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Three-layer Flows in the Shallow Water Limit

By Francisco de Melo Viŕ�ssimo and Paul A. Milewski

Dedicated to Roger Grimshaw

In this work, we formulate and discuss the shallow water limit dynamics of
the layered �ow with three layers of immiscible �uids of di�erent densities
bounded above and below by horizontal walls. We obtain a resulting
system of four equations, which may be non-local in the non-Boussinesq
case. We provide a systematic way to pass to the Boussinesq limit, and
then study those equations, which are �rst order PDEs of mixed type,
more carefully. We show that in a symmetric case the solutions remain
on an invariant surface and using simple waves we illustrate that this is not
the case for non-symmetric cases. Reduced models consisting of systems
of 2 equations are also proposed and compared to the full system.

1. Introduction

The study of internal waves in strati�ed �uids continues to attract much
attention, as these waves are ubiquitous in the atmosphere and the ocean
(see e.g. [1], [2]). They play an important role in transporting energy
over long distances, and, when they break, contribute to mixing [3]. Hor-
izontally propagating waves are usually long: their horizontal scales are
much longer than the vertical ones [4]. The simplest �uid con�guration
for internal waves are layered interfacial �ows, where the �uid is assumed
to be strati�ed in layers of constant density. The study of these �ows
in the long wave limit approximates physical settings where there are
sharp density variations, and yield a variety of mathematical models, de-
pending on the relative strength of di�erent e�ects. The resulting models
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can either be weakly or fully nonlinear, and dispersive or non-dispersive.
Physically, nonlinearity is controlled by the wave amplitude relative to the
height of the �uid domain, whereas dispersion is controlled by the relative
size of horizontal length scales compared to this domain height. Strongly
nonlinear, non-dispersive approximations take the form of hyperbolic or
mixed type �rst order PDEs, �rst derived in this context by Long [5].
Weakly nonlinear dispersive approximations result in Korteweg-de Vries
type models [6], [7] and fully nonlinear dispersive approximations lead to
the so-called Miyata-Camassa-Choi system [8], [9].

In this paper we consider a strongly nonlinear non-dispersive setting
in the case of three layers (and thus two interfaces) bounded above and
below by horizontal walls. This case is important as it captures mode
2 internal waves - which is a slower family of waves with out-of-phase
pycnocline displacements - in addition to the faster mode 1 waves. These
waves, although less common than mode 1 waves have now been observed
in the ocean [10]. The case of two-layer �ows in the non-dispersive set-
ting has been studied extensively (see e.g. [5], [11], [12]) and since the
resulting equations are a system of 2 �rst order PDEs, certain results can
be obtained analytically. For example, one can �nd precise conditions
that ensure that the solutions remain in the hyperbolic domain up to
breaking [12] or construct shock solutions in the internal dam-break (lock
exchange) problem [13], [14]. The case of three layer �ows is much more
complicated as the resulting equations are a system of 4 PDEs and many
of the methods used before no longer apply.

We �rst derive the equations governing the �ow in the non-Boussinesq
case and show that the nature of the resulting system is dependent on
the boundary conditions. For many cases the system is non-local, a result
linked to the paradox of non-conservation of horizontal momentum [15].
We then turn to the dynamics in the Boussinesq limit, where we show
that certain symmetric mode 2 solutions are con�ned to an invariant
2 dimensional subspace of the 4 dimensional phase plane and propose
new variables that better capture mode 1 and mode 2 solutions and use
simple waves to show that this invariant manifold construction is not
possible for non-symmetric solutions. Finally we propose some reduced
models in terms of systems of 2 PDEs that can be used to approximate
the individual modes.

2. Formulation

Consider a two-dimensional, irrotational �ow of ideal, incompressible and
immiscible �uids in three layers of di�erent densities, under the action of
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Figure 1: Schematic illustration for the three-layer problem.

gravity and bounded by horizontal rigid lids at the bottom and at the
top, as shown in Figure 1.

The �uid pressure and velocity �elds in each layer are given by
pj (x, y, t) and u j (x, y, t) = (u j (x, y, t), v j (x, y, t)) respectively, with j = 1
representing the lower layer, j = 2 representing the middle layer and
j = 3 representing the upper layer. The �uid density is given by � j ,
j = 1, 2, 3, where the �uid in a layer is denser than the one above it, i.e.,
� 1 � � 2 � � 3. The height of each of the active layers is given by hj (x, t)
and the interface between the layers, assumed to be a graph, are given
by � 1 = {(x, y) : y = h 1(x, t)} and � 2 = {(x, y) : y = (h 1 + h 2)(x, t)}, as
schematically indicated in the Figure 1.

The mathematical model [4], [16] for the dynamics in each layer is
given by the incompressible Euler equations

� j
Du j

Dt
= ��p j � F j (1)

� · u j = 0, for j = 1, 2, 3. (2)

for j = 1, 2, 3, with F j being the external force �eld. In this model, only
gravitational forces act, with F j = (0, � j g).

The boundary conditions are the impermeability condition at the bot-
tom and top walls respectively:

v1 = 0 on y = 0, (3)

v3 = 0 on y = H, (4)
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the kinematic conditions (KBC) and the dynamic condition (DBC) on � 1
respectively given by

h1,t + u 1h1,x = v 1, (5)

h1,t + u 2h1,x = v 2, (6)

p1 = p 2, (7)

while on � 2 these conditions are

(h1 + h 2)t + u 2 (h1 + h 2)x = v 2, (8)

(h1 + h 2)t + u 3 (h1 + h 2)x = v 3, (9)

p2 = p 3. (10)

The KBCs above imply, for j = 1, 2, and n j being the normal to � j

nj · uj = n j · uj+1

on the interface � j . This states the continuity of normal velocity across
interfaces. The model can also be shown to satisfy

h1 + h 2 + h 3 = H, (11)

where H is the constant total height of the channel, as shown in Figure
1.

This gives us a free boundary problem for 9 �rst order partial di�eren-
tial equations with 9 boundary conditions for the 9 unknowns uj , vj , pj ,
j = 1, 2, 3. The unknown domain appears through the heights hj in the
boundary conditions.

2.1. Governing equations

Our aim here is to rewrite equations (1) to (11) as a 4 × 4 system of �rst
order PDEs [12], in the long wave limit [4], [16], [17] where the verti-
cal variation in the horizontal velocity is small, and its vertical average
represents this velocity well.

In order to proceed, we shall compute the vertical average of the quan-
tities u j , vj and pj on each layer. The vertical mean of uj , for j = 1, 2, 3,
is de�ned as

uj (x, t) .=
1

hj (x, t)

� yj (x,t)+h j (x,t)

yj (x,t)
uj (x, y, t)dy,

where yj (x, t) is the coordinate of the lower interface of the j-th layer,
and with similar de�nitions for vj and pj . Using the Leibniz rule we write
expressions for the integrals of quantities such as uj,x , uj,t and pj,x , for
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j = 1, 2, 3, in terms of the averages above. For instance,

(hj uj )x =
� yj +h j

yj

uj,x dy +
�
(yj + h j )xuj |y=y j +h j � y j,x uj |y=y j

�
. (12)

2.1.1. Conservation of volume equations. Consider the incompressibil-
ity condition (2)

� · u j = u j,x + v j,y = 0.

Taking the vertical integral and using (12) leads to

(hj uj )x �
�
(yj + h j )xuj |yj +h j � y j,x uj |yj

�
+

�
vj |yj +h j � v j |yj

�
= 0. (13)

From the KBCs on each interface, and taking j = 1, 2, 3 we have

hj,t + (h j uj )x = 0, (14)

which states the conservation of volume for the �ow in each layer. Note
that, since the density is constant in each layer, conservation of volume
is equivalent to conservation of mass.

2.1.2. Momentum equations. We now recall the Euler equations (1),
written for each layer in horizontal and vertical components respectively

� j (uj,t + u j uj,x + v j uj,y ) = �p j,x , (15)

� j (vj,t + u j vj,x + v j vj,y ) = �p j,y � � j g. (16)

Our aim here is to carry out an averaging as in the previous section. Con-
sider the lowest layer. From equation (15) for j = 1, after integrating and
using (12) for x and time derivatives and using bottom impermeability,
we obtain

� 1

�
(h1u1)t +

�
h1u2

1

�

x

�
� � 1u1|h1 (h1,t + u 1|h1 h1,x � v 1|h1 )

= �(h 1p1)x + p 1|h1 h1,x . (17)

This equation can be simpli�ed by using that the KBC on � 1 and becomes

� 1

�
(h1u1)t +

�
h1u2

1

�

x

�
= �(h 1p1)x + P 1h1,x , (18)

where here and in what follows we have denoted p on �j by Pj , and P0, P
the bottom and top pressures respectively. A similar vertical integration
of the vertical momentum equation (16) for j = 1 leads to

� 1((h 1v1)t + (h 1u1v1)x � v 1|h1 (h1,t + u 1|h1 h1,x � v 1|h1 )) = P 0 � P 1 � g� 1h1,

which using the KBC on � 1 simpli�es to

� 1 ((h 1v1)t + (h 1u1v1)x ) = P 0 � P 1 � g� 1h1. (19)
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This same routine can be applied to the middle layer to get equations

� 2

�
(h2u2)t +

�
h2u2

2

�

x

�
= �(h 2p2)x + P 1h1,x � P 2(h1 + h 2)x , (20)

� 2 ((h 2v2)t + (h 2u2v2)x ) = P 1 � P 2 � g� 2h2, (21)

and also to the upper layer, resulting in

� 3

�
(h3u3)t +

�
h3u2

3

�

x

�
= �(h 3p3)x � P 2(h1 + h 2)x , (22)

� 3 ((h 3v3)t + (h 3u3v3)x ) = P 2 � P � g� 3h3. (23)

Equations (19)-(23) are exact but are not closed, as they relate the
evolutions of mean quantities to higher order moments. The shallow water
approximation allows us to close the system.

2.1.3. The shallow water limit. The continuation of the derivation in-
volves the shallow water (or long wave) approximation, that is, that hor-
izontal variations are slowly-varying compared to vertical ones. This is
done by scaling horizontal derivatives with a small parameter µ relative
to vertical derivatives. As we must satisfy incompressibility in each layer,
we obtain that v must scale with µ also. We then turn to the vorticity
equation in each layer

� j,t + u j � j,x + v j � j,y = 0, (24)

where

� j = µ 2vj,x � u j,y . (25)

The vorticity equation describes simple advection and therefore the vortic-
ity is preserved along particle paths. If we therefore assume that the initial
data satis�es uj,y = O(µ 2) and vj,x = O(1), we have that � j = O(µ 2) for
all time, and can conclude that uj,y = O(µ 2) for all time. This implies
that the horizontal velocities are uniform in y to leading order and can
be written

uj (x, y, t) = uj (x, t) + µ 2ũ j (x, y, t), (26)

From this one immediately concludes that

u2
j = uj

2 + µ 4 ũ 2
j , (27)

uj vj = uj vj + µ 2 ũ j vj . (28)

A similar rescaling of the vertical component of the Euler equations
(equation (16)) is given by [12]

µ2 (vj,t + u j vj,x + v j vj,y ) = �
pj,y

� j
� g, (29)
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from which one concludes that the leading order pressure satis�es the
hydrostatic balance

pj,y = �g� j + O(µ 2), (30)

which can be integrated, and, together with the continuity of pressure at
each interface yields

p1(x, y, t) = � 1g(h1 � y) + � 2gh2 + � 3gh3 + P, (31)

p2(x, y, t) = � 2g(h1 + h 2 � y) + � 3gh3 + P, (32)

p3(x, y, t) = � 3g(H � y) + P. (33)

From equations (27) and (31)-(33), we are able to simplify the averaged
horizontal momentum equations. After some calculations, we get

� 1 (u1,t + u 1u1,x ) + (� 1 � � 3)h1,x + (� 2 � � 3)h2,x = �P x , (34)

� 2 (u2,t + u 2u2,x ) + (� 2 � � 3)(h 1,x + h 2,x ) = �P x , (35)

� 3 (u3,t + u 3u3,x ) = �P x . (36)

Note that we have dropped the bars over in uj and set g = 1. Conservation
of mass reads

hj,t + (h j uj )x = 0, (37)

for j = 1, 2, 3. The height H and average density can be normalised:

h1 + h 2 + h 3 = 1, (38)

� 1 + � 2 + � 3

3
= 1. (39)

The set (34)-(38) consists of a closed system of seven equations for seven
unknowns (h1, h2, h3, u1, u2, u3, P ). In solving for the pressure below we
will see that in most cases the equation for P has an elliptic nature with
various consequences.

2.1.4. The volume �ux. An important quantity is the volume �ux,
de�ned as

Q(x, t) .= h 1u1 + h 2u2 + h 3u3. (40)

From the conservation of mass equations,

Qx(x, t) = (h 1u1 + h 2u2 + h 3u3)x = �(h 1 + h 2 + h 3)t = 0.
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and hence Q is a function of t only. The time evolution of the �ux will
provide the equation for P :

Q�(t) = h 1,tu1 + h 1u1,t + h 2,tu2 + h 2u2,t + h 3,tu3 + h 3u3,t .

= �
�

h1u2
1 + h 2u2

2 + h 3u2
3 +

h2
1 + h 2

2

2

�

x

�h 2h1,x � h 1

�
� 2

� 1
h2,x +

� 3

� 1
h3,x

�
�

� 3

� 2
h2h3,x

�
�

h1

� 1
+

h2

� 2
+

h3

� 3

�
Px . (41)

For certain cases, Q is set by the boundary conditions on uj , and is
therefore constant in time. Two scenarios in which this occurs are in
the presence of vertical sidewalls, implying Q = 0, and when far �eld
inlet conditions �x Q to a constant value (which could be set as zero by
choosing an appropriate reference frame) [12]. The equation above then
becomes immediately an equation for P . On the other hand if boundary
conditions are known in P (e.g. for a periodic domain) then the equation
can be solved for Px , integrated and the boundary conditions applied,
yielding an expression for Q�. which can be substituted back into (41)
again yielding again an equation for P . We shall postpone a detailed
discussion of these to the next chapter.

2.1.5. Reduction to smaller systems. We shall recast the system in
new variables. Introduce the di�erences of layer thickness

d1 = h 2 � h 1,

d2 = h 3 � h 2,

which track the displacement of interfaces, and the shear variables

w1 = u 2 � u 1,

w2 = u 3 � u 2.

These together with the identities (38) and (40) give a transfor-
mation between the variables (h1, h2, h3, u1, u2, u3) and the variables
(d1, d2, w1, w2, Q). The evolution depends only on these 5 variables, and
we write these equations below. In what follows, consider the parameters

r1 =
� 2

� 1
= 1 � r and r 2 =

� 3

� 2
= 1 � rR,
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where r � 0, R > 0 are positive constants (Atwood numbers [4]), and the
rescaled variables:

w̃ j =
wj�

r
,

t̃ = t
�

r,

q =
Q
�

r
,

P
(1 + r 1 + r 1r 2)

= rp.

Under these changes, our equations become

d1,t + qd1,x +
�

w1

3
(1 � d 2) �

d1

3
(w1 + w 2)

�

x

�
�

d2
1

3
(2w1 + w 2) +

d1d2

3
(w1 + 2w 2)

�

x
= 0, (42)

d2,t + qd2,x +
�

w2

3
(1 + d 1) +

d2

3
(w1 + w 2)

�

x

�
�

d2
2

3
(w1 + 2w 2) +

d1d2

3
(2w1 + w 2)

�

x
= 0, (43)

w1,t + qw1,x +
��

2d1 + d 2

3

�
(1 � w 2

1) �
w1w2

3
(1 + d 1 + 2d2) �

w2
1

6

�

x

�
rR
3

�
1 + d1 + d 2

3

�

x
= rp x , (44)

w2,t + qw2,x +
��

d1 + 2d2

3

�
(R � w 2

2) +
w1w2

3
(1 � 2d 1 � d 2) +

w2
2

6

�

x

= rR(1 � r)p x , (45)

and

q�(t) + (F D (d1, d2, w1, w2, q) + F H (d1, d2, R)) x

�
rR
9

(1 � 2d 1 � d 2) (1 + d 1 + 2d2)x

= �F p(d1, d2, r, R)p x , (46)
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where

FD (d1, d2, w1, w2, q) =
�

q2 �
�

(1 � 2d 1 � d 2)
w1

3
+ (2 � d 1 � 2d 2)

w2

3

� 2
�

+
��

1 � 2d 1 � d 2

3

�
(w1 + w 2)2 +

�
1 + d1 � d 2

3

�
w2

2

�
,

FH (d1, d2, R) =
�

(1 � 2d 1 � d 2)2 + R((1 + d 1 � d 2) + (1 � 2d 1 � d 2))2

18

�

and

Fp(d1, d2, r, R) = 3D(r, R) + rD(r, R)
�
(R(r � 1) � 2)

+ (2 + R(1 � 2r))d 1 + (1 + R(2 � r))d 2
	
, (47)

with

D(r, R) =
[3 + r(R(r � 1) � 2)] 2

3 [1 + r(R(r � 1) � 1)]
,

and where we have dropped the tildes for simpli�cation. The set of equa-
tions (42) to (46) may now be rewritten as the non-Boussinesq system,
given by equations (42), (43) and

w1,t + qw1,x +
��

2d1 + d 2

3

�
(1 � w 2

1) �
w1w2

3
(1 + d 1 + 2d2) �

w2
1

6

�

x

�
rR
3

�
1 + d1 + d 2

3

�

x

�
r 2R

9

�
(1 � 2d 1 � d 2) (1 + d 1 + 2d2)x

Fp(d1, d2, r, R)

�

+ r
�

(FD (d1, d2, w1, w2, q) + F H (d1, d2, R)) x

Fp(d1, d2, r, R)

�

= �
rq�

Fp(d1, d2, r, R)
, (48)

w2,t + qw2,x +
��

d1 + 2d2

3

�
(R � w 2

2) +
w1w2

3
(1 � 2d 1 � d 2) +

w2
2

6

�

x

+ rR(1 � r)
�

(FD (d1, d2, w1, w2, q) + F H (d1, d2, R)) x

Fp(d1, d2, r, R)

�

�
r 2R2(1 � r)

9

�
(1 � 2d 1 � d 2) (1 + d 1 + 2d2)x

Fp(d1, d2, r, R)

�

= �
rR(1 � r)q �

Fp(d1, d2, r, R)
. (49)
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2.2. The Boussinesq equations

The Boussinesq limiting case, when the di�erence of densities are negli-
gible, can be seen as a particular case of the equations above. First, note
that in the limit r � 0, equation (47) becomes

Fp(d1, d2, r, R) = 9.

It follows that (41) can be written in conservation form

q�(t) + (F D (d1, d2, w1, w2, q) + F H (d1, d2, R) + 9p) x = 0,

and that the �ux is a global conserved quantity depending on the bound-
ary values of FD � F H + p. For example q� = 0 in a periodic domain, in
which case we can set q = 0 by a Galilean transformation.

Thus, the three-layer shallow water Boussinesq equations in a periodic
domain can be derived by setting q = 0 and by taking the limit r � 0 in
the non-Boussinesq equations (42), (43), (48) and (49). It follows that

d1,t +
�

w1

3
(1 � d 2) �

d1

3
(w1 + w 2)

�

x

�
�

d2
1

3
(2w1 + w 2) +

d1d2

3
(w1 + 2w 2)

�

x
= 0, (50)

d2,t +
�

w2

3
(1 + d 1) +

d2

3
(w1 + w 2)

�

x

�
�

d2
2

3
(w1 + 2w 2) +

d1d2

3
(2w1 + w 2)

�

x
= 0, (51)

w1,t +
��

2d1 + d 2

3

�
(1 � w 2

1) �
w2

1

6
�

�
1 + d1 + 2d2

3

�
w1w2

�

x
= 0, (52)

w2,t +
��

d1 + 2d2

3

�
(R � w 2

2) +
w2

2

6
+

�
1 � 2d 1 � d 2

3

�
w1w2

�

x
= 0. (53)

We shall refer to this limit as the Boussinesq limit. The rescaling and limit
above is a mathematically formal way of deriving the Boussinesq system,
instead of the physically based approach of ignoring density variations in
the inertial terms, commonly used in the literature [4].
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3. Results on three-layer �ows

3.1. Boundary conditions and the Benjamin-Camassa paradox

The �ux q and the deviation pressure p are related by the equation (46),
which may result in the non-locality of the pressure, depending on the
boundary conditions. As shown before, in the Boussinesq case, the volume
�ux is constant (unless externally forced to be non-constant) and can be
eliminated from the system.

Sidewalls or no-�ux conditions force a behaviour similar to the non-
Boussinesq case, as q = 0 and equation (46) becomes

px = �
(FD + F H )x

Fp
+

rR
9

(1 � 2d 1 � d 2) (1 + d 1 + 2d2)x

Fp
. (54)

One can then insert (54) into equations (48) and (49) and close the system,
eliminating the pressure.

For the case of periodic boundary conditions (of period L), then we
can remove the pressure from (46) and �nd a nonlocal evolution equation
for the �ux:

q� = �


 � L/2

�L/2
(Fp)�1 dx

� �1 � L/2

�L/2
(Fp)�1 (FH + F D )xdx

+
rR
9


 � L/2

�L/2
(Fp)�1 dx

� �1 � L/2

�L/2
(Fp)�1 (1 � 2d 1 � d 2) (1 + d 1 + 2d2)x dx.

One can then replace q� above in (46) to compute the pressure, which
can then be substituted in (48) and (49) to close the system which itself
becomes nonlocal.

A related issue is the Benjamin-Camassa paradox (Camassa et al. [15]
and Benjamin [18]) which arises from the observation that strati�ed �ows
between two horizontal walls may not conserve horizontal momentum - a
paradox as there is no apparent mechanism for a net horizontal force to
be applied on the �uid.

Consider the case in which far-�eld conditions are imposed. There are
two possibilities, either q is time-independent, and one can set q = q� = 0
and the sidewall case is recovered, or, one may have even stronger far-
�eld conditions imposed on the physical variables, such as hj achieving
the same constant value and uj � 0 as x � ±�. Thus, q = 0 and one
can compute the di�erence of the values attained by the pressure at the
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far-�eld extremes, denoted by [p]+�
�� , from equation (46), yielding

[p]+�
�� = �

� +�

��
(Fp)�1 (FH + F D )xdx

�
rR
9

� +�

��
(Fp)�1 (1 � 2d 1 � d 2) (1 + d 1 + 2d2)x dx. (55)

The total (horizontal) momentum is de�ned as the integral of the local
horizontal momentum

M = � 1h1u1 + � 2h2u2 + � 3h3u3,

written above in the �ow variables h j , uj . Note that the momentum
equations (34) to (36) implies that

M t +

�


3�

j=1

� j hj u2
j + (� 1 � � 3)

h2
1

2
+ (� 2 � � 3)

h2
2

2
(� 1 � � 3)h1h2

�

�

x

= �P x

and hence, rescaling the variables as in Section 2.1.5, integrating in x
from �� to +� and using that u j � 0 at in�nity and that h j tend to a
same constant value when x � ±� lead to

d
dt

� +�

��
Mdx = � [p] +�

�� .

Therefore, the total horizontal momentum is conserved if and only if the
integrals on the right-hand side of (55) are zero, which is not the case for
all choices of dj , wj , r and R.

This non-conservation arises from the fact that equation (46) can be
thought of as an elliptic problem for the pressure, and hence allowing the
propagation of information about the �ow at in�nite speed to ±�. This
is not the case, for example, if the rigid lid is removed and replaced with
either a free-surface or a �exible lid. Note that, for r � 0, which corre-
sponds to the Boussinesq approximation, the second integral disappears
and denominator of the integrand Fp tends to 1, making the right-hand
side a total derivative in x and therefore the conservation of momentum
is recovered.

3.2. Linear waves on quiescent �ows

Consider the general situation shown in Figure 1 and described by Equa-
tions (1) to (11). By perturbing the uniform state of constant h j � H j

and zero uj , vj , with travelling wave modes proportional to ei(kx��t) , one
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Figure 2: Evolution of a Gaussian pulse in a three-layer �ow and its
decomposition into mode 1 and mode 2 waves. The nonlinear equations
(50) to (53) were solved to demonstrate both the splitting of pulses and
the nonlinear steepening behind the mode 1 pulses.

obtains the following dispersion relation for �:

[� 2 cosh(|k|H2)(� 3 coth(|k|H 3) + � 1 coth(|k|H 1))

+ sinh(|k|H 2)(� 2
2 + � 1 coth(|k|H 1))� 3 coth(|k|H 3)))]� 4

+ g|k|[� 2(� 3 � � 1) cosh(|k|H2) + sinh(|k|H 2)((� 3 � � 2)� 1 coth(|k|H 1)

+ (� 2 � � 1)� 3 coth(|k|H 3))]� 2

+ (g|k|) 2(� 3 � � 2)(� 1 � � 2) sinh(|k|H 2)� = 0.

Rescaling the variables as before and taking the shallow water limit, where
|k|H 1, |k|H 2, |k|H 3 � 1, gives the equation for wave-speeds � = �/k :

(� 2� 3R1 + � 1� 3R2 + � 1� 2R3) � 4

+ ((� 2 � � 1)� 3R1R2 + (� 3 � � 1)� 2R1R3 + (� 3 � � 2)� 1R2R3)) � 2

+ (� 2 � � 1)(� 3 � � 2)R1R2R3 = 0.

Here, Rj = H j /H with R 1/R 2, R2/R 3 or order 1. This biquadratic
equation corresponds to two modes in each direction, one being the fast
mode, usually called mode 1 and the other being the slow mode, com-
monly referred as mode 2. These are numerically illustrated in Figure 2,
where the evolution of a gaussian pulse decomposes into 4 smaller pulses
(righr panel), two of them travelling faster and with in-phase vertical dis-
placements (mode 1 waves, seen at x 	 ±3) and two moving slower and
out-of-phase vertical displacements (mode 2 waves, seen at x 	 ±1.5).
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3.3. Symmetric solutions and evolutionary properties

In this section, we shall discuss the Boussinesq system, mainly in the
special case where R = 1 (i.e. the jumps in density are the same on both
interfaces). Denoting the vector of solutions U = (d1, d2, w1, w2)T , the
system may be written as

U t + A(U)U x = 0, (56)

where A(U) is given from equations (50) to (53) by

�
1
3

�

�
�
�
�
�
�
�


w1 (1+4d 1 +d 2 ) w 1 (1+d 1 ) d1 (1+2d 1 +d 2 ) d1 (1+d 1 +2d 2 )
+w 2 (1+2d 1 +2d 2 ) +w 2 (2d1 ) +(d 2 �1)

w1 (2d2 ) w 1 (2d1 +2d 2 �1) d 2 (2d1 +d 2 �1) d 2 (d1 +2d 2 �1)
+w 2 (d2 �1) +w 2 (d1 +4d 2 �1) �(d 1 +1)

2(w 2
1 �1) (w 2

1 �1) w 1 (1+4d 1 +2d 2 ) w 1 (1+d 1 +2d 2 )
+w 1 w2 +2w 1 w2 +w 2 (1+d 1 +2d 2 )

(w 2
2 �R) 2(w 2

2 �R) w 2 (2d1 +d 2 �1) w 1 (2d1 +d 2 �1)
+2w 1 w2 +w 1 w2 +w 2 (2d1 +4d 2 �1)

�

�
�
�
�
�
�
�
�

For R = 1, these equations are invariant under the symmetry transfor-
mation

d1 
� �d 2,

w1 
� �w 2.

More formally, for U = (d 1, d2, w1, w2)T , there is an isomorphism �

�(U) = (�d 2, �d 1, �w 2, �w 1)T .

and the system

U t + A(U)U x = 0 (57)

is equivalent to

Ũ t + A( Ũ) Ũ x = 0,

where Ũ .= �(U). Physically, this invariance corresponds to reversing
the direction of gravity and exchanging the layers accordingly. For this
reason, we shall refer to this con�guration when R = 1 as the symmetric
Boussinesq case.

An immediate consequence is that the symmetric Boussinesq system
allows pure mode 2 solutions. Suppose that

h1(x, t) = H(x, t)

h2(x, t) = h(x, t)

h3(x, t) = H(x, t),
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Figure 3: Illustration of a pure mode 2 solution in a three-layer �ow.

as ilustrated in Figure 3. Then,

d1 = h � H = �(H � h) = �d 2.

De�ne u j in a similar fashion so that

w1 = �w 2.

Writing

d .= d 1 and w .= w 1,

the 4 × 4 system of symmetric Boussinesq equations reduces to a pair of
equations given by

dt +
� w

3
(1 + d � 2d 2)

�

x
= 0,

wt +
�

d
3

(1 � 2w 2) +
w2

6

�

x
= 0.

It is possible to show [19] that these pure mode 2 equations are equiv-
alent to the two-layer shallow water ones [20]. This is physically evident
in Figure 3 by imagining a boundary in the midline of the con�gura-
tion. Consequently, this pure mode 2 dynamics is a two-dimensional
invariant subspace of the four-dimensional system, and within that in-
variant subspace all prior results for the two-layer system applies. Most
relevant is the result that the hyperbolic region in phase space (d, w) �
(�1/2, 1) × (�1/

�
2, 1/

�
2) (with w = w 1 = �w 2, and d = d1 = �d 2) is

invariant under the evolution of the PDE. From a �uid dynamics perspec-
tive this means that for initial data satisfying this condition everywhere,
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the evolution remains wavelike and does not exhibit Kelvin-Helmholtz
like instabilities.

Motivated by these considerations, we propose describing the system
using the variables

d = d 1 + d 2, d̃ = d 2 � d 1,

w = w 1 + w 2, w̃ = w 2 � w 1.

Note that d = 0 and w = 0 are equivalent to the “pure” mode 2 case pre-
viously examined. Under this change of variables, the governing equations
can be rewritten as

dt +



w
6

�
2 � 3 d

2
�

+



dw̃ + d̃w � dd̃w̃

6

��

x

= 0, (58)

d̃t +



w̃
6

�
2 � d̃2

�
�



dw + d̃w̃ + 3 dd̃w

6

��

x

= 0, (59)

wt +
�

d
2

�
2 � w2�

+
ww̃
6

�
1 � d̃

� �

x
= 0, (60)

w̃ t +



d̃
6

�
2 �w̃ 2�

+
�

w2

4
�

w̃ 2

12
�

dww̃
2

� �

x

= 0. (61)

which, in the form (56) with U = ( d, d̃,w,w̃) T , has A(U) given by

1
6

�

�
�


w̃� d̃w̃�6 dw w�6 dw̃ 2+ d̃�3 d
2

d(1� d̃)

� w(1+ d̃) � (w̃+2 d̃w̃+3 dw) � d(1+ d̃) 2� d̃� d̃2

6�3 w2 � ww̃ w̃� d̃w̃�6 dw w(1� d̃)

�3w̃ w 2�w̃ 2 3(w� dw̃ ) � (w̃+2 d̃w̃+3 dw)

�

�
�
� . (62)

The phase spaceR4 can be decomposed as a direct sum of B1 and B2:

B1 = {U = ( d, d̃,w,w̃) T such that d̃ =w̃ = 0},

B2 = {U = ( d, d̃,w,w̃) T such that d = w = 0}.

We shall consider the evolution of periodic solutions in phase space, where
they correspond to closed curves. This situation is schematically pre-
sented in Figure 4.

If the initial condition d|t=0 = w|t=0 = 0 holds for all points in the
domain, then, from (58)-(61), d = w = 0 for all t > 0 and the system
reduces to a pair of equations, which are the two-layer shallow water
Boussinesq equations previously mentioned. The solution is the trapped
in the invariant plane B 2 and shown in Figure 4(a).
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Suppose now that the initial data is tangent to B2 at a single point,
say x = x � , as shown in Figure 4(b). Thus Ux |t=0,x=x � , which is the
tangent vector to the solution curve is in B2 and therefore it can be
shown from (62) that (A(U)U x)|t=0,x=x � = �U t |t=0,x=x � is also in this
plane. Contrary to intuition, this is not enough to guarantee that the
point of tangent contact will always remain in B 2. In fact the point of
contact will lose tangency and then may escape from B2 given that B 2
has co-dimension greater than one. (Such behaviour does not occur in
2 × 2 systems where invariant subspaces are simple waves, and periodic
solutions never lose tangency to a simple wave [12].) A direct consequence
of this is that periodic initial data that transverses B 2 can also leave B2
as the wave evolves. This is shown schematically in Figure 4(c) and a
numerical solution illustrating the loss of tangency is presented in Figure
5.

Now, suppose thatd̃|t=0 =w̃| t=0 = 0, so that U| t=0 is in B1. It follows
from Equations (59) and (61) that

d̃t |t=0 =
1
6

�
dw

�
x �= 0, (63)

w̃ t |t=0 = �
1
4

�
w2�

x �= 0, (64)

which implies that, in general, d̃t �= 0 and w̃t �= 0 for t > 0. Equations
(63) and (64) represent the mode 2 production of a mode 1 wave. Con-
sequently, any solution that is initially in B 1 will immediately leave this
region, as shown in Figure 4 (d). Physically, this means that no mat-
ter the initial “rest” con�guration, if pycnoclines are initially displaced
equally the evolution will generate mode 2 waves. Of course, “pure” mode
1 waves can be constructed using simple waves as shown below.

3.4. Simple waves

For a system of PDEs of the form (56), simple waves [21] (sometimes
called rarefaction waves [22]) are special solutions that can be written as

U(x, t) .= V(�(x, t)). (65)

These are important because they correspond to the individual waves of
the system. Replacing the equation (65) in (56) yields

V � � t + A(V)V � � x = 0, (66)

which has a solution only if A(V)V � is proportional to V � , leading to the
eigenvalue problem

[A(V(�)) � �(�)I] V � (�) = 0, (67)
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Figure 4: Decomposition of the four-dimensional phase space in the modal
variables and schematic representation of a few solutions: in (c), it is
shown that a given solution that initially touches the B 2 might not inter-
sect it anymore in future times. This happens even if the initial condition
is tangent to B2 as in (b). On the other hand, if the initial condition
is a pure mode 2, the solution will remain in mode 2 for all time (up to
breaking) schematically shown in (a). The same does not happen for a
initial condition lying in B 1. This set is not an invariant subspace and a
general solution escapes as soon as it evolves on time, as seen in (d).
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Figure 5: Numerical example of a solution which is initially tangent to
the invariant plane B 1. Note that at t = 0, the solution satis�es d

�
(x 0) =

w�(x 0) = 0 for x 0 = 0 and therefore this is a point of tangency. At t = 6,
this condition is no longer satis�ed for any x0 in the domain.
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Figure 6: The evolution of the interfaces for a mode 1 (left) and mode 2
(right) simple wave solutions to the Boussinesq equations (50)-(53). The
vertical extent of the channel is [0, 1]. The dashed line is the initial data
and the solution is shown at various times. Note the nonlinear steepening
of the wave.

and where �(x, t) must obey the hyperbolic PDE (if the original system
is hyperbolic)

� t + �(�)� x = 0. (68)

The eigenvectors V� from equation (67) yield, for each eigenvalue family,
a vector �eld in the phase space whose integral curves are the simple
waves (V� is tangent to these curves). For regions in phase space where
our system is strictly hyperbolic, this implies the existence of 4 curves
through each point. Each of these curves is a simple wave and is invariant
under the evolution of the PDE: solutions starting on these curves remain
on them, only the parametrisation �(x, t) changes with time. Thus the 4
eigenvectors at each point yield a local basis of the phase space providing
a decomposition based on in terms of the wave speeds �, or, physically
speaking, in terms of the two (fast) mode 1 waves and the two (slow)
mode 2 waves. Examples of numerically computed evolution of simple in
the physical system are shown in Figures 6, 7 and 8. Figures 7 and 8 also
highlight the e�ectiveness of the modal decomposition in approximating
the di�erent families.

We remark also that the Boussinesq systems have a “left-right” sym-
metry which can be seen in phase space. Given a simple wave through
a point U = (d 1, d2, w1, w2)T at which the characteristic speed is �,
there is a corresponding “re�ected” simple wave through the point Ũ =
(d1, d2, �w 1, �w 2)T with characteristic speed ��, i.e. propagating in the
other direction. This is physically intuitive and can be seen explicitly by
the structure of A(U).
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Figure 7: Evolution of the mode 1 simple wave solution shown in Figure
6, now in the modal variables of (58)-(61). Note the relatively small d̃
and w̃ components.

Figure 8: Evolution of the mode 2 simple wave solution shown in Figure
6, now in the modal variables of (58)-(61). Note the relatively small d̄
and w̄ components.
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Figure 9: Evolution of a solution of (58)-(61) starting in the invariant
mode 2 plane, trapped by four bounding simple waves (in black). The
initial condition is given by the blue straight line joining two edges of the
quadrilateral, and the coloured curves are the solutions at di�erent times.

Simple waves are of crucial importance in the study of nonlinear �rst
order hyperbolic PDEs. In two-dimensional systems, they de�ne invariant
regions [23], [12] due to the property that simple waves do not allow a
general solution to cross it tangentially [24]. Furthermore, for mixed-type
�rst order PDE systems, if an initial condition can be bounded by simple
waves that do not themselves reach the boundary of the hyperbolic region,
then the solution will remain hyperbolic until breaking. Therefore, using
simple waves one can build the largest such region, which can be seen
as a sharp bound to on hyperbolic initial data that prevents the solution
straying into the elliptic region and therefore rendering the problem ill-
posed [12]. Figure 9 illustrates the use of simple waves. It shows the
evolution of a periodic initial condition in the invariant plane d̄ =w̄ = 0,
and bounding simple waves.

In systems larger than two-dimensions, simple waves still provide a
construction of “pure” wave solutions, but are less useful for bounding
solutions, except in particular cases, for example when there is an invari-
ant subspace as discussed above and showed in Figure 9.

Our �rst question is to explore whether there are other two-
dimensional subspaces for mode 1 or mode 2 waves. These manifolds
would contain families of both simple waves that exist for each mode
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of motion and would allow one to construct initial data that has waves
propagating in both directions in a single mode of the system.

Such manifolds do not exist for general systems. The reason is due to
the non-existence of an integrating factor for general di�erential forms in
dimensions greater than two and, which implies that Riemann invariants,
which would allow us to construct such manifolds, do not exist generically
[25].

In general, a n-dimensional system of PDEs of the form (56) can be
associated with up to n Riemann invariants. The j th Riemann invariant
is a smooth function Rj associated to the jth eigenvalue, and satisfying

�R j = µw j ,

where µ is a function (the integrating factor) and w j is the j th left eigen-
vector of the system,

w T
j A(U) = w T

j � j .

In our case, all of these are functions of U = (d, d̃,w,w̃) T .
Since the gradient of the jth Riemann invariant is parallel to the j th

left eigenvector, it follows that the k th right eigenvector vk is tangent
to the surface de�ned by constant Rj if j �= k, because wj · vk = � j,k .
Furthermore, if U k(�) is an integral curve of v k (i.e. a simple wave), then
the j th Riemann hypersurface contains this curve since

d
d�

Rj (U k(�)) = �R j · vk = 0.

Thus, in general, the hypersurface de�ned by Rj = constant contains n�1
linearly independent simple waves associated to the n�1 right eigenvalues
of the system, � k for k �= j.

Hence, if one wishes a family of, say, mode 2 simple waves to form
a two-dimensional manifold in a four-dimensional phase space, it is nec-
essary and su�cient that there be Riemann invariants associated to the
other two eigenvalues. The intersection of the surfaces de�ned by these
two Riemann invariants then de�nes the manifold.

We have numerically attempted to construct such surfaces. This in-
volves choosing a point in phase space and computing the two simple
wave curves from a particular family (mode 1 or mode 2) that go through
that point. These are the “spines” of an attempt to construct a mesh of
simple waves: along each of these spines at regular intervals we construct
new simple waves transversal to the spine. If the resulting mesh lies on a
surface - i.e. all the simple waves intersect - we have evidence of an invari-
ant subspace for the problem. As shown in Figures 10 and 11, families of
simple waves for either mode 1 or mode 2 in the symmetric Boussinesq
system do not intersect each other and therefore do not form a surface.
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Figure 10: Families of mode 1 simple waves for the symmetric Boussinesq
system (62). The two colours correspond to the two eigenvalues. Top:
the projection onto w̃ = 0 shows that the curves almost lie on a surface.
Bottom: For the projection onto d̃ = 0, there is clear non-intersection of
simple waves.
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Nevertheless the remarkable proximity to a surface can motivate di�erent
approximations that reduce the system.

3.5. Two-dimensional reduced models

Although the modal decomposition does not hold in general, Figures 7
and 8 suggest that an approximate decomposition might work well for
the system. For mode 1 waves, notice thatd̃ 	 constant and that w̃
varies slightly through the whole evolution of the wave. Therefore their
dynamics could be simpli�ed. We propose to setd̃ .= d̃0 � constant,
and solve Equation (59) to obtain w̃ = f ( d,w; d̃0) and hence get a two-
dimensional system by replacing the latter on the equations (58) and (60)
for d and w. The results of this approach are shown by Figures 12-15. In
this particular example, we choose a Gaussian initial condition satisfying
d̃(x, 0) = 0 and w̃(x, t) = 0 so that the solution lies in the hypothetical
mode 1 plane de�ned by B1. Note that there is a very good agreement
between the full solution (plotted in solid blue) and the one given by the
approximate 2 dimensional reduced model (plotted in dashed red lines).
Figures 12 and 13 show the evolution of the mode 1 wave (as computed by
the equations (58) and (60) whereas Figure 14 shows the error arising from
assuming a constantd̃ and Figure 15 shows the post-computed w̃. Since
w̃ = f( d,w; d̃0), the approximation qualitatively captures the mode 1
(fast) component ofw̃ but fails to capture its mode 2 (slower) component.

In Figures 16-19, a similar reduction is attempted for a mode 2 wave,
and the agreement between both models is even better. For these, we
choose an initial condition satisfying d(x, 0) = �0.15 and w(x, 0) = 0 so
that it lies in a plane parallel to the invariant plane B 2. In this case, we
reduced the system by consideringd = d0 = �0.15 and w = f( d̃,w̃; d0)
as given by Equation (58). Figures 16 and 17 show the evolution of
the mode 2 wave (as computed by the equations (59) and (61) whereas
Figure 18 shows the error arising from assuming a constant̄d and Figure
19 shows the post-computedw̄. Since w̄ = f(d̃,w̃; d̄0), the approximation
qualitatively captures the mode 2 (slow) component ofw̄ but, as expected,
fails to capture its faster mode 1 component.

4. Conclusions

We have derived the equations for long waves in a three-layer channel
and explored some of their properties, both in the Boussinesq and in the
general case. In the Boussinesq case, when the density jumps between
layers is equal, a simple change of variables aids in separating the mode 1
and mode 2 dynamics. We then make use of simple waves in the Boussi-
















