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FLEXIBLE KRYLOV METHODS FOR `p REGULARIZATION∗1

JULIANNE CHUNG† AND SILVIA GAZZOLA‡2

Abstract. In this paper we develop flexible Krylov methods for efficiently computing regularized3
solutions to large-scale linear inverse problems with an `2 fit-to-data term and an `p penalization4
term, for p ≥ 1. First we approximate the p-norm penalization term as a sequence of 2-norm penaliza-5
tion terms using adaptive regularization matrices in an iterative reweighted norm fashion, and then6
we exploit flexible preconditioning techniques to efficiently incorporate the weight updates. To han-7
dle general (non-square) `p-regularized least-squares problems, we introduce a flexible Golub–Kahan8
approach and exploit it within a Krylov–Tikhonov hybrid framework. Furthermore, we show that9
both the flexible Golub–Kahan and the flexible Arnoldi approaches for p = 1 can be used to efficiently10
compute solutions that are sparse with respect to some transformations. The key benefits of our ap-11
proach compared to existing optimization methods for `p regularization are that inner-outer iteration12
schemes are replaced by efficient projection methods on linear subspaces of increasing dimension and13
that expensive regularization parameter selection techniques can be avoided. Theoretical insights14
are provided, and numerical results from image deblurring and tomographic reconstruction illustrate15
the benefits of this approach, compared to well-established methods.16

Keywords: `p regularization, sparsity reconstruction, iterative reweighted norm,17

flexible Golub–Kahan, hybrid regularization, image deblurring, tomographic recon-18

struction.19

1. Introduction. Inverse problems are prevalent in many important applica-20

tions, ranging from biomedical to geophysical imaging, and solutions must be com-21

puted reliably and efficiently. In this work we consider discretized linear inverse22

problems of the form23

(1) b = Axtrue + e ,24

where b ∈ Rm is the observed data, A ∈ Rm×n is the ill-conditioned matrix that25

models the forward process, xtrue ∈ Rn is the desired solution, and e ∈ Rm is the26

noise or perturbation affecting the observation. Due to the ill-posedness of the under-27

lying problem, in order to recover a meaningful approximation of xtrue in (1), some28

regularization is applied, i.e., problem (1) is replaced by a closely related one that29

is stable with respect to the corrupted data [18]. In this paper, we are interested in30

regularized problems of the form31

(2) min
x
‖Ax− b‖22 + λ ‖Ψx‖pp ,32

where ‖·‖p for p ≥ 1 is the vectorial p-norm, λ > 0 is a regularization parameter,33

and Ψ ∈ Rn×n is a nonsingular matrix. For p = 2 and Ψ = I, (2) is the standard34

Tikhonov regularization problem, and many efficient techniques including hybrid it-35

erative methods have been proposed, see, e.g., [5, 11, 22, 29]. However, optimization36

problems (2) for p 6= 2 can be significantly more challenging. For example, for p = 1,37

the so-called `1-regularized problem suffers from non-differentiability at the origin;38
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2 J. CHUNG AND S. GAZZOLA

moreover, in some situations, one may wish to consider 0 < p < 1, which results39

in a nonconvex optimization problem, see, e.g., [20, 24, 25]. In this paper, we will40

develop methods to compute an approximate solution to (2) for the case p ≥ 1, where41

a unique solution exists. Henceforth, we will refer to problem (2) with Ψ = I as the42

“`p-regularized” problem; problem (2) with Ψ 6= I will be dubbed the “transformed43

`p-regularized” problem. Typically the transformed `p-regularized problem arises in44

cases where sparsity in some frequency domain (e.g., in a wavelet domain) is desired.45

Depending on the application, a sparsity transform may be included in both the fit-46

to-data and the regularization term. This was considered in [33], where the resulting47

minimization problem was solved with an inner-outer iteration scheme.48

Most of the previously developed methods for `p minimization utilize nonlinear49

optimization schemes or iteratively reweighted optimization schemes, which can get50

very expensive due to inner-outer iterations [1, 16, 32, 33, 42]. Other popular ap-51

proaches such as the split Bregman method [14], separable approximations [43], and52

accelerations of the iterative shrinkage thresholding algorithms [2] are fast alterna-53

tives, but a main disadvantage is that the regularization parameter must be selected54

a priori, which can be a difficult task. Krylov methods, on the other hand, have nice55

convergence and regularization properties, so there have been recent efforts to exploit56

Krylov methods to solve the `p-regularized problem, possibly without resorting to57

inner-outer iterations. For example, [20, 24] considered generalized Krylov methods58

for `p− `q minimization, and Krylov methods based on the flexible Arnoldi algorithm59

were considered in [10, 36, 37]. Our proposed methods are mostly related to the latter60

approaches, which compute approximate solutions to the `p-regularized problem when61

A is square. Below we outline the main distinctions and contributions of our work.62

In this paper, we propose new iterative hybrid methods based on a flexible Golub–63

Kahan decomposition to solve `p-regularized problems (2), where flexible precondi-64

tioning techniques are used to build appropriate solution subspaces. In particular,65

we describe two methods, namely flexible LSQR and flexible LSMR, and show how66

Tikhonov regularization can be used to solve the projected problem, where the prop-67

erties of the matrices associated with the flexible Golub–Kahan decomposition are68

exploited for efficient regularization parameter selection (in a hybrid fashion). We69

underline that methods based on the flexible Golub–Kahan algorithm can be imple-70

mented without explicitly constructing the matrix A, i.e., by treating A and A> as71

linear operators acting on vectors. Furthermore, we describe a way to incorporate72

regularization terms expressed as the p-norm of the transformed solution within the73

flexible schemes (based on both the Arnoldi and the Golub–Kahan decompositions),74

i.e., to deal with the transformed `p-regularized problem.75

One of the first major contributions, compared to [10], is that our methods can be76

used to solve problems with general (e.g., non-square) coefficient matrix A. Second, we77

provide theoretical results that show optimality properties for the flexible approaches,78

and we prove that in exact arithmetic flexible LSMR iterates are the same as GM-79

RES iterates on the normal equations. Third, contrary to classical Krylov–Tikhonov80

methods [11], which can handle penalization terms evaluated in the 2-norm, the new81

methods can approximate penalization terms evaluated in the sparsity-inducing 1-82

norm and can include an invertible sparsity transformation, which generalizes the83

flexible Arnoldi decomposition proposed in [10], as well as the flexible Golub–Kahan84

decomposition derived in this paper. Numerical comparisons to well-established `185

regularization methods reveal that the proposed strategies provide an easy-to-use ap-86

proach for computing reconstructions with similar properties, but with two significant87

benefits: firstly, the regularization parameters can be selected automatically thanks to88

This manuscript is for review purposes only.



FLEXIBLE KRYLOV METHODS FOR `p REGULARIZATION 3

the hybrid framework; secondly, information from the current solution is incorporated89

via the regularization into the solution process as soon as it becomes available, with90

potentially great computational savings compared to methods involving inner-outer91

iterations.92

The paper is organized as follows. In Section 2 we review the ideas underlying the93

iteratively reweighted norm (IRN) approach for `p regularization and briefly review94

the flexible Arnoldi–Tikhonov approach. In Section 3 we derive the flexible Golub–95

Kahan decomposition, leading to the introduction of the new flexible LSQR and96

flexible LSMR algorithms; hybrid approaches based on flexible LSQR and flexible97

LSMR are addressed, with a particular emphasis on the choice of regularization term98

and regularization parameter. Optimality properties for the new solvers and links99

to existing solvers are provided. In Section 4 we describe how a sparsity transform100

can be handled within hybrid schemes based on the flexible Arnoldi and Golub–101

Kahan algorithms, and we investigate how the solution subspaces are modified by102

incorporating reweightings and sparsity transforms. Numerical results are presented103

in Section 5, and conclusions and future work are provided in Section 6.104

2. Background on iteratively reweighted and flexible methods for `p105

regularization. A well-established strategy for solving the `p-regularized problem106

is the iteratively reweighted norm (IRN) algorithm [16, 33]. This approach requires107

solving a sequence of reweighted, penalized least-squares problems where the weights108

change at each iteration. When dealing with large systems, each least-squares problem109

is solved by an iterative method, so that an inner-outer iteration scheme is naturally110

established. In the following we use the acronym IRN to indicate a wide class of111

algorithms that leverage (outer) reweighing together with an (inner) iterative scheme.112

IRN methods are also closely related to iteratively reweighted least squares (IRLS)113

methods [4, Chapter 4]. Since IRN methods can get very costly, another common114

approach is to use iterative shrinkage thresholding algorithms [2], where an iterative115

two-step process is used.116

Many of these methods assume that a good value of the regularization parameter117

is available a priori, but oftentimes this is not the case. And although there have been118

some recent works on selecting regularization parameters for `1 regularization, e.g.,119

[13], these can still be quite costly for very large problems. Selecting regularization120

parameters for `p-regularized problems remains a tricky, yet crucial, task. For the121

special case where p = 2, significant works on hybrid methods have enabled successful122

simultaneous estimation of the regularization parameter and computation of large-123

scale reconstructions, see, e.g., [22, 32]. In these hybrid frameworks, the problem is124

projected onto Krylov subspaces of increasing size, and the task of choosing a suitable125

value of the regularization parameter is reduced to solving the smaller, projected126

problem. However, such approaches have not been fully investigated for general `p-127

regularized problems. The flexible hybrid framework for `p-regularized problems that128

we describe in Section 3 incorporates simultaneous parameter selection and is based129

on the IRN reformulation.130

As described in [33], the first step toward an IRN approach is to define a sequence131

of appropriate regularization operators to break the `p-regularized problem into a132

sequence of 2-norm problems,133

(3) min
x
‖Ax− b‖22 + λ ‖L(x)x‖22 ,134
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4 J. CHUNG AND S. GAZZOLA

where135

(4) L(x) = diag
�

(|xi|
p�2

2 )i=1,...,n

�
.136

Here xi is the ith entry of vector x. We remark that, when p < 2, care is needed137

when defining (4), because division by 0 may occur if xi = 0 for some i = 1, . . . , n.138

To fix this potential issue, small thresholds τ1, τ2 > 0 are set, and the matrix in (4) is139

redefined as140

(5) L(x) = diag((fτ (|xi|)
p�2

2 )i=1,...,n) , where fτ (|xi|) =

(
|xi| if |xi| ≥ τ1,
τ2 if |xi| < τ1.

141

Note that taking τ2 < τ1 enforces additional sparsity in fτ (|xi|). In the case142

p = 1, the IRN approach reduces the `1-regularized problem (2) to a sequence of143

least-squares problems involving a weighted 2-norm. That is,144

‖x‖1 ≈ ‖L(x)x‖22 ,145

where L(x) = diag(1/
p
fτ (|x|)), fτ (·) is defined in (5), and the square root and146

absolute value operations are applied component-wise. We remark that problem (3)147

can be equivalently reformulated as148

(6) minbx
AL(x)−1bx− b

2
2

+ λ ‖bx‖22 ,149

where bx = L(x)x. This transformation into standard form is computationally conve-150

nient, as it only amounts to the inversion of a diagonal matrix.151

For realistic scenarios, problems (3) and (6) are intrinsically nonlinear. In order to152

avoid nonlinearities, we follow the common practice of approximating the matrix L(x)153

by the matrix Lk = L(xk), where xk is an approximation of the solution obtained at154

the (k − 1)st outer iteration. Then at the kth outer iteration, we solve the Tikhonov155

problem,156

(7) min
x
‖Ax− b‖22 + λ ‖Lkx‖22 .157

The IRN method proposed in [33] prescribes to apply the conjugate gradient (CG)158

method to solve the normal equations corresponding to (7), i.e.,159

(8) (A>A + λL>k Lk)x = A>b , Lk = L(xk) .160

Also preconditioned CG (PCG) can be applied at the kth outer iteration of IRN to161

solve the normal equations associated to a preconditioned version of (7), i.e.,162

(9) (L−>k A>AL−1k + λI)bx = L−>k A>b , L−1k bx = x, Lk = L(xk) .163

We refer to this approach as the preconditioned IRN (PIRN) method, which is sim-164

ilar in essence to the inner-outer scheme proposed in [1] to handle total variation165

regularization. We emphasize that the term “preconditioned” is used in a somewhat166

unconventional way: the “preconditioners” considered here are not aimed at accel-167

erating the convergence of the iterative solvers but rather at enforcing some specific168

regularity into the associated solution subspace. Transformed `p-regularized prob-169

lems can be suitably expressed in this framework too, as we will explain in Section 4.170

We stress once more that, in the IRN framework, the matrix L = Lk changes at each171

outer iteration, resulting in a sequence of least-squares problems to be solved. A more172

efficient alternative that is applied directly to problem (6) and that exploits flexible173

preconditioning to bypass inner-outer iterative schemes is summarized below.174
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FLEXIBLE KRYLOV METHODS FOR `p REGULARIZATION 5

Generalized Arnoldi–Tikhonov approaches. For completeness, we provide a brief175

overview of the generalized Arnoldi–Tikhonov (GAT) approach [10] to solve problem176

(6), or equivalently problem (3), for A ∈ Rn×n and for changing preconditioners177

L(xk) = Lk. Consider the flexibly preconditioned Arnoldi algorithm, in which, at the178

kth iteration, we have179

(10) AbZk = bVk+1
bHk ,180

where bHk ∈ R(k+1)×k is upper Hessenberg, bVk+1 =
�bv1 . . . bvk+1

�
contains or-181

thonormal columns with bv1 = b/ ‖b‖2, and bZk =
�
L−11 bv1 . . . L−1k bvk� ∈ Rn×k.182

Here and in the following, we assume an initial guess x0 = 0; extensions to include183

x0 6= 0 are trivial and follow standard derivations. Also, throughout the paper, we184

assume that all of the algorithms are breakdown-free, i.e., the dimension of the kth185

solution subspace is k. We also note that, if the preconditioner is fixed for all itera-186

tions (Li = L, i = 1, . . . , k), then bZk = L−1 bVk and decomposition (10) reduces to the187

one associated with the standard right-preconditioned GMRES method. The GAT188

method computes approximate solutions of the form xk = bZkbyk, where189

(11) byk = arg min
y

 bHky − ‖b‖2 e1

2
2

+ λ ‖y‖22 ,190

where e1 ∈ Rk+1 is the first column of the identity matrix of order k + 1. For λ = 0,191

we have the flexible GMRES (FGMRES) method [35]. The main advantages of this192

approach are that only one solution subspace needs to be generated (versus multiple193

solves in IRN), one matrix-vector multiplication with A is required at each iteration194

(versus one with A and one with A> in CGLS), and a suitable value of the regular-195

ization parameter and an appropriate value of the threshold for the stopping criterion196

are determined automatically by exploiting the hybrid framework. In [10], the GAT197

method and its variants were used to efficiently compute approximate solutions to198

`1-regularized problems, but a limitation is that this method only works for square199

problems. A näıve extension of the GAT method to general least-squares problems by200

applying the flexible Arnoldi algorithm to the normal equations is not recommended,201

due to the squaring of the condition number of the coefficient matrix and the lack202

of a computationally convenient way to estimate the residual norm for the original203

problem (1). Although flexible versions of the so-called AB-GMRES and BA-GMRES204

methods [26] may be devised, in the following section we exploit a new computational205

tool from numerical linear algebra, namely the flexible Golub–Kahan method. In this206

way, we avoid the normal equations and work directly with the residual from the207

original least-squares problem, which can be helpful in determining the regularization208

parameter and stopping criteria.209

3. Flexible Golub–Kahan hybrid methods. In this section, we describe hy-210

brid approaches based on the flexible Golub–Kahan process for computing an approxi-211

mate solution to the Tikhonov problem (7), where Lk may change at each iteration. As212

discussed in Section 2, problem (7) approximates regularized problem (3). Similarly213

to the GAT method, the flexible Golub–Kahan hybrid methods follow an iterative214

two-step process. First we generate a basis for the solution by exploiting a flexible215

preconditioning framework to take into account a changing regularizer, and second,216

we compute an approximate solution to the inverse problem by solving an optimiza-217

tion problem in the projected subspace (where regularization can be done efficiently218

and with automatic regularization parameter selection for the projected problem).219
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6 J. CHUNG AND S. GAZZOLA

These iterative approaches are ideal for problems where A and A> can be accessed220

only by matrix-vector multiplication, where only a few basis vectors are required to221

obtain a good solution, and where a suitable value of the regularization parameter is222

not known a priori.223

3.1. Incorporating weights: a flexible Golub–Kahan decomposition. In224

order to incorporate a changing preconditioner, we use a flexible variant of the Golub–225

Kahan bidiagonalization (GKB) algorithm to generate a basis for the solution. We call226

this the flexible Golub–Kahan (FGK) process, and mention that it is closely related227

to the inexact Lanczos process [38, 41]. Given A,b, and changing preconditioners228

Lk, the kth iteration of the FGK iterative process generates vectors zk, vk, and uk+1229

such that230

(12) AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1,231

where232

• Zk =
�
z1 · · · zk

�
=
�
L−11 v1 · · · L−1k vk

�
∈ Rn×k,233

• Mk = [mi,j ]i=1,...,k+1;j=1,...,k ∈ R(k+1)×k is upper Hessenberg,234

• Tk+1= [ti,j ]i,j=1,...,k+1 ∈ R(k+1)×(k+1) is upper triangular,235

• Uk+1=
�
u1 . . .uk+1

�
∈Rm×(k+1) has orthonormal columns with u1 = b/ ‖b‖2, and236

• Vk+1 =
�
v1 . . . vk+1

�
∈ Rn×(k+1) has orthonormal columns.237

Compared to standard GKB [15], the key differences are that we now have an238

upper Hessenberg and an upper triangular matrix, instead of one bidiagonal matrix.239

Also, we must keep track of an additional set of vectors, namely the basis vectors240

in Zk. Furthermore, since there is no bidiagonal structure to exploit, the additional241

computational requirement is orthogonalization with all previous vectors. However,242

these additional requirements are negligible if k � max{m,n}. Moreover, as for243

standard GKB, the computational cost per iteration is dominated by a matrix-vector244

product with A and one with A>. We remark that, if Lk = L, (12) reduces to the245

right-preconditioned GKB. The FGK process is summarized in Algorithm 1.246

Algorithm 1 Flexible Golub–Kahan (FGK) Process

1: Initialize u1 = b/β1, where β1 = ‖b‖
2: for i = 1, . . . , k do
3: w = A>ui, tj,i = w>vj for j = 1, . . . , i− 1

4: w = w −
Pi−1
j=1 tj,ivj , ti,i = ‖w‖, vi = w/ti,i

5: zi = L−1i vi
6: w = Azi, mj,i = w>uj for j = 1, . . . , i

7: w = w −
Pi
j=1mj,iuj , mi+1,i = ‖w‖, ui+1 = w/mi+1,i

8: end for

Notice that the column vectors of Zk no longer span a Krylov subspace in a247

traditional sense, but they do provide a basis for the solution subspace. In Section248

5 we provide some qualitative observations regarding the basis vectors. For now,249

consider the fit-to-data term ‖Ax− b‖22 and consider solutions in the column space250

of Zk, denoted by R(Zk). Using the relationships in (12), the residual can be written251

as252

AZky − b = Uk+1(Mky − β1e1).253

We define the flexible LSQR (FLSQR) and flexible LSMR (FLSMR) iterates as254
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xk = Zkyk, where255

(13) yk = arg min
y

‖Mky − β1e1‖22256

and257

(14) yk = arg min
y

‖Tk+1Mky − β1t1,1e1‖22 ,258

respectively. These definitions are analogous to the mathematical definitions of the259

LSQR and LSMR iterates in [8, 30, 31]. The FLSMR formulation exploits the follow-260

ing relationships261

A>(AZky − b) = Vk+1(Tk+1Mky − t1,1β1e1) and A>b = Vk+1β1t1,1e1 .262

We have the following optimality properties for FLSQR and FLSMR, which are263

analogous to the ones enjoyed by the standard counterparts of these methods and by264

FGMRES [35].265

Proposition 3.1. The FLSQR iterate xk obtained at the kth step minimizes the266

residual norm ‖Axk − b‖2 over R(Zk), and the FLSMR iterate xk obtained at the267

kth step minimizes
A>(Axk − b)


2

over R(Zk).268

We note that FLSQR is mathematically equivalent to the full-recurrence flexible269

conjugate gradient method [28] applied to the normal equations, but the advantages270

of this formulation are that we avoid working directly with the normal equations,271

and there is a natural means to evaluate residuals for the original system. In this272

respect, FLSQR is comparable to the FCGLS method in [12]. Furthermore, we note273

that Tk+1Mk is a (k+1)×k upper Hessenberg matrix and that the solution subspace274

generated by the FGK process is the same as the one generated by the flexible Arnoldi275

algorithm applied to the normal equations. More precisely, the following equivalence276

theorem holds.277

Theorem 3.2. Let A ∈ Rm×n,m ≥ n and take the preconditioners Li,278

i = 1, 2, . . . k. Then, in exact arithmetic, the kth iterate of FLSQR applied to279

minx ‖Ax−b‖2 is equivalent to the kth iterate of FCGLS applied to the same problem;280

moreover, the kth iterate of FLSMR applied to minx ‖Ax − b‖2 is equivalent to the281

kth iterate of FGMRES applied to the normal equations282

(15) A>Ax = A>b.283

Proof. Directly from Algorithm 1 and [12, Algorithm 1], the iterates computed284

by both FLSQR and FCGLS are such that285

x1 ∈ span{L−11 A>b},
x2 ∈ span{L−12 A>b, L−12 A>AL−11 A>b, x1},
x3 ∈ span{L−13 A>b, L−13 A>AL−11 A>b, L−13 A>AL−12 A>b,

L−13 A>AL−12 A>AL−11 A>b, x2},
· · ·

286

Since both the FLSQR and the FCGLS iterates minimize the residual norm over the287

same solution subspace, we can conclude that FLSQR is mathematically equivalent288

to FCGLS. Concerning the second part of the statement, note that after k iterations289

of FGMRES applied to (15), we have a matrix bZk =
�
L−11 bv1 . . . L−1k bvk� ∈ Rn×k,290
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8 J. CHUNG AND S. GAZZOLA

an upper Hessenberg matrix bHk ∈ R(k+1)×k, and a matrix bVk+1 ∈ Rn×(k+1) with291

orthonormal columns and bVk+1e1 = A>b/
A>b


2
, which satisfy the relationship292

(16) A>AbZk = bVk+1
bHk .293

The projected problem is given by294

(17) min
x∈R(bZk)

A>Ax−A>b
2
2

= min
y

 bHky −
A>b


2
e1

2
2
,295

so the kth iterate of FGMRES is given by296

bxk = bZk bH†k A>b

2
e1 ,297

where bH†k = ( bH>k bHk)−1 bH>k is the pseudoinverse. In exact arithmetic the solution298

subspaces generated by FGMRES and FGK in Algorithm 1 are the same, and coincide299

with300

span{L−11 bv1,L
−1
2 bv2, . . . ,L

−1
k bvk} ,301

so that bZk = Zk (this is immediate from factorizations (12) and (16)). The optimality302

condition for FGMRES (see Proposition 2.1 in [35]) and FLSMR (see Proposition 3.1)303

guarantee that the kth iterate of FLSMR and FGMRES both correspond to the304

solution of (17).305

3.2. Solving the regularized problem: flexible hybrid algorithms. As306

explained in Section 3.1, the FGK process can be used to build a solution subspace307

that can efficiently incorporate changing preconditioners, and one can solve the pro-308

jected problems (13) and (14), which correspond to the FLSQR and FLSMR methods,309

respectively. However, it is well-known that, for inverse problems, iterative meth-310

ods exhibit a semiconvergent behavior, where the relative reconstruction error norm311

‖xk − xtrue‖2 / ‖xtrue‖2 decreases initially but at some point increases due to ampli-312

fication of noise [18]. This phenomenon, which is common for most ill-posed inverse313

problems, occurs also for flexible methods, as can be seen in Figure 1(a).314

Hybrid methods, where regularization is included on the projected problem, have315

been proposed to suppress the relative reconstruction error norms, i.e., to mitigate316

semiconvergence. The first hybrid approach that we propose is analogous to the GAT317

algorithm (see (11)), where we include a standard regularization term in (13), so that318

(18) yk = arg min
y

‖Mky − β1e1‖22 + λ ‖y‖22 .319

Henceforth, we define FLSQR-I iterates as xk = Zkyk, where yk is defined in (18).320

Let Zk = QkRk be the thin QR factorization of Zk where Rk ∈ Rk×k is upper321

triangular and Qk ∈ Rn×k contains orthonormal columns. This is inexpensive to322

compute if k is not too large. Then we also consider a hybrid method called FLSQR-323

R, in which iterates are constructed as xk = Zkyk, where324

(19) yk = arg min
y

‖Mky − β1e1‖22 + λ ‖Rky‖22 .325

The FLSQR-R method exhibits some desirable properties, especially for inverse prob-326

lems. First, the FLSQR-R iterate can be interpreted as a best approximation in a327
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subspace, in that xk solves328

(20) min
x∈R(Zk)

‖Ax− b‖22 + λ ‖x‖22 .329

Hence, the regularization parameter λ, which specifies the amount of regularization330

for the projected problem (19), corresponds to the amount of regularization for the331

constrained, full-dimensional problem (20). Second, using the following reformulation332

of the FLSQR-R subproblem (19),333

wk = arg min
w

MkR
−1
k w − β1e1

2
2

+ λ ‖w‖22 , yk = R−1k wk ,334

we can show that the singular values of the coefficient matrix MkR
−1
k provide good335

approximations to the singular values of A. Indeed, we can see this by considering the336

following relations (where decomposition (12) and properties of the matrices appearing337

therein are extensively used):338

R−>k M>
k MkR

−1
k = R−>k M>

k U>k+1Uk+1MkR
−1
k339

= R−>k Z>k A>AZkR
−1
k340

= Q>k A>AQk .341342

Since the eigenvalues are just the squares of the singular values, we see that as k343

increases, the singular values of MkR
−1
k provide better approximations to the singular344

values of A.345

Hybrid LSMR variants, namely the FLSMR-I and FLSMR-R methods, can be346

defined analogously. Then, using Theorem 3.2, we can see that in exact arithmetic and347

for a fixed regularization parameter, the FLSMR-I iterates are the same as the GAT348

iterates applied to a Tikhonov problem with the fit-to-data term
A>Ax−A>b

2
2
.349

However, the benefit of the FGK approaches versus GAT on the normal equations is350

that FGK produces residual norms for the original problem, which can be important351

for tools such as the discrepancy principle for parameter selection and for stopping352

criteria.353

Unless otherwise stated, the parameter choice methods considered here are based354

on the discrepancy principle: in particular, we either prescribe the discrepancy prin-355

ciple to be satisfied at each iteration, or we apply the “secant update” variant pre-356

scribing suitable updates of the regularization parameter at each iteration. More357

specifically, we determine an appropriate combination of regularization parameters358

(i.e., the number of performed iterations k and the Tikhonov parameter λ > 0) such359

that360

(21) ‖b−Axk‖2 ≤ η‖e‖2 ,361

where xk solves (20) and depends on both k and λ, and η > 1 is a safety factor.362

See [10] and [11] for a detailed description of these regularization parameter selection363

and stopping criteria strategies.364

An Illustration. The goals of this illustration are (i) to demonstrate the higher365

quality of the solutions obtained by applying flexible methods (due to a better basis366

for the solution subspace), (ii) to motivate the need for a hybrid approach (by showing367

semiconvergence behavior of FLSQR and FLSMR), and (iii) to show that the singular368

values of the original problem can be approximated well by using FLSQR-R. More369

thorough numerical results and comparisons will be presented in Section 5.370
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Fig. 1. heat test problem from [17]. (a) relative error norm, ‖xk − xtrue‖2 / ‖xtrue‖2, for
LSQR, LSMR, FLSQR, and FLSMR. The semiconvergence behavior is evident for all of the methods.
(b) relative error norms for FLSQR-I and FLSQR-R with optimal regularization parameters, along
with relative error norms for FLSQR provided for comparison.

For this illustration, we use the heat example from Regularization Tools [17],371

where A has size 512× 512, having a sparse true solution (50% of its entries are zero,372

so that Ψ = I and p = 1 in (2)). White noise is added to the observed signal at373

noise level 10−4, i.e., ‖b‖2/‖Axtrue‖2 = 10−4. In Figure 1(a), we provide relative re-374

construction error norms per iteration for LSQR, LSMR, FLSQR, and FLSMR. The375

delayed semiconvergence of LSMR versus LSQR was noted in [5] and is also slightly376

visible for FLSMR versus FLSQR. The more pronounced feature that we see here is377

that the flexible variants converge faster but also exhibit stronger semiconvergence378

in that the relative error norms increase faster. Thus, there is a greater need for379

additional regularization. In Figure 1(b), we show that the hybrid methods FLSQR-I380

and FLSQR-R (here with the optimal regularization parameters, i.e., the ones that381

minimize the relative error norm at each iteration) can mitigate the semiconvergence382

behavior. Comparisons with different parameter selection methods can be found in383

Section 5. We note that, for this particular test problem, flexible preconditioning384

speeds up the convergence of the iterative method. However, for our problems of385

interest (e.g., `p-regularized problems), flexible preconditioning is mainly used to im-386

prove the solution subspace. Thus, the particular choice of regularization for the387

projected problem is not so critical and is mostly required for supressing the errors.388

Another important tool for the analysis of a regularization method is the ap-389

proximation of the singular values of A. For the standard GKB algorithm, it is well390

known that the singular values of the bidiagonal matrix approximate the singular391

values of A [34]. However, these results do not directly extend to the FGK process.392

In Figure 2, we display the singular values of A with a dashed line, which is partially393

covered by the FLSQR-R curve (continuous asterisked line). Then, for k = 20 to394

k = 420 in intervals of 100, we provide the singular values of upper Hessenberg ma-395

trix Mk for FLSQR (continuous circled line) and FLSQR-I (continuous squared line),396

and the singular values of MkR
−1
k for FLSQR-R. Note that, in the flexible methods,397

the previous iterate xk−1, which may include regularization, changes the precondi-398

tioner and hence the FGK matrices. It is evident that singular values of MkR
−1
k from399

FLSQR-R provide better approximations to the singular values of A than those of400

Mk from FLSQR and FLSQR-I. Furthermore, with more iterations, smaller singular401

values of A are being approximated, which motivates the need for regularization of402
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Fig. 2. heat test problem from [17]. This plot compares the singular values of A to the singular
values of Mk from FLSQR and FLSQR-I and to the singular values of MkR

−1
k from FLSQR-R,

for iterations k between 20 and 420 in increments of 100.

the projected problem.403

4. Flexible methods for the transformed problem. As mentioned in Sec-404

tion 1, the goal in many applications is to compute solutions that are sparse with405

respect to some transformation (e.g., in a frequency domain). In this section, we406

focus on flexible Arnoldi and flexible Golub–Kahan hybrid methods for solving the407

transformed `p-regularized problem (2) where Ψ 6= I. Although any invertible trans-408

form matrix can be used here, we will focus on wavelet transforms mainly for two409

reasons. Firstly, it is well known that many images can be sparsely represented in the410

wavelet domain. Indeed, wavelet-based iterative methods have been widely considered411

for linear inverse problems, see, e.g., [6, 7, 23, 40]. Secondly, when taking orthonor-412

mal wavelet transforms, computations involving 2-norms of transformed quantities or413

inverse transforms can be easily performed. The specific strategy used to incorporate414

a wavelet transform into the flexible iterative solvers depends on the properties of the415

linear system at hand (which, eventually, depends on the properties of the inverse416

problem to be regularized) and, for all the methods, the regularization parameter can417

be automatically estimated.418

Let eΨ ∈ Rm×m be an orthogonal matrix. Then, problem (2) is equivalent to419

(22) min
x

 eΨAΨ−1Ψx− eΨb
2
2

+ λ ‖Ψx‖pp .420

Moreover, after some variable transformations, (22) can be written as421

(23) min
s
‖Hs− d‖22 + λ ‖s‖pp , where H = eΨAΨ−1, s = Ψx , d = eΨb ,422

which is an `p-regularized problem. The choice of eΨ is problem-dependent and solver-423

dependent. For instance, when considering image deblurring problems where both x424

and b are images of the same size described by pixel values, it is natural to take425
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eΨ = Ψ to be an orthogonal wavelet transform; this formulation was considered in [3].426

If the GAT method is applied to problem (23) with p = 1 and variable precondi-427

tioner L(sk) = Lk, then the subspace Sk = span{L−11 bv1,L
−1
2 bv2, . . . ,L

−1
k bvk} , with428 bv1 = d/ ‖d‖2, is generated for the kth approximation of the transformed solution s.429

This subspace enforces sparsity in the wavelet domain for the wavelet coefficients s of430

the original image x. The solution subspace for the latter is given by Ψ>Sk, so that431

it is evident that first sparsity is enforced in the wavelet domain, and then the sparse432

wavelet coefficients are transformed back into the original pixel domain. However, for433

situations where one has no intuition regarding the sparsity properties of b, one can434

simply take eΨ = I. Analogously, if solvers based on the FGK process are applied to435

solve the same problem, then the solution subspace is given by436

Ψ>span
�
L−11 Ψv1, . . . ,L

−1
k Ψvk

	
, with v1 = A>b/

A>b

2
.437

Notice that the choice of eΨ is irrelevant for flexible methods based on FGK, since438

H>d = ΨA> eΨ> eΨb = ΨA>b, H>H = ΨA> eΨ> eΨAΨ> = ΨA>AΨ>.439

An Illustration. The goal of this illustration is to show that the solution space440

generated by the flexible Arnoldi algorithm applied to problem (23) is more suitable441

than the one generated by its standard counterpart. We consider a 1D signal x with442

64 entries, generated in such a way that only 8 of its 1-level Haar wavelet coefficients443

s are nonzero. The signal is corrupted by Gaussian blur with variance 2.25 and444

band 5, and white noise of level 10−2 is added. The exact and corrupted signals445

are displayed in Figure 3(a), and their wavelet coefficients are displayed in Figure446

3(b). We choose λ = 0 in (23) so that the solution subspace does not depend on the447

specific parameter choice strategy that one may wish to consider. The threshold τ1448

in (5) is set to 0.2, while τ2 = 10−14. Figure 3(c) displays the best reconstructions449

obtained by the FGMRES (11th iteration) and the GMRES (30th iteration) methods.450

One can clearly see that the FGMRES solution is of much higher quality than the451

GMRES one, and that the wavelet coefficients of the FGMRES solution are much452

sparser than the GMRES ones (see Figure 3(d)). The good performance of FGMRES453

for this example can be explained by looking at some of the basis vectors for the454

solution space, displayed in Figure 3(e)–(h). Indeed, the preconditioned basis vectors455

for the signal x have a piecewise-constant behavior, while the unpreconditioned ones456

display spurious oscillations; correspondingly, the preconditioned basis vectors for the457

wavelet coefficients s have a clear sparsity pattern, which is not reproduced by the458

unpreconditioned ones. Therefore, the FGMRES solution is better than the GMRES459

one as it is obtained by combining better basis vectors for the solution subspace. We460

remark that the basis vectors generated from the FGK process have similar properties,461

and thus are omitted. Also, a similar behavior of the preconditioned basis vectors can462

be observed in the more challenging experiments presented in Section 5.463

5. Numerical Results. In this section, we provide three experiments to demon-464

strate the performance of the flexible Krylov hybrid methods on various test problems465

from image processing. The first two experiments are examples from image deblur-466

ring, where enforcing sparsity on the image and sparsity on the wavelet coefficients467

are investigated separately. The third experiment is concerned with tomographic468

reconstruction from undersampled data, where sparsity is imposed on the wavelet469

coefficients. All images are of size 256 × 256 pixels. For all of the experiments, the470

thresholds in (5) are τ1 = 10−10, τ2 = 10−16 (machine precision). All experiments471
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Fig. 3. 1D signal deblurring and denoising problem. The right column displays the 1D Haar
wavelet coe�cients of the signals displayed in the left columns. The �rst row shows the exact and
corrupted signals. The second row shows the best reconstructions obtained by GMRES (dash-dot
lines) and FGMRES (solid lines). The third and fourth row show the 2nd and 4th basis vectors
computed by GMRES (dash-dot lines) and FGMRES (solid lines), respectively.
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are performed in MATLAB 2017a and use codes available in the Restore Tools [27]472

and AIR Tools II [19] software packages. MATLAB implementations of our methods,473

which should be used jointly with the IR Tools software package [9], are available at474

https://github.com/silviagazzola.475

Experiment 1. In this experiment, we consider an image deblurring example from476

atmospheric imaging, with the true image, the point spread function (PSF), and the477

observed blurred image provided in Figure 4. For this problem, Gaussian white noise478

is added to the blurred image, such that the noise level is 5 · 10−2.479

For the reconstructions, we assume reflexive boundary conditions and solve the480

`1-regularized problem with Ψ = I, which is appropriate because the desired image is481

quite sparse (approximately 50% of its pixels are numerically zero). First we provide482

a comparison of various Golub–Kahan-based methods. In Figure 5, we provide rela-483

tive error norms per iteration for the flexible methods described in Section 3, namely484

FLSQR, FLSQR-I and FLSQR-R with automatic regularization parameter selection485

using the “secant update” discrepancy principle (with safety factor η = 1.01 in (21)).486

In all experiments with the discrepancy principle, we use the true noise level but487

remark that estimates could be used [39]. Relative reconstruction error norms for488

LSQR are provided for comparison. Similarly to the observations made in Section 3,489

the flexible methods exhibit faster convergence to more accurate solutions than the490

standard LSQR approach. Furthermore, we see that the flexible hybrid methods are491

able to stabilize the semiconvergent behavior by selecting an appropriate regulariza-492

true PSF observed

Fig. 4. Experiment 1: Image deblurring example. Here we show the true image, the point spread
function (PSF), and the observed blurred and noisy image. The size of the images is 256×256 pixels.
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Fig. 5. Experiment 1: Comparison of relative reconstruction error norms. The regularization
parameter λ is selected automatically using the \secant update method" (discrepancy principle) for
‘FLSQR-I’ and ‘FLSQR-R’; λ = 0 is set for ‘FLSQR’ and ‘LSQR’. Automatically determined
stopping iterations for the hybrid approaches are denoted by the diamond and star.
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tion parameter and stopping criterion (e.g., based on the “secant update” strategy or493

discrepancy principle).494

In Figure 6, we provide the basis vectors (displayed as images) for the FLSQR-R495

and the LSQR solution subspaces, for k = 10, 20, 100. Note that basis vectors for496

FLSQR-R correspond to the FGK vectors, while the LSQR ones correspond to the497

standard GKB vectors. It is evident that the basis images for the flexible method498

can better capture the flat regions of the image. Also, for large k, the FLSQR-R499

basis image is less affected by the noise amplification that is present in the LSQR500

basis image. Thus, we expect that, by constructing a better solution basis (i.e., one501

that is less affected by noise and that captures sparsity properties of the image), the502

flexible methods can be successful for sparse image reconstruction. This behavior can503

be experimentally observed also at higher noise levels.504

Next, we investigate some parameter choice methods. In Figure 7, we provide rel-505

ative reconstruction error norms for FLSQR-R and ‘FLSQR-R dp’. Both methods use506

the discrepancy principle to obtain the regularization parameter, which requires prior507

knowledge of the noise level. More precisely, FLSQR-R utilizes the “secant update”508

parameter choice method described in [10], and ‘FLSQR-R dp’ enforces the discrep-509

ancy principle to be satisfied at each iteration. Relative error norms for ‘FLSQR-R510

opt’ correspond to selecting the regularization parameter at each iteration that min-511

imizes the error norm of the current iterate minus the true solution. It is worth512

noting that, since the basis vectors are generated with respect to the current solution513

(because of flexibility), this approach does not necessarily produce the best overall514

regularization parameter for the problem.515

Finally, we compare the FLSQR-R method to other methods for solving the `1-516

regularized problem. In Figure 8, we provide relative reconstruction error norms for517

GAT [10], PIRN, FISTA [2], and SpaRSA [43]. Since the regularization parameter518

for PIRN, FISTA, and SpaRSA must be selected prior to execution, we use the reg-519

ularization parameter that is selected by FLSQR-R when the stopping criterion is520

satisfied (for this problem, λ = 1.1 · 10−5). We note that FISTA, SpaRSA, and PIRN521

compute reconstructions with similar or slightly better accuracy than FLSQR-R, but522

the two main advantages of the hybrid approaches are that the regularization param-523

k=10

FL
S

Q
R

-R
LS

Q
R

k=20 k=100

Fig. 6. Experiment 1: Basis images for ‘FLSQR-R’ and ‘LSQR’ for k = 10, 20, 100. These are
solution vectors (i.e., zk for ‘FLSQR-R’) that have been reshaped into images.
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Fig. 7. Experiment 1: Relative reconstruction error norms for di�erent parameter choice
methods. ‘FLSQR-R’ and ‘FLSQR-R dp’ use the \secant update" and the classical discrepancy
principle, respectively, and thus require an estimate of the noise level. ‘FLSQR-R opt’ corresponds
to selecting the optimal regularization parameter at each iteration, which is not necessarily the overall
best parameter because of exibility.
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Fig. 8. Experiment 1: Relative reconstruction error norms are provided to compare the FGK
methods to some existing methods. It is important to note that the ‘PIRN’, ‘FISTA’, and ‘SpaRSA’
regularization parameter is selected using our ‘FLSQR-R’ approach.

eter can be selected automatically, and the reconstruction can be obtained in fewer524

iterations. The main cost per iteration for all of these methods is one matrix-vector525

multiplication with A and one with A>.526

Experiment 2. In this experiment, we investigate the transformed `1-regularized527

problem for an image deblurring example. For this problem, we use the cameraman528

image shown in Figure 9, where out of focus blur (i.e., associated to a circular PSF529

of radius 4 pixels) and Gaussian white noise with noise level 0.01 are considered.530

Although a wide range of transformations Ψ can be employed, for simplicity we use531

a 2D Haar wavelet decomposition with 3 levels. For this example, the image itself is532

not sparse (only 27 pixels are numerically zero). However, slightly more that 10% of533

the pixels of the transformed true image (also provided in Figure 9) are numerically534

zero, and thus it is appropriate to consider the transformed `1-regularized problem.535

First we investigate the Golub–Kahan-based methods. In Figure 10, we provide536

the relative reconstruction error norms for FLSQR, FLSQR-I, and FLSQR-R, where537
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true true (wavelet) observed

Fig. 9. Experiment 2: Image deblurring example. Here we show the true image, the wavelet
coe�cients of the true image, and the observed image.
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Fig. 10. Experiment 2: Relative reconstruction error norms for Golub{Kahan-based ap-
proaches. The regularization parameter λ is selected automatically using the discrepancy principle
for ‘FLSQR-I’ and ‘FLSQR-R’; λ = 0 is set for ‘FLSQR’ and ‘LSQR’.

LSQR on the original problem is provided for comparison. Although the flexible538

methods take a few more iterations, they provide slightly smaller relative reconstruc-539

tion errors compared to the standard solvers and the reconstructions are improved,540

as evident in the displayed images. Sub-images of the best reconstructions computed541

by Golub–Kahan-based methods are provided in Figure 11, along with the absolute542

error sub-images |xk − xtrue|, for some values of k. The smallest relative error norm543

and the iteration number (preceded by #) are reported in brackets. We observe that544

although the relative error norms are comparable, the flexible methods better capture545

the flat regions of the image.546

Next we compare FLSQR-R to the GAT method applied to the transformed547

problem, as well as to FISTA on the transformed problem. Here, the automatically548

computed regularization parameter (i.e., the one selected by FLSQR-R upon fulfill-549

ment of the discrepancy principle) is 7.46 · 10−5 , but it seems too small for FISTA.550

Thus, we also provide in ‘FISTA opt’ the results for FISTA with the optimal reg-551

ularization parameter 0.1, which is determined by searching over 10 logarithmically552

equispaced values between 10−3 and 1, and selecting the one delivering the smallest553

final relative reconstruction error norm. We observe that for a good choice of the reg-554

ularization parameter, FISTA reconstructions are similar to ours; however, for poor555

choices of the regularization parameter, FISTA reconstructions are either too blocky556

or contaminated with noise. The behavior of GAT is due a poor automatically chosen557

regularization parameter.558

Experiment 3. We consider a sparse X-ray tomographic reconstruction example559

with undersampled data. The goal of this experiment is to assess the performance560

of the new solvers based on the FGK decomposition for solving the transformed `1-561
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Fig. 11. Experiment 2: Reconstructed sub-images corresponding to the smallest relative re-
construction error norm for Golub{Kahan-based methods, along with absolute error sub-images
|xk − xtrue| in inverted colormap (where white corresponds to small absolute error component).
Relative reconstruction error norms and corresponding iteration numbers are reported in the titles.
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Fig. 12. Experiment 2: Relative reconstruction error norms are provided to compare the FGK
methods to some existing methods. ‘FISTA’ uses the regularization parameter selected by ‘FLSQR-
R’, and ‘FISTA opt’ uses a regularization parameter that was found empirically using the true
image.

regularized problem (2), where A is underdetermined and Ψ represents a 2D Haar562

wavelet transform with 4 levels. In [21] it is empirically shown that the compressive563

sensing theory applies when performing standard structured undersampling patterns564

and when solving either the `1 or the total variation regularized problems. The test565

problem considered here takes a vectorization of the well-known Shepp-Logan phan-566

tom as the exact solution xtrue; only roughly 40% of the pixels of the transformed567

exact solution Ψxtrue are numerically nonzero. A fairly underdetermined sparse ma-568

trix A of size 32580 × 65536 (i.e., roughly 50% undersampling) is generated using569

the paralleltomo function from AIR Tools II [19], which models a 2D equidistant570

parallel-beam scanning geometry, with the following parameters:571

N = 256, theta = 0:2:179, p = round(sqrt(2)*N), d = sqrt(2)*N .572
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Here N2 is the number of pixels of the phantom, p is the number of pixels of the573

detector, the source-detector pair is rotated at angles of projection theta, and d is574

the distance between the first and the last ray. Note that, with such undersampling575

and sparsity, and according to [21], recovery should be experimentally guaranteed.576

Gaussian white noise of level 10−2 is added to the exact data.577

Figure 13 displays the history of the relative error norms associated with different578

purely iterative regularization methods (i.e., with λ = 0 in (23)): since we are dealing579

with a rectangular matrix, only LSQR and LSMR together with their flexible versions580

are considered. We can clearly see the benefits of introducing flexibility into the581

solution subspaces: indeed, a greater accuracy is achieved by the flexible methods582

(with a computational cost comparable to the standard solvers), together with a less583

pronounced semiconvergence (this is particularly true for FLSMR, in accordance to584

the observations in [5]). The only potential drawback is the doubling of the storage585

requirements for FGK compared to GKB, but this is not a serious concern if the586

required number of iterations k is relatively small (as it is for all of the presented test587

problems).588

Figure 14 displays the history of the relative error norms when the ‘FLSQR-I dp’589

method is employed (with the regularization parameter chosen at each iteration by590
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Fig. 13. Experiment 3: History of the relative error norms, considering purely iterative Golub{
Kahan-based methods.
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Fig. 14. Experiment 3: History of the relative error norms, comparing the ‘FLSQR-I’ method
to ‘FISTA’, ‘SpaRSA’, ‘IRN’, and ‘PIRN’.
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exact FLSQR-I dp FISTA

(0.1626, # 28) (0.1722, # 150)

SpaRSA IRN PIRN

(0.8829, # 150) (0.2200, # 60) (0.1155, # 150)

Fig. 15. Experiment 3: Reconstructed sub-images of best quality for various solvers. Small-
est attained relative reconstruction error norms (up to 150 iterations) and corresponding iteration
numbers (preceeded by #) are reported.

the discrepancy principle), and compares it to other solvers for (23). In particular, we591

compare with FISTA, SpaRSA, IRN, and PIRN. As already remarked, all of these well-592

established solvers require the regularization parameter λ to be set at the beginning593

of the iterative process: for this experiment we choose λ = 4.2 · 10−5, which is the594

value computed by the classical discrepancy principle at the end of the ‘FLSQR-I dp’595

iterations (when also some stabilization occurred in the iteration-dependent values596

of the regularization parameter). We can clearly see that SpaRSA does not perform597

well for this problem, and a more accurate tuning of the regularization parameter598

may improve its reconstruction. FISTA requires more iterations than ‘FLSQR-I dp’599

to compute reconstructions of similar quality. Both SpaRSA and FISTA depend600

heavily on a good choice of the regularization parameter. Of the considered methods,601

the PIRN method results in the smallest relative reconstruction error norms, but it602

requires more iterations than ‘FLSQR-I dp’ to reach an optimal accuracy. PIRN also603

outperforms IRN, which is not so effective because of the small λ considered in this604

framework. The quality of the reconstruction does not significantly improve when605

additional PIRN or IRN iterations are performed. We do not show the behavior of606

the FLSQR-R, FLSMR-I, and FLSMR-R hybrid methods as they are very similar to607

the FLSQR-I method for this problem.608

Figure 15 shows the best reconstructions computed by each method considered609

in Figure 14. The best relative error and the iteration number (preceded by #) are610

reported in brackets. Again, we remark that the computational cost for each iteration611

of these methods is dominated by a matrix-vector product with A and one with A>.612

6. Conclusions and future work. In this paper, we describe flexible hy-613

brid iterative methods for computing approximate solutions to the (transformed)614

`p-regularized problem, for p ≥ 1. To handle general (non-square) `p-regularized615

least-squares problems, we introduce a flexible Golub–Kahan approach and exploit616
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it within a Krylov–Tikhonov hybrid framework. Theoretical results show that the617

iterates correspond to solutions of a full-dimensional Tikhonov problem that has been618

projected onto flexible Krylov subspaces of increasing dimensions. We describe var-619

ious extensions for effectively computing solutions that are sparse with respect to620

some invertible transformation. Our proposed methods are efficient in that they can621

access A and A> as function evaluations and they avoid inner-outer schemes, and622

automatic in that parameters such as regularization parameters and stopping itera-623

tions can be naturally selected within a hybrid framework. Numerical results validate624

these observations.625

Future work includes extensions to problems where Ψ is not invertible, and also626

to nonlinear regularization functionals (e.g., total variation) and nonconvex problems.627

Developing theoretical convergence results for flexible methods requires additional in-628

vestigation and would also apply to other solvers based on flexible preconditioning,629

e.g., [10, 12]. Furthermore, by incorporating multi-level decompositions, these flexi-630

ble hybrid methods can be exploited in a multi-parameter regularization framework,631

where a different sparsity regularization parameter is incorporated for each level.632
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