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Abstract

The effect of monovalent salt on the activity and sfability of citrate ,_
synthase from the moderately halophilic Archaeon Haloferax })olcanii was
investigated by assay of enzyme activity over a range of Na* and K*
concentrations and by thermal inactivation experiments over a range of
K* concentrations. |

Based on a 38 residue N-terminal amino acid sequence obtained.
from Hf.volcanii citrate synthase, oligonucleotides were designed and
used to probe restriction digests of Hf.volcanii genomic DNA. A 2.9 kb
genomic fragment was identified by hybridisation to one of these probes.
This fragment did not contain the citrate synthase gene; however, a 939
bp open reading frame within this fragment showed significant (33-47%)
identity with several bacterial genes involved in the metabolism of sugar-
nucleotides. The structural features of this open reading frame are
discussed and possible functions in glycolipid and glycoprotein
biosynthesis suggested.

To aid the cloning of the citrate synthase, further amino acid
sequence data was obtained from the protein. Citrate synthase was
purified by an improved affinity chromatography method, using biospecific
elution. Cyanogen bromide cleavage of the purified enzyme yielded a 6
kD fragment. Amino acid sequence internal to the enzyme was obtained
from this fragment.

PCR primers were designed to the N-terminal and internal amino
acid sequences and used to amplify a 960 bp product from genomic DNA.
This product is of the size predicted from the relative positions of the
amino acid sequences used to design the PCR primers. Due to time

constraints the product remains to be cloned and sequenced.
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Chapter 1

Introduction

1.1 The diversity of Archaeal phenotypes

A striking feature of the group of organisms that we know as the
archaebacteria, or Archaea, is their range of extreme requirements and
tolerances for growth. Although in general their phenotypes can be thought of
as either methanogenic, thermophilic or halophilic, within these broad
categories are found autotrophic, heterotrophic, anaerobic, aerobic,
acidophilic and alkaliphilic representatives.

The methanogens are obligate anaerobes, some of which are
thermophilic or halophilic, that metabolise carbon dioxide to methane.
Thermophiles may have growth optima anywhere between 55 and 110°C,
some also requiring highly acidic conditions. A large proportion of them
reduce sulphate or elemental sulphur to hydrogen sulphide to obtain energy.
The halophilic Archaea require salt concentrations of greater than 1 M NaCl
for growth and include representatives that also require highly alkaline
conditions; their internal salt environments are isotonic with the exterior, but
KClI replaces NaCl.

In terms of cellular and sub-cellular morphology there is little to
distinguish the Archaea from the eubacteria, a fact which originally led to
their taxonomic grouping with the latter as prokaryotes. Their physiological

peculiarities, such as ether-linked lipids and unusual cell wall structure were



ascribed to convergent evolution and their extremophilic natures to
adaptations to their environments. Molecular analysis has since revealed that
the Archaea must be considered as phylogenetically distinct from both the

eubacteria and the eukaryotes.

1.2 Archaeal Phylogeny

The way in which we view the evolutionary history of life was
revolutionised by the first thorough analyses of 16s rRNA sequence data and
subsequent inference of previously unknown phylogenetic relationships
(Woese & Fox, 1977, Woese et al., 1978). The prokaryote/eukaryote
dichotomy was replaced, after some controversy, by the division of life into
eukaryotes, eubacteria and archaebacteria that is now generally accepted. It
has recently been proposed that these groups be given the status of
"domains" (Eukarya, Bacteria and Archaea respectively), the archaebacteria
being renamed the Archaea to emphasise their distinction from the
eubacteria (Woese et al., 1990).

The Archaea are sub-divided into two main branches: the
Crenarchaeota, comprising mainly acidophilic and sulphur-dependent
thermophiles and the Euryarchaeota, which include the extreme halophiles,

the methanogens, sulphate-reducers and some thermophiles (Figure 1.1).
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1.2.1 The root of the universal tree

The position of the root shown on the 16S rRNA tree (Woese et al., 1990)
has been determined from the data of Gogarten et al. (1989) and Ilwabe et al.
(1989) who used pairs of paralogous genes (that were assumed to have
arisen by duplication events in the last common ancestor of all life) to locate
the root between the Bacteria and Archaea. The root has simply been drawn
on the rRNA tree at the equivalent position.

Studies on glutamate dehydrogenase genes (Benachenhou et al.,
1993, Forterre et al., 1993) have revealed that they are also suitable for
rooting the universal tree by a similar method to that used by lwabe et al.,
where one of a pair of ancestrally duplicated genes is used as an outgroup to
root the tree of the other. Using several different phylogenetic inference
methods these workers did not find it possible to root the tree
unambiguously. Forterre et al. (1993) have also suggested that the way in
which lwabe et al. performed their calculations was not statistically sound.
Regardless of the method of analysis, the currently accepted rooting is
based on only two gene pairs and therefore needs further testing before it

can be regarded as certain.

1.2.2 How valid is the Archaeal tree ?

Since the original proposal for the existence of three branches of life,
which was based on partial rRNA sequences, the data have been augmented
by complete sequencing of many 16S rRNAs, increasing the resolution of the
tree. Phylogenetic trees deduced from 23S rRNA (Leffers et al., 1987),

ribosomal proteins (Auer et al., 1990), DNA dependent RNA polymerases
Chapter One Page 4



(Zillig et al., 1989a,b), protein elongation factors and ATPases (lwabe et al.,
1989) support the three domain scenario. Acceptance of this relationship has
by no means been unanimous; a number of objections have been raised,
either to the topology of the 16S rRNA tree (specifically to the monophyletic
nature of the Archaea) or to the validity of any tree based on a single

molecular feature such as 16S rRNA sequence.

1.2.3 Objections to the Archaeal tree

In the past Lake has argued that the algorithms which support the
archaeal tree are subject to errors caused by unequal rate effects, where
rapidly changing sequences are artefactually grouped together (Lake, 1988,
1989). He put forward the evolutionary parsimony algorithm as a more
suitable alternative on the basis that it is insensitive to unequal rate effects.
The branching pattern obtained is different from the archaeal tree: the
sulphur-dependent thermoacidophiles group with the eukaryotes while the
halophiles and methanogens group with the eubacteria, thus the Archaea
appear polyphyletic (Figure 1.2). Although this view has had some support, it
has been refuted by the proponents of the archaeal topology (Olsen &
Woese, 1989; 1993) on the basis of the regions of sequence chosen for the
analysis and the way in which they were aligned.

Zillig et al.(1989a,b) do not contest the existence of the Archaea, but

have interpreted sequence data from DNA-dependent RNA
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polymerases as showing that the eukaryotes have arisen from a fusion of an
ancestral eubacterium and Archaeon.

More fundamental objections are raised by Margulis and Guerrero (1991)
and by Mayr (1990), who dispute the importance of the molecular data and
who see the structural and genetic differences between "prokaryotes” and
eukaryotes as paramount. For these reasons Margulis and Guerrero would
prefer a five kingdom system to be adopted and Mayr a system based on two
domains. Their proposals are discussed more fully in Mayr (1991), Woese et
al. (1991) and Wheelis et al. (1992).

1.2.4 A conflict of assumptions, not of data

The arguments surrounding the validity of the various trees stem
mainly from differences of opinion on the aims of classification (to show
evolutionary relationships, or to act as an information retrieval system) and
on the mathematical treatment of the available data. There are several
stages at which critical choices must be made: truly homologous sequences
must be chosen and aligned with minimal gaps, regions of the alignment
suitable for analysis must be identified and finally the phylogenetic inference
method(s) selected. There may be a number of equally valid options at each
stage. (For a review see Beanland & Howe, 1992.) From the available data
the division of life into three domains appears safe, although the current

rooting of the tree must be taken with some caution.
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1.3 Haloferax volcanii

Haloferax volcanii is a moderately halophilic Archaeon originally
isolated from the Dead Sea (Mullakhanbhai & Larsen, 1975). At 30°C it
requires a minimum of 1 M NaCl for growth, the optimum being 1.7 M NaCl.
Hf.volcanii has a high tolerance for magnesium, as would be expected for an
orgahism isolated from the Dead Sea, which contains 1.1 - 1.5 M M92+. Itis
capable of growing on a simple, defined minimal medium, allowing the
isolation of auxotrophic strains (Mevarech & Werczberger, 1985).

The Hf.volcanii genome consists of a circular 2.9 Mbp chromosome
and four plasmids of 690, 442, 89 and 6.4 kbp. Detailed physical mapping of
the Hf.volcanii genome has yielded a set of overlapping cosmid clones that
cover 96% of the total sequence (Charlebois et al., 1990, 1991). The
Hf.volcanii genome contains fewer mobile insertion sequences than those of
other halophilic Archaea, (Halobacterium halobium, for example) making it
relatively stable.

The development of transformation techniques (Charlebois et al.,
1987) and E.coli / Hf.volcanii plasmid shuttle vectors (Lam & Doolittle, 1989,
Holmes et al., 1991) has established Hf.volcanii in the field of halophile

molecular biology.

1.4 The citric acid cycle

The citric acid cycle is the site of the terminal reactions of aerobic
catabolism in eukaryotes and eubacteria, acting as a source of reducing
equivalents for ATP synthesis (Figure 1.3). The cycle also provides a pool of

biosynthetic precursors for anabolic processes.
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There has been no thorough study on the presence of the oxidative
cycle in Archaea. All of the cycle's enzymes have been reported in
Halobactenium halobium (Aitken & Brown, 1969) and some in aerobically
grown Thermoplasma acidophilum (Danson, 1988). Key enzymes (citrate
synthase and sucéinate thiokinase) have been reported in a number of
halophiles (Danson et al., 1985). It is likely that a complete cycle is operative
in these organisms.

An oxidative cycle may operate in sulphur-dependent Archaea growing
heterotrophically and aerobically (Sulfolubus species, for example) as some
of the required enzymes activities have been observed [see Danson, (1988)
for review]. Those sulphur-dependent Archaea that grow autotrophically also
possess the majority of the citric acid cycle enzymes, however they appear

to be involved in CO2 fixation via a reductive pathway (Schéfer et al., 1986)

1.5 Citrate synthase
1.6.1 The available data

Citrate synthase (EC 4.1.3.7) acts as a major control point in the citric acid
cycle, catalysing the condensation of oxaloacetate and acetyl coenzyme A to
form citrate and coenzyme A. The enzymes of the Gram negative bacteria
are hexameric and are allosterically inhibited by NADH, while those of Gram
positive bacteria, eukaryotes and Archaea are dimeric and are insensitive to
NADH, but are isosterically inhibited by ATP. In all cases the subunit relative
molecular mass is 45-50 kD.

As a consequence of its metabolic importance, citrate synthase has

been extensively studied. The gene sequences of number of citrate
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Crystal structures are available for both the pig and chicken heart
enzymes (Remington et al., 1982, Liao et al., 1991). Preliminary
crystallographic data have recently been obtained for the citrate synthase of
the Archaeon Tp.acidophilum (Russell et al., 1993).

The crystallographic data show that the enzyme is composed almost
entirely of a-helices. Each subunit consists of a large and small domain, with
the active site located in a cleft between them. Each subunit contributes
residues to the active site of the other. Multiple sequence alignments
(Henneke et al., 1990) have shown that the majority of the twelve active site
residues are conserved between all eubacterial and eukaryotic citrate
synthases.

Two forms of the enzyme have been observed: the "open" form in
which the active site is accessible to the solvent and the "closed" form where
the solvent has no access to the active site, providing acetyl coenzyme A is
bound. The open form has a binding site for oxaloacetate in the active site,
but none for acetyl coenzyme A. When oxaloacetate binds, the large and
small domains rotate relative to each other and the enzyme assumes the
closed form, which can then bind acetyl coenzyme A. The open form
mediates substrate entry and product release, while the closed form carries
out catalysis (Remington, 1992). Figure 1.4 shows a diagram the secondary
structure of a pig heart citrate synthase monomer and space-filled

representations of its dimer in both open and closed forms.
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1.5.2 The citrate synthase mechanism

In order to bring about the condensation of acetyl coenzyme A and
oxaloacetate, citrate synthase must first deprotonate the methyl carbon of the
acetate moiety, using only the weak acids and bases of its amino acid side
chains. Simultaneously, oxaloacetate must be activated, making it a suitable
target for nucleophilic attack.

The catalytic mechanism has been extensively studied in pig heart
citrate synthase (Karpusas et al., 1990, Alter et al., 1990). From studies of
the binding of acetyl coenzyme A and the proposed transition state analogue
carboxymethyl coenzyme A, residues His274 and Asp375 have been
identified as acting in concert on acetyl coenzyme A (Karpusas et al., 1990,
Karpusas et al., 1991). These residues are thought to promote formation of a
neutral enol by general acid-base catalysis. Almost any mutation of the
catalytic residues results in a substantial increase of the enzyme's stability to
thermal inactivation (Wang et al., 1991). This was taken to indicate that in
the native enzyme these residues are held in unfavourable positions such
that their pKg values are radically changed from their solution values,
enabling them to deprotonate the methyl carbon.

Bound oxaloacetate is surrounded by three arginines and two
histidines, polarizing the carbonyl bond and making it prone to nucleophilic
attack (Karpusas et al., 1990). The stereospecificity of the reaction is
explained by the binding of oxaloacetate, as only one side of the molecule is
open to attack, the other being obscured by the enzyme.

The subsequent condensation step is proposed to occur' as the planar
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enol attacks the C3 of oxaloacetate and the proton originally donated by
His274 is recycled by passing back to that residue. Figure 1.5a summarises
these steps.

The resulting citryl coenzyme A intermediate is then hydrolysed by a
mechanism that has not been fully characterised. Remington (1992) has
suggested that hydrolysis by an activated water molecule may occur (Figure
1.5b), while Alter ef al. (1990) suggest that an anhydride is formed with
Asp375 prior to a similar hydrolysis by an activated water molecule. After the
condensation step Asp375 is protonated, enabling it to donate the proton to
the thioester sulphur atom and thereby activate it, since sulphonium ions are
good leaving groups (Figure 1.5c).

Mutation of the active site aspartate of the Escherichia coli citrate
synthase (Man ef al., 1991) has shown that this residue is involved in the
hydrolysis step. When changed to glutamate the forward reaction rate is
greatly reduced, although the hydrolysis of citryl-coenzyme A is unaffected.
This has led them to propose a reaction scheme which does not involve the
aspartate residue until the hydrolysis step, assuming that a carbanion is
formed, instead of a neutral enol (Figure 1.5d). They propose that the
developing carbanion is stabilised by the partial positive charge on the
carbonyl of oxaloacetate. The E.coli enzyme may therefore operate by a

slightly different mechanism to the eukaryotic enzyme.

1.5.3 Citrate synthase as a model enzyme

The extensive database of structural and mechanistic information

available for citrate synthase make it an ideal candidate for comparative
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molecular enzymology. It is a widely occurring enzyme which has a
conserved function in all organisms where it occurs and as such is suitable
for phylogenetic analysis.

Citrate synthase has been reported in the three major groups of
Archaea (Danson ef al., 1985), presenting an opportunity to compare the
structures of thermophilic and halophilic enzymes with those aiready

determined for a variety of mesophiles.
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