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Summary

In Part I we study certain random processes in the phase-plane (t,z) € R?. In particular,
we consider their windings around the origin, and the processes formed by setting X *(s)
(respectively, X ~(s)) to be the position when the process first moves to the right of t = s
(the left of t = —s). The mathematical description of the link between these X processes
and the phase-plane process involves a type of Wiener-Hopf Factorization.

An account of the analysis for a particular well-studied case in Chapter 3 reveals an
unexpected isomorphism between seemingly esoteric but naturally occurring spaces and
the more common Sobolev Spaces. '

A detailed exposition of the analysis, which previous work has avoided, shows how delicate
the structures of some of the operators are. We focus here on the strange but crucial result
that these isomorphisms are built from operators which are contractions, many with the
same upper bound for their norms of 1 /V2.

More surprising results, this time of an algebraic nature, are found in the form of theorems
discovered via numerical calculation. These arise when the process on the lower half plane
is a Markov Chain. Again, the contraction result is proved, this time by means of an
identity which provides a link between the X processes and two other Markov Chains,
which is itself of great interest.

In the shorter Part II, we look at a computational method for dealing with randomly
grown networks and give the results of the programs. In an attempt to model a fairly
wide class of biological processes, we transfer the mechanics of those processes to a more
general setting.
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Notation for Part 1

A is defined to be equal to B

Integral [ fgdu over the support of u

Space of bounded continuous functions on X

Space of functions f € Cp(X) with bounded
and continuous first and second derivatives

Expectation for the process started at z

State space F is a disjoint union E* U E~

"y=\/2—/\

£(t,z) or L(t,z) Local time

3
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KW]
[LMRW]
Vol. 1
Vol. 11
W]

Poisson measure on excursions
Poisson measure on U*
Excursion entrance measure
and its Laplace transform
Probability measure for the process started at z
Half winding operators from E* to E¥
Resolvent of killed Brownian Motion
One point compactification of [0, o)
Resolvent operator
Resolvent density
Times at which ¢ first leaves (—o0,t) and (—t,00)
Space of excursions, of marked excursions
and of the union of both marked and unmarked
A fluctuating time change
Sobolev space of functions f : Rt — Rt
with f, f' and f” all in L2(RY)

- W* = [I*IIF, the full winding operators

Constant function 1(z) =1

Reference Kennedy & Williams (1990)

Reference London, McKean, Rogers & Williams (1982a)
Reference Rogers & Williams (1994)
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Reference Williams (1991)
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Chapter 1

Introduction

1.1 Springs and Time

In his 1963 paper A winding problem for a resonator driven by a white noise, Henry
McKean defines the phase plane for a resonator—such as a forced or damped spring—
which is perturbed by a standard Brownian Motion, B. The equation governing the
system is of the form

(1.1) i+ c(u)i + co(u) = B.

He then considers various questions concerning windings around the origin in the phase
plane for the simplest case of ¢; = ¢; = 0. Thus = is a Brownian Motion, u is the integral
of that process and the phase plane is the graph of (u,%). If we write ¢, for the additive
functional u, the phase plane is the graph of B; against ¢;.

This is very close to the familiar time-change using a perfect continuous homogeneous
additive functional, with one alteration—the value of the functional may go down as well
as up. The many and intriguing abstractions, simplifications and generalisations prompted
by this investigation in the intervening thii‘ty-ﬁve years have brought to light unexpected
and often baffling half-answers. Thus the questions have become problems involving many
areas of algebra, analysis and probability.

We move from McKean’s scenario of a phase plane and think of the process as a generalised

time change in which time can flow in either direction.

12



1.2 Definitions and Notation

The following definitions apply throughout Part I. A state space E is decomposed into
E* and its complement, E~. The process X(t, w) € E is defined by the operator Q.
Depending on the nature of E, this will either be an infinitesimal generator of a continuous
stochastic process or a Q-matrix of a Markov Chain. (In the former case, we will denote
the generator by A.) The function V : E — R is non-negative on E* and non-positive on
E~ and defines the additive functional ¢ and its inverses 7+ by

(1.2) e = /0 V(x.)ds,

+ . . - .—3 . _
(1.3) TS = %1>1(f)'{t s¢¢>u} and 7, = %gg{t s —¢r > u}.

In the case considered by McKean, E is the real line decomposed into Rt and R™, X is
a Brownian Motion, and V(z) = z. Note that when we decompose the real line, or some
part of it, into Et and E~, the origin, 0, will always become part of E~.

The function V tells us how fast, and in which direcfion, time is running. We wish to
generalise this concept. Certainly if V' is bounded, we can, by the occupational density
formula, rewrite (1.2) as

‘ t
(1.4) | b = / V(X,)ds = / o(t, z)V (z)dz
- 0 S E
where ¢ is the local time normalised such that
t
/ F(Xs)ds = / o(t, ) f (z)de.
0 E

Let us use local time to extend the notation of (1.4) and write, for a measure v,

(L.5) /0 LX) dvs (X) = /E Ut ) f ()dv(z).

Provided the process (X;,¢;) visits the origin at positive times with zero probability,
we can talk about its windings around the origin. We define the half-winding operators
probabilistically as

(1.6) I+~ f(z) =E, f(X(15)) and TI"Fg(y) =Ey g(X(r5))

where z € E*, y € E~ and E, is the expectation taken with respect to the probability
measure when the process X is started at . Thus the half winding operators give the
expected values of a function evaluated at the (random) point on the ¢ = 0 axis after the

13
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Chapter 2
A First Example

This chapter aims to establish the main existence results of Williams (1991) (to which we
shall refer as [W)) for a specific continuous state-space Markovian process, rather than for
a discrete Markov chain. This involves careful consideration of some analytical aspects
that were unnecessary in that paper. It also provides a relatively explicit introduction to
both the discrete and the continuous results of varying degrees of generality given later.

Sections 2.2 and 2.3 of this chapter deal with Markov processes on [0,00) that behave
like Brownian Motion away from zero. These are called Feller Brownian Motions and are
discussed further in the appendix, Section A.1. Standard results mentioned there will be
used without further comment.

The two sections on Feller Brownian Motions do not directly deal with winding problems,
but much of our notation will anticipate those uses of the processes.

Many of our operators, in particular the half-winding operators, resolvents and trans-
formed entrance laws of excursion theory, will adhere to the following notation. The
notation is intended to be entirely standard and obvious and is defined only with the

intention of avoiding, not creating, confusion.

(2.1) Notation: Let W be some subset of the real line or complezx plane and let W be the
sigma-algebra of measurable sets of W. For a function A: W x W — C, write

Af(w) := /W A(w, dz) f(2).
If the measure A(w,-) has a mass at z, then write

A(w, 2) := A(w, {z})

15



and if it is absolutely continuous with respect to Lebesgue measure, write
a(w, 2) := A(w,dz)/dz.

To denote, say, the operator A acting on the function z — exp(vz) evaluated at the point
w, write

Ae")(w)
with the dot standing for the “dummy” variable of integration.

The structure of the chapter is as follows. We discuss resolvents in general and the resolvent
of killed Brownian Motion on the space of continuous bounded functions in particular. We
then find the resolvents and generators for two Feller Brownian Motions. In Section 2.4
we define a time change for a Brownian Motion which gives rise to a Wiener-Hopf process
around the origin. For this process, we find the full and half winding operators and see
that the processes X and X are given by our two Feller Brownian Motions. We then
prove the central result of this theory, the Wiener-Hopf factorization and finish the chapter
by exploring the structure that can be seen when the operators are defined for L? spaces.

2.1 Resolvents and Killed Brownian Motion

For A > 0, let v := v2X > 0. We will use this definition of « both here and in subsequent
sections.

A family of bounded operators {R) : A > 0} on a Banach Space B is a contraction
resolvent if

e |AR,|| £ 1 for A >0 and

e the resolvent equation holds for A, u > 0,

Ry—R,+ (A — p)RA\R, =0.

A contraction resolvent is an SCCR (Strongly Continuous Contraction Resolvent) if it also
satisfies, for all f € B,

e [ARAf—fll=>0 as)i— oo

For an SCCR, the range R)B is a dense subspace of B and independent of A.

In these sections, we use the Banach Space B := C’b(]R_"') with the uniform norm.

16



A space of continuous, bounded functions with the uniform norm is the natural space
for probability. In probabilistic terms, Ry is given by ARy\f(z) = E .f(Xr) where T
is independent of the process and has exponential distribution with rate A. From this
definition it is clear that AR, is a contraction since E , f(XT) < ||f|loo almost surely. In
contrast to L? spaces, functions are well defined at every point and so there is no problem
if P{Xr = b} > 0 for some point b—we know that we can evaluate functions there.

The natural space to use is therefore C,(R*). However, for the HilleYosida theorem
to apply, we require a dual space of measures and the Riesz Representation Theorem.
Many texts use the space of functions which vanish at infinity, a space for which the
Riesz Representation Theorem applies. Another strategy, and one which provides a space
containing the constant functions, is to consider continuous bounded functions on R*¥, the
one point compactification of RT.

Towards the end of this chapter, we shall consider resolvents defined on L? spaces.

For A > 0, the equality Ry = (A —.A)~! holds between the SCCR and .A, the infinitesimal
generator of the process. In particular, the domain of the generator A is the image of
the whole space under R). We will use the standard notation that for measurable sets I,
AR)(z,T') = P{Xr € T'}. Then, following (2.1), R\f(z) = [ Rx(z,dy) f(y)-

The resolvent of killed Brownian Motion is given by
[o ]
Raf@) =77 [ (e - ) fg)ap.
0

We define killed Brownian Motion on R~ and denote its resolvent, which is essentially the
same object, by ~R) also.

Note that the resolvent of killed Brownian Motion is not strongly continuous on C(R¥).
It maps C(R¥) into the space C2(R*) N {f : f(0) = 0}, which is not a dense subspace
for the uniform norm. Since A "Ry f(0) = 0 for all A\, A "Ry f does not in general tend to
f pointwise and hence certainly not in the uniform norm. Of course we have pointwise
convergence if and only if f(0) =0, and we then have uniform convergence. '

The resolvent is only an SCCR. on the smaller space C(R*) N {f : f(0) = 0}.

The lack of strong continuity arises from the fact that the killed process jumps from 0+
to the coffin state, and hence 0 in effect acts as a branch point to a state at which the
function is zero. Let us consider the resolvent of Brownian Motion absorbed at 0, which is
given by

(22) Baf(@) + X110 =471 [ e — =] f(g)ay + X THQ).

17



This maps C(R¥) to C%(R*), which is a dense subspace. Thus absorbed Brownian Motion,
being a continuous process, has a strongly continuous resolvent on C(R¥).

This is a nuisance for the theory of Feller Brownian Motions since these processes have a
clear relationship with a killed Brownian Motion. A Feller Brownian Motion and a killed
Brownian Motion behave in identical fashions away from zero and then, when the killed
Brownian Motion dies at 0, the Feller Brownian Motion does something and then behaves
like another killed Brownian Motion until it next hits zero. Thus we would wish to express
the resolvents of Feller Brownian Motions as at (2.2) where this decomposition is clear.
However this is not necessarily the correct path since, for example, the strongly continuous
domain (by which I mean the largest subspace of the domain on which the resolvent is
strongly continuous) for the Feller Brownian Motion which is absorbed at zero is larger
than the strongly continuous domain of killed Brownian Motion.

We finish this section with three lemmata.

(2.3) Lemma: For continuous bounded f, the function ~“Ryf is twice continuously dif-
ferentiable with '

[e ]
@9 o RfE)= [ (~seale—ye 4 ) fy)dy
dz 0
and _ P
(2.5) s “Ryf(z) = —=2f(x) + 2X "Ry f(x).
Proof: This can be shown by calculating the derivatives explicitly. O

The following lemma sets out the logic we will use on occasion to prove that a certain
subspace is the image of a resolvent, and that the resolvent is injective.

(2.6) Lemma: Let Ry be a resolvent on a Banach Space B and suppose that there is an
operator A whose domain, D, includes R\B and that for any f € B, (A— A)R\f = f.

Then if there exists a subspace C such that RRB C C C D and for fe C, A—A)f =0
implies that f =0, then RyB = C and Ry is a bijection from B to C.

Also, if Ry is an SCCR, then A restricted to C is the infinitesimal generator given by the
resolvent R).

Proof: For f € C, suppose that Ry(A — A)f = g. Therefore g € Ry\B C C. By applying
(A — A) to the equation, we have (A — A)(f —g) =0 and so f — g = 0. Hence f € R\B
and (XA — A) is a two-sided inverse for R, which is therefore a bijection. a

(2.7) Lemma: Let {Ryf(0) : A > 0} be a family of linear functionals on C(RY) sat-
isfying 0 < f <1 = 0 < AR\f(0) <1 for all A > 0. Define Ryf(z) :== “Raf(z)+

18



exp(—yz)Rxf(0). Then if the image of C(R¥) under Ry, is independent of A then Ry is
a contraction resolvent.

Proof: Since A "R)1(z) is just the probability that Brownian Motion killed at 0 is alive at
an exponential time, it is equal to 1 — exp(—~z). Therefore,

[ARAf (z)| < [A "Raf(z)| + e IARAF(0)] < (1 — e7™)||flloo + €™ || flloo = | flloo
and so | ARy|| £ 1.

We know that

(2.8) (A - %%) “Ryf(z) = f(z) and ()\ - i ) e =0

1 ¢
2 dx?

and so (A — %'dd—:g)RA f = f. Hence R, possessing a left inverse, is injective and we have a
bijection between C(R¥) and its image (assumed to be independent of ) under R, with
(A— %di:g) being the two sided inverse.

For f € C(RY) let g = R, f so (u — %gg)g = f. Then Ryf = g — (A — p)Rxg and so
(Bx—Ry+(A—p)RaRu)f=g—(A—p)Rag—g+(A—p)Rag=0,

and therefore R satisfies the resolvent equation and hence is a contraction resolvent. O

2.2 Sticky Brownian Motion

2.2.1 Definition

The first of our two Feller Brownian Motions is referred to as sticky Brownian Motion (or
more precisely, reflected sticky Brownian Motion). This is a Brownian Motion on (0, 0o)
but it lingers a little too long at the origin—it actually spends positive real time there and
the local time at zero is defined accordingly as

t
(2.9) by = m_l/o I{X(S)=0}ds

for some mass m > 0. We have m™! rather than m in the expression because for a small
mass m, we want to build up local time more quickly. Then an excursion performed at
a given local time will occur at a smaller real time. Thus the smaller the mass, the less
time the process spends at 0.

Throughout we will take the normalization of local time for Brownian Motion to be as

19



given in Trotter’s theorem so that for a bounded measurable function f the local time L
is such that

/Ot f(Bs)ds = /R f(2)L(t, 2)dz.

As we mentioned briefly in the introduction, we use the following notation:

(2.10) Notation: If a signed measure v on R" is absolutely continuous with respect to
Lebesgue measure, Leb, there ezists a function f such that dv(z) = f(z)dLeb(z) = f(z)dz.
For a diffusion X on R*, define dv,(X) by

dv

dvs(X) = f(Xs)ds = dLeb

(X,5)dLeb(s)

and let us generalise this in the obvious way to other measures for which f may be a
generalised function. When a local time L ezists, then it can be used to define dv,(X) via

[ 1xoan0 = [7 @)1, 9iv(a).
0 0

We define X, the sticky Brownian Motion, in a way deliberately reminiscent of Chapter 1.
Let the measure v on Rt be Lebesgue measure together with a mass m at the origin. We
use the measure v to define the time change

t . oo
(2.11) Py 1= / dvs(B) = / I(p,>0yds + mL(t,0), oy :=inf{t: ¢ > u}
0 0+ : >0

for a Brownian Motion B;. Then the sticky Brownian Motion is given by X () := B(o(t)).
Compare this with (1.2) and (1.3).

We are using the notation that L is the local time of the Brownian Motion and £ the local
time of the sticky Brownian Motion.

An alternative description is via excursion theory—see Appendix A.2 for standard nota-
tion, definitions and results. If U is the set of all Brownian excursions, and L; the local
time of the Brownian Motion at zero, then there is a Poisson measure n on U such that for
= and I' measurable subsets of U and R*, the number of excursions in Z occurring whilst
the local time is in I' has a Poisson distribution with parameter n(Z)Leb (T') € [0, c0].
If we transform the Brownian Motion to sticky Brownian Motion via (2.11), then each
excursion from 0 remains intact. However, instead of occurring as a Poisson Process on
U x R*, the space of excursions against local time L;, the excursion points occur on the
space of excursions against the weighted real time at zero, £;. Each excursion is shifted
forward in (real) time by an amount proportional to the local time when it occurs.
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2.2.2 The Resolvent

We use excursion theory to find the resolvent of sticky Brownian Motion.

(2.12) Theorem: The resolvent of sticky Brownian Motion, Ry, is
(2.13) Ryf(z) = "Rxrf(z) + e " Ryxf(0)

acting on C(RY), where ~R), is the resolvent of Brownian Motion killed at 0 and

Proof: Recall that “R) f(z), the resolvent of Brownian Motion killed at zero, is given by

Raf@) =t [ (e - e =) £y,

We write n; for the entrance measure, so n;f is the expected value of f evaluated at the
point £; where £ is an excursion chosen according to n. Then since the excursions of sticky
Brownian Motion are Brownian, the Laplace transform of the excursion entrance measure
is given by '

(2.15) ny(dz) = e dzx z>0

where v = v/2\. That is, the probability that an excursion is alive and in the set I" at
exponential time T' is ny(T') = [rna(dz). We write nyf for [ny(dz)f(z).

The set of all excursions is denoted by U. We now “mark” the process X (or, equivalently,
we mark each of its excursions independently) at rate A on the real time axis. Some
of the excursions now contain a mark, and we will write U* for the set of excursions
containing a mark. The set of all excursions, marked and unmarked, is now the disjoint
union U* := U U U* and let us write 7 for the excursion measure on this larger set. See
Appendix A.2 for further details. We also define the null marked excursion d, denoting
the event of a mark occurring while the process is at zero. This has non-zero probability
as the process spends positive time at the origin. '

Let T be the real time of the first mark. Thus T has exponential distribution with rate
X and 47 has exponential distribution with rate equal to the rate of marked excursions,
A(U* U {8}). Since the rate of arrival of these excursions is the reciprocal of the mean
inter-arrival time (measured in local time),

AT*U{BN™ = Eoler]
- E, /0 )
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= [E 0/00 m_le_’\tI{XFo}dt
0
= (mA)7'Po{Xr =0} =
(2.16) Eo[tr] = m~1R\(0,{0}).

We obtain the last-ezit decomposition (2.18), which expresses Po{X; € I'} as an integral
over the last exit time of the process from 0, although for us the more important but less
intuitive result is in fact its Laplace transform (2.17). We use result (A.4) and the two
methods for marking a process to deduce that for T' C R* \ {0},

Ry(0,T) = X 'Po{Xr €T}
A~'P{1st marked excursion € " at the mark}
= A7!'P{¢r € T'|¢ is marked}
yinéreld)
a(U* U {9})
(2.17) R\0,T) = my(@DE, /0 e g(y)

(where ¢ denotes an excursion chosen randomly according to the measure 7). Inverting
the Laplace transforms gives us the decomposition

(2.18) - ]P(){Xt € P} =[E, ./Ot nt_s(I‘)dé(s).

From (2.16), we may write (2.17) as
(2.19) m™ Ry(0, {0})na(T) = Rx(0,T)

and set I' = Rt \ {0} to obtain

m~IAR,(0, {0})na(RY \ {0}) = AR\(O,R*\ {0})
= Po{Xt # 0}
= 1-Py{Xr =0}
= 1- ARx(0,{0}).

Hence, since n,({0}) =0,
(2.20) Rx(0,{0}) = A+ m Tany1)7!

where 1(z) := 1 for all z. Note that from (2.15) ny1 = v~ ! and s0 A + dm™Iny1 =
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v(m~y + 1)/2m. By (2.19) and for 0 ¢ T,

m~in\(L)  _  2m\(T)
A+m-1anyl  y(my+1)

(2.21) ' R,(0,T") =
and so

RAf©) = Ra(0,{0Df(0)+ [ fRA(o,dz)f(x)

f(0)+m™Inaf _ mf(0) +naf
A+2"Inyl iy(ym+1)

Finally, by (A.5),
(2.22) Ry f(z) = "Rxf(z) + e "Ry f(0).

O

As with absorbed Brownian Motion, sticky Brownian Motion is a continuous process and
the image of C(Rt) under the resolvent is a dense subspace. Its resolvent is strongly
continuous on the whole of C(R¥).

By the HilleYosida theorem, there exists a unique strongly continuous contraction semi-
group with R) as its resolvent. From this we can construct what Rogers & Williams (1994)
(to which we shall refer as Vol. I) calls a Feller-Dynkin process. By inverting the resolvent
we can find the infinitesimal generator of this process. This is the subject of the next
subsection.

By a Feller-Dynkin process on Rt we mean one generated by a Strongly Continuous
Contraction Semigroup P; on C(R*) with the property that Py = I, the identity.

The HilleYosida theorem relies on the generator having a dense subspace as its domain.
When this condition fails, as it does for the Feller Brownian Motion of the next section,
we have to consider the more general class of Ray processes.

2.2.3 The Generator

(2.23) Theorem: For the space of continuous bounded functions with limits at infinity,
the generator of sticky Brownian Motion is given by

(2.24) Af =3f"
with domain
(2.25) C*RF)n{f: f'(0) =mf"(0)}
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where C2(RY) is the space of functions f : Rt — R with e limit at 0o and f, f' and f"

all bounded and continuous.

Proof: Since we have found the resolvent, we use the result that the domain of the generator
is the range of the resolvent and

(2.26) (A= A)R\f = f.

By Lemma 2.3, for continuous bounded f, the function ~R,f and hence R)f is twice
continuously differentiable. Thus Ry f is in C?(R¥). Now by (2.26)

LLR@) = 2 [ Raf(@) + e RAS(O)

2 dz?
= —f(z)+ X "Ryf(z) + ARAf(0)
= (AR\—I)f(z)

= AR, f(z)
and so A is half the second derivative. Also, by (2.4)

(Baf)'(0) = 2naf—yRAf(0)

= onmyf— sz(O)'*J'rT;,\f
_ [—mf(07;71771z mf]
-l ()

= m[-2/(0) + R f(0)] =
(Rrf)'(0) = m(Rxf)"(0)
(2.27) = %g’(ﬂ) = Ag(0)

for g in the domain of A. Now for a function h € C?(R¥) satisfying this condition,
Ah — 3" = 0 implies that h = 0. Therefore, by Lemma 2.6, A has domain C2(R¥) N {f :

f'(0) = mf"(0)}. ]

Lemma 2.7 now confirms that R, is indeed a contraction resolvent.

This is the usual, and natural, definition of A for probabilistic purposes as was noted
earlier. Let us expand the domain of A, losing continuity of the functions in its range. We
let A act on the whole of C%(R¥) and let

_[3'@) >0
(2.28) .Af(a:)—{ % ) =0
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which maps into bounded measurable functions.

Note that this definition tallies with Dynkin’s Formula that

E of (X(Te)) — £(0)
E oT:

Af(0) = lim

where T, is the hitting time of z = e. Excursions hitting level £ occur at rate 2¢ for
reflected Brownian Motion and the length of time such an excursion takes to hit € is of
order £2 (see Lemma 3.20). Therefore E o7, = mE ¢4(T:) + o(e?) and

Af(0) = g 16 =0 1 £(0).

el0 2me + 0(e2) 2m

2.3 A Process with Non-local Behaviour

2.3.1 Definition

The second Feller Brownian Motion, denoted X ¥, is a process that. upon hitting 0 im-
mediately re-enters according to the measure II=%(0,dz) := m~! exp(—z/m)dz. This is
a finite measure and so, in contrast to Brownian Motion or sticky Brownian Motion, the
first excursion (or the next excursion) is identifiable. The points ¢ for which limgy X+ (s)
is zero form a discrete set on the real time axis with only finitely many in any finite inter-
val. The origin, although never entered by the process, is included in the state space as a
branch point. We will follow the notation (2.1) and write II™* f(0) for [+ II=(0,dx) f(z)
and 7~+(0,z) for m~!exp(—z/m).

It is probabilistically intuitive that the process X is well-defined by the description above.
We know how to construct a Brownian excursion beginning at z > 0 and can easily imagine
how we might perform the necessary formalities required to concatenate a finite number
of them using the exponential distribution as given above. However, to deal with the
analytical problems of Wiener-Hopf theory, we must take more care.

The process X is not a Feller-Dynkin process—a fact which complicates our analysis. If
we start the process at 0, it jumps away instantly and so the semigroup P; for the process
started at position 0 and at time 0 has the density Py(0,dz) = m~! exp(—z/m)dz which
is not the identity measure. We have, more importantly, also lost strong continuity of our
semigroups. The closer we start to the origin, the sooner we are likely to jump and so we
do not have uniform convergence of AR)f to f as A = oo or (equivalently) P;f to f as
t } 0. Both of these pointwise convergences fail to be uniform near 0 and P; does not map
C(R¥) to C(R¥) as it creates a discontinuity at 0.
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The significant result of this is that the image of C(R*) under the resolvent is not a dense
subspace. This means extra work in defining the semigroup or generator and proving

uniqueness. Fortunately, the process is a Ray process and this extra work is done for us
by Ray’s Theorem.

2.3.2 The Resolvent

Let Ry be a contraction resolvent on C(R¥) with Ry1 = 1.

(2.29) Definition: For a > 0, a function f € C(R¥) is called an a-super-median function
if
0<ARytof < f VA>O.

We can construct Ray processes from Ray resolvents. The theorem which does this relies
on the idea that if the family of super-median functions is sufficiently rich then we can
define the semigroup from these functions alone. This is in contrast to Feller-Dynkin
processes for which the image of Ry is dense, which allows the semigroup to be defined
more directly.

(2.30) Definition: The resolvent Ry is a Ray resolvent on C(R¥) if the union over a > 0
of all a-super-median functions separates points in R,

Such resolvents uniquely define a semigroup, a generator and a Ray process on R*.

(2.31) Theorem: The resolvent for the Feller Brownian Motion X+ defined above is
given by

(2.32)  R{f(@) = “Raf(@) + e REF(0)
where 1 -
(2.33) RO =gy fo (e7/m — %) f(z)dz

on the space C(RT). As before, "Ry, is the resolvent for Brownian Motion killed at 0.

Proof: We again use It6 Excursion Theory. Since we have only finitely many approaches
to the origin in a finite interval, local time counts the number of excursions from zero.
Note that if X (0) = 0 then £(0+) = 1 otherwise £(0+) = 0 and so we define

Et =

{u €(0,¢] : 13ng3 = OH + Iix(0)=0}-
The excursion measure n(Z) (or 72(E) for the measure of marked and unmarked excursions)

is the probability that the next excursion lies in £ € U (or £ C U*). The local time when

an excursion in some set = arrives is geometrically distributed and we still have that
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E £ = [n(Z)]~!. The Laplace Transform of the entrance measure is given by
oo
(2.34) nx(T) = / 1-+(0, dz) “Ry(=,T)
0

being the jump measure I+ followed by killed Brownian Motion. We obtain a version
of (2.16),

(2.35) Eoltr] =Eo / e~Mqe(t) = A(T*) L
0

(the marked null excursion 3 is absent, since the process does not spend positive time at
the origin) and the calculation leading up to (2.17) again yields

(2.36) R (0,T) = na(D)E o /0 e Map(t)
and so -
(2.37) REF0) = (mDEo [ e de(o).

The process is honest and so A~! = R} (0, R*) = R}'1(0) where 1(z) = 1 for all z, and so

R} '
(2.38) R{f(0) = Aﬁ;fl(?g) = :r;\,{l

as required—the integral in (2.37) is a normalising constant. The resolvent is completed
as before and as described in the appendix to obtain (2.32). The final step, determining
nyf, is performed using

(2.39) naf = /Ooo m~le~®/™ “Ry f(z)dz

and a straight calculation and use of Fubini’s theorem yields

2m

(e’z/"‘ - e"””) dz
and -

mf = [~ m()f@)
and therefore

2m -1 m
. 1=—— (m-— =™
(2.41) mi= 1 (M=) = fam D

(2.42) Theorem: The resolvent RY is a Ray resolvent.

We must first prove the following lemma.
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(2.43) Lemma: The space R} C(R¥) is equal to C?(R¥) N CT(RF) where
CH(RF) := CRF) N {f : II™*£(0) = f(0)}-

Proof: We know from Lemma 2.3 that functions Ry f are twice continuously differentiable,
and that (A — %%)R;’f = f. Since II"*(e™7)(0) = m~(y+ m~1)7L,

I*REf(0) = II™F "Ryf(0) + Rf f(O)II~F(e™")(0)

+
R+
= REFO) 1) + 2LO)
(2.44) = R{f(0)

and so the image is contained in CT(R*) as well as in C2(R¥).

Note that we used the identity nyf = II"t("R, f)(0) as at (2.34). This is probabilistically
clear. Excursions of this process (which determine the left hand side of the equation) start
according to the distribution II-* and then behave like killed Brownian Motion, which is
a description of the right hand side. '

For a function f in C%2(R¥) N CL(R¥), (A — %di:g) f = 0 implies that f = 0. Thus by
Lemma 2.6, this result is proved. O

Proof: (Of Theorem 2.42) For any positive function f € C(R*), Rof is an a-super-median
function, a fact easily proved from the resolvent equation,

0 < AR, RYf =Rif - RY, f < Rif.

Hence amongst super-median functions we have all twice differentiable functions in CTI(R¥)
and so they certainly separate points. As a concrete example to prove that CI (TR:) is not
trivial, take f(z) = B(ma +1)e™*® — a(mB + 1)e P* for any 0 < a < B. Thus R} is a
Ray resolvent. O

2.3.3 The Generator

We define the generator G of Xt to be the operator whose domain is the image under
R, of the largest subspace of C(R*) on which R} is strongly continuous and is such that
(A=G*H)"l =R,.

(2.45) Lemma: The space CT(RF) is not dense in C(RT).
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Proof: The linear functional f — (II-* f)(0) — f(0) is a bounded operator, since

[(TF£)(©0) = £O) < [l flleo +1£(0)] < 201 flloo-

It is non-trivial since, for a > 0, the function f(z) := (ma + 1) exp(—az) is mapped to
—ma. The result is then immediate as the kernel of a bounded linear functional, here
equal to CT(R+), cannot be a dense subspace. O

Thus the resolvent is not strongly continuous on C(R"’), that is, |ARAf — flloo—> 0 as
A = 0o. We can see this because AR, f (0) ) f(0) as A = oo and so for f as defined
in the previous lemma’s proof, (AR) — I)f(0) is bounded away from zero as A — 0. In
fact, we knew that the resolvent could not be a strongly continuous contraction resolvent
on C(R¥) because those conditions would be sufficient for it to have a strongly continuous
contraction semigroup and the branch point at 0 tells us that this could not be so.

We can see that the resolvent is strongly continuous on C(R¥) and so the generator has
R,CY(RF) for its domain.

(2.46) Theorem: The process X+ has generator Gt given by Gt f = L f" with domain
comprising all functions f € C?(RY) satisfying

(2.47) =t £(0) = £(0) aﬁd I-*G* f(0) = G f(0).

Proof: This is proved by Lemmas 2.43 and 2.6. : O

For a function g, satisfying II"*g,(0) = g4 (0), integration by parts tells us that

1
. I +G+ / —:c/m II _-
(2.48) 9+(0) = 5~ z)dz = — 4. (0)

and so if we have g4 satisfying (2.47), then

(2.49) -4/ (0) = mg} (0)

which should be compared with the condition on sticky Brownian Motion at (2.27). Note
that this holds only because we restricted Ry to that part of its domain for which strong
continuity holds.

As mentioned in the previous section, for a Strongly Continuous Contraction Semigroup
on a Banach Space B defining a process X, the generator A is given by

(2.50) Af(z) = 15%1 E mf(Xe;) - f(=)

which is a nicely intuitive understanding of the generator. Of course, we expect this to be
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true for Xt only on the space where strong continuity holds. If we start X+ at zero, it
immediately jumps into (0, 00) according to II"* and so the formula at (2.50) acting on a
function g, in the domain of Gt gives

lim E 09+(XF) — 9+(0) — lim I (E [g+(X))(0) — 94(0)

—+ot
) € el € _H G g+(0)

which is not equal to G*g.(0) unless g, = R} f, for some f, € CT(RT).

The Wiener-Hopf factorization proved in [W] is for finite dimensional Markov Chains,
with Q-matrices rather than infinitesimal generators. For finite chains with state space S,
the “domain” of the Q-matrix is trivial—if we keep everything real, then it is RS. For
infinitesimal generators, it is not obvious what the domain should be, or whether the
factorization holds for any given domain. The use of resolvents helps us to identify the
domains that will give the results analogous to those in [W].

2.4 A Generalisation of V

We have given analytical descriptions of the two Feller Brownian Motions X and X*.
We now turn to the connection provided by Wiener-Hopf techniques between these two
processes.

Suppose that the standard one-dimensional Brownian Motion B, started at the origin, is
time changed via

t t
(2.51) ¢y = /0 I{p(sy>0yds — més = /0 sgn(B,)dvs(B)

where £; is the local time at the origin. The density V(B;)ds at (1.2) has been replaced
with sgn(B;)dvs(B) where v consists of Lebesgue measure on Rt = E* and a mass m at
the origin.

The function sgn, to be consistent with our convention that 0 € E~, is equal to +1 on
(0,00) and —1 on {0}. Once we have performed the time change of (2.51) and (1.3), the
half-line (—00,0) plays no further réle in this chapter.

2.5 Some Full and Half Winding Results

If the process is started at zero, the local time (which grows roughly like v/2) will dominate
for small ¢, and ¢; will thus be negative. For large t, ¢; will drift to infinity. That is, the
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process started at 0 immediately moves to the left and we have 75t almost surely strictly
positive.

(2.52) Theorem: The half-winding densities for the time-change at (2.51) are given by

(2.53) It (z,0) = e~*/™
and
(2.54) I1+(0,dz) = m~le~*/™dz.

Proof: Let § = m~! and consider N;' := exp(—1602¢:)f(B:) where f, is given by

f+(@) = Iizsoye™ + Ip<o

and I is the indicator function. The (weak) second derivative of f,, f{(dz), is equal to
the measure

fi(dz) = 621 (z)I(z50)dx — 0f4(0)8(5—0)d

(where § is the usual Dirac delta function) and so 62f,(B;)d¢, = d f}(B:). Although f,
is not C? at 0, we can apply Itd’s formula to N; by using a reflected Brownian Motion
and restricting f{ to R* U {0}. For a Brownian Motion, B, with local time at zero Z, let

| . )
(2.55) | By = ]0 sgn(B)dB,,  Xe:=fu+ 3,

and
¢g{ =t - mZt.

Thus dX; = dB; + idl;, d[X]; = dt and d¢¥ = dt — mdl,. We still use the same nor-
malization of local time, and thus Tanaka’s formula implies the presence of a half in the
definition of X in (2.55).

Now we can redefine Nt using X. This has removed the times when B; < 0 and the value
of N* is constant. Let N;" = exp(—162¢%)f.+(X;). The reflected Brownian Motion X is
a semi-martingale, § is a local martingale and It6’s formula for N gives

ANy = e T [ 102, (Xo)dt + $6Pm S (Xe)dle
+ 4 (Xe)dBe + 3/ (Xe)dle + 3£ (X)de]

= e 1000zqg,
Therefore N;' is a local martingale.

When By > 0, the quantity N;" is bounded over the time interval ¢ € (0,75 ), since ¢ is
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positive until that time. Therefore N; is a true martingale on [0, 75").

By the optional stopping theorem, E;N*(75) = N*(0) and we deduce that
(2.56) E N*(r5) = P;{process half winds round to 0} = ITI*~(z,0) = ¢~*/™
thus obtaining one of the two half winding operators.

We repeat this procedure exactly on N;  := exp(3v2¢:)f—(B;) for any v > 0 and for the
function ' ‘

(2.57) f-(z) = [(my*) ! cosyz + v sinyz|Izs0p + (M) " (z<o)
for which v2f_(B:)d¢(B:) = —d f"(B;). As with Nt, N~ is a local martingale and since
it is bounded on the interval ¢ € (0,7g") it is therefore a true martingale up to time 73"

We start the process at 0 and, by the optional stopping theorem, N=(0) = EqN~(13"),
and so

f-(0) = (my?»)™! = MI*f_(0)
(2.58) 0 '
_ /0 II=+(0, dz) [(mYy?)~! cos vz + v~ sinyz]

holds for all strictly positive values of «v. The key uniqueness theorem of Section 3 in
the paper by London, McKean, Rogers & Williams (1982a) (to which we will refer as
[LMRW1)) tells us that if for. some measure II"*(z, -),

(2.59) Eof-(X() = [ " (2, dy) - (4)

holds for all functions f_ of the form (2.57), then II~*(z, dy) is the half winding density.
Now,

o0
(2.60) (my?)~! = m_1/ e~%/m [(m*yz)_1 cosyz +~71 sin'yx] dz
0
and so
(2.61) I-*(0,dz) = m e */™dz
is the half winding density. _ 0

Write V(z) := sgn(z). On [0,00), Afi(z) = 162V (z)fy(z). Note that V-LAf, is con-

tinuous at 0 since —m~! f} (0+) = fY(0+). Thus we can say that f; is an eigenfunction

for V1A with eigenvalue 162. Similarly, f_ is an eigenfunction for V1A with eigenvalue
1.2

-3

The spectrum of V14 is R~ U {(2m?)~!} and, as we shall see, the Wiener-Hopf factor-
ization decomposes the operator V1.4 according to its positive and negative eigenvalues.
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