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A Simple Combination of Univariate Models

Fotios Petropoulos®*, Ivan Svetunkov®

@School of Management, University of Bath, UK
bCentre for Marketing Analytics and Forecasting, Lancaster University Management School, Lancaster, UK

Abstract

This paper describes the approach that we implemented to produce the point forecasts and
prediction intervals for the M4-competition submission. The proposed Simple Combina-
tion of Univariate Models (SCUM) is the median combination of the point forecasts and
prediction intervals of four models, namely Exponential Smoothing, Complex Exponential
Smoothing, Automatic Autoregressive Integrated Moving Average and Dynamic Optimised
Theta. Our submission performed very well in the M4-competition, being ranked 6" for
the point forecasts (with a small difference compared to the 2°¢ submission) and prediction
intervals and 2°¢ and 3 for the point forecasts of the weekly and quarterly data respectively.

Keywords: M4-competition, ETS, ARIMA, Theta method, Complex exponential
smoothing, median combination

1. The approach

Our approach is a simple combination of four models. All models were applied using exist-
ing implementations in the R statistical software. The following four models were considered
(Table [If summarises the R packages and functions used for each model and frequency):

e Exponential smoothing (ETS, Hyndman et al.; 2002)), which selects the best model,
underlying one of the fifteen exponential smoothing methods based on the minimisation
of a pre-specified information criterion. For time series with frequencies lower or equal
to 24 (yearly, quarterly, monthly and daily), we used the et s () function of the forecast
package (Hyndman et al., [2017)); for higher frequencies (weekly and hourly series), we
used the es () function of the smooth package (Svetunkov, 2018), which selects the
best model out of all the possible 30. The state-space model underlying the function
es () differs from the one underlying ets () mainly due to the usage of log normal
distribution for multiplicative error models and due to a different transition matrix
for the seasonal cases. In addition, es () is able to work on the data with frequencies
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greater than 24. Both functions use by default the corrected Akaike Information
Criterion (AICc) for the model selection. However, es () function uses Branch and
Bound algorithm, that reduces the pool of models under considerations from 30 to a
maximum of 10. This allows speeding up the selection process without a significant
reduction of the accuracy of the selected model.

Complex exponential smoothing (CES, |Svetunkov and Kourentzes, 2018)), which sidesteps
the ETS taxonomy and produces non-linear trends with a slope depending on the data
characteristics. There is a non-seasonal and a seasonal version of this model. The for-
mer allows sliding between level and trend without the need for dichotomic selection
of components appropriate for time series. The latter captures the type of season-
ality (additive or multiplicative) and produces the appropriate forecasts, once again
without the need to switch between the two option. The combination of these two
models allows capturing complex dynamics in data, sidestepping the ETS taxonomy.
So CES is a data-driven model that is supposed to capture well the wide variety of
tendencies. We used the auto.ces () function of the smooth package, which makes
a selection between two seasonal and one non-seasonal models using AICc (see details
in Svetunkov and Kourentzes| 2018)).

Automatic Autoregressive Integrated Moving Average model (ARIMA, Hyndman and
Khandakar| [2008)), which identifies the best ARIMA model. The automated selection
works as follows. First, the appropriate degree of differencing is determined by the
Kwiatkowski-Phillips-Schmidt-Shin unit root test. Then, four simple models (p = g =
0, p=qg=2o0r p+q =1, where p and ¢ refer to the autoregressive and moving
average orders of the models respectively) are fitted and the model with the lowest
AlICc is selected as the temporary best model. A search for a better model involves
varying the values of p and ¢ of the temporary best model by +1; if a better model is
indeed found (a model with lower AICc), then this model becomes the temporary best
model. Models with and without the constant are considered when searching for a best
model. The search continues until a better model cannot be found. The maximum
orders of p and ¢ that are tested are 5. A similar approach is used for the seasonal
ARIMA models, but restricting the maximum orders of seasonal AR and MA to 2.
The detailed explanation of the order selection mechanism is given in [Hyndman and
Khandakar| (2008). This mechanism is implemented in the auto.arima () function
of the forecast package.

Dynamic Optimised Theta Model (DOTM, Fiorucci et al. 2016b), which is an ex-
tension of the theta method for forecasting (Assimakopoulos and Nikolopoulos| 2000)
that achieved the best performance in the M3-competition (Makridakis and Hibon)
2000). The data are first checked for seasonality using an autocorrelation function test
of lag that matches the frequency of the data; we opted for a 90% confidence level,
similar to the original implementation of |Assimakopoulos and Nikolopoulos| (2000). If
the data are found to be seasonal, then the seasonality is removed as follows. The
seasonal indices are calculated via applying the multiplicative classical decomposition
method. Subsequently, the original data are divided with the respective seasonal in-
dices to produce the seasonally adjusted data. The original theta method decomposed
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the seasonally adjusted data into two “theta” lines; the first line is the linear regression
line on time and has no curvatures (# = 0) and the second has double the curvatures of
the seasonally adjusted data (@ = 2). According to |Assimakopoulos and Nikolopoulos
(2000), these two theta lines are able to capture the long- and short-term features of
the data. DOTM optimises for each series the 6 value of the theta line that focuses
on the short-term curvatures of the seasonally adjusted data. We used the dotm ()
function of the forecTheta package (Fiorucci et al., 2016a). Note that for the series
which are longer than 5000 observations (D2047, D2194 and D4099), DOTM is applied
only on the most recent 5000 observations.

Table 1: Forecasting models and the corresponding R functions.

Model Frequency R package Function

<24 forecast 8.2 ets ()
ETS > 24 smooth 2.3.1 es ()
CES All smooth 2.3.1 auto.ces ()
ARIMA Al forecast 8.2 auto.arima ()
DOTM All forecTheta 2.2 dotm ()

Table [2| shows the frequencies that we assumed per data set together with the forecasting
horizons that were required by the organisers of the M4-competition. Even if some data,
such as daily or hourly, could exhibit multiple seasonalities, we have opted for simplicity
and modelled each series using a single frequency that is suitable for the relatively short
required forecasting horizons.

Table 2: Horizons required and frequencies assumed for each data set.

Data set  Horizon Frequency

Yearly 6 1
Quarterly 8 4
Monthly 18 12
Weekly 13 52
Daily 14 7
Hourly 48 168

The median operator was used to combine the outputs of the four models. While more
complicated methods for averaging the prediction intervals information from the different
models could have been considered, |Lichtendahl et al.| (2013)) claim that a simpler method
of averaging the quantiles seems to work quite well. As such, we opt for simplicity and take
the median of the upper bounds for all the models and similarly take the median of the
lower bounds of the prediction intervals in order to obtain the combined intervals. After
averaging the point forecasts and prediction intervals using the median operator, we set any
negative values to zero, as the M4-competition data set consists of non-negative values.
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A flowchart of the proposed Simple Combination of Univariate Models (SCUM) approach
to produce the point forecasts is depicted in figure [I, where y denotes the in-sample time
series data, freq refers to the frequency of this series (for example, 12 for monthly data),
obs is the number of the observations in the in-sample data, g, is the point forecast for
method m and g is the combined point forecast. The upper and lower prediction intervals
are produced similarly.

m

TRUE

y=0

auto.ces(y) H Yces
u median

auto.arima(y) H Varima FALSE
TRUE 5! ) = tail(y, 5K) @

FALSE dotm(y) Hyw”” /

Figure 1: The flowchart of the SCUM approach.

=

2. Reproduction information

We have provided two R scripts that allow the reproduction of the point forecasts and pre-
diction intervals submitted to the M4-competition. These can be found in the GitHub folder
of the M4—competition.[| We used R version 3.4.3 (2017-11-30), forecast version 8.2, smooth
version 2.3.1, forecTheta version 2.2. Moreover, a parallel implementation was adopted in
our code, where the following packages were used: doSNOW (1.0.16), foreach (1.4.4), snow
(0.4-2), sterators (1.0.9).

All forecasts and prediction intervals were produced using the Bath Balena High Per-
formance Computing (HPC) Service at the University of Bath. More specifically, we used
Intel Skylake nodes that are dual socket nodes clocked at 2.6GHz. Each Skylake node has
2x Intel Xeon Gold 6126 CPUs providing 24 cores and 192GB memory (8GB per core) via
6 memory channels per CPU socket.

3. Computational time

In our scientific research we focus on forecasting in retail, which motivated a lot of
steps in the development of SCUM algorithm. Modern retail settings consist of hundreds

Thttps://github.com/M4Competition/M4-methods
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of thousands of combinations of stock keeping units and locations. Moreover, as multiple
replenishment cycles occur each day, the number of time series forecasts that need to be
produced each day by large multinational retailers approaches the 7 digit threshold. With
this exponential increase, the time that a method requires to produce forecasts becomes of
major importance. In fact, it is argued that any added benefits in accuracy when comparing
approach A with approach B (the benchmark) should be balanced against the additional
computational time that is needed to compute the forecasts for A compared to B (Nikolopou-
los and Petropoulos, 2018). In essence, the excess in computational time can be converted
to monetary cost and this can be, ideally, compared against the cost of the error that is
saved by using A over B.

Table [3| shows the average computational time (in seconds) that is needed to produce
forecasts for seasonal monthly simulated series of varying lengths (5, 10, 15 and 20 years
of in-sample data; 100 series were simulated in each length) using the SCUM approach.
We also present the time that automatic ETS and ARIMA approaches require to produce
forecasts on the same data (using the forecast package). The computations were performed
on a machine that features Intel Core i7 7500U with 16GB memory and Windows 10 Pro (no
parallelisation was applied). We observe that the good performance of SCUM involves only
moderate increase in computational time compared to approaches that are widely considered
as benchmarks in forecasting research (Petropoulos et al.;|2018). In contrast, approaches that
involve machine learning elements or selection of models using cross-validation techniques
(rolling origin evaluation) will result in a multifold increase of the computational time when
retraining of the models is required. An in-depth computational analysis of the SCUM
approach compared to other submissions in the M4-competition is provided by Makridakis
et al. (2019) in this special issue.

Table 3: Average computational time for producing forecasts (in seconds).

Observations (in months)

Approach 0" 00 g0 240
ETS 0542 0.632 0732 0.812
ARIMA 0580 2819 1278 1911
SCUM 1.884 4.489 3.313 4.285

4. Why did this approach perform well and how can it be improved?

In our opinion, the main reasons for the good performance of SCUM are as follows:

e Combination of the models:

The previous competitions (and even this one) showed that the combination of fore-
casting methods produces more accurate forecasts than the individual ones. This is
due to the increase robustness of the final forecasts and the decrease of risks of having
the completely incorrect forecasts. While each individual model might fail from time to
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time, their combination tends to be closer to the true value. Table 4| presents the per-
centage differences in the performance of our approach (SCUM) with each of the four
models for each frequency and error measure (symmetric Mean Absolute Percentage
Error, sSMAPE, and Mean Absolute Scaled Error, MASE) that was used in the M4-
competition. Positive values suggest that SCUM performs better over the respective
approaches. For example, the SMAPE of the ETS for the yearly data is 12.3% higher
than the respective value of SCUM and is calculated as 100 x AP fffj; g];é’zZESCUM %,
where sSMAPFEgrs and sMAPFEscyy are the sSMAPE values for the yearly data for
ETS and SCUM respectively. In some cases (notably for yearly data and ETS, CES
and ARIMA), the percentage differences are higher than 10%. It is worth mention-
ing that CES does not perform well for hourly data, with the respective percentage
differences of SCUM over this approach being 124.2% and 72.8% for the sMAPE and
the MASE respectively. Only in two cases, we observe deterioration in performance
compared to a single model; these are DOTM applied on yearly data and ARIMA
applied on hourly data when performance is measured by the MASE.

Table 4: Percentage differences in the performance of the combined forecast using the median operator
(SCUM) with the four individual models and a combination based on the arithmetic mean.

Data set ETS CES ARIMA DOTM Mean Combination

sMAPE Yearly 12.3%  10.8% 11.0% 0.1% 0.9%
Quarterly 51%  80%  65%  3.0% 0.7%
Monthly 5.2% 6.7% 4.6% 3.6% -0.3%
Weekly 5.5%  21.4% 0.7% 14.6% 1.5%
Daily 4.5% 2.1% 7.1% 2.2% 0.8%
Hourly 10.5% 124.2% 4.3% 6.2% 16.0%
Overall 7.1% 8.5% 6.7% 2.6% 0.3%
MASE  Yearly 11.4% 13.3% 10.2% -0.2% -0.1%
Quarterly  3.8% 7.2% 4.2% 6.1% 0.2%
Monthly — 3.8%  57%  20%  7.2% -0.3%
Weekly 7.6%  13.9% 5.8% 15.5% 1.2%
Daily 84%  04%  58%  1.3% 1.8%
Hourly 154% 72.8%  -3.9%  22.8% 5.7%
Overall 7.7% 9.6% 6.5% 3.3% 0.0%

e Pool of forecasting models:

The forecasting models used in our approach are diverse. ETS is based on time se-
ries decomposition, ARIMA captures inter-dependencies in time series, CES focuses
on non-linear long-term tendencies in time series, while DOTM employs short-term
curvatures and long-term trends. So, each of the model captures something that the
others cannot do. As it can be seen in table {4} the ranks of the four models are dif-
ferent for different frequencies of data. At the same time, the combination of such
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different forecasting models leads to the increase in the accuracy in comparison with
the individual performance of each of them.

e Median combination:

Instead of using mean, we used median. In essence, the two models that produce the
most extreme forecasts are discarded and the final forecast is in between of the two
remaining models. Although it might seem that this should not make a difference for
such a small pool of models, this allow us to decrease the influence of models that failed
in some of time series. For example, if ARIMA produced the forecast with downward
trend, while the other models produced the upward one, the median makes sure that
the final forecast has the latter. The last column of table dl shows that the choice of
the median operator (as opposed to the mean) indeed resulted in small improvements
for the majority of the data frequencies. Table |5 shows the frequencies with which
each of the four models contributed in the calculation of the final point forecasts.
Note that different models might be used for different forecasting horizons within the
same time series. For example, the required forecast horizon for the yearly frequency
was six period ahead and the number of yearly series was 23000. This means that
we produced 138000 point forecasts combinations for the yearly frequency. Out of
these 138000 combinations, 81616 (59.1%) used ETS, 37891 (27.5%) used CES, 80077
(58%) used ARIMA and 76527 (55.5%) used DOTM. In a small number of cases, two
or more models produced the same forecasts, thus more than two models effectively
contributed to the final combined forecast. As a result, the sums per rows in table[5|are
slightly higher than 200% (276111 or 200.08% for the yearly frequency). Overall, ETS
models are more frequently used (56 to almost 65% for the various subsets), followed
by DOTM; CES is the model that is used less often, with a frequency that varies from
27.5 to almost 50% of the cases.

Table 5: Relative frequencies that each model was used to the calculation of the final point forecasts.

Data set ETS CES ARIMA DOTM
Yearly 59.1% 27.5%  58.0% 55.5%
Quarterly 56.3% 37.7% 52.5%  53.7%
Monthly — 57.1% 41.9%  44.8% 56.3%
Weekly 61.5% 49.9%  42.2% 47.0%
Daily 63.2% 38.8%  50.0% 48.2%
Hourly 64.7% 352%  46.2% 54.1%

The same principles were used for the interval forecasts, making them robust in compar-
ison with the prediction intervals produced by individual models.
Practices that could have been applied to further enhance the accuracy of SCUM include:

e Optimal selection of in-sample window of data:



SCUM uses the entire in-sample history of data (in the case of DOTM, the most
recent 5000 observations are used). However, one could argue that such long histories
might not be relevant when the forecast horizon is relatively short. For example,
the longest monthly series consists of 2794 observations when the required forecast
horizon is just 18 months ahead. This argument becomes particularly clear in the case
of structural changes in the patterns of the data and/or when outlying values have been
recorded. In such cases, fitting the models only on a subset of the most recent data
that does not include such irregularities might yield more robust forecasts. However,
we must underline that this subset should still be long enough to allow for appropriate
estimation of the models’ parameters and the uncertainty around the forecasts. A
strategy for defining an optimal in-sample window for each series could include the
application of techniques for identifying structural changes in the historical patterns
of the data; in case of structural changes, only the latest data after such changes
should be considered for fitting the models. Alternatively, an empirical exercise could
shed light on an optimal in-sample window in an aggregate manner (per frequency or
category) rather than per individual time series.

Parameter optimisation that explicitly corresponds to the cost functions:

For all of the models, we used the default settings. This implies the minimisation
of Mean Squared Error (MSE) of one-step-ahead forecast. This can be considered as
a limitation, because the estimator is not aligned with the error measures used by
the organisers of the competition (an average of sSMAPE and MASE). If each of the
models was estimated via the minimisation of OWA, then there could be potential gains
in the accuracy. This also applies to the prediction intervals, which were generated
directly from our models. In order to improve the accuracy of the intervals, we could
have generated them from the models with the specific estimators driven by the error
measure for intervals (Mean Scaled Interval Score).

Multiple temporal aggregation (MTA):

Many recent studies have shown the positive impact of multiple temporal aggregation
on forecasting accuracy (for example, see: Kourentzes et al. 2014} [Petropoulos and
Kourentzes, 2014; |Athanasopoulos et al., 2017). Such improvements are associated
with primarily reducing the model uncertainty by expressing the input data in alter-
native time frequencies. We would expect that an integrated SCUM/MTA approach
would further increase forecast accuracy, arguably with an increase in the computa-
tional cost.

Multiple seasonal cycles:

When forecasting series with high frequency, the results could have been possibly
improved if models that explicitly consider multiple seasonal cycles were applied. To
this direction, the multiple seasonal decomposition function of the forecast package
could be used (mslt ()). This would be especially important if the desired horizons
were greater than the ones requested by the organisers of the M4-competition.
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5. Final comment

As it can be seen from this note, SCUM is a very simple approach that relies on estab-
lished forecasting models and uses one of the main forecasting principles: combination. The
application of SCUM is very straightforward, as the four components of this approach are
readily available in the R statistical software. As it can be seen from the preliminary results
of the M4-competition (Makridakis et al., 2018)), this simple approach leads to accurate fore-
casts, placing SCUM on the 6" place in the ladder. A comparison of the SCUM approach
with the top-five methods of the M4-competition suggests that the SCUM is probably the
simplest forecasting approach among the leaders of the competition, providing a balance
between computational complexity and forecasting accuracy.
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