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SUMMARY.

The objective of this thesis is to quantify the effects of radiation from the

Inset Dielectric Guide,(1.D.G.).

The LD.G. has demonstrated excellent potential both as a transmission
medium and a basis for leaky-wave antennas and belongs to a class of open

nonseparable waveguides that have been proposed for use in the millimeter band.

The theoretical analysis of 1.D.G. circuit and antenna elements requires the
complete mode spectrum of the 1.D.G.,which previously,had not been rigorously

derived.

A hybrid transverse characteristic Green’s function is presented that allows
the complete mode spectra of open nonseparable structures to be recovered.In
particular,the continuous radiation modes of the I.D.G.,the microstrip loaded

I.D.G. and slotline with finite thickness metallisation have been identified.

Transitions between closed rectangular waveguide and the I.D.G. have been
analysed and have shown excellent agreement between experimental and
theoretical values,confirming both the validity and utility of the mode spectra

developed.

Radiating strips and patches on the I.D.G.,from which leaky-wave antennas
may be constructed,have been analysed,demonstrating several interesting
phenomena and providing building blocks from which linear arrays may be

synthesised.

It is concluded,that the commercial exploitation of the millimeter band will
require the complete mode spectra of open nonseparable waveguides.This thesis
presents a method that permits their derivation and further demonstrates their role

in the development of practical circuit components.
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CHAPTER 1.

INTRODUCTION.

1.1) Introduction.

With the ever increasing demands being placed upon communication and
radar systems,there has been a steady increase in the operating frequencies of

these systems.

Higher operating frequencies promise greater channel capacity and allow
wider channel separation,thus reducing cross-channel interference.The decrease in
wavelength,not only offers the possibility of higher resolution radar systems,but
also the construction of physically small antennas with large electrical apertures to
improve the efficiency,security and resistance to interference of point to point
communication systems.For many applications,such as airborne radar,personal
communications and satellite systems,the compact nature of high frequency

technologies is also of prime importance.

In the past few decades considerable attention has been directed toward the
millimeter wav¢band,(30-3OOGHz),in an attempt to realise these
advantages,[1].Early experiments were disappointing due to atmospheric
absorption,a process not fully characterised until later.In fact today,not only are
the propagation windows in the spectrum: utilised,but also the high absorption
bands, which find applications in the fields of secure battlefield and ship to ship

communications and weather forecasting.

Exploitation of any region of the clectromagnetic spectrum requires the

development of four areas;
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1) Coherent source generation.

ii) Propagation and passive circuit media.
iii) Antenna structures.

iv) Active devices.

Sources have been produced that cover many of the frequencies in the
millimeter band,including refined travelling wave tubes,klystrons and magnctrons
developed from the centimeter band and gas lasers developed from from the far
infared region.Currently the use of solid state sources,such as gunn and impatt
diodes,is restricted to applications requiring less than 100W of continuous

power,[2].

To date,active devices are not widely commercially available for much of
the higher frequencies of the millimeter band and fall outside the scope of this

thesis.

The remaining two aspects listed above,propagation media and antenna
structures,have generated increasing interest in the past 20 years,although the
transition from the centimeter to the millimeter band has required the development

of new technologies to overcome performance and manufacturing difficulties.

The next section shall briefly discuss the progress that has been made in
developing this aspect of the millimeter band,concluding with an introduction to
the Inset Dielectric Guide,(I.D.G.),the main concern of this thesis.The following
section considers the emergence of a promising new class of leaky wave antennas
formed in dielectric waveguide.Section (1.4) discusses the methods currently
available for the analysis of discontinuity problems that allow both circuit
components and antennas to be designed without resorting to an empirical

approach.The final section outlines the work to be presented in the remainder of
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this thesis.
1.2) Millimeter Wave circuit Technologies.

Although in principle the circuit technologies currently used in the
centimeter band,such as hollow metallic waveguides,microstrip and finline may be
dimensionally scaled for use in the millimeter band,in practice frequency limits
are set by manufacturing tolerances and material performance.Not only does
manufacture become difficult and expensive,but in general the circuitry becomes
increasingly lossy as the operating frequency is increased.Therefore considerable
attention has been directed toward developing alternative circuit technologies for
use in the millimeter band.Although several technologies have been proposed and

developed,no one has yet gained universal acceptance.

The main criteria that need to be satisfied by these new technologies are;

i) Cost,both in terms of materials and fabrication methods.

i1) Ease of manufacture and mechanical robustness.

iii) Low material and radiation losses.-

iv) Simple active device integration.

v) The ability to realise passive circuits such as couplers and filters.

Printed circuit techniques,such as microstrip and slotline,figure la and
b,are well proven in the centimeter band and are simple to manufacture.The use of
special substrate materials,such as sapphire and fused quartz,can extend the useful
operating range of microstrip up to 100Ghz,however,above this freéucncy these

structures become increasingly lossy with Q factors of the order

100.Notwithstanding this,the ease of manufacture and device integration of
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microstrip,has motivated its continued development and some microstrip

components operating at up to 220Ghz are now available,[3,4].

A problem that is encountered with printed circuit technologies is the
excitation of surface waves in the grounded substrate at any discontinuity,[5].Not
only does this contribute to the overall loss,but it also causes undesirable crosstalk

between components.

The relatively low loss finline structure has proved popular for many
applications for frequencies between 25-150GHz,[6].Although housed in a split
block,resembling rectangular waveguide,unlike the latter,the tight manufacturing
tolerances are placed upon the printed substrates,rather than on the block.The
printed substrates may be produced using conventional photolithographic
techniques and allow simple integration of beam lead devices.However,as the
frequency of operation is increased.finline suffers progressively from

unacceptable losses.

Most common centimeter band technologies and those just discussed
support a quasi-T.E.M. or fast wave fundamental mode.An alternative approach is
to consider structures that support surface wave propagation.These structures
utilise dielectric interfaces to guide power and typically have Q factors of several

thousands due to the concentration of the fields in a low loss dielectric,[7,8].

Image line figure le, has received considerable attention as a propagation
media,[9],although its initial promise has not been fulfilled due to excessive
bending losses -and radiation from any discontinuities.In addition,its manufacture
is not particularly simple either,as it is difficult to maintain tight tolerances when
machining the dielectric.Tﬁis is especially true when,in order to reduce conduction
losses,an an insulating layer is introduced to give insular line,shown in figure

1f. The large bending losses of image line arise as a consequence of the lack of
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lateral field confinement and,in attempt to overcome this difficulty,trapped image
line has been proposed,[10].Although bending losses are reduced,it is only at the

expense of fabrication simplicity.

Other structures,illustrated in figure 1,such as inverted strip dielectric
guide,[11],and nonradiative guide,[12],whilst similar to image line also possess
improved loss performance,although interest in these structures as propagation

media seems to be waning,again probably due to manufacturing difficulties.

Inset dielectric guide may be considered as a special case of trapped image
line and in fact has previously been analysed as an intermediate structure in this
context,[13].As the fields are excellently. confined to the dielectric region,the
bending losses are low compared to image line,[14].The the structure is relatively
simple to construct as,unlike image line,the I.D.G. does not necessarily require
precision machining of dielectric materials and may be fabricated by moulding
dielectric material into a preformed slot.Alternatively,for lightweight
applications,the 1.D.G may be formed by depositing a thin metallic coating on
three sides of a precut dielectric bar.In contrast to image line or insular line,the
construction of the 1.D.G. does not require the bonding of dielectrics,which is

advantageous due to the lossy nature of most bonding materials.

Although dielectric guides,and in particular the 1.D.G.,satisfy many of the
criteria previously set out,their success will be determined by the simplicity of
active device integration and ease with which passive networks,such as couplers
and filters,may be realised. A complication that arises in this context is the open
- nature of this class of guides.Consequently,any discontinuity causes power to be
lost through radiation.Whilst the I.D.G.,for example,may be relatively insensitive

‘to surface imperfections and bends,the design of circuit components must be

1-15



undertaken with due regard to minimising radiation losses.However,in
contrast,the deliberate excitation of radiation has allowed a new class of leaky

wave antennas to be proposed.
1.3) Dielectric Leaky-Wave Antennas.

Leaky-wave antennas are structures that ’leak’ part of the guided power as
radiation.More precisely,in many cases they are structures that possess a complex
pole that lies in the nonspectral Riemann sheet of the propagation constant plane
close to the real axis.Although these leaky-wave poles do not belong to the
spectrum of the structure,the deformation of the branch cut integral describing the
radiation field,may cross these poles,which then often dominate the far field

distributions,[15].

Originally continuously slotted rectangular waveguide and later arrays of
discrete slots,were the first examples of such antennas and in fact it was
consideration of their behaviour that led to the realisation that leaky-waves

exist,[16].

In the millimeter band leaky-wave antennas formed from dielectric
waveguides have many advantages over their counterparts.Compared to
conventional reflector based antennas,diclectric waveguide antennas are more.
‘com'pact “and lightwcight.This is pai‘tic:uiarly important for éirbome radar
applications,which often currently involve complicated hydraulic scanning
systems that are bulky and expensive.Not only may leaky-wave planar arrays be
electrically scanned,but they may also be conformally mounted onto the skin of an
aircraft.Although microstrip patch antennas have also been developed for these
applications,they suffer from three main drawbacks,narrow bandwidth,(at best a
few per cent),poor polarisation propertics and interelement coupling by the

excitation of surface waves in the substrate,[17].
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Arrays in dielectric guides have been formed using both dielectric
discontinuities and metallic radiators.The former class have their origins in optical
waveguide gratings,commonly employed as beam couplers and frequency
sensitive reflectors for distributed feedback lasers,[16].Scannable grating arrays
have been investigated in image line and inverted strip line,[18-21],and whilst

promising are hampered by their relatively complicated manufacture.

Arrays formed from metallic radiators can be produced using conventional
photolithographic techniques and are consequently attractive for commercial
exploitation.Such  arrays formed in image line,[22,23],dielectric
rod,[24,25],trapped image line,[26] and ic 1.D.G.[27,28,29] have been both

theoretically and experimentally investigated.

An important consideration for planar arrays is the coupling between
guides in close proximity.For example,coupling between parallel image lines
limits their use in such arrays,whereas in contrast,the relative isolation of parallel

I.D.G.’s makes them ideally suited to such an application.

One of the main objectives of this thesis is to develop a rigorous method to
allow LD.G. leaky wave antennas to be analysed and synthesised,without

excessive experimentation.

“The LD.G. has two fundamental modes of opefation,either an H.E.,, mode
in a deep slot I.D.G. or an'E.H.,1 mode in a shallow slot 1.D.G.,[30].In both
configurations the guided fields are almost maximal at the air-dielectric
interface,which is therefore an ideal location for the introduction of radiating
elements.Transverse metallic strips placed upon a deep slot 1.D.G. produce
vertically polarised radiation,which,due to the minor contribution from the
transverse magnetic field of the fundamental mode,does not suffer from the cross-

polarisation difficulties experienced with microstrip patch antennas.Similarly
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longitudinal strips,when excited by the fundamental mode of the shallow slot
ID.G.,produce horizontally polarised radiation which is useful for many

applications.

Experimental studies have shown that L.D.G. leaky-wave antenna arrays
may be successfully formed in this manner and exhibit many desirable features
although to date,their accurate design has been hampered by a lack of a

rigorous,complete spectrum for the I.D.G.
1.4) The Analysis and synthesis of circuit components and Antenna structures.

The accurate analysis and synthesis of circuit elements and antenna arrays
relies on an ability to model discontinuities.Although uniform quasi-infinite
gratings and antenna arrays may be analysed as periodic structures supporting

leaky-waves,practical components are often nonuniform and far from infinite.

In general there are two approaches to modelling discontinuities:purely
numerical methods and analytic techniques,[31].The former category includes
techniques such as the finite difference method and the finite element method

which,with ever increasing computer power,are finding favour in many fields.

These methods solve Maxwell’s equations on a microscopic level,using a
finite difference and a variational formulation of Maxwell’s equations
respectively.In the former method the fields and their derivatives are expressed in
terms of the fields at the nodes of a mesh superimposed on the
structure.Substitution of | these quantities into Maxwell’s equations yields a matrix
equation which may then be solved for the nodal field values.Although not
essential,a variational formulation of Maxwell’s equations can be used to
improved the convergence of the solution,[32].The finite difference method does
not suffer from the appearance of spurious solutions that can complicate a finite

element analysis,although it is only strictly accurate for regular meshes and
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therefore does not allow targeting of problematic regions such as sharp
corners.Recently,the finite element method has overshadowed the finite difference
method as is does allow the use of nonuniform meshes.In this method the structure
is decomposed into a mesh of elements,such as triangles for a plane,and the fields
in each element approximated by a low order polynomial,determined by
interpolating between preselected nodes within the element.Substitution of these
polynomials into a variational formulation of Maxwell’s equations and applying
continuity between the elements again results in a matrix equation that may be
solved for the nodal field values,[33,34].As commented above,spurious solutions
have been a problem in some finite element analyses,although various methods
have been developed to overcome this difﬁculty,[31].A further limitation is the
ability to consider open structures.In certain circumstances a combination of finite
elements and analytical techniques has been applied,in which the fields within
some predetermined nonphysical boundary are treated with finite elements and

those external to the boundary using a spectral approach,[35].

The alternative to purely numerical techniques is to use an analytical
approach based upon a spectral representation of the fields.An arbitrary solution to
Maxwell’s equations may be expressed as a superposition of the modes of the
structure,where the modes are the eigenfunctions of Maxwell’s equations,subject -
to the boundary conditions imposed by the structure,[36].Theoretically,once the
modes are known,it is possible to use their orthogonality properties to identify the
expansion coefficients and thus the solution to the problem.Unfortunately,not only
are there an infinite number of modes,but often the solution may still only be
expressed as that of an integral equation.Howeverthe solution of this integral
equation may be obtained using a technique,such as Galerkin’s method,in which a
physical understanding of the nature of the solution can have a profound influence

upon the ease with which the solution may be recovered.This is the main
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advantage of the analytical approach,namely that it allows the analyst to use their
experience to optimise the formulation of the problem that is finally solved by

numerical evaluation.

In comparing numerical and analytical techniques there are two
considerations to make.Firstly the ease and efficiency with which,if at all,the
solution may be determined.Numerical methods are continually being refined,in
terms of efficiency,the elimination of spurious solutions and the range of problems
that they can tackle and advances in computer power,have alleviated the common
criticism that they are time consuming and require extensive computer
facilities.The principle advantage of numerical methods is the ease with which
they may be applied to structures with complex geometries.However,for many
common structures it is possible to apply analytical methods and derive results
more efficiently than by purely numerical means.Solutions to more complex
structures can then be built from those of the elementary problems.Employing
both an understanding of the physical situation and mathematical ingenuity,can,in
some circumstances,yield a good approximation to the solution in a closed form
and,even if this is not the case,the problem may be reduced to a form far more

amenable to accurate and efficient numerical solution than otherwise possible.

-The second consideration is more esoteric.It has been stated above that a
physical understanding of the problem can often lead to simpler methods of
solution being found.Further,as argued by Collin,[37],it is often the case that
practical developments have been proposed to capitalise on properties predicted
from an analytical concept and it is interesting to wonder if some advances would
have been made if powerful computers had been available 40 years ago.Purely
numerical methods can only ever solve a sequence of particular problems rather

than a class,and,although results may be interpolated,they yield little further to aid
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an understanding of the principles involved.It seems reasonable to argue that
numerical and analytical approaches are complementary,neither can be applied to

every situation and each has its own advantages.

This thesis is concerned with the spectral approach to electromagnetic
problems.Clearly in order to pursue the spectral approach outlined above,the
complete mode spectrum of the structure of interest must be available.This is
available for 1 dimensional and 2 dimensional separable sections.The main
objective of this thesis is to develop a method that allows the complete modal
spectrum of open nonseparable structures to be identified.By nonseparable it is
meant that the transverse geometry,and henge the modes,of the structure cannot be
represented in the form X(x).Y(y).This is a class that includes many of the
structures discussed above that are being developed for use in the millimeter

band.

The spectrum of open waveguides comprises of two types of mode.There
are discrete modes,often referred to as bound modes,which may,or may not,exist
in a given situation.These modes,as the name implies,are characterised by discrete
values of the propagation constant and are bound to the structure.These are the
modes which are exploited for transmission purposes and many methods are
available to recover their shape and dispersion felationships,[31,36,3 8].In addition
to the discrete modes,open waveguides also possess a continuum of radiation
modes.These modes radiate power away from the structure and are characterised
by a continuous propagation constant.Any discontinuity causes these modes to be
excited and power to be radiated,whether intentionally,as in an antenna,or not.The
continuous modes of separable open waveguides are amenable to identification by
the separation of variables,[36],or instead by a scalar transverse characteristic

‘Green’s function approach,[38].Until recently,the continuous modes of
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nonseparable open structures have received little attention.It is the identification of
these modes,and in particular those of the I.D.G.,that are the principle concern of

this thesis.
1.5) The Structure of the Thesis.

Chapter 2 shall expand upon the spectral approach,briefly introduced
above,for solving electromagnetic problems,highlighting the role of the complete
mode spectrum and its use in constructing an inversion operator to Maxwell’s

equations,the Green’s function.

A novel vector transverse characteristic Green’s function shall be
presented that allows the complete mode spectra of open nonseparable structures

to be identified.

Chapter 3 shall demonstrate the use of this method to recover the complete
spectra of open separable structures,for which closed form solutions are already

available.

The strength of the method shall be demonstrated in chapter 4,in which the

continuous spectrum of the I.D.G. shall be derived.

Subsequently these modes shall be used in chapters 5 and 6 to rigorously -
analyse rectangular waveguide to I.D.G. transitions and radiating patches on the

I.D.G. respectively.

Chapter 7 derives the continuous spectrum of the microstrip loaded

I.D.G.,a structure that is useful in the analysis of certain I.D.G. leaky wave arrays.

Chapter 8 extends the method developed in chapter 2,to include
structures,specifically slotline with finite metallisation thickness,that have more

than one nonseparable interface.

1-22



Finally,chapter 9 shall discuss future studies suggested,and draw

conclusions from,the work presented in this thesis.
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CHAPTER 2.

THE SPECTRAL APPROACH TO ELECTROMAGNETIC PROBLEMS.

The general problem that is posed in the analysis of electromagnetic
systems,is to determine the response of the system to a given source.The source
and response may be defined in many forms,depending upon the context of the
analysis,although they are fundamentally related through Maxwell’s
equations.Consequently it is essential to consider the properties and methods of

solving Maxwell’s equations.

For linear media,Maxwell’s equations,in their most general form,may be

stated as;

VXE(0) =) HEw)

V x E(:,t) =J(£,:) + -g—lg(:,t) . E(:,r)

V. ur0) . H.0)=0 2.1)

or more compactly,in the form of the operator equation;

d
_a—tg(iﬂ) V x [E(I’t)]— [J(E,I)J (2 2)
-V x --(%—E(:,t) H(r.0) 0 ’

As discussed in the introduction,there are two approaches to solving this
equation.The first is to apply purely numerical techniques,such as the finite
element method,and the second,is to use the spectral representation of the fields

and currents to construct an inverse operator,such that;
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) 1
=380 Vx. (J(:,t))_ [g(y)) (2.3)

The objective of this work is to determine the complete mode spectrum of
nonseparable open waveguides and subsequently construct and utilise this inverse
operator.The approach is based upon certain results available from functional
analysis and it is now appropriate to review the essential theorems that shall be

applied later.
2.1) Application of the Spectral Theorem to Linear partial differential operators.

This section shall introduce the ‘spectral theorem and its application to
linear partial differential operators.It shall be shown that the inversion
operator,used to solve an operator equation,may be developed from a knowledge
of the spectrum of the operator.The following section shall then discuss the
characteristic Green’s function method of determining the spectrum of the

operator.

It is not possible or appropriate to present more than a review of the
essential theorems that shall be applied later,further details may be found in

references [1-5].

The problem under consideration is to determine the response,y(r),of a
system to a given source,f(r).The system may be characterised by the operator

equation;
Ly(r)=f(r) (2.1.1)

and the boundary conditions associated with the range and domain of the operator

L.Attention shall be restricted to linear partial differential operators.



The inverse operator,L ! defined by the equation;
() =L7f(r) (2.1.2)

shall be expressed in terms of its spectral representation.Before this spectral
representation may be introduced and derived from the spectral theorem,it is

necessary to define the spectrum of an operator.

The spectrum of the operator L is defined as the set of complex
values,A,for which the operator L-A does not have a bounded inverse.Therefore if A

lies in the spectrum of L there does not exist a value of m,such that;
<@L-W"x()x(r) > Sm<x(D)x(r) > (2.1.3)
holds for all x(r) within the domain of L.The inner product <, > is chosen in
accordance with the range and domain of L.

Application of this definition to a linear partial differential

operator,L,reveals two possibilities;

i) If A, is an eigenvalue of L,ie A, is a solution to the equation;
L -2)Pa(r)=0 (2.1.4)
then clearly the operator @- A1 is unbounded.For A, to be a strict eigenvalue thc
corresponding eigenfunction 6a(r) must lie in the domain 6f L.The sét of

eigenvalues {A,},which always consists of discrete values,constitutes the point

spectrum of the operator L.
ii) The second possibility is that there may exist values of A for which;
L -D0n()=0 @215)

although the functions $.(r) do not have bounded norms and therefore cannot lie in

the domain of L.These values of A constitute the continuous spectrum of L.As the
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name implies,these values are not discrete but are grouped into continuous sets.As
$.(r) does not lie in the domain of L,\ and ¢,(r) cannot be a strict eigensolution of

L,although they are often referred to as an improper eigensolution of L.

Now that the spectrum of L has been defined,the central theorem

underlying the spectral approach,the spectral theorem,may be introduced.

The spectral theorem states that the proper and improper eigenfunctions of
the operator L are linearly independent.This is a somewhat simplified

statement,but it is sufficient for the present context.

Consequently,if the eigenfunctions may be shown to be complete and span
the domain of L,then an arbitrary function within the domain may be expressed as

a linear combination of these functions,ie;

VO = Tha) + JiA non) (2.1.6)

This expansion is referred to as the spectral representation of y(r)

The advantage of the spectral representation is apparent upon application

of the operator L.

LY() = Zaba () + JaA ta (PO 2.1.7)

If Ly(r) in this form is equated to the spectral representation of the function f(r);

£0) = Z0ada(r) + Jah aan(r) (2.1.8)

then the solution to the operator equation,equation (2.1.1),is immediately

identified as;

v = Za.i,.(r) J' 1, 280

le%(f ) (2.1.9)
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Before this expression may be used to derive the inverse operator,L!,it is

necessary to explicitly relate the coefficients o, and e, to the function /().

As stated above,the proper and improper eigenfunctions of L form a
linearly independent set,howeverthey are not necessarily orthogonal.In general

they satisfy a biorthogonality relationship of the form;

< Ou(r).9m(r) > = S

<Ou(n),94(r)>=0

<)o () > =8 -1) (2.1.10)
The functions g':,(f) and ¢4(r) are the propér and improper eigenfunctions of the

adjoint operator to L,LA.

The adjoint operator is defined as the operator for which the expression;
<Lx(r).y(r))=<x(r).L*y(r) > (2.1.11)

holds for all x(r) and y(r) in the domain and range of L.Further,it may be proved
that the spectrum of L4 is the conjugate to that of L when the inner product is
defined on a complex linear space and equal to that of L when the inner product is

defined on a real linear space.

The Dirac delta function,appearing in the biorthogonality relationship
between the improper eigenfunctions,highlights the non-bounded nature of these

functions and also their continuous dependence upon the parameter A.

The biorthogonality relationship between the eigenfunctions of the
operator L and its adjoint L4,allows the coefficients o, and o, in equation (2.1.8) to
be evaluated as;

0, =<PRL() > 1 oa=<eh().f(r) > (2.1.12)
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If these expressions are substituted into equation (2.1.9),then the response of the

system may be written as;

0a (1)< OR(r)S(r) > f 0(1)< 4 () f(r) >
+ JdA T W

v)=% = (2.1.13)

Now that the response y(r) has been expressed in terms of the source,f(r),it

is possible to seek the general inverse operator, L.

If the inverse operator is defined to be of the form;

L7 f(r) =< G(r.r). ) > (2.1.14)
then it is apparent that the kernel,G(r,r),known as the Green’s function,is given by;

(2.1.15)

A A
¢n(r)l¢n(r') + jdl ¢l(r):il(r’)

Grr)=X%

Thus to summarise:if the spectral representation associated with the
operator L and its adjoint,LA,is determined,then the inverse operator,L~!,may be
expressed by means of a Green’s function whose spectral representation is given

in equation (2.1.15).

Now that it has been demonstrated that the inverse operator may be
developed from a knowledge of the spectrum of an operator,it is necessary to

consider in detail how this spectrum may be determined.
2.2) The Characteristic Green’s function Method.

As discussed above,the spectrum of the operator L is defined as the set of

values of A for which;

L -M0()=0 ' 22.1)

where ¢ (r) may be either a proper or an improper eigenfunction.
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The method used to determine the spectrum and the eigenfunctions of L
will obviously depend upon the particular system under consideration and for a
given system there may,in fact,exist a variety of techniques,both numerical and
analytical.It is often found that if the domain of the operator is dimensionally
separable,then the separation of variables permits analytic solutions to be
identified.Naturally it must be ensured that all the possible solutions have been

recovered and that they are normalised in accordance with equation (2.1.10).

The characteristic Green’s function method is a technique that obtains the
complete,correctly normalised,spectrtum in one fell swoop.This section shall
introduce the characteristic Green’s function and demonstrate its utility in the

derivation of the spectrum and the eigenfunctions of an operator L.
Consider the inhomogeneous equation;

L -2z =1r) (2.2.2)

where A is not contained within the spectrum of L.Again an inverse
operator,(L - ) ,may be defined and expressed in terms of a Green’s function,in

this case known as the characteristic Green’s function.

L-N'f)=8()=-<Gr.rNJSr)> (2.2.3) -

It is noted that the characteristic Green’s function is symbolically distinguished

from the Green’s function of the previous section by its arguments.

The motivation for considering this inhomogeneous operator equation and
its inverse,is that the characteristic Green’s function may be expressed in two
forms.Naturally,it may be written in terms of the spectral representation
associated with the operator L and,in addirion,it may be shown that it is also the
solution to the inhomogeneous equation,(2.2.2),for a particular source

function.The equivalence of the two forms subsequently permits the identification
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of the spectrum of the operator L.

The spectral representation of the characteristic Green’s function may be
determined in a similar manner to that of the Green’s function of the previous

section.The spectral representations of the functions f and g;

£) = T0a()< $AO) L) > + Jdh da ()< 40 £ () >
8(0) = T0a()0n + [ gr(1)0n | 2.2.4)

are substituted into equation (2.2.3),which identifies the spectral representation of

the characteristic Green’s function to be;

M (red(r)
A=\

Pa ()97 (r")

= (2.2.5)

Grri=% +Jax

The second means of determining the characteristic Green’s function is
recovered by applying the operator (L - ) to equation (2.2.3).
f(D=-<L -G, N).f(r)> (2.2.6)
demonstrating that the characteristic Green’s function is also the solution to the
inhomogeneous equation;

@ -NG(r,r N =-18(r-r") ‘ 2.2.7)

where / is the identity operator.

The connection between the spectrum of the operator L and the
characteristic Green’s function may be made,if the spectral representation of the
latter is integrated around a contour,C, in the complex A plane that encloses all of

its singularities.Evaluation of the integral using the residue theorem gives;



%fidx G =00+ [ 6oete) (2.2.8)

Therefore,if the characteristic Green’s function may be somehow
determined by solving equation (2.2.7),then it is apparent from equation
(2.2.8),that the point spectrum of L consists of the values of A for which it is
singular.Similarly the values of A corresponding to any branch cuts in the complex
plane constitute the continuous spectrum of L.The corresponding proper and
improper eigenfunctions may then be identified,usually by inspection,from the

explicit form of equation (2.2.8).

The specific method used to solve equation (2.2.8) for the characteristic
Green'’s function will depend upon the operator L and its domain,although it is
usual in a multidimensional system for one or more of the dimensions to be

separable.

Consider the example of two dimensional separable system with

eigensolutions defined by;

L = ) n(£:3) =0 ‘ (2.2.9)

The separable nature allows this equation to be written in the form;

(Lx + Ly = M) (X)) = 0 v (2.2.10)
from which it may be seen that the functions,®,,(x) and ,(y) are the eigensolutions
of the equations;

(L. - )"m)gm(x) =g . (Ly - }‘A)X,n(y) =0 ’ (22 1 1)

where A, = A, + A,.

The two dimensional eigcnfunctions,gm(x,y),may then be derived from the

two,one dimensional,characteristic Green’s functions as;
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A(.y) = | —— s 1 -
gfp(x.y)&(f,y') = [ Py C{ dhm G(x.x .7»..)) [2nj Cf dhy GOy ,ln)J (2.2.12)

[ It is noted that the summation w.r.t. p is symbolic not necessarily literal.]

The spectral representation of an arbitrary function will now involve

summations and integrations w.r.t. two independent variables;

Attention shall now be refocused upon the application of the preceding

theory to the electromagnetic system characterised by Maxwell’s equations.
2.3) Application of the Spectral Theorem to Maxwell’s Equations.

The theory of the preceding sections has demonstrated a technique that
may be used to solve Maxwell’s equation‘s,by means of constructing an inverse
operator.Béfore the procedure may be pursued,it is necessary to formulate
Maxwell’s equations into an operator equation and to determine the domain of
functions upon which it operates.Similarly an adjoint operator and its domain

must be identified.

Equation (2.2) expresses Maxwell’s equations in the form of the following

operator equation;
-oig(r,t). Vx E(.1) J(r.1)
[ Vx —atg_(f,:).] [E(E")J = (’ 0 J (23.) .

For arbitrary linear media,this is the most basic operator equation that
characterises the system.However,for most practical applications it is possible to
use the specific properties of the structure to derive an alternative,simpler,operator
equation.For example,if the media is isotropic,then the permeability and
permittivity dyadics may be,a priori,replaced by scalar functions.This process
often results in an operator that is its own adjoint.If,in addition,the domains of the

operator and its adjoint are identical,then the operator is known as self adjoint.
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This section shall show,that for the structures that are the subject of this
work,the operator equation may be reformulated such that the operator is its own
adjoint,but with differing domains.Thus the operator is not self adjoint.The
difference between the two domains may be most simply observed with the

operator in the form of equation (2.3.1).

The domain of this operator is the set of functions satisfying the following
criteria,[5]:

i) A(r.t) x E(r,t) = Z(r,4).H(r,t) where Z(r,r) is a known dyadic and a(r,r) is the
normal to the enclosing surface.For an open structure,this surface may be regarded
as being at infinity,in which case,this condition is replaced by the requirement that

the fields are bounded at infinity,ie the radiation condition,[6].

ii) Idedt E(r.0)E(rt) +H(r,).H(r,t) is finiteje the domain consists of

functions having a bounded norm.

J(r, E(r, 0
iii) [-(_6_ 0): [lz%:))): {6} for: <1,,ie the system is causal. (2.3.2)

It is simple to show that the adjoint operator to that of equation (2.3.1),is;

aer(ry). -Vx \(EAmD| (et .
[ Vx atE"(:,g)_] [EA(:J)] = [“' 9 ] (2.3.3)

where 4(r,r) and pA(r,) are the adjoint permittivity and permeability dyadics.
The domain of the adjoint operator is the set of functions satisfying;
1) A(r,0) x EA(r,0) = ZA(r,0). HA(r,0)
i) JaV[diE (r, ey EA(r,t) + HAGr0).HA ) i finite.
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[J‘(r,t)]
i) |- 0

It is observed that the imposition of causality constrains the domains of the

EA(:J) 9 f
= EA(C") =g |fore>1,.

operator and its adjoint to consist of outgoing and incoming waves
respectively,[S].Consequently the two domains are mutually exclusive.Even
though the operator and its adjoint shall be reformulated such that they are

functionally identical,the operator is not self adjoint.

The structures under consideration shall be assumed to be time invariant
and consist of a number of isotropic regions,each of which has a scalar

permeability and permittivity,albeit different for each region.

For such structures the original operator equation may be reformulated to

the wave equation;

E(r, tJ(r,t
[V XV x+eud’t ][E(é?)}: (_Vpi ]((_:r“))] 2.3.49)

Unfortunately the source function for the magnetic field vector has become a little
more complicated.However,it is clear that the system response is completely
characterised by the electric field vector which,once determined,may be
substituted into Maxwell’s equations to give the magnetic field vector.Therefore

the response of the system may be completely described by the solution to;

[V XV x+eud*t JE(r.1) = -uau (r,1) (2.3.5)

It is this equation that shall be considered analogous to the operator equation
Ly =10 (2.3.6)

and to which the theorems of the preceding sections shall be applied.

Section 2.4 shall demonstrate how the electric field characteristic Green’s
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function may be developed for structures that,in general,possess both a point
spectrum and a continuous spectrum.In particular,the technique presented allows

the complete spectrum of nonseparable open structures to be derived.

Section 2.5 shall use this spectrum to formulate the Green’s function and

hence the inverse operator to Maxwell’s equations.

Finally secton 2.6 shall consider a slight reformulation to allow

inhomogeneous and lossy structures to be treated more succinctly.
2.4) The Electric field Characteristic Green’s function.

The electric field characteristic Green’s function is defined as the solution

to;

(V xVx —epd?t - MGEe(r,r ,050) = A 8(r—r)8( ") 2.4.1)
It is immediately apparent,that the operator may be expressed as the sum of a time
operator and a spatial operator.This is a consequence of the time invariance of the

structure.Therefore the electric field characteristic Green’s function and

eigenfunctions may be written in the following,separable,form;

Ge(rr' M) = Ge(rr'iM)Ge(tih) = A=h, +A, (2.4.2)

WA ) = yEAWA AT ERTAR )

[ - [dn, Gerr’ A,,)]{—Idl Ge@t,t’ x,)] (2.4.3)

2 C' —

Substitution of equation (2.4.2) into equaticn (2.4.1),identifies the time and spatial

characteristic Green’s functions as the solutions to;

(V XV X=A)Ge(r,r'sAy) =—18(r-1")
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