacetyl)-8-(2-nitroimidazol-1-yl)octanoate (43) (0.62 g, 1.63 mmol) in anhydrous DMF (4 ml) was heated to 100°C in the presence of lithium chloride (0.14 g, 3.26 mmol) and water (0.03 ml, 1.63 mmol) for 4 h. The solution was allowed to cool to ambient temperature and water (4 ml) and DCM (20 ml) were added. The organic layer was washed with water (5 × 5 ml) and the solvent evaporated to yield 0.47 g (94%) of 2-nitro-1-(8-oxo-9,9,9-trifluorononyl)imidazole (44). Data: pale yellow oil; 1H NMR (400 MHz, CDCl$_3$) 1.37 (6H, m, imidazole-CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$COCF$_3$), 1.68 (2H, qu, $J = 6.7$ Hz, CH$_2$CH$_2$CH$_2$COCF$_3$), 1.86 (2H, qu, $J = 7.3$ Hz, imidazole-CH$_2$CH$_2$CH$_2$), 2.72 (2H, t, $J = 7.0$ Hz, CH$_2$CH$_2$COCF$_3$), 4.41 (2H, t, $J = 7.3$ Hz, imidazole-CH$_2$CH$_2$), 7.11 (1H, d, $J = 0.9$ Hz, imidazole 4-H), 7.15 (1H, d, $J = 0.9$ Hz, imidazole 5-H); 19F NMR (376 MHz, CDCl$_3$) -79.85 (s); MS (Cl) 308.1222 (M$^+$ + H, 100) (C$_{12}$H$_{17}$F$_3$N$_3$O$_3$ requires 308.1222), 278 (15), 261 (30).
(±)-1,1,1-Trifluoro-9-(2-imidazol-1-yl)nonan-2-ol (45). 2-Nitro-1-(8-oxo-9,9,9-trifluorononyl)imidazole (44) (0.10 g, 0.33 mmol) was dissolved in ethanol : water (95 : 5) (1 ml) and sodium borohydride (0.006 g, 0.16 mmol) was added. The mixture was stirred at ambient temperature for 3 h, then quenched with 2 M aqueous HCl solution (3 ml). Extraction of the reaction mixture with ether (3 × 10 ml) followed by washing of the extracts with brine (5 ml), drying (MgSO4) and evaporation of the solvent yielded 0.09 g (87%) of (±)-1,1,1-trifluoro-9-(2-imidazol-1-yl)nonan-2-ol (45). Data: colourless oil; 1H NMR (400 MHz, CDCl3) 1.29 (8H, m, imidazole-CH2CH2CH2CH2CH2CH2CH(OH)CF3), 1.54 (2H, m, CH2CH2CH(OH)CF3), 1.78 (2H, m, imidazole-CH2CH2CH2), 3.85 (1H, m, CH2CH(OH)CF3), 4.34 (2H, t, J = 7.7 Hz, imidazole-CH2CH2), 7.04 (1H, s, imidazole 4-H), 7.06 (1H, s, imidazole 5-H), 19F NMR (376 MHz, CDCl3) -80.44 (d, JHF = 5.8 Hz), IR (film) 3350 (br), 1545 (s), 1495 (s), MS (Cl) 310 (M+, 100), 263 (20).

5-Trifluoroacetyl-3,4-dihydro-2H-pyr An (52). 5-Trifluoroacetyl-3,4-dihydro-2H-pyr An (52) was synthesised essentially by the method described by Hojo’s group. To stirred solution of 3,4-dihydro-2H-pyr An (5.0 g, 59.4 mmol) and pyridine (1.6 ml, 19.8 mmol) in DCM (40 ml) was added TFAA (12.0 ml, 85.14 mmol) with caution. This produced a large exotherm which was controlled with cooling. Stirring was continued at ambient temperature for 16 h. Water (10 ml) was added to the reaction mixture producing a moderate
The organic phase was washed with water (10 ml) and 0.6 M sodium hydrogen carbonate solution (10 ml). After being dried (MgSO₄), the solvent was evaporated to yield 10.4 g (97%) of 5-trifluoroacetyl-3,4-dihydro-2H-pyran (52) following distillation (Kugelrohr). Data: colourless liquid; bp_20 65-70°C (literature 141 bp_10 64.6°C); ^1H NMR (400 MHz, CDCl₃): 1.96 (2H, br qu, J = 6.0 Hz, CH₂CH₂CH₂), 2.34 (2H, t, J = 6.0 Hz, CH₂CH₂-C=C), 4.21 (2H, t, J = 6.0 Hz, CH₂CH₂O), 7.83 (1H, s, OCH=CRJ); ^13C NMR (100 MHz, CDCl₃): 17.93 (CH₂CH₂CH₂), 20.53 (CH₂-C=C), 67.84 (CH₂O), 116.74 (q, J_C-CF = 292 Hz, CF₃), 162.35 (q, J_C=O = 35 Hz, C=O); ^19F NMR (376 MHz, CDCl₃): -70.37 (s); IR (film) 1685 (s), 1615 (s); MS (Ei) 180.0395 (M⁺, 29) (C₇H₇F₃O₂ requires 180.0398), 111 (100), 83 (35), 55 (28), 27 (31).

![Image of compound 55](image)

α-(Trifluoromethyl)tetrahydropyran-3-methanol (55).

Method A:

5-Trifluoroacetyl-3,4-dihydro-2H-pyran (52) (0.50 g, 2.78 mmol) was dissolved in methanol (9 ml) and a slurry of 10% palladium on activated carbon (0.10 g) in methanol (1 ml) was added. The suspension was evacuated and charged with hydrogen (×3) before being stirred in a hydrogen atmosphere for 4 h. The flask was evacuated, air was admitted, the suspension was filtered through a pad of Celite® and the solvent was evaporated to yield 0.50 g (98%) of α-(trifluoromethyl)tetrahydropyran-3-methanol (55).

Method B:

5-Trifluoroacetyl-3,4-dihydro-2H-pyran (52) (0.50 g, 2.78 mmol) was dissolved in hexane (9 ml) and THF (0.5 ml) and a slurry of 10% palladium on activated carbon (0.10 g) in hexane (1 ml) was added. The suspension was evacuated and charged with hydrogen (×3) before being stirred in a hydrogen

171
atmosphere for 30 min. The flask was evacuated, air was admitted, the suspension was filtered through a pad of Celite® and the solvent was evaporated to yield 0.50 g (100%) of α-(trifluoromethyl)tetrahydropyran-3-methanol (55).

Method C:
5-Trifluoroacetyl-3,4-dihydro-2H-pyran (52) (0.50 g, 2.78 mmol) was dissolved in methanol (9 ml) and potassium acetate (0.20 g) and a slurry of 10% palladium on activated carbon (0.10 g) in methanol (1 ml) were added. The suspension was evacuated and charged with hydrogen (×3) before being stirred in a hydrogen atmosphere for 2 h. The flask was evacuated, air was admitted, the suspension was filtered through a pad of Celite® and the solvent was evaporated. To the residue was added DCM (30 ml), and the resulting precipitate filtered. Removal of the solvent by evaporation yielded 0.39 g (76%) of α-(trifluoromethyl)tetrahydropyran-3-methanol (55).

Method D:
5-Trifluoroacetyl-3,4-dihydro-2H-pyran (52) (0.30 g, 1.67 mmol) was dissolved in methanol (9 ml) and a slurry of 10% palladium on activated carbon (0.08 g) in methanol (1 ml) was added. The temperature of the reaction mixture was reduced to -78°C and the suspension was evacuated and charged with hydrogen (×3) before being stirred in a hydrogen atmosphere. The temperature of the reaction mixture was maintained at -78°C for 3 h, after which t.l.c. indicated mostly starting material together with a small amount of a material with the same Rf value as that of the hydroxy compound (55). The temperature of the reaction mixture was allowed to rise in 10°C increments over a 3 h period, however, t.l.c. indicated little change until -10°C was reached. After 30 min at -10°C t.l.c. indicated that there was no starting material left. The flask was evacuated, air was admitted and the suspension was filtered through a pad of Celite®. The solvent was evaporated to yield 0.31 g (100%) of α-(trifluoromethyl)tetrahydropyran-3-methanol (55).

Data: colourless crystals; mp 35.0°C; 1H NMR (270 MHz, CDCl3) 1.52 (3H, m, pyran 4-H, OH), 1.77 (2H, m, pyran 5-H), 3.25 (2H, m, pyran 6-H), 3.76
(3H, m, pyran 2-H, 3-H), 6.21 (1H, m, pyran-CH(OH)CF3); 19F NMR (376 MHz, (CD3)2SO) -74.87 (d, J = 8.1 Hz), -74.63 (d, J = 8.1 Hz); IR (film) 3380 (br), 1280 (s); MS (EI) 184.0709 (M+, 12) (C7H11F5O2 requires 184.0711), 166 (13), 57 (100); Anal. Calcd for C7H3F3O2: C, 45.65; H, 6.02. Found: C, 44.60; H, 5.90.

3-(Dimethylaminomethylene)-1,1,5,5,5-hexafluoropentan-2,4-dione (62).
Anhydrous DMF (0.73 g, 10.0 mmol) was dissolved in acetic anhydride (10 ml) and 1,1,1,5,5,5-hexafluoropentane-2,4-dione (1.41 ml, 10.0 mmol) was added slowly and the mixture was heated at 80°C for 18 h. Most of the solvent was removed by evaporation and the resulting residue was distilled (Kugelrohr) to yield 2.49 g (95%) of 3-(dimethylaminomethylene)-1,1,5,5,5-hexafluoropentan-2,4-dione (62). Data: yellow crystals; bp 80°C; mp 36.5-37.5°C; 1H NMR (400 MHz, (CD3)2SO, 20°C) 2.83 (3H, br s, NCH3), 3.51 (3H, br s, NCH3), 8.13 (1H, s, C=CH); 1H NMR (400 MHz, (CD3)2SO, 100°C) 2.78 (3H, s, NCH3), 3.54 (3H, s, NCH3), 8.03 (1H, s, C=CH); 1H NMR (400 MHz, (CD3)2SO, 150°C) 3.05 (6H, br s, NCH3), 7.94 (1H, s, C=CH); 1H NMR (400 MHz, CDCl3, 21°C) 2.81 (3H, s, NCH3), 3.45 (3H, s, NCH3), 7.74 (1H, s, C=CH); 1H NMR (400 MHz, CDCl3, -50°C) 2.84 (3H, s, NCH3), 3.55 (3H, s, NCH3), 7.82 (1H, s, C=CH); 1H NMR (400 MHz, d8-THF, 20°C) 2.78 (3H, s, NCH3), 3.47 (3H, s, NCH3), 7.87 (1H, s, C=CH); 1H NMR (400 MHz, d8-THF, -90°C) 2.77 (3H, s, NCH3), 3.58 (3H, s, NCH3), 8.08 (1H, s, C=CH); 19F NMR (376 MHz, (CD3)2SO, 20°C) -72.09 (s); 19F NMR (376 MHz, (CD3)2SO, 100°C) -72.26 (s); 19F NMR (376 MHz, (CD3)2SO, 150°C) -72.31 (s); 19F NMR (376 MHz, CDCl3, 21°C) -73.39 (s); 19F NMR (376 MHz, CDCl3, -50°C) -72.94 (br s); 19F NMR (376 MHz, d8-
THF, 20°C) -73.16 (s); 19F NMR (376 MHz, d_8-THF, -90°C) -72.6 (very br);
13C NMR (100 MHz, CDCl$_3$) 43.17 (NCH$_3$), 49.04 (NCH$_3$), 101.45
((CF$_3$CO)$_2$C=C(H)NMe$_2$), 116.26 (q, $J_{CF} = 292.4$ Hz, COCF$_3$), 159.41
((CF$_3$CO)$_2$C=C(H)NMe$_2$), 179.65 (q, $J_{CF} = 36.7$ Hz, COCF$_3$); MS (EI)
263.0379 (M^++H^+) (C$_8$H$_7$F$_6$N$_2$O$_2$ requires 263.0381).

4-(Phenylmethoxy)butan-1-ol (68). 1,4-Butanediol (30.0 g, 333 mmol) was
dissolved in DMF (200 ml) and sodium hydride (60% dispersion in oil, 6.66 g,
166 mmol) was added portionwise with caution. After 5 min, benzyl bromide
(19.8 ml, 166 mmol) was added slowly, resulting in a moderate exotherm. The
mixture was stirred at ambient temperature for 16 h followed by heating to
70°C for 1.5 h. After cooling, most of the solvent was removed by evaporation
and to the residue was added DCM (20 ml) and water (30 ml). The aqueous
phase was extracted with DCM (20 ml) and the combined organic extracts
were washed with water (5 x 20 ml), 2 M aqueous HCl solution (20 ml), water
(20 ml) and, finally, brine (20 ml). After being dried (MgSO$_4$), the solvent of
the organic extracts was evaporated and the residue was distilled (Kugelrohr)
to yield 22.5 g (75%) of 4-(phenylmethoxy)butan-1-ol (68). Data: colourless
liquid; b.p., 150°C; 1H NMR (270 MHz, (CD$_3$)$_2$SO) 1.69 (4H, m,
CH$_2$CH$_2$CH$_2$CH$_2$), 3.51 (2H, ca. t, $J = 6.0$ Hz, CH$_2$CH$_2$OH), 3.63 (2H, t, $J =
5.7$ Hz, BnOCH$_2$CH$_2$), 4.51 (2H, s, PhCH$_2$O), 7.33 (5H, m, Ph).

4-(Phenylmethoxy)butanal (69). A solution of oxalyl chloride (15.8 ml, 31.6
mmol) in anhydrous DCM (60 ml) under a nitrogen atmosphere was cooled to

174
-60°C, and a solution of DMSO (4.5 ml, 63.1 mmol) in DCM (20 ml) was added slowly. The reaction mixture was stirred for 2 min and a solution of 4-(phenylmethoxy)butan-1-ol (68) (5.0 g, 27.8 mmol) in DCM (20 ml) was added within 5 min. Triethylamine (20 ml, 143 mmol) was added and the reaction mixture was stirred for a further 5 min before being allowed to warm to ambient temperature. Water (200 ml) was added and the aqueous phase was extracted with DCM (3 x 50 ml). The combined organic phases were washed with 0.2 M aqueous HCl solution (20 ml), water (20 ml), 0.6 M sodium carbonate solution (20 ml), water (20 ml) and brine (20 ml). The organic phase was dried (MgSO₄) and the solvent was evaporated to yield 4.94 g (100%) of 4-(phenylmethoxy)butanal (69).

Data: colourless oil; ¹H NMR (270 MHz, CDCl₃) 1 95 (2H, qu, J = 6.2 Hz, CH₂CH₂CH₂), 2.55 (2H, dt, J = 1.5, 7.0 Hz, CH₂CH₂CHO), 3.50 (2H, t, J= 6.0 Hz, BnOC&CHz), 4.48 (2H, s, PhCH₂O), 7.32 (5H, m, Ph), 9.77 (1H, t, J= 1.5 Hz, CH₂CHO).

3,5-Bis(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(4-nitrophenyl)pyrazole (72). To a solution of 4-nitrophenylhydrazine (0.20 g, 1.30 mmol) in ethanol (50 ml) was added 1,1,1,5,5,5-hexafluoropentane-2,4-dione (0.30 g, 1.44 mmol). The mixture was boiled under reflux for 3 h and then was allowed to cool to ambient temperature. The solvent was evaporated to yield 0.45 g (99%) of 3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(4-nitrophenyl)-pyrazole (72).

Data: yellow solid, mp 105-106°C (literature mp 105-108°C claimed for pyrazole (76)); ¹H NMR (270 MHz, CDCl₃) 3.42 (1H, d septet, Jₖₖ = 19.6 Hz, Jₖ₋ₓ = 1.5 Hz, pyrazole 4-H), 3.74 (1H, br d, Jₖ₋ₓ = 19.6 Hz, 175
pyrazole 4-H), 5.75 (1H, br, OH), 7.60 (2H, d, $J = 9.4 \text{ Hz}$, Ar 2,6-H$_2$), 8.12 (2H, d, $J = 9.4 \text{ Hz}$, Ar 3,5-H$_2$); MS (El) 343 (M^+, 95), 274 (100), 228 (61); Anal. Calcd for C$_{11}$H$_7$F$_6$N$_2$O$_3$: C, 38.48; H, 2.06; N, 12.25. Found: C, 38.70; H, 2.03; N, 12.50.

3,5-Bis(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(pentafluorophenyl)-pyrazole (73). To a solution of pentafluorophenylhydrazine (0.20 g, 1.00 mmol) in ethanol (50 ml) was added 1,1,1,5,5,5-hexafluoropentane-2,4-dione (0.30 g, 1.44 mmol). The mixture was boiled under reflux for 5 h and then was allowed to cool to ambient temperature. The solvent was evaporated to yield 0.38 g (98%) of 3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(pentafluorophenyl)pyrazole (73). Data: colourless prisms; mp 61-62°C (literature112 mp 60-62°C claimed for pyrazole (77)); 1H NMR (270 MHz, CDCl$_3$) 3.32 (1H, br d, $J = 18.9 \text{ Hz}$, pyrazole 4-H), 3.59 (1H, dq, $J_{HH} = 18.9 \text{ Hz}$, $J_{HF} = 1.5 \text{ Hz}$, pyrazole 4-H), 6.13 (1H, br s, OH); MS (El) 388.0099 (M^+, 15) (C$_{11}$H$_7$F$_6$N$_2$O requires 388.0070), 319 (20), 139 (92), 69 (100).

1-Benzoyl-3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxypyrazole (74). To a solution of benzoic hydrazide (0.14 g, 1.00 mmol) in ethanol (50 ml) was
added 1,1,1,5,5,5-hexafluoropentane-2,4-dione (0.30 g, 1.44 mmol). The mixture was boiled under reflux for 5 h and then was allowed to cool to ambient temperature. The solvent was evaporated to yield 0.47 g (99%) of 1-benzoyl-3,5-bis(trifluoromethyl)-4,5-dihydro-5-hydroxypyrazole (74). Data: 82-84°C (literature12 mp 84-85°C claimed for pyrazole (78)), 1H NMR (270 MHz, CDCl3) 3.38 (1H, d septet, JH-H = 19.5 Hz, JH-F = 1.5 Hz, pyrazole 4-H), 6.43 (1H, br s, OH), 7.47 (2H, ca. t, J = 7.5 Hz, Ar 3,5-H2), 7.59 (1H, tt, J = 7.5 Hz, J = 1.3 Hz, Ar 4-H), 7.86 (2H, ca. d, J = 7.5 Hz, Ar 2,6-H2); 19F NMR (84 MHz, CDCl3) -81.40 (s), -68.18 (s); MS (El) 326 (M+, 1), 105 (100); MS (FAB +ve ion) 327.0599 (M+ +H) (C12H9F6N2O2 requires 327.0568).

[Image of 3,5-Bis(trifluoromethyl)-4,5-dihydro-1-(2,4-dinitrophenyl)-5-hydroxypyrazole (75)]

3,5-Bis(trifluoromethyl)-4,5-dihydro-1-(2,4-dinitrophenyl)-5-hydroxypyrazole (75). To a solution of 2,4-dinitrophenylhydrazine (0.30 g, 1.50 mmol) in ethanol (50 ml) was added 1,1,1,5,5,5-hexafluoropentane-2,4-dione (0.41 g, 1.97 mmol). The mixture was boiled under reflux for 5 h and then was allowed to cool to ambient temperature. The solvent was evaporated to yield 0.51 g (88%) of 3,5-bis(trifluoromethyl)-4,5-dihydro-1-(2,4-dinitrophenyl)-5-hydroxypyrazole (75). Data: orange-yellow solid; mp 81-83°C (literature12 mp 82-83°C claimed for pyrazole (79)); 1H NMR (400 MHz, CDCl3) 3.06 (1H, d, J = 14.6 Hz, pyrazole 4-H), 3.18 (1H, d, J = 14.6 Hz, pyrazole 4-H), 5.10 (1H, br, OH), 8.04 (1H, d, J = 9.5 Hz, Ar 6-H), 8.40 (1H, dd, J = 9.5 Hz, J = 2.4 Hz, Ar 5-H), 9.14 (1H, d, J = 2.4 Hz, Ar 3-H); 19F NMR (376 MHz, (CD3)2SO) -78.93 (s), -65.60 (s); MS (EI) 343 (M+, 95), 274 (100), 228 (61); C11H6F6N2O3 requires C 38.48, H 2.06, N 12.25; found C 38.70, H 2.03, N
3,5-Bis(trifluoromethyl)-1-(4-nitrophenyl)pyrazole (76). A solution of 3,5-
bis(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(4-nitrophenyl)pyrazole (72) (0.10 g, 0.29 mmol) in ethanol (10 ml) and concentrated HCl (0.5 ml) was
stirred and heated under reflux for 72 h. The solvent was evaporated and the
residue was dissolved in DCM (10 ml). Anhydrous MgSO4 and sodium
hydrogen carbonate were added and the suspension was filtered and the
solvent was evaporated to give 0.09 g (96%) of 3,5-bis(trifluoromethyl)-1-(4-
nitrophenyl)pyrazole (76). Data: yellow oil;1H NMR (400 MHz, CDCl3) 7.18
(1H, s, pyrazole-H), 7.77 (2H, d, J = 8.9 Hz, Ar 2,6-H2), 8.42 (2H, d, J = 8.9
Hz, Ar 3,5-H2); 13C NMR (100 MHz, CDCl3) 108.40 (CH, pyrazole 4-H),
118.74 (q, JCF = 270 Hz, CF3), 120.04 (q, JCF = 270 Hz, CF3), 124.84 (Ar
2,6-CH), 126.32 (Ar 3,5-CH), 134.50 (q, JCF = 40 Hz, C-CF3), 142.73 (Ar 4-
C), 144.04 (q, JCF = 40 Hz, C-CF3), 148.36 (Ar 1-C), 19F NMR (376 MHz,
CDCl3) -63.18 (s, CF3), -58.07 (s, CF3); MS (EI) 325.0288 (M+, 100)
(C11H7N3F6O2 requires 325.0286), 279 (10).

3,5-Bis(trifluoromethyl)-1-(pentafluorophenyl)pyrazole (77). 3,5-Bis-
(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(pentafluorophenyl)pyrazole (73)
(0.85 g, 2.18 mmol) was dissolved in acetic anhydride (20 ml, 210 mmol) and acetic acid (15 ml, 260 mmol) and the solution heated under reflux for 16 h. Most of the acetic anhydride and acetic acid were removed by evaporation and the residue was dissolved in DCM (50 ml) and stirred with saturated sodium hydrogen carbonate solution (50 ml) for 1 h. The organic phase was separated and dried (MgSO₄) and the solvent was removed by evaporation to yield 0.23 g (62%) of 3,5-bis(trifluoromethyl)-1-(pentafluorophenyl)pyrazole (77). Data: yellow oil; ¹H NMR (400 MHz, CDCl₃) 7.17 (s), ¹⁹F NMR (376 MHz, CDCl₃) -159.84 (m, Ar 3,5-F₂), -147.30 (m, Ar 4-F), -144.45 (m, Ar 2,6-F₂), -63.49 (s, CF₃), -61.71 (s, CF₃); MS (EI) 369.9957 (M⁺, 100) (C₁₁HF₁₁N₂ requires 369.9964), 351 (35), 301 (50), 206 (45).

3,5-Bis(trifluoromethyl)-1-(2,4-dinitrophenyl)pyrazole (79). 3,5-Bis(trifluoromethyl)-4,5-dihydro-1-(2,4-dinitrophenyl)-5-hydroxypyrazole (75) (0.13 g, 0.34 mmol) was dissolved in DCM (4 ml) and triethylamine (0.12 ml, 0.85 mmol), followed by the addition of methanesulphonyl chloride (0.04 g, 0.34 mmol). The solution was stirred for 7 d. DCM (30 ml) was added and the solution was washed with water (10 ml), 0.5 M H₂SO₄ (2 × 10 ml) and finally with water (2 × 10 ml). The organic phase was dried (MgSO₄) and the solvent evaporated to yield 0.01 g (10%) of 3,5-bis(trifluoromethyl)-1-(2,4-dinitrophenyl)pyrazole (79) after chromatography (petroleum ether bp 40-60°C : ethyl acetate ; 5 : 1). Data: bright yellow oil; ¹H NMR (400 MHz, CDCl₃) 6.70 (1H, s, pyrazole 4-H), 8.11 (1H, d, J = 9.3 Hz, Ar 6-H), 8.47 (1H, dd, J = 9.3, 2.4 Hz, Ar 5-H), 9.17 (1H, d, J = 2.4 Hz, Ar 6-H); ¹⁹F NMR (376 MHz, CDCl₃) -70.95 (s, CF₃), -67.39 (s, CF₃); MS (Cl) 371 (M⁺ + H, 38), 279 (8).
3-(3-Trifluoromethylpyrazol-4-yl)propanol (80). 5-Trifluoroacetyl-3-4-dihydro-2H-pyran (52) (1.00 g, 5.60 mmol) was dissolved in ethanol (10 ml) and hydrazine hydrate (0.81 ml, 16.6 mmol) in ethanol (3 ml) was added. The mixture was stirred and heated under reflux for 3 h. During this time the progress of the reaction was monitored by 19F NMR. The solvent was evaporated and the residue was distilled (Kugelrohr) to yield 1.07 g (99%) of 3-(trifluoromethyl)pyrazole-4-propanol (80). Data: white solid; mp 84.0-85.0°C (literature154 mp 85-87°C), bp0 4 160°C; 1H NMR (400 MHz, D$_2$O) 1.79 (2H, qu, $J=7.0$ Hz, CH$_2$CH$_2$CH$_2$), 2.62 (2H, t, $J=7.3$ Hz, RCH$_2$CH$_2$), 3.59 (2H, t, $J=6.3$ Hz, CH$_2$CH$_2$OH), 19F NMR (376 MHz, D$_2$O) -61.31 (s); MS (Cl, iso-butane) 195.0745 (M$^+$ + H, 100) (C$_7$H$_{10}$F$_3$N$_2$O requires 195.0745), 176 (22), 155 (8).

3-(3-Trifluoromethylpyrazol-4-yl)propyl benzoate (81). Benzoyl chloride (0.54 g, 3.90 mmol) was added dropwise to 3-(trifluoromethyl)pyrazole-4-propanol (80) (0.50 g, 2.60 mmol) and triethylamine (5.20 g, 51.5 mmol) in dichloromethane (20 ml) at 0°C and the mixture was allowed to warm to
ambient temperature during 16 h. The mixture was washed with saturated sodium hydrogen carbonate solution (10 ml), 2 M hydrochloric acid (5 × 10 ml) and brine (10 ml) and was dried (MgSO₄). Chromatography (hexane : ethyl acetate; 1 : 1) of the evaporation residue gave 0.62 g (81%) of 3-(3-trifluoromethylpyrazol-4-yl)propyl benzoate (81). Data: large white plates, mp 46.0-46.5°C; ¹H NMR (400 MHz, CDCl₃) 2.09 (2H, qu, J = 7 Hz, CH₂CH₂CH₃), 2.80 (2H, t, J = 7.6 Hz, pyrazole-CH₂), 4.38 (2H, t, J = 6.1 Hz, CH₂O), 7.44 (2H, br t, J = 8 Hz, Ar 3,5-H₂), 7.54 (1H, s, pyrazole 5-H), 7.56 (1H, br t, J = 8 Hz, Ar 4-H), 8.03 (2H, br d, J = 8 Hz, Ar 2,6-H₂); ¹⁹F NMR (376 MHz, CDCl₃) -61.30 (s); MS (Cl) 299.1007 (M⁺ + H) (C₁₄H₁₂F₃N₂O₂ requires 299.1007). 176 (48), 105 (24).

3-Trifluorooacetyl-4,5-dihydrofuran (82). 3-Trifluorooacetyl-4,5-dihydrofuran (82) was synthesised essentially by the method described by Hojo's group.¹⁴ Trifluoroacetic anhydride (22.5 g, 107 mmol) was added dropwise with cooling to 2,3-dihydrofuran (5.00 g, 71.0 mmol) and pyridine (1.88 g, 24.0 mmol) in dichloromethane (40 ml) and the mixture was stirred for 18 h. Distillation gave 9.72 g (82%) of 3-trifluorooacetyl-4,5-dihydrofuran (82). Data: colourless liquid; bp₂₀ 80°C (literature ⁴ bp₉₂ 48.5°C); ¹H NMR (400 MHz, CDCl₃) 2.98 (2H, tq, J₁₂ = 9.8 Hz, J₁₆ = 0.6 Hz, 4-H₂), 4.68 (2H, t, J₁₂ = 9.8 Hz, 5-H₂), 7.64 (1H, q, J₁₆ = 1.5 Hz, 2-H), ¹⁹F NMR (376 MHz, CDCl₃) 73.88 (br s); ¹³C NMR (100, CDCl₃) 26.93 (4-C), 74.01 (5-C), 114.37 (3-C), 116.62 (q, J₁₂ = 190 Hz, CF₃), 163.84 (q, J₁₂ = 5.0 Hz, 2-C), 176.08 (q, J₁₂ = 36.0 Hz, C=O); MS (EI) 166.0239 (M⁺, 45) (C₆H₃F₃O₂ requires 166.0242), 97 (100).
The furan (82) (1.00 g, 6.02 mmol) was boiled under reflux with hydrazine hydrate (0.30 g, 6.02 mmol) in ethanol (13 ml) for 3 h. Evaporation of the solvent gave 1.09 g (100%) of 2-(3,4-dihydro-3-trifluoromethyl-3-(2-(3-trifluoromethylpyrazol-4-yl)ethoxy)pyrazol-4-yl)ethanol (83). Data: white solid, mp 84-85°C; \(^1\)H NMR (270 MHz, CD\(_3\)OD) 1.82 (1H, m) and 1.93 (1H, m) (dihydropyrazole-CH\(_2\)), 2.79 (2H, t, \(J = 6.8\) Hz, pyrazole-CH\(_2\)), 3.31 (1H, br t, \(J = 7\) Hz, dihydropyrazole 4-H), 3.71 (2H, t, \(J = 6.8\) Hz, pyrazole-CH\(_2\)), 3.73 (2H, m, dihydropyrazole-CH\(_2\)CH\(_2\)OH), 4.94 (3H, 2 \(\times\) NH + OH), 6.82 (1H, s, dihydropyrazole 5-H), 7.67 (1H, s, pyrazole 5-H); \(^{19}\)F NMR (376 MHz, CD\(_3\)OD) -82.57 (s, dihydropyrazole-CF\(_3\)), -62.20 (s, pyrazole-CF\(_3\)), \(^{13}\)C NMR (100 MHz, CD\(_3\)OD) 27.60 (CH\(_2\)), 28.36 (CH\(_2\)), 49.49 (dihydropyrazole 4-C), 60.92 (CH\(_2\)), 62.95 (CH\(_2\)), 92.93 (q, \(J_{\text{HF}} = 31.0\) Hz, dihydropyrazole 3-C), 117.52 (pyrazole 4-C), 123.70 (q, \(J_{\text{CF}} = 268\) Hz, CF\(_3\)), 125.68 (q, \(J_{\text{CF}} = 281\) Hz, CF\(_3\)), 131.36 (CH), 140.95 (q, \(J_{\text{CF}} = 37.0\) Hz, pyrazole 3-C), 146.30 (CH); MS (Cl) 361.1099 (M\(^+\) + H) (C\(_{12}\)H\(_{13}\)F\(_3\)N\(_4\)O\(_2\) requires 361.1099); IR (Nujol) 3300 (s), 3180 (s), 1170 (s).
2-(3-Trifluoromethylpyrazol-4-yl)ethanol (84). 2-(3,4-dihydro-3-trifluoromethyl-3-(2-(3-trifluoromethylpyrazol-4-yl)ethoxy)pyrazol-4-yl)ethanol (83) (1.00 g, 2.80 mmol) was boiled under reflux with 9 M aqueous HCl solution (0.05 ml) in ethanol (12 ml) for 16 h. The solvent and reagent were evaporated to give 0.99 g (100%) of 2-(3-trifluoromethylpyrazol-4-yl)ethanol (84). Data: pale yellow solid, mp 90-91°C; 'H NMR (270 MHz, (CD3)2SO) 2.65 (2H, br t, J = 7.0 Hz, pyrazole-CH2), 3.54 (2H, t, J = 7.0 Hz, CH2O), 4.9 (1H, br, OH), 7.78 (1H, br s, pyrazole 5-H); 19F NMR (84 MHz, (CD3)2SO) -59.66 (br s); MS (EI) 180.0515 (M+, 30) (C6H7F3N2O requires 180.0510), 159 (100).

4-(1,1-Dimethylethyl)diphenylsilyloxy)but-1-yne (86). A solution of 3-butyn-1-ol (9.81 g, 0.14 mmol) in anhydrous DMF (100 ml) was cooled to 0°C and imidazole (19.1 g, 0.28 mmol) was added portionwise followed by tert-butyldiphenylchlorosilane (35.8 ml, 0.14 mmol). The clear solution was allowed to warm to ambient temperature and after 45 min the temperature was lowered to 0°C and water (400 ml) was added slowly. The mixture was extracted with hexane (5 × 100 ml) and the combined organic extracts were washed with water (50 ml) and brine (2 × 50 ml). The organic phase was dried (MgSO4) and the solvent evaporated to yield 43.2 g (100%) of 4-(1,1-dimethylethyl)diphenylsilyloxy)but-1-yne (86). Data: colourless oil; 'H NMR (270 MHz, CDCl3) 1.06 (9H, s, t-Bu), 1.94 (1H, t, J = 2.8 Hz, CH2C=CH), 2.45 (2H, dt, J = 7.1, 2.7 Hz, CH2CH2C=CH), 3.78 (2H, t, J = 7.1 Hz,
OCH₂CH₂, 7.40 (6H, m, 2 × Ar 3,4,5-H₃), 7.68 (4H, m, 2 × Ar 2,5-H₂).

4-Phenylmethoxybut-1-yne (87). To a solution of 3-butylnol (9.69 g, 138 mmol) in anhydrous DMF (65 ml) was added sodium hydride (60% dispersion in oil, 5.53 g, 138 mmol) portionwise. The mixture was stirred for 5 min before cooling to 0°C, and benzyl bromide (16.4 ml, 138 mmol) was added dropwise. The reaction mixture was allowed to rise to ambient temperature and stirred for 16 h. Most of the solvent was removed by evaporation. To the residue was added DCM (100 ml) and water (30 ml). The aqueous phase was extracted with DCM (50 ml) and the combined organic extracts were washed with water (5 × 20 ml), 2 M HCl solution (20 ml), water (20 ml) and finally brine (20 ml). The organic extracts were dried (MgSO₄) and the solvent was evaporated to yield 16.8 g (75%) of 4-phenylmethoxybut-1-yne (87) after chromatography (hexane : ethyl acetate; 1 : 0 to 15 : 1). Data: colourless liquid; ¹H NMR (270 MHz, CDCl₃) 2.00 (1H, t, J = 2.8 Hz, CH₂C=CH), 2.50 (2H, dt, J = 6.8, 2.6 Hz, CH₂CH₂C=CH), 3.60 (2H, t, J = 7.0 Hz, OCH₂CH₂), 4.56 (2H, s, PhCH₂O), 7.34 (5H, m, Ph).

6-((1,1-Dimethylethyl)diphenylsilyloxy)-1,1,1-trifluorohex-3-yn-2-one (88). n-Butyl lithium (2.5 M in hexanes; 13 ml, 32.4 mmol) was added to 4-(1,1-dimethylethyl)diphenylsilyloxy)but-1-yne (86) (10.0 g, 32.4 mmol) in THF (50 ml) at -78°C and the mixture was stirred at this temperature for 30 min. 2,2,2-Trifluoroethyl trifluoroacetate (7.00 g, 35.7 mmol) in THF (60 ml) was
added, followed immediately by boron trifluoride diethyl etherate (5.65 g, 40.0 mmol), and the mixture was stirred at -78°C for 90 min. Saturated aqueous ammonium chloride (18 ml) was added and the mixture was allowed to warm to ambient temperature. The solvent was evaporated and the residue, in diethyl ether (100 ml), was washed with water (20 ml) and with brine (2 × 20 ml) and was dried (MgSO₄). Evaporation of the solvent gave 12.4 g (95%) of 6-((1,1-dimethylethyl)diphenylsilyloxy)-1,1,1-trifluorohex-3-yn-2-one (88). Data: colourless liquid; ¹H NMR (270 MHz, CDCl₃) 1.06 (9H, s, t-Bu), 2.72 (2H, t, \(J = 6.3 \) Hz, CH₂C≡C), 3.85 (2H, t, \(J = 6.3 \) Hz, CH₂O), 7.35 (10H, 2 × Ph); ¹⁹F NMR (376 MHz, CDCl₃) -78.63 (s); MS (Cl) 405.1498 (M⁺ + H) (C₂₂H₂₄F₃O₂Si requires 405.1498).

6-Phenylmethoxy-1,1,1-trifluorohex-3-yn-2-one (89). n-Butyl lithium (2.5 M in hexanes, 18 ml, 45.0 mmol) was added to 4-phenylmethoxybut-1-yne (87) (7.20 g, 45.0 mmol) in THF (100 ml) at -78°C and the mixture was stirred at this temperature for 30 min. 2,2,2-Trifluoroethyl trifluoroacetate (9.70 g, 50.0 mmol) in THF (70 ml) was added, followed immediately by boron trifluoride diethyl etherate (8.50 g, 60.0 mmol) and the mixture was stirred at -78°C for 90 min. Saturated aqueous ammonium chloride (30 ml) was added and the mixture was allowed to warm to ambient temperature. The solvent was evaporated and the residue, in dichloromethane (200 ml), was washed with water (50 ml) and with brine (2 × 50 ml) and was dried (MgSO₄). Evaporation of the solvent gave 11.1 g (97%) of 6-phenylmethoxy-1,1,1-trifluorohex-3-yn-2-one (89). Data: pale yellow oil; ¹H NMR (270 MHz, CDCl₃) 2.80 (2H, t, \(J = 6.6 \) Hz, CH₂C≡C), 3.69 (2H, t, \(J = 6.6 \) Hz, OCH₂CH₂), 4.58 (2H, s, PhCH₂O), 7.30-7.35 (5H, m, Ph); ¹⁹F NMR (376 MHz, CDCl₃) -78.65 (s); MS (Cl)
255.0633 (M' - H, 30) (C_{13}H_{16}F_{3}O_{2} \text{ requires } 255.0633), 197 (6).

3-((1,1-Dimethylethyl)diphenylsilyloxy)ethyl)-5-trifluoromethylpyrazole (90). 6-((1,1-Dimethylethyl)diphenylsilyloxy)-1,1,1-trifluorohex-3-yne-2-one (88) (0.38 g, 0.93 mmol) was boiled under reflux with hydrazine hydrate (0.07 g, 0.93 mmol) in ethanol (2.2 ml) for 90 min. The evaporation residue, in DCM (20 ml), was dried (MgSO₄) and the solvent was evaporated to give 0.39 g (99%) of 3-((1,1-dimethylethyl)diphenylsilyloxy)ethyl)-5-trifluoromethylpyrazole (90). Data: colourless oil; \(^1\)H NMR (270 MHz, CDCl₃) 1.06 (9H, s, t-Bu), 2.88 (2H, t, \(J = 5.7\) Hz, pyrazole-CH₂), 3.89 (2H, J = 5.7 Hz, CH₂O), 6.33 (1H, s, pyrazole 4-H), 7.3-7.7 (10H, m, 2 × Ph); \(^{19}\)F NMR (376 MHz, CDCl₃) -62.31 (s); \(^{13}\)C NMR (100 MHz, CDCl₃) 19.01 (CMe₃), 26.74 (3 × CH₃), 28.44 (pyrazole-CH₂), 62.53 (CH₂O), 102.69 (pyrazole 4-C), 121.44 (q, \(J_{CF} = 268\) Hz, CF₃), 127.80 (2 × Ph 3,5-C₂), 129.89 (2 × Ph 4-C), 132.83 (2 × Ph 1-C), 134.81 (CH), 135.41 (2 × Ph 2,6-C₂), 142.87 (q, \(J = 37.0\) Hz, pyrazole 5-C), 143.28 (pyrazole 3-C); MS (Cl) 419.1767 (M' + H) (C₂₂H₂₆F₃N₂OSi requires 419.1767).

3-(2-Phenylmethoxyethyl)-5-trifluoromethylpyrazole (91). 6-Phenylmethoxy-1,1,1-trifluorohex-3-yne-2-one (89) (0.50 g, 1.95 mmol) was boiled under reflux with hydrazine hydrate (0.15 g, 1.95 mmol) in ethanol (4.6 ml) for 1 h. The evaporation residue, in DCM (50 ml), was dried (MgSO₄) and the
solvent was evaporated to give 0.48 g (91%) of 3-(2-phenylmethoxyethyl)-5-trifluoromethylpyrazole (91). Data: pale yellow oil: 1H NMR (270 MHz, CDCl$_3$) 2.91 (2H, t, $J = 5.9$ Hz, pyrazole-CH$_2$), 3.68 (2H, t, $J = 5.9$ Hz, OCH$_2$CH$_2$), 4.51 (2H, s, PhCH$_2$O), 6.33 (1H, s, pyrazole 4-H), 7.2-7.4 (5H, m, Ph); 19F NMR (376 MHz, CDCl$_3$) -62.35 (s); 13C NMR (100 MHz, CDCl$_3$) 25.96 (pyrazole-CH$_2$), 68.31 (OCH$_2$), 73.21 (OCH$_2$), 102.33 (pyrazole 4-C), 121.46 (q, $J_{C-F} = 268$ Hz, CF$_3$), 127.75 (Ph 2,6-C$_2$), 127.91 (Ph 4-C), 128.48 (Ph 3,5-C$_2$), 137.44 (Ph 1-C), 142.66 (q, $J_{C-F} = 39.0$ Hz, pyrazole 5-C), 143.02 (pyrazole 3-C); MS (Cl) 271.1058 (M$^+$ + H) (C$_{13}$H$_{14}$F$_3$N$_2$O requires 271.1058).

[Diagram]

2-(5-Trifluoromethylpyrazol-3-yl)ethanol (92). To a solution of 3-(2-phenylmethoxyethyl)-5-trifluoromethylpyrazole (91) (0.32 g, 1.18 mmol) in methanol (4 ml) and perchloric acid (60% in water, 0.01 ml) was added a slurry of 10% palladium on activated carbon (0.1 g) in THF (1 ml). The suspension was evacuated and charged with hydrogen (\times3) before being stirred in a hydrogen atmosphere for 70 min. The flask was evacuated, the suspension filtered through a pad of Celite® and the solvent evaporated to give a pale brown oil which was crystallised (CHCl$_3$ / CH$_3$CH$_2$OH) to yield 0.20 g (94%) of 2-(5-trifluoromethylpyrazol-3-yl)ethanol (92). Data: white solid; mp 85-86°C; (270 MHz, (CD$_3$)$_2$CO) 2.98 (2H, dt, $J = 0.5$, 5.7 Hz, pyrazole-CH$_2$), 4.12 (2H, t, $J = 5.7$ Hz, CH$_2$O), 6.40 (1H, br s, pyrazole 4-H); 19F NMR (376 MHz, (CD$_3$)$_2$CO) -61.83 (s); MS (EI) 180.0541 (M$^+$, 33) (C$_{8}$H$_{13}$F$_3$N$_2$O requires 180.0510), 150 (100).
5-Fluoro-2-(trifluoromethyl)benzimidazole (94). 4-Fluorobenzene-1,2-diamine (1.00 g, 7.93 mmol) was dissolved in TFA (10 ml) and the solution was heated under reflux for 5 d. The excess TFA was removed by evaporation and the residue was subjected to heating at 200°C before sublimation at 200°C / 12 mmHg (Kugelrohr) to yield 1.56 g (95%) of 5-fluoro-2-(trifluoromethyl)benzimidazole (94). Data: peach solid; mp 174-175°C (literature1 219-220°C), \(^1\)H NMR (400 MHz, (CD\(_3\))\(_2\)SO) 7.28 (1H, dt, \(J = 9.2, 2.1\) Hz, 6-H), 7.56 (1H, br d, \(J = 8.9\) Hz, 7-H), 7.79 (1H, m, 4-H), 14.2 (1H, br, NH); \(^13\)C NMR (100 MHz, (CD\(_3\))\(_2\)SO) 112.74 - 112.98 (m, C-H), 118.82 (q, \(J_{CF} = 271\) Hz, CF\(_3\)), 141.20 (q, \(J_{CF} = 41\) Hz, CCF\(_3\)), 159.56 (d, \(J_{CF} = 239\) Hz, CF); \(^19\)F NMR (376 MHz, (CD\(_3\))\(_2\)SO) -63.20 (s, CF\(_3\)), -116.79 (br m, 5-F); MS (El) 204.0321 (M\(^+\), 100) (C\(_8\)H\(_4\)F\(_4\)N\(_2\) requires 204.0311); Anal. Calcd for C\(_8\)H\(_4\)F\(_4\)N\(_2\): C, 47.07; H, 1.98; N, 13.72. Found: C, 46.80; H, 1.93; N, 13.50.

2,5-Bis(trifluoromethyl)benzimidazole (95). 3,4-Diaminobenzotri fluoride (1.00 g, 5.68 mmol) was dissolved in TFA (10 ml) and the solution was heated under reflux for 5 d 20 h. The excess TFA was removed by evaporation and the residue was subjected to heating at 200°C before sublimation at 150 °C / 10 mmHg (Kugelrohr) to yield 1.24 g (89%) of 2,5-bis(trifluoromethyl)benzimidazole (95). Data: white solid; mp 159-161°C (literature1 192-199°C), \(^1\)H NMR (270 MHz, (CD\(_3\))\(_2\)SO) 7.72 (1H, dd, \(J = 8.8, 1.8\) Hz, 6-H), 7.95 (1H, d, \(J = 8.4\) Hz, 7-H), 8.16 (1H, br s, 4-H), 14.3 (1H, br, NH), \(^19\)F NMR (376 MHz, (CD\(_3\))\(_2\)SO) -63.44 (s, 2-CF\(_3\)), -116.79 (br m, 5-F); MS (El) 204.0321 (M\(^+\), 100) (C\(_8\)H\(_4\)F\(_4\)N\(_2\) requires 204.0311); Anal. Calcd for C\(_8\)H\(_4\)F\(_4\)N\(_2\): C, 47.07; H, 1.98; N, 13.72. Found: C, 46.80; H, 1.93; N, 13.50.
5-CF₃); MS (El) 254.0254 (M⁺, 100) (C₉H₄F₆N₂ requires 254.0279); Anal. Calcd for C₉H₄F₆N₂: C, 42.54; H, 1.59; N, 11.02. Found: C, 42.60; H, 1.55; N, 11.10.

2-(Trifluoromethyl)imidazo[4,5-b]pyridine (96). 2,3-Diaminopyridine (1.00 g, 9.16 mmol) was dissolved in TFA (10 ml) and the resulting brown solution was heated under reflux for 2 d. The excess TFA was removed by evaporation and NMR of the remaining residue showed a mixture of intermediates. The residue was subjected to heating at 200°C before sublimation at 200 °C / 0.1 mmHg (Kugelrohr) to yield 1.67 g (98%) of 2-(trifluoromethyl)imidazo[4,5-b]pyridine (96). Data: yellow solid; mp 240-241°C; ¹H NMR (270 MHz, (CD₃)₂SO) 7.48 (1H, dd, J = 8.4, 4.8 Hz, 6-H), 8.29 (1H, br d, J = 8.1 Hz, 7-H), 8.59 (1H, dd, J = 4.8, 1.5 Hz, 5-H), 14.6 (1H, br, NH); ¹³C NMR (68 MHz, (CD₃)₂SO) 119.07 (q, JCF = 271 Hz, CF₃), 119.59 (br, 6,7-C₂), 142.73 (q, JC-F ≈ 44 Hz, CCF₃), 145.76 (5-C); ¹⁹F NMR (376 MHz, (CD₃)₂SO) -63.65 (s); MS (El) 187.0353 (M⁺, 100) (C₇H₄F₃N₃ requires 187.0357).

2-(Trifluoromethyl)imidazo[4,5-c]pyridine (97). 3,4-Diaminopyridine (1.00 g, 9.16 mmol) was dissolved in TFA (10 ml) and the resulting brown solution was heated under reflux for 3 d. The excess TFA was removed by evaporation and NMR of the remaining residue showed a mixture of intermediates. The residue was subjected to heating at 200°C before sublimation at 250 °C / 1 mmHg (Kugelrohr) to yield 1.71 g (98%) of 2-(trifluoromethyl)imidazo[4,5-c]pyridine (97). Data: white solid; mp 159-161°C (literature¹⁹³ 290-291°C); ¹H
NMR (270 MHz, (CD$_3$)$_2$SO) 7.98 (1H, d, $J = 6.6$ Hz, 7-H), 8.27 (1H, d, $J = 6.6$ Hz, 6-H), 9.25 (1H, s, 4-H), 14.2 (1H, br, NH); 13C NMR (68 MHz, (CD$_3$)$_2$SO) 114.32 (7-C), 120.91 (q, $J_{C-F} = 270$ Hz, CF$_3$), 129.42 (m, C$_2$CF$_3$), 133.35 (6-C), 142.15 (4-C), 154.02 (br, C$_2$), 19F NMR (376 MHz, (CD$_3$)$_2$SO) -63.60 (s); MS (EI) 187.0364 (M$^+$, 100) (C$_7$H$_4$F$_3$N$_3$ requires 187.0357); Anal. Calcd for C$_7$H$_4$F$_3$N$_3$: C, 44.93; H, 2.15; N, 22.46. Found: C, 44.70; H, 2.12; N, 22.10.

1,2-Bis(trifluoroacetyl)hydrazine (100). 1,2-Bis(trifluoroacetyl)hydrazine (100) was synthesised by a procedure based on that described by Reitz's group160. A suspension of anhydrous potassium carbonate (10 g) and ethyl trifluoroacetate (9.95 g, 70.0 mmol) in ethanol (40 ml) was cooled to -10°C and treated dropwise over a 40 min period with hydrazine hydrate (1.70 ml, 35.0 mmol). The reaction mixture was allowed to warm to ambient temperature and stirring was continued for 16 h. After the mixture had been concentrated by evaporation, TFA (5 ml) was added, followed by the dropwise addition of TFAA (11.8 g, 56.0 mmol) over a 2 h period. The suspension was heated gently until it became a clear solution and reflux began. The solution was left for 16 h, after which colourless crystals were filtered off and placed over KOH in a desiccator for 16 h. Ether (200 ml) was added to the crystals and the resulting suspension was stirred for 20 min and the remaining solid was removed by filtration. The solvent of the filtrate was removed by evaporation to yield 7.37 g (94%) of 1,2-bis(trifluoroacetyl)hydrazine (100). Data: colourless crystals; mp < 25°C (literature160 bp 65°C); 19F NMR (84 MHz, CDCl$_3$) -73.75 (s); IR (film) 1680 (s), 1200 (s).
2,5-Bis(trifluoromethyl)-1,3,4-oxadiazole (101). 2,5-Bis(trifluoromethyl)-1,3,4-oxadiazole (101) was synthesised by a procedure based on that described by Reitz's group. 1,2-Bis(trifluoroacetyl)hydrazine (100) (6.0 g, 26.8 mmol) was thoroughly mixed with phosphorus pentoxide (15 g) and covered with additional phosphorous pentoxide (10 g). The mixture was slowly heated to 300°C under a static nitrogen atmosphere. The crude product was distilled off and trapped at -78°C and then was redistilled (Kugelrohr) from calcium hydride to yield 4.01 g (73%) of 2,5-bis(trifluoromethyl)-1,3,4-oxadiazole (101). Data: colourless liquid, bp 65°C (literature bp 65°C); 19F NMR (84 MHz, CDCl₃) -65.34 (s).

N-(2-(2-Hydroxyethoxy)ethyl)-2,2,2-trifluoroacetamide (104). N-(2-(2-Hydroxyethoxy)ethyl)-2,2,2-trifluoroacetamide (104) was synthesised by an attempted synthesis of 3,5-bis(trifluoromethyl)-4-(2-hydroxyethoxyethyl)-4H-1,2,4-triazole (103) using the method described by Reitz's group. A solution of 2,5-bis(trifluoromethyl)-1,3,4-oxadiazole (101) (4.01 g, 22.5 mmol) in methanol (25 ml) was cooled to 0°C and treated dropwise with 2-(2-aminoethoxy)ethanol (2.37 g, 22.5 mmol). The mixture was stirred at ambient temperature for 16 h. The solvent was evaporated and the crude material was distilled (Kugelrohr) to yield 4.32 g (96%) of N-(2-(2-hydroxyethoxy)ethyl)-2,2,2-trifluoroacetamide (104). Data: colourless liquid; bp₂ₐ 195-200°C; 1H NMR (270 MHz, CDCl₃) 3.35 (2H, t, $J = 6.0$ Hz, NCH₂CH₂O), 3.43 (2H, m, OCH₂CH₂N), 3.45 (2H, m, OCH₂CH₂OH), 3.51 (2H, m, CH₂CH₂OH), 4.59 (1H, br, NH); 13C NMR (68 MHz, CDCl₃) 39.50 (RCH₂N), 60.17 (RCH₂O), 191
67.85 (RCH₂O), 72.11 (RCH₂OH), 116.29 (q, J_C-F = 288.6 Hz, CF₃), 156.44 (q, J_C-F = 35.2 Hz, ζOCF₃); ¹⁹F NMR (84 MHz, CDCl₃) -74.01; IR (film) 3750 (br), 1715 (s), 1175 (s); MS (Cl) 202.0691 (M⁺ + H, 100) (C₆H₁₀F₃NO₃ requires 202.0691), 140 (90).

N-(3-(Phenylmethoxy)propyl)-2,2,2-trifluoroacetamide (105). To a stirred solution of trifluoroacetamide (0.78 g, 6.87 mmol) in THF (20 ml) was added potassium tert-butoxide (0.77 g, 6.87 mmol) portion-wise. Following dissolution, 3-(phenylmethoxy)propyl-4-methylbenzenesulphonate (20) (2.0 g, 6.24 mmol) and sodium iodide (ca. 50 mg) were added slowly. The solution was stirred at ambient temperature and reaction monitored by t.l.c.. After 4 h, the mixture was cooled with an ice bath to 0°C and ether (20 ml) and water (10 ml) were added. Following acidification to pH 1-2 the ether layer was washed with water (2 x 10 ml) and brine (10 ml), and dried (MgSO₄). Evaporation of the solvent gave 1.67 g (97%) of N-(3-(phenylmethoxy)propyl)-2,2,2-trifluoroacetamide (105). Data: pale yellow oil; ¹H NMR (400 MHz, CDCl₃) 1.87 (2H, m, CH₂ CH₂ CH₂), 3.50 (2H, m, CH₂ CH₂ NCO), 3.66 (2H, t, J = 5.4 Hz, BnO-CH₂CH₂), 4.45 (2H, s, PhCH₂O), 7.34 (5H, m, PhCH₂O), ¹⁹F NMR (84 MHz, CDCl₃) -76.71 (s); IR (film) 3650 (br), 1715 (s), 1170 (s).

3-(Phenylmethoxy)propylamine (106). Sodium hydroxide (1.00 g, 50.0 mmol) was dissolved in methanol (40 ml) and added to N-(3-(phenylmethoxy)propyl)-2,2,2-trifluoroacetamide (105) (1.60 g, 5.80 mmol).
The mixture was stirred and heated under reflux for 4 h. The solvent was evaporated and the residue dissolved in ether (100 ml) and was washed with saturated sodium hydrogen carbonate solution. The organic layer was dried (MgSO₄), the solvent was evaporated and the residue was distilled (Kugelrohr) to yield 0.63 g (66%) of 3-(phenylmethoxy)propylamine (106). Data: colourless liquid; bp₀.₆ 85-90°C (literature¹⁹⁴ bp₀.₇₅ 93.5°C); ¹H NMR (270 MHz, CDCl₃) 1.43 (2H, br, NH₂), 1.75 (2H, qu, J = 6.2 Hz, CH₂CH₂CH₂), 2.82 (2H, t, J = 6.8 Hz, CH₂CH₂NH₂), 3.55 (2H, t, J=6.2 Hz, BnOC₃C), 4.51 (2H, s, PhCH₂O), 7.33 (5H, m, PhCH₂O).

3,5-Bis(trifluoromethyl)-4-[3-(phenylmethoxy)propyl]-4H-1,2,4-triazole (107). 3,5-Bis(trifluoromethyl)-4-[3-(phenylmethoxy)propyl]-4H-1,2,4-triazole (107) was synthesised by a procedure based on that described by Reitz's group⁶⁹. A solution of 3-(phenylmethoxy)propylamine (106) (0.30 g, 1.80 mmol) in methanol (0.6 ml) was cooled to 0°C and treated dropwise with 2,5-bis(trifluoromethyl)-1,3,4-oxadiazole (101) (0.37 g, 1.80 mmol). The solution was boiled under reflux for 9 d. After cooling, the solvent was evaporated to yield 0.27 g (42%) of 3,5-bis(trifluoromethyl)-4-[3-(phenylmethoxy)propyl]-4H-1,2,4-triazole (107) following distillation (Kugelrohr). Data: colourless liquid; bp₀.₆ 150-155°C; ¹H NMR (400 MHz, CDCl₃) 2.12 (2H, m, CH₂CH₂CH₂), 3.57 (2H, t, J = 5.5 Hz, BnOCH₂CH₂), 4.38 (2H, t, J = 8.2 Hz, R₂NCH₂CH₂); 4.51 (2H, s, PhCH₂O), 7.30 (5H, m, PhCH₂O); ¹⁹F NMR (376 MHz, CDCl₃) -62.80 (s); MS (CI, iso-butane) 354.1041 (M⁺ + H, 100) (C₁₄H₁₄F₆N₃O requires 354.1041), 91 (26).
3,5-Bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (108). To a solution of 3,5-bis(trifluoromethyl)-4-[3-(phenylmethoxy)propyl]-4H-1,2,4-triazole (107) (0.20 g, 0.57 mmol) in ethanol (2 ml) was added a slurry of 10% palladium on activated carbon (0.03 g) and ethanol (0.5 ml). The suspension was evacuated and charged with hydrogen (x3) before being stirred in a hydrogen atmosphere. After 24 h perchloric acid (60% in water, 0.01 ml) was added and the mixture was stirred for a further 5 h in the presence of hydrogen. The flask was evacuated, and the suspension was filtered through a pad of Celite®, which was thoroughly washed with ethanol (15 ml). NaHCO₃ (1 g) was added to the filtrate and the suspension was stirred for 1 h, filtered and the solvent evaporated to yield 0.14 g (94%) of 3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (108). Data: white crystals; mp <25°C; \(^1\)H NMR (400 MHz, D₂O) 2.14 (2H, m, CH₂CH₂CH₂), 3.74 (2H, t, \(J = 7.9\) Hz, CH₂CH₂OH), 4.48 (2H, t, \(J = 5.8\) Hz, R₂NCH₂CH₂); \(^19\)F NMR (376 MHz, D₂O) -63.49 (s); MS (EI) 264 (M⁺ + H, 1); MS (Cl, iso-butane) 264.0720 (M⁺ + H, 100) (C₇H₈F₆N₃O requires 264.0720), 206 (5).

Trifluoroacetylhydrazine (109). Anhydrous hydrazine (3.09 ml, 98.5 mmol) was added dropwise to a solution of ethyl trifluoroacetate (10.0 g, 70.4 mmol) in ethanol (80 ml) at -10°C over a 45 min period. The reaction mixture was allowed to warm to ambient temperature and stirred for 16 h. The solvent and excess reagent were removed by evaporation to yield 9.02 g (100%) of trifluoroacetylhydrazine (109). Data: cream solid; mp 115-116°C (literature).
Z-1,2,4-Tris(benzamido)but-1-ene (113). Z-1,2,4-Tris(benzamido)but-1-ene (113) was synthesised by Bamberger fragmentation as generally described by Windaus’s group. To a solution of imidazole-4-ethanamine hydrochloride (1.00 g, 5.40 mmol) in water (20 ml) at 0°C was added sodium hydroxide (1.08 g, 27.0 mmol) and benzyl chloride (1.94 ml, 16.7 mmol) in alternating portions, followed by water (15 ml). The temperature of the reaction mixture was maintained at 0°C and stirred for 3 h. After standing for 16 h, the suspension was filtered and the solid was washed with cold water to yield 6.52 g (73%) of Z-1,2,4-tris(benzamido)but-1-ene (113). Data: white solid; mp 189°C (literature mp 191°C), 1H NMR (270 MHz, (CD3)2SO) 2.70 (2H, t, J = 6.6 Hz, C=C-CH2), 3.42 (2H, m, CH2N), 6.60 (1H, d, J = 9.2 Hz, C=CH), 7.4 - 8.0 (15H, m, 3 × NHCOPh), 8.47 (1H, t, J = 5.4 Hz, CH2NHCOPh), 9.47 (1H, s, C=C(CH2CH2NHCOPh)NHCOPh), 9.87 (1H, d, J = 9.5 Hz, PhCONHCH=C)

Z-4-(1,3-Bis(benzamido)prop-1-enyl)-2-phenyl-5-trifluoromethyloxazole (115). Z-1,2,4-Tris(benzamido)but-1-ene (113) (0.39 g, 0.91 mmol) was boiled under reflux with trifluoroacetic anhydride (4 ml) for 16 h. The excess reagent was evaporated and the residue was boiled under reflux in methanol (5 ml) for 1 h. The solid was collected by filtration from the cooled mixture to give 0.08
g (18%) of Z-4-(1,3-bis(benzamido)prop-1-enyl)-2-phenyl-5-trifluoromethyl-oxazole (115). Data: white solid; mp 216-217°C, \(^1\)H NMR (400 MHz, CD\(_3\)\(_2\)SO) 4.19 (2H, br t, \(J = 5.0\) Hz, CH\(_2\)), 6.29 (1H, br t, \(J = 5.0\) Hz, C=CH), 7.58-7.68 (9H, m, 3 x Ar 3,4,5-H\(_3\)), 7.99 (2H, d, \(J = 6.7\) Hz, 2,6-H\(_2\) of oxazole-2-Ph), 8.15 (4H, m, 2 x benzamide 2,6-H\(_4\)), 9.08 (1H, br t, NHCH\(_2\)), 10.50 (1H, s, NH), \(^1\)C NMR (100 MHz, CD\(_3\)\(_2\)SO) 36.59, 119.07 (q, \(J_{\text{C-F}} = 268\) Hz, CF\(_3\)), 124.87, 126.00, 126.48, 126.53, 129.90, 127.17, 127.94, 128.11, 128.98, 130.96, 131.38, 131.73, 132.53 (q, \(J_{\text{C-F}} = 44\) Hz, C-CF\(_3\)), 133.43, 133.83, 140.54, 160.38, 164.96, 166.62; \(^1\)9F NMR (376 MHz, CD\(_3\)\(_2\)SO) -58.89 (s); MS (Cl) 492.1535 (M\(^+\) + H, 55) (C\(_{27}\)H\(_{21}\)F\(_3\)N\(_3\)O\(_3\) requires 492.1535).

\[
\text{1-Bromo-3,3,3-trifluoropropan-2-one oxime (122).}
\]

1-Bromo-3,3,3-trifluoropropan-2-one oxime (122) was synthesised essentially by the method described by Reißig's group\(^{176}\). To a solution of 1-bromo-3,3,3-trifluoropropanone (10.0 g, 52.4 mmol) in acid-free chloroform (50 ml) was added hydroxylamine hydrochloride (5.46 g, 78.6 mmol) in water (10 ml). The mixture was boiled under reflux for 24 h. After cooling, the aqueous layer was extracted with chloroform (3 x 20 ml) and the combined organic extracts were dried (MgSO\(_4\)). The solvent was removed and the crude material was purified by distillation (Kugelrohr) to yield 6.45 g (60%) of 1-bromo-3,3,3-trifluoropropan-2-one oxime (122) as a 1:1 mixture of \(E\) and \(Z\) geometrical isomers. Data: colourless liquid; bp\(_{20}\) 80°C (literature\(^{176}\) bp\(_{85}\) 80-90°C), \(^1\)H NMR (400 MHz, CD\(_3\)\(_2\)SO) 4.33 (1H, s, CH\(_2\)), 4.42 (1H, s, CH\(_2\)), 10.1 (1H, br, OH), \(^1\)9F NMR (376 MHz, CD\(_3\)\(_2\)SO) -66.52 (s), -65.37 (s).
4,4a,5,6,7,8a-Hexahydro-3-(trifluoromethyl)pyrano[4,5-e]-1,2-oxazine (124). 1-Bromo-3,3,3-trifluoropropan-2-one oxime (122) (0.57 g, 2.75 mmol) was dissolved in anhydrous methyl tert-butyl ether (110 ml) and sodium carbonate (1.75 g, 16.5 mmol) was added, followed immediately by 3,4-dihydro-2H-pyran (5.02 g, 55.0 mmol). The suspension was stirred in a nitrogen atmosphere in the dark for 5 d. The suspension was filtered through a Celite® pad and the solvent of the filtrate was evaporated to give a yellow oil which was distilled (Kugelrohr) to yield 0.50 g (87%) of 4,4a,5,6,7,8a-hexahydro-3-(trifluoromethyl)pyrano[4,5-e]-1,2-oxazine (124). Data: colourless liquid; bp 125°C (literature1 7 6 bp 5 75°C); 1H NMR (270 MHz, CDCl3) 1.5-1.8 (4H, m, 5-H, 6-H), 2.21 (1H, m, 4a-H), 2.30 (1H, dd, J = 18.7, 4.4 Hz, 4-Heq), 2.52 (1H, dd, J = 18.9, 6.8 Hz, 4-Hax), 3.75 (1H, ddd, J = 1.3, 7.2, 11.5 Hz, 7-Hax), 3.95-4.05 (1H, m, 7-Heq), 5.22 (1H, d, J = 2.7 Hz, 8a-H), 19F NMR (84 MHz, CDCl3) -71.05 (s).

2-Iodoxybenzoic Acid (134). 2-Iodoxybenzoic acid (134) was synthesised by the method described by Dess and Martin182. To a mixture of 2-iodosobenzoic acid (20.0 g, 73.5 mmol) and 0.73 M sulphuric acid solution (157 ml) was added potassium bromate (16.2 g, 97.3 mmol) over a 1 h period, during which the temperature was kept below 50°C. The mixture was warmed to 65°C and
stirred for 4 h. The orange solution and white suspension of the reaction mixture were cooled to 0°C and filtered. The solid was washed with cold water (700 ml) and cold ethanol (30 ml) to yield 21.75 g (88%) of 2-iodoxybenzoic acid (134). Data: white solid.

3,3,3-Triacetoxy-3-iodaisobenzofuran-1-one (135). 3,3,3-Triacetoxy-3-iodaisobenzofuran-1-one (135) was synthesised by the method described by Dess and Martin\(^{182}\). A stirred slurry of 2-iodoxybenzoic acid (134) (19.15 g, 64.7 mmol) in acetic anhydride (56.9 ml, 603 mmol) and acetic acid (54 ml) was heated to 100°C for 40 min. After cooling to ambient temperature, most of the solvent was evaporated at 29°C / 1 mmHg (The Dess-Martin reagent has been reported to explode upon heating under confinement\(^{183}\)). The white slurry was cooled and filtered in a nitrogen atmosphere and the solid was washed with cold ether (150 ml) to yield 17.48 g (61%) of 3,3,3-triacetoxy-3-iodaisobenzofuran-1-one (135). Data: white solid; mp 121-122°C (literature\(^{182}\) 124-126°C).

\[
\text{OH} \\
\begin{array}{c}
\text{CF}_3 \\
\end{array} \\
\text{(136)}
\]
\(E\)-1,1,1-Trifluoro-6-(phenylmethoxy)hex-3-en-2-ol (136). A suspension of lithium aluminium hydride (2.50 g, 62.0 mmol) was prepared by the introduction of the solid in small portions to anhydrous THF (70 ml). The suspension was cooled to 0°C and 6-phenylmethoxy-1,1,1-trifluorohex-3-yn-2-one (89) (10.0 g, 39.0 mmol) was added dropwise as a solution in THF (20
ml). After stirring for 30 min, the temperature of the reaction mixture was allowed to rise to ambient temperature before gentle boiling under reflux for 15 h. The mixture was cooled to 0°C and water (3.27 ml), 5M sodium hydroxide solution (3.27 ml) and water (9.81 ml) were added in succession with vigorous stirring. The suspension was allowed to warm to ambient temperature and stirred for 30 min. The precipitate was removed by filtration and the filtrate was extracted with ether (5 × 50 ml). The combined organic extracts were washed with saturated ammonium chloride solution (50 ml), water (50 ml) and brine (2 × 50 ml). The solvent was evaporated and DCM (150 ml) was added. The solution was dried (MgSO₄) and the solvent was evaporated to yield 8.13 g (80%) of E-1,1,1-trifluoro-6-(phenylmethoxy)hex-3-en-2-ol (136). Data: yellow liquid; H NMR (270MHz, CDCl₃) 2.41 (2H, br q, J = 6.4 Hz, CH₂ CH₂ CH=CH), 2.98 (1H, br s, OH), 3.55 (2H, t, J = 6.4 Hz, BnOC&CH₂), 5.52 (1H, m, CH=CHCH(OH)CF₃), 4.51 (2H, s, PhCH₂O), 5.59 (1H, dd, J = 15.6, 6.8 Hz t, CH=CHCH(OH)CF₃), 5.98 (1H, dt, J = 15.6, 6.8 Hz t, CH₂ CH=CHCH(OH)CF₃), 7.33 (5H, m, Ph), F NMR (376 MHz, CDCl₃) -79.79 (d, JHF = 6.9 Hz); MS (EI) 260.0990 (M⁺, 50) (C₁₃H₁₅F₃O₂ requires 260.1024), 91 (100).

\[
\begin{align*}
\text{\textit{(137)}}
\end{align*}
\]

\textit{E-1,1,1-Trifluoro-6-(phenylmethoxy)hexan-3-en-2-one} (137). \textit{E-1,1,1-Trifluoro-6-(phenylmethoxy)hex-3-en-2-ol} (136) (2.00 g, 7.68 mmol) in anhydrous DCM (10 ml) was added dropwise to a stirred solution of 3,3,3-triacetoxy-3-iodaisobenzofuran-1-one (135) (12.5 g, 28.4 mmol) in DCM (150 ml) over a period of 10 min. The reaction mixture was stirred at ambient temperature under a nitrogen atmosphere for 2.5 h. Ether (110 ml) and 1.3 M sodium hydroxide solution (220 ml) were added and the mixture stirred for 45 min. The layers were separated and the aqueous phase was extracted with
ether (3 × 50 ml). The combined organic extracts were washed with saturated ammonium chloride solution (100 ml), water (100 ml) and brine (100 ml). The solvent was evaporated and the residue was dissolved in DCM (100 ml). The solution was dried (MgSO₄) and the solvent was evaporated to yield 1.47 g (74%) of \(E-1,1,1\)-trifluoro-6-(phenylmethoxy)hex-3-en-2-one (137). Data: yellow liquid; \(^1\)H NMR (400MHz, CDCl₃) 2.63 (2H, dq, \(J = 6.1, 1.5 \) Hz, \(\text{CH}_2\text{CH}_2\text{CH}==\text{CH} \)), 3.64 (2H, t, \(J = 6.1 \) Hz, BnOCH₂CH₂), 4.52 (2H, s, PhCH₂O), 6.49 (1H, d, \(J = 15.9 \) Hz \(\text{trans} \), \(\text{CH}==\text{CHCOF}_3 \)), 7.33 (6H, m, PhCH₂OCH₂CH₂CH₂CH==CHCOF₃); \(^{19}\)F NMR (376 MHz, CDCl₃) -77.99 (s); IR (film) 1733 (s), 1632 (s); MS (Cl) 259.0946 (\(\text{M}^+ + \text{H} \), 29) (C₁₃H₁₄F₃O₂ requires 259.0946), 91 (100).
REFERENCES

54. Thomas, R. C. J. Physiol. 1984, 354, 3P-22P.
80. La Manna, J. C.; McCracken, K. A. Analytical Biochemistry 1984, 142, 117-125.
82. Balakirev, M. Y.; Khramtsov, V. V.; Berezina, T. A.; Martin, V. V.; Volodarsky, L. B. Synthesis 1992, 1223-1225.

193. *Patent Brit. 1, 114, 199 (Cl.C 07d)* **1968**.

APPENDIX

<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
<th>Series 1</th>
<th>Series 2</th>
<th>Series 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.31</td>
<td>-61.8479</td>
<td>-61.8448</td>
<td>-61.8479</td>
<td></td>
</tr>
<tr>
<td>6.01</td>
<td>-61.7987</td>
<td>-61.7987</td>
<td>-61.7987</td>
<td></td>
</tr>
<tr>
<td>6.48</td>
<td>-61.7034</td>
<td>-61.7127</td>
<td>-61.7096</td>
<td></td>
</tr>
<tr>
<td>6.95</td>
<td>-61.5498</td>
<td>-61.5590</td>
<td>-61.5590</td>
<td></td>
</tr>
<tr>
<td>7.18</td>
<td>-61.3808</td>
<td>-61.3962</td>
<td>-61.3870</td>
<td></td>
</tr>
<tr>
<td>7.42</td>
<td>-61.2118</td>
<td>-61.2118</td>
<td>-61.2026</td>
<td></td>
</tr>
<tr>
<td>7.78</td>
<td>-60.9107</td>
<td>-60.9107</td>
<td>-60.9107</td>
<td></td>
</tr>
<tr>
<td>7.91</td>
<td>-60.8032</td>
<td>-60.8032</td>
<td>-60.8032</td>
<td></td>
</tr>
<tr>
<td>8.14</td>
<td>-60.5543</td>
<td>-60.5574</td>
<td>-60.5604</td>
<td></td>
</tr>
<tr>
<td>9.12</td>
<td>-60.4283</td>
<td>-60.4283</td>
<td>-60.4314</td>
<td></td>
</tr>
<tr>
<td>9.87</td>
<td>-60.3976</td>
<td>-60.3976</td>
<td>-60.3945</td>
<td></td>
</tr>
<tr>
<td>10.29</td>
<td>-60.3822</td>
<td>-60.3822</td>
<td>-60.3792</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Data for 3,5-bis(trifluoromethyl)pyrazole (2).
<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Series 1</td>
</tr>
<tr>
<td>8.37</td>
<td>-61.2702</td>
</tr>
<tr>
<td>9.10</td>
<td>-61.2733</td>
</tr>
<tr>
<td>10.05</td>
<td>-61.2549</td>
</tr>
<tr>
<td>10.78</td>
<td>-61.1565</td>
</tr>
<tr>
<td>11.24</td>
<td>-60.9630</td>
</tr>
<tr>
<td>11.92</td>
<td>-60.3239</td>
</tr>
<tr>
<td>12.32</td>
<td>-59.7739</td>
</tr>
<tr>
<td>12.79</td>
<td>-59.3468</td>
</tr>
<tr>
<td>13.06</td>
<td>-59.1778</td>
</tr>
<tr>
<td>13.43</td>
<td>-59.0610</td>
</tr>
</tbody>
</table>

Table 9. Data for 3-(trifluoromethyl)pyrazole-4-propanol (79).

<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Series 1</td>
</tr>
<tr>
<td>8.56</td>
<td>-61.1135</td>
</tr>
<tr>
<td>9.54</td>
<td>-61.1166</td>
</tr>
<tr>
<td>10.11</td>
<td>-61.1043</td>
</tr>
<tr>
<td>10.64</td>
<td>-61.0060</td>
</tr>
<tr>
<td>10.91</td>
<td>-60.9199</td>
</tr>
<tr>
<td>11.56</td>
<td>-60.4498</td>
</tr>
<tr>
<td>12.17</td>
<td>-59.7493</td>
</tr>
<tr>
<td>12.77</td>
<td>-59.2085</td>
</tr>
<tr>
<td>13.02</td>
<td>-59.1041</td>
</tr>
<tr>
<td>13.26</td>
<td>-59.0242</td>
</tr>
</tbody>
</table>

Table 10. Data for 2-(3-trifluoromethylpyrazol-4-yl)ethanol (83).
<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Series 1</td>
<td>Series 2</td>
<td>Series 3</td>
</tr>
<tr>
<td>7.95</td>
<td>-62.4992</td>
<td>-62.4962</td>
<td>-62.4962</td>
</tr>
<tr>
<td>8.78</td>
<td>-62.5023</td>
<td>-62.4992</td>
<td>-62.4992</td>
</tr>
<tr>
<td>11.03</td>
<td>-62.1582</td>
<td>-62.1582</td>
<td>-62.1582</td>
</tr>
<tr>
<td>11.50</td>
<td>-61.6666</td>
<td>-61.6696</td>
<td>-61.6666</td>
</tr>
<tr>
<td>12.02</td>
<td>-60.9660</td>
<td>-60.9660</td>
<td>-60.9691</td>
</tr>
<tr>
<td>12.76</td>
<td>-60.3638</td>
<td>-60.3638</td>
<td>-60.3669</td>
</tr>
<tr>
<td>13.05</td>
<td>-60.2716</td>
<td>-60.2716</td>
<td>-60.2716</td>
</tr>
<tr>
<td>13.35</td>
<td>-60.1733</td>
<td>-60.1733</td>
<td>-60.1702</td>
</tr>
</tbody>
</table>

Table 11. Data for 2-(5-trifluoromethylpyrazol-3-yl)ethanol (91).
<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Series 1</td>
</tr>
<tr>
<td>5.45</td>
<td>-59.9676</td>
</tr>
<tr>
<td>6.04</td>
<td>-59.9461</td>
</tr>
<tr>
<td>6.96</td>
<td>-59.9830</td>
</tr>
<tr>
<td>7.92</td>
<td>-59.9246</td>
</tr>
<tr>
<td>9.07</td>
<td>-59.3807</td>
</tr>
<tr>
<td>9.49</td>
<td>-58.9536</td>
</tr>
<tr>
<td>10.24</td>
<td>-58.1609</td>
</tr>
<tr>
<td>10.72</td>
<td>-57.9766</td>
</tr>
<tr>
<td>11.08</td>
<td>-57.9366</td>
</tr>
<tr>
<td>11.54</td>
<td>-57.9213</td>
</tr>
<tr>
<td>12.26</td>
<td>-57.9151</td>
</tr>
<tr>
<td>13.12</td>
<td>-57.9274</td>
</tr>
</tbody>
</table>

Table 12. Data for 3-(pyridin-4-yl)-5-(trifluoromethyl)pyrazole.
<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
<th>Series 1</th>
<th>Series 2</th>
<th>Series 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>-65.1755</td>
<td>-65.1785</td>
<td>-65.1755</td>
<td></td>
</tr>
<tr>
<td>1.91</td>
<td>-65.1123</td>
<td>-65.1095</td>
<td>-65.1123</td>
<td></td>
</tr>
<tr>
<td>3.17</td>
<td>-64.9604</td>
<td>-64.9604</td>
<td>-64.9604</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>-64.9512</td>
<td>-64.9512</td>
<td>-64.9481</td>
<td></td>
</tr>
<tr>
<td>5.38</td>
<td>-64.8928</td>
<td>-64.8928</td>
<td>-64.8897</td>
<td></td>
</tr>
<tr>
<td>6.48</td>
<td>-64.7453</td>
<td>-64.7453</td>
<td>-64.7392</td>
<td></td>
</tr>
<tr>
<td>7.11</td>
<td>-64.5860</td>
<td>-64.5886</td>
<td>-64.5917</td>
<td></td>
</tr>
<tr>
<td>7.71</td>
<td>-64.4811</td>
<td>-64.4811</td>
<td>-64.4780</td>
<td></td>
</tr>
<tr>
<td>8.28</td>
<td>-64.3950</td>
<td>-64.3981</td>
<td>-64.3981</td>
<td></td>
</tr>
<tr>
<td>9.59</td>
<td>-64.3889</td>
<td>-64.3858</td>
<td>-64.3858</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>-64.4042</td>
<td>-64.3981</td>
<td>-64.4012</td>
<td></td>
</tr>
</tbody>
</table>

Table 13. Data for 2-(trifluoromethyl)imidazo[4,5-\(b\)]pyridine (95).
<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Series 1</td>
</tr>
<tr>
<td>2.12</td>
<td>-65.2960</td>
</tr>
<tr>
<td>3.22</td>
<td>-65.2277</td>
</tr>
<tr>
<td>4.25</td>
<td>-65.1570</td>
</tr>
<tr>
<td>5.37</td>
<td>-65.1202</td>
</tr>
<tr>
<td>6.54</td>
<td>-65.0894</td>
</tr>
<tr>
<td>7.01</td>
<td>-65.1447</td>
</tr>
<tr>
<td>7.55</td>
<td>-65.0925</td>
</tr>
<tr>
<td>8.58</td>
<td>-64.7177</td>
</tr>
<tr>
<td>9.77</td>
<td>-64.3260</td>
</tr>
<tr>
<td>10.25</td>
<td>-64.2922</td>
</tr>
<tr>
<td>11.48</td>
<td>-64.2721</td>
</tr>
<tr>
<td>12.02</td>
<td>-64.2783</td>
</tr>
</tbody>
</table>

Table 14. Data for 2-(trifluoromethyl)imidazo[4,5-c]pyridine (96).
<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Series 1</td>
</tr>
<tr>
<td>0.48</td>
<td>-63.9065</td>
</tr>
<tr>
<td>1.06</td>
<td>-63.8880</td>
</tr>
<tr>
<td>1.54</td>
<td>-63.8481</td>
</tr>
<tr>
<td>1.93</td>
<td>-63.7744</td>
</tr>
<tr>
<td>2.52</td>
<td>-63.6054</td>
</tr>
<tr>
<td>3.02</td>
<td>-63.0677</td>
</tr>
<tr>
<td>4.23</td>
<td>-62.9263</td>
</tr>
<tr>
<td>6.06</td>
<td>-62.9048</td>
</tr>
<tr>
<td>6.52</td>
<td>-62.9048</td>
</tr>
</tbody>
</table>

Table 15. Data for 3-(trifluoromethyl)pyridine.

<table>
<thead>
<tr>
<th>pH</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>-63.5593</td>
</tr>
<tr>
<td>0.75</td>
<td>-63.5746</td>
</tr>
<tr>
<td>1.37</td>
<td>-63.5746</td>
</tr>
<tr>
<td>1.89</td>
<td>-63.5869</td>
</tr>
<tr>
<td>2.52</td>
<td>-63.5839</td>
</tr>
<tr>
<td>2.96</td>
<td>-63.5931</td>
</tr>
<tr>
<td>5.50</td>
<td>-63.6463</td>
</tr>
<tr>
<td>9.50</td>
<td>-63.6463</td>
</tr>
</tbody>
</table>

Table 16. Data for 3,5-bis(trifluoromethyl)-4-(3-hydroxypropyl)-4H-1,2,4-triazole (107).