

Citation for published version:
Shakil, A, Lutteroth, C & Weber, G 2019, CodeGazer: Making Code Navigation Easy and Natural with Gaze
Input. in CHI 2019 - Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. CHI :
Conference on Human Factors and Computing Systems, Association for Computing Machinery, pp. 1-12, CHI
2019: Weaving the threads of CHI, Glasgow, UK United Kingdom, 4/05/19.
https://doi.org/10.1145/3290605.3300306
DOI:
10.1145/3290605.3300306

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in CHI : Conference on Human Factors and
Computing Systems (2019), VOL#, ISS#, 2019 http://doi.acm.org/10.1145/3290605.3300306

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Dec. 2024

https://doi.org/10.1145/3290605.3300306
https://doi.org/10.1145/3290605.3300306
https://researchportal.bath.ac.uk/en/publications/b398c02b-1941-4e77-97cf-94cc80e29a27

CodeGazer: Making Code Navigation Easy and
Natural with Gaze Input

Asma Shakil
Media Design School,
University of Auckland
Auckland, New Zealand

asma.shakil@mediadesignschool.
com

Christof Lutteroth
University of Bath

Bath, UK
University of Auckland
Auckland, New Zealand
c.lutteroth@bath.ac.uk

Gerald Weber
University of Auckland
Auckland, New Zealand
g.weber@auckland.ac.nz

Figure 1: Left: Experimental setup.Middle: CodeGazer interface showing confirmbuttons in themargin (A), highlighted identi-
fiers in the region of the gaze (B), gaze-aware scroll bars in the editor (C), and the top navigation bar (D). Right: Gaze-responsive
modal usage window.

ABSTRACT
Navigating source code, an activity common in software de-
velopment, is time consuming and in need of improvement.
We present CodeGazer, a prototype for source code naviga-
tion using eye gaze for common navigation functions. These
functions include actions such as “Go to Definition” and
“Find All Usages” of an identifier, navigate to files and meth-
ods, move back and forth between visited points in code and
scrolling. We present user study results showing that many
users liked and even preferred the gaze-based navigation,
in particular the “Go to Definition” function. Gaze-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300306

navigation is also holding up well in completion time when
compared to traditional methods. We discuss how eye gaze
can be integrated into traditional mouse & keyboard appli-
cations in order to make “look up” tasks more natural.

CCS CONCEPTS
• Human-centered computing → Pointing; • Software
and its engineering → Integrated and visual develop-
ment environments;

KEYWORDS
Eye gaze tracking; Source code navigation; Integrated Devel-
opment Environment (IDE); Actigaze
ACM Reference Format:
Asma Shakil, Christof Lutteroth, andGeraldWeber. 2019. CodeGazer:
Making Code Navigation Easy and Natural with Gaze Input. In CHI
Conference on Human Factors in Computing Systems Proceedings
(CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3290605.3300306

1 INTRODUCTION
Gaze tracking has the potential to become ubiquitous since
popular device designs have user-facing cameras and in the

1

https://doi.org/10.1145/3290605.3300306
https://doi.org/10.1145/3290605.3300306

future may provide integrated gaze tracking [5, 6, 9, 29, 44,
46]. Using gaze for interaction is an important research area
because it provides instantaneous benefit to the user, whereas
in other applications such as gaze analytics the user chiefly
has a passive role. Much research has focused on gaze-only
alternatives for clicking [10, 12, 15, 30, 40, 45]. We posit that
the broadest benefit can be provided if gaze can be used in
synergy with other interaction techniques and employed in
everyday tasks. In this paper we use source code navigation
tasks as an interesting case study. Our results indicate that
gaze can hold up against mouse in the workplace, even if the
mouse sits right beside the user.
Source code browsing and navigation are two tasks com-

monly performed in software development, especially dur-
ing source code maintenance and evolution [4, 20, 22]. It has
been reported that 60-90% of software development costs in-
volve reading and navigation of code as part of programmers’
maintenance tasks [7].
Software developers mostly work with an Integrated De-

velopment Environment (IDE) to ease the process of writing,
compiling, searching and debugging code. IDEs facilitate
source code browsing by providing search and navigation
features such as the ability to “Find All Usages” or “Go to the
Definition” of an identifier. These search actions are typically
provided via context menus attached to an identifier in code.
They are usually also accessible to the user via shortcut keys
on the keyboard and/or via direct clicking with the mouse.

In spite of the features provided by IDEs, literature shows
that programmers encounter significant navigation overhead
when searching through code. In a study of experienced Java
developers, Ko et al. [22] found that developers using the
Eclipse IDE, spent on average 35% of their time with the me-
chanics of navigation, going back and forth between related
code. Piorkwiski et al. [42] found that during debugging tasks,
participants spent on average 50% of their time foraging for
information in code.
In this work we wanted to investigate whether proven

gaze interaction techniques can be employed to tackle the
above research challenges. We have developed a plugin for
the IntelliJ IDEA IDE [18] called CodeGazer. This allows
users to perform common navigation actions such as “Go to
Definition” of an identifier, “Find All Usages”, navigate to files
and methods, move back and forth between visited points in
code and scroll – all through gaze input. We use the Actigaze
input method, which was developed in our working group.
Actigaze is a gaze-only click alternative which has been
shown to be both fast and accurate in clicking small targets
such as hyperlinks in a web page [30, 39]. Actigaze has also
been used in other projects [23]. Here we are investigating
Actigaze in combination with traditional input methods such
as mouse and keyboard.

In particular, we aimed to answer three research questions:

RQ1 How does gaze-based code navigation compare
with keyboard-based and mouse-based navigation in
terms of performance, accuracy and usability?

RQ2 Will users choose gaze-based navigation if they
have a choice of input modality?

RQ3 Which navigation features can be best supported
with gaze interaction?

To address these questions, we conducted two studies. The
first study, addressing RQ1 and described in Section 4, was a
comparative study which compared the efficiency and accu-
racy of gaze-based navigation with that of keyboard-based
and mouse-based navigation. The second study (see Section
5), addressing RQ2, was a free-use study which was aimed at
assessing user preference. Both studies address RQ3.
Our work makes several key contributions: first, we de-

scribe how Actigaze, a proven gaze-based interaction para-
digm, can be applied for code navigation, discussing several
nontrivial challenges in the coloring algorithm. Secondly,
we provide a working prototype, CodeGazer, as a plugin to
the IntelliJ IDEA IDE for doing gaze-based navigation in
Java code. Thirdly, we present the results of an empirical
evaluation which shows that:

� Gaze-based navigation is comparable to keyboard nav-
igation in speed but slower than the mouse.

� Programmers made few mistakes (6.9%) when using
gaze input to navigate code.

� Programmers mostly chose gaze input in a voluntary
usage choice.

� Gaze input is most suitable for the “Go to Definition”
action.

With the advent of eye gaze tracking technology in main-
stream computing devices [13], we consider that a tool such
as CodeGazer may give software developers an option to
browse code more quickly and easily.

2 BACKGROUND AND RELATEDWORK
Understanding Programmer Navigation
A large body of research work has been directed towards
understanding how programmers navigate source code. Ko
et al. [22] found that developers spent, on average, 35% of
their time with the mechanics of navigation within and be-
tween source files while working on Java code in the Eclipse
IDE. They also found that, overall, an average of 27% of the
developers’ navigations were those going back and forth
between related code. They suggest that tools be developed
to replace the context menus which IDEs provide for in-
specting code with something requiring fewer steps. In an-
other study which was aimed at eliciting design require-
ments for maintenance-oriented IDEs, Ko et al. [20] found
that “some tools in the Eclipse IDE seemed to slow program-
mers’ progress by imposing significant interactive overhead

2

(e.g. extra clicking and visual searches)” (p. 128). Our work
addresses this problem by trying to minimize the interaction
overhead during code navigation and, by using an alternative
interaction technique, offering more choice.

Murphy et al. [35], reported on usage data collected from
41 Java developers working in the industry and using the
Eclipse IDE. They used the Mylar plugin, which they devel-
oped to record the interaction history of all users. They found
that 74% of the developers used the Package Explorer view of
the Eclipse IDE to help locate a point of interest, while only
12% (five out of 41) used the Eclipse-provided Bookmarks to
navigate between points of interest in the code.

Minelli et al. [33] studied 740 development sessions of 18
developers and collected data amounting to about 200 hours
of development time. They found that unsurprisingly, users
spend a large proportion of their time trying to understand
code (70%). A rather worrisome finding was that developers
spend roughly 14% of their time in fiddling with the user
interface of the IDE. They suggest that “there is a need for
research on novel user interface and interaction paradigms
for the IDE, a still unexplored field with some exceptions”
(p. 33).

A number of researchers have looked at explaining code
navigation behavior with Information Foraging theory (IFT).
In one of the early studies on this topic [28], researchers
looked at the relationship between programmers’ hypothe-
ses about the program’s behavior and their navigation strate-
gies. Piorkwiski et al. [41] designed recommender tools based
on programmers’ “scent” to aid them during the task of de-
bugging. They evaluated their effectiveness in an empirical
study, showing that participants found IFT-based recommen-
dations very useful. A related study by the same group [42]
concluded by saying that programming tools sometimes may
not help programmers as they put toomuch demand on users’
attention to be useful.

Gaze as Input for Code Navigation
There have been only a few attempts at using eye gaze in-
teraction as an input mechanism in a programming envi-
ronment. Glucker et al. [8] have enhanced an IDE prototype
with gaze-controlled interaction methods for source code
navigation. Their system named EyeDE comes closest to
ours in terms of intent as it also tries to use gaze to provide
hands-free navigation for reading and understanding code.
It allows users to perform several navigation functions using
gaze, such as opening files, looking up a method’s documen-
tation, navigating between its declaration and implementa-
tion, and navigating to a method using a code outline. The
main mechanism used for gaze interaction is direct dwell,
e.g. onto a source code symbol such as a method name, to
open a context menu and then on a context menu item to
trigger an action. While this appears to be fairly intuitive, it

suffers from the so-called “Midas Touch” problem [16, 17],
a well-known fundamental problem in using gaze for selec-
tion tasks: there is a risk of triggering “inadvertent clicks”
when the user’s gaze is misinterpreted. Furthermore, EyeDE
is affected by tracking inaccuracy: source code symbols are
usually too small to be distinguished with gaze pointing
alone if some of them are close together [48]. In Section
3, we explain how CodeGazer overcomes Midas touch and
tracking inaccuracy by using Actigaze [30] for the selection
of source code symbols.

In more recent work, Radevski et al. [43] used a combina-
tion of gaze and keyboard shortcuts to allow users to navigate
source code without the mouse. Their system named EyeNav
allows users to position the cursor, scroll in the direction
of gaze, move the caret horizontally along a line or verti-
cally along a column in code, do single character movement,
and select text in the editor. EyeNav relies heavily on key-
board input and allows users to move the cursor with the
keyboard to compensate for gaze tracking inaccuracy. By
contrast, CodeGazer is gaze-only and focuses on navigating
the logical structure of code.

Gaze as Input for Other Domains
Gaze input has been used for other interaction tasks such as
typing [24, 27, 31, 32, 34], pointing and selection [11, 14, 37]
and general-purpose interaction [25]. In order to improve
speed and mitigate Midas touch for selection with gaze, re-
searchers have proposed dynamically adjusting the dwell
time of targets. The adjustments are based on the likelihood
of the targets’ selection [34] and the eye movement time
estimated by Fitts’ law [14]. Other work combined gaze
with traditional input for pointing, application switching
and scrolling [25, 26]. Our work uses a variant of ‘smooth
scrolling with gaze-repositioning’ [26] in order to support
gaze-based scrolling in the code editor and the modal win-
dows.

3 CODEGAZER DESIGN
Gaze-Based Click Interaction
CodeGazer supports gaze-based navigation for the features
listed in Table 1, using the Actigaze concept to click targets
[30, 39]. Clickable targets in CodeGazer include identifiers
in the source code, navigation buttons in a top bar and list
items in a modal window (see Figure 1).
Actigaze employs a two-step procedure to accurately se-

lect a discrete target with gaze. When users look a target
they want to click, clickable items within a predefined radius
of the gaze point are highlighted with colors (in our study
the eight closest items within 5cm). Each distinct clickable
is highlighted with a unique color and associated with a cor-
respondingly colored confirm button. There are eight stable

3

Table 1: Navigation features supported by CodeGazer.

Navigation Feature Gaze Input Keyboard Input Mouse Input

Go to Definition
Find All Usages

Dwell on identifier in code
Dwell on confirm button

Place caret on identifier
Press Ctrl+Alt+g

Place pointer on identifier
Press Alt+Left Button

List All Files
List All Methods

Dwell on the top
navigation bar

Dwell on confirm button

Ctrl+Alt+0 (Files)
Ctrl+Alt+9 (Methods)

Click “Show Files” button
Click “Show Methods” button

Go to a Usage
Go to a File

Go to a Method

Dwell on usage
in modal window

Dwell on confirm button

Arrow keys to navigate
in modal window
Enter to select

Mouse pointer to point
in modal window
Left Click to select

Go Back
Go Forward

Dwell on the top
navigation bar

Dwell on confirm button

Ctrl+Alt+1 (Go Back)
Ctrl+Alt+2 (Go Forward)

Click “Go Back” button
Click “Go Forward” button

confirm buttons placed in the margins of the window (see
Figure 1), with colors that are easily discerned. Users then
click the desired target by dwelling (in our study for 300ms)
on the correspondingly colored confirm button.

The use of confirm buttons in gaze-based clicking offers a
two-fold advantage. First, it helps to clarify the target which
the user is intending to click, even though it may be too small
to target accurately using direct gaze pointing. This is partic-
ularly important for clicking identifiers for code navigation
because identifiers are often short (e.g. variable names) and
often appear close together (e.g. in formulas). Direct gaze
pointing would lead to many “incorrect clicks” [48]. The sec-
ond advantage of confirm buttons is that they help to avoid
the Midas touch problem: they are in the periphery, away
from the normal source code content, so users are unlikely
to look at them unless they want to click. Also, since the
confirm buttons are at stable positions in the IDE, users sub-
consciously memorize their positions very quickly, making
it quick and easy to locate them on screen [30]. The confirm
buttons have a cross hair in the middle as a visual anchor
and to provide visual feedback for a click [40].

Highlighting Identifiers in Source Code
The algorithm used to highlight identifiers in CodeGazer is
a variant of that used to highlight hyperlinks in Actigaze
[30]. On static web pages, Actigaze uses a stable coloring
algorithm. A link is assigned a color when the page is loaded
and the color remains unchanged until a new page is loaded.
For this color assignment Actigaze uses the spatial layout
of hyperlinks on the web page to minimize the likelihood
of close occurrences of the same color. Each clickable is as-
signed the color for which all clickables of the same color
are spatially furthest away from it. CodeGazer faces a color
assignment problem which is more general for two reasons.

The first is that source code is editable in nature (as opposed
to the mainly static nature of web pages) and the spatial
relationships between the clickables change as code is added
or deleted in the editor. Secondly, unlike web pages where
each link maps to a unique target, multiple usages of an
identifier in code all map to the same target. These multiple
usages of an identifier are scattered throughout the code;
assigning colors to them based on a local layout may result
in color clashes in another region of code, with different
identifiers within proximity of each other getting the same
color. CodeGazer thus does not assign a color to the identi-
fiers on loading a new file. Instead, the color assignment is
re-evaluated on each dwell event in the editor.
The color assignment algorithm needs to satisfy three

requirements. First, there should not be more than eight dis-
tinctly colored items at any instant in the text editor. This
is because there are only eight confirm buttons in the user
interface (Figure 1) and each colored identifier must have
a one-to-one correspondence with a confirm button. So, in
each dwell event, the algorithm chooses to highlight only
those eight items that are closest to the gaze point. Secondly,
all usages of the same identifier should be highlighted with
the same color (Figure 1) since they map to the same naviga-
tion target. The coloring algorithm considers the semantics
of highlighted identifiers and assigns the same color to all
identifiers that resolve to the same reference. Thirdly, the
color of an identifier should remain stable (i.e. not flicker
due to a constantly changing color assignment) as long as
the identifier is highlighted. To achieve this stability of col-
ors, CodeGazer maintains a record of the colors assigned to
the identifiers in the current dwell event. If these identifiers
are within the gaze radius in a subsequent dwell within the
editor, then the colors last assigned to them are used again.
Only those identifiers which were not highlighted previously

4

but are now within the gaze radius are then assigned one of
the eight possible unassigned colors.

Navigating in the Code
When a user dwells on a particular identifier in code, an asso-
ciation is built between all currently highlighted identifiers
in the code and the correspondingly colored confirm but-
tons in the margin. If the user now dwells on an associated
confirm button, this triggers one of two possible navigation
actions: either “Go to the Definition” of the identifier or
“Find All its Usages.” The actual action which is triggered
depends on whether the confirm button is associated with
a definition or with a usage in the code. To make this dis-
tinction between the definition of an identifier and its usage,
CodeGazer assigns different colors to these two different
types of occurrences of an identifier. Clicking a confirm but-
ton which is associated with the usage of an identifier takes
the user to the definition of that identifier and places the
caret at the location of the definition. This is similar to how
the “Go to Definition” option works in an IDE. On the other
hand, if the user dwells on a confirm button which is asso-
ciated with the definition of an identifier, it opens a modal
window which lists all usages of that identifier (see Figure
1). This action is the same as the “Find All Usages” option in
an IDE. The modal window is gaze responsive and users can
scroll in it with gaze. The usages in the window are again
highlighted with colors, and a particular usage is selected
by dwelling on the corresponding colored confirm button
(Figure 1 middle).

To navigate to any file in the project or to any method in
the current file or move back and forward in code, users need
to first dwell on the top navigation bar (see Figure 1). This
assigns a color to each button in the navigation bar. To click
the button, users again need to look at the corresponding
colored button in the margin. Clicking on the “Show Files” or
“Show Methods” button brings up a modal window listing all
files or methods as the case may be. Users can then choose to
open any file or navigate to any method by using the same
controls as those used for navigating to a usage in the “Find
All Usages” navigation action (see Table 1).

4 COMPARATIVE STUDY
In this study we examined performance and accuracy in the
context of three input conditions – keyboard, mouse and
gaze. Keyboard-based and mouse-based conditions served
as a control for evaluating gaze-based input. The indepen-
dent variable in our study was the interaction technique
used for navigation. The dependent variables measured were
“time taken to complete a navigation task” (for performance),
“number of incorrect navigations” (for efficiency) and “SUS
score” (for usability).

Methodology
To measure the motor time of navigation actions or errors
in navigation, we could ask participants to do individual
navigation actions such as go to definitions of an identifier
or look up its usages in code or navigate to methods or
files. However, such individual navigation actions done in
isolation lack realism. This is against recommended practice
for empirical evaluation of development tools [36].

Study Design. We designed study tasks based on actual
debugging scenarios. However, participants were told the
exact navigation steps which they needed to do to uncover
the bug. This was done to eliminate program comprehen-
sion time and different navigation actions across the three
input conditions. We designed the mouse and keyboard con-
ditions to remove confounding factors (e.g. visual layout) and
change only the input modality. This made them visually as
consistent as possible while keeping the overall interaction
the same as originally in the IDE (see Table 1).

Code Base and Tasks. We used three different tasks during
the study. Task 1 was based on code which had two classes
and 92 lines and was used to add elements to a custom array
class. The bug which was seeded was that one of the three
insert functions did not increment the size of the array. To
uncover the bug, participants needed to perform six navi-
gation steps (which comprised three “Go to Definition” and
three “Go Back” actions). Task 2 was based on code with
six classes and 276 lines and simulated a student enrollment
system. The seeded bug was a missing break statement in a
switch clause which resulted in wrong course enrollments
for Year 1 Software Engineering students. To uncover the
bug, the participants had to perform nine navigation steps
(which comprised three “Go to Definition,” three “Find All
Usages” and three “Go to Usage” actions). Task 3 was based
on code which had nine classes and 2141 lines and simu-
lated a library management system. The seeded bug was in
a function which returned book details in an array which
was populated from index 1 instead of index 0. Participants
needed to perform three navigation steps to uncover the bug
(which comprised three “Go to Definition” actions).

Procedure. The participants had been emailed an overview
of the study prior to the session. The procedure started with
the participants filling out a consent form. They were then
told to seat themselves comfortably in a typical wheeled
office chair and adjust its height if needed. The eye tracker
device was calibrated for them once at the beginning. Each
task followed the same sequence of execution. The purpose
of the task was explained and the bug was shown to the
participants by running the code. The participants did one
round of practice for the navigation steps which they were
told to do for the task at hand before the measurements

5

were taken. The participants repeated the navigation steps
for gaze, keyboard and mouse input. To avoid bias due to
learning effects, the order of input condition was permuted
across the three tasks. Once the participants had completed
all three tasks, they were asked to fill out a demographics
questionnaire. The participants were also emailed a System
Usability Scale (SUS) questionnaire at the end of the study
which they could fill out at their convenience.

Participants. A total of 24 participants (five females) took
part in our comparative study. The participants’ ages ranged
from 19 to 42 years (M = 23.1; SD = 5.2; Mdn = 21). Seven of
the participants had prior experience using an eye tracker,
14 participants wore glasses and two were color blind. Par-
ticipants reported coding on average for 3.17 hours a day.
Furthermore, two of the participants were lecturers in Soft-
ware Engineering, one was a tutor in Software Engineering,
four were undergraduate students in Software Engineering
and the remaining 17 were postgraduate students of either
Computer Science or Software Engineering.

Results
We collected a total of 1296 navigation actions from 24 partici-
pants, i.e., 432 navigation steps for each interaction technique
across the three tasks. To compare the three interaction tech-
niques, we measured the task completion time as well as the
number of incorrect navigation actions for each condition
and each participant.

Task Completion Time. The frequency distributions of the
mean task completion times for the three interaction tech-
niques are shown in Figure 2 and the boxplots of mean task
completion times are shown in Figure 3. A Repeated Mea-
sures ANOVA was conducted to compare the effect of inter-
action technique on mean task completion time. The inter-
action technique had a significant effect on task completion
time (F (2,46) = 25.55, p < 0.001). Post-hoc comparisons with
Holm correction showed that there was no significant dif-
ference in completion time for gaze (M=20198, SD=4051)
and keyboard (M=20661, SD=4329), t(23)=-0.44, p = 0.664.
However there were significant differences in the comple-
tion times between gaze and mouse (M=14805, SD=2923),
t(23)=5.77, p < 0.001, and between keyboard and mouse,
t(23)=8.19, p < 0.001. These results suggest that while the
mean task completion time of gaze is comparable to that of
keyboard, it is significantly higher than that of the mouse
(see Figure 5a), i.e. gaze is slower than the mouse.

Taskwise Analysis. We also compared the task completion
time of individual tasks across the three interaction tech-
niques. A Repeated Measures ANOVA showed a significant
effect of the interaction technique on Task 1 completion time
(F (2,44) = 7.69, p = 0.001), on Task 2 completion time (with

0
1
2
3
4
5
6
7

8.
9

10
.9

12
.9

14
.9

16
.9

18
.9

20
.9

22
.9

24
.9

26
.9

28
.9

30
.9

32
.9

F
re

qu
en

cy

Gaze

0

5

10

8.
9

10
.9

12
.9

14
.9

16
.9

18
.9

20
.9

22
.9

24
.9

26
.9

28
.9

30
.9

32
.9

F
re

qu
en

cy

Keyboard

0
2
4
6
8

10

8.
9

10
.9

12
.9

14
.9

16
.9

18
.9

20
.9

22
.9

24
.9

26
.9

28
.9

Mouse

Figure 2: Frequency distributions of task completion times
(in seconds) in the comparative study.

Figure 3: Boxplots of task completion times (in seconds) in
the comparative study.

Huynh-Feldt correction) (F (1.4,31.5) = 21.87, p < 0.001) and
Task 3 completion time (F (2,46) = 20.18, p < 0.001). The in-
dividual task completion time results are shown in Figure
5b.

Accuracy. The frequency distributions of the errors made
across all tasks for the three interaction techniques are shown
in Figure 4. The error counts have a non-normal distribution,
therefore non-parametric statistical tests were used to ana-
lyze the data. A Friedman rank sum test showed a significant
effect of the interaction technique on the accuracy, � 2(2, N
= 24) = 11.76, p = 0.003. Post hoc comparisons with Holm
correction showed significant difference between gaze and
keyboard, t(46)=3.35, p = 0.005, and between gaze and mouse,
t(46)=3.35, p = 0.005. There was no significant difference be-
tween keyboard and mouse, t(46)= 0.0, p = 1.0. These results
show that there are significantly more errors with gaze input
than with keyboard or mouse.

System Usability Score. The System Usability Score (SUS)
of CodeGazer (M = 76.42, SD = 10.92) as translated to an
adjective rating scale was “Good” [1]. SUS scores lie between
0 to 100, with a higher score indicating better usability. An
SUS score of 70 or above shows that the system is at least
passable while systems with scores above 90 are considered
highly usable [2].

6

Figure 4: Frequency distributions of navigation errors in the
comparative study.

(a) Mean Completion Time (b) Taskwise Comparison

(c) Featurewise Comparison

Figure 5: Analysis of completion times in the comparative
study.

Discussion
In the comparative study our goal was to evaluate the feasi-
bility of gaze input by comparing it to keyboard and mouse
input (RQ1). Our results show that the mean task comple-
tion time of gaze input is slightly better than the keyboard,
although it is significantly worse than that of the mouse (see
Figure 5b). It is hard to beat the mouse as the established
gold standard for mouse-only direct clicking tasks.
The taskwise analysis results show that in Task 3 gaze

performed significantly faster than keyboard and very close
to the mouse (Figure 5b). Task 3 only included “Go to Defini-
tion” navigation actions. This result suggests that the “Go
to Definition” feature performs particularly well with the
gaze input (RQ3). Our analysis of the effect of input device
on the timing of individual navigation actions confirms this
conclusion (Figure 5c). Gaze performed significantly faster
than keyboard and close to the mouse for the “Go to Defini-
tion” feature. This may be due to the fact that this feature

requires users to just look at the corresponding colored but-
ton in the margin. A corresponding action with the mouse
would require the users to place the mouse pointer on the
identifier in the code and then press the Alt+Left Mouse
button (equivalent to Ctrl+Left Click in the default IntelliJ
implementation). With the keyboard, it would require users
to first place the caret at the identifier in code and then press
the required shortcut key (Ctrl+Alt+g). This is cumbersome
when compared to simply looking at a confirm button. The
mouse performs much better than gaze for tasks that require
mouse button clicks only (without key presses), including ac-
tions such as choosing usages in a modal window or clicking
the “back” button in the top navigation bar.

5 FREE-USE STUDY
In this study we assessed whether users would use gaze
input if they had a choice of interaction technique (RQ2). We
measured the frequency of use for keyboard, mouse or gaze
input during navigation.

Methodology
We wanted to use a methodology which would let partici-
pants do navigation actions in their most natural style with-
out being constrained by the demands of the study design.
In the previous comparative mode of study, although the
tasks were based on actual debugging scenarios, there was
no need for participants to engage with the code as they were
given the exact navigation steps to perform. While this struc-
tured mode of navigation is essential for establishing time
and error metrics, it makes the tasks artificial and we feel it
may not be sufficient to evaluate user preference even sub-
jectively. Other researchers have tried other techniques for
assessing preference which go beyond the usual Likert-scale
or ranking approach most commonly used in the literature.
Besancon et al. [3], for example, asked participants at the end
of their study to pick a favourite input technique (between
mouse, tactile and tangible input) and perform 15 docking
tasks. The experiment had already taken over an hour, so if
participants were asked to perform an additional set of trials,
they would have a strong incentive to pick the solution they
really preferred. Voluntary usage is a good metric for evalu-
ating user preference; it has been pointed out in literature
that “data showing voluntary usage is really the ultimate
subjective satisfaction rating” [38].

Study Design. As in the comparative mode of study, we
again asked participants to perform debugging tasks. How-
ever, this time they were not told the steps needed to com-
plete the tasks. Participants were only shown a bug by run-
ning the code and were given a starting point at which to
begin navigation. They were then free to choose any in-
put technique they wanted at each step of the navigation

7

process. This mode of study thus provides a more immer-
sive experience for the participants by requiring them to
read through the code, understand its structure and logical
flow and navigate in the code as they see fit. To mitigate
novelty and social desirability bias when choosing the pre-
ferred technique, we used several strategies. First, partici-
pants had the opportunity in the pre-task phase to play with
the gaze option. Secondly, we conducted a detailed inter-
view with the participants at the end of the study, asking
them about specific reasons they chose a particular naviga-
tion technique and about their general experience of using
CodeGazer. Thirdly, we encouraged participants to provide
genuine feedback, emphasizing that there is no ‘right choice’
and that we were genuinely interested in knowing which of
the methods worked best for them.

Codebase and Tasks. We used all three tasks from the com-
parative study (see Section 4). We also added a fourth task,
which used the same codebase as Task 2 of the comparative
study but with a different bug. The seeded bug was located in
the method to generate the course code for Math Year 2 stu-
dents, which resulted in incorrect course codes; the method
swapped the use of the course number and year, both of
which were passed in as parameters.

Procedure. The procedure followed the same style as the
comparative study. Participants were emailed an overview
of the study prior to the study session. Participants were
comfortably seated and performed a gaze calibration process.
We first ensured that participants were properly familiarised
with all navigation features (gaze, keyboard and mouse).
Then tasks were shown to them by running the code and
pointing out the bug. They were given the starting point in
the code fromwhere they should begin navigation. Also, they
were specifically told that they could choose any interaction
technique they wanted (gaze, keyboard or mouse) during the
course of finding the bug. The task was finished when the
participant reached the location of the bug in code. During
the task, participants were allowed to ask questions from the
moderator, if they needed help. This process was repeated
for all the four tasks in the study. Once the participants had
finished the tasks, a detailed interview was conducted with
questions pertaining to their experience with CodeGazer
and their specific reasons for choosing particular input tech-
niques. A demographics questionnaire was administered at
the end of the study session to avoid effects of stereotype
threat on participants’ performance [21, 47]. The complete
procedure took about an hour.

Participants. A total of 28 participants (five females) took
part in our free-use study. The participants’ ages ranged from
19 to 35 years (M = 22.0, SD = 2.9, Mdn = 21). Nine of the
participants had prior experience using an eye tracker, 19

Figure 6: Usage count per participant in the free-use study.

participants wore glasses and none were color blind. Par-
ticipants reported coding on average for 2.9 hours a day.
One of the participants was a tutor in Software Engineering,
two were undergraduate students in Software Engineering,
and the remaining 25 were postgraduate students of either
Computer Science or Software Engineering. Eighteen of the
participants had also taken part in the comparative study of
CodeGazer.

Results
We collected a total of 1859 navigation actions across all 28
participants and all four tasks in the free-use study mode.
There was considerable variation in the participants’ overall
completion times (M = 821.49, SD = 297.42, 95% CI [931.66,
711.33]) as well as the total number of navigation actions
they performed (M = 66.39, SD = 25.02, 95% CI [75.66, 57.13]).

Usage Frequency. The usage frequency of each inputmodal-
ity is shown in Figure 6. It shows that 21 of the 28 participants
used gaze more than 80% of the time during the study, with
ten of them using it 100% of the time and nine others using
it more than 90% of the time. Only three participants used
the mouse more than 70% of the time. Further, only two par-
ticipants ever used the keyboard, and that less than 7% of
the time. There was no decline in gaze usage over time. Most
participants kept using gaze throughout the one-hour study
session and across all the four tasks. A comparison of those
participants who used mixed mode interaction is shown in
Figure 7b. We did not observe an effect of programming
experience on the choice of input modality.
A Repeated Measures ANOVA with Huynh-Feldt correc-

tion (since Mauchly’s test indicated a violation of sphericity)
showed a significant effect of the interaction technique on
usage preference (F (1.14,33.043) = 64.49, p < 0.001). Post-hoc
comparisons with Holm correction show that there is a sig-
nificant difference in usage preference between gaze (M =
0.78, SD = 0.34) and keyboard (M = 0.003, SD = 0.013); t(29)
= 12.62, p < 0.001, between gaze and mouse (M = 0.15, SD
= 0.26), t(29) = 6.36, p < 0.001, and between keyboard and
mouse, t(29) = -3.09, p = 0.004.

8

(a) Across all participants (b) Mixed-mode interaction

Figure 7: Analysis of usage frequency in the free-use study.

Taskwise Analysis. We analyzed the completion time and
use of input device on a per task basis. Participants took the
maximum time to find the bug in Task 2 (M = 344.23, SD =
198.69, 95% CI [417.82, 270.64]) and the least in Task 1 (M
= 131.40, SD = 116.14, 95% CI [174.42, 88.38]). Task 3 took
almost the same time as Task 1 (M = 134.37, SD = 100.49, 95%
CI [171.59, 97.15]). Task 4 took the second longest time to
uncover the bug (M = 224.30, SD = 130.66, 95% CI [354.96,
93.64]). There was not much difference in usage frequency
between the tasks (Figure 7a). Gaze was most frequently
used in Task 1 (M = 0.79, SD = 0.36) followed by mouse (M =
0.21, SD = 0.36) and then by keyboard (M = 0.002, SD = 0.01).
The same trend was found for Task 2 with gaze being the
most used (M = 0.83, SD = 0.28) followed by mouse (M = 0.17,
SD = 0.28) and zero frequency for keyboard. Task 3 also had
the highest gaze frequency (M = 0.87, SD = 0.26), followed by
mouse (M = 0.13, SD = 0.26) and zero frequency of keyboard
use. Finally, Task 4 also had the highest frequency use for
gaze (M = 0.85, SD = 0.29), followed by mouse (M = 0.14, SD
= 0.28) and then keyboard (M = 0.01, SD = 0.05).

Feature Usage Analysis. We analyzed the frequency of use
of each navigation feature supported in CodeGazer (Table 1).
Our results show that the most commonly used navigation
was the “Go toDefinition” action (M = 25.75, SD = 8.67, 95%CI
[22.54, 28.96]), followed by the “Go Back” action (M = 14.93,
SD = 9.81, 95% CI [11.3, 18.56]). The next two navigation
actions used with almost the same frequency were the “Go
to File” (M = 4.75, SD = 3.91, 95% CI [3.30, 6.20]) and “Go To
Usage” (M = 4.36, SD = 3.81, 95% CI [2.95, 5.77]) actions. The
two least used navigation actions were the “Go to Method”
using a method list action (M = 0.82, SD = 1.44, 95% CI [0.29,
1.36]) and the “Go Forward” action (M = 0.39, SD = 0.79, 95%
CI [0.10, 0.68]) .

Overall Experience. Many participants found CodeGazer
easy and intuitive. Ten participants used the word “intuitive”
and twelve used the word “easy” when describing their expe-
rience of using CodeGazer. Six of the 28 participants said that
they took time to get used to the system. Among the learning

factors, most prominent was the positions of the confirm but-
tons and the scrolling with gaze; in particular, participants
found it hard to stop scrolling while reading code. Most said
that they felt no fatigue when using CodeGazer; only three
participants reported fatigue during the study.

Applicability Scenarios. Twenty two out of 28 participants
said that they see CodeGazer as being most applicable in
debugging scenarios. They said that they liked the ability
to quickly jump across files and then jump back while fol-
lowing the logical structure of code. They liked not having
to keep track of their current file location, as they normally
would, when using the open tabbed file editors to navigate.
The tabbed code browsing option was the most habitual
navigation practice among participants.

CodeGazer’s E�ectiveness as a Navigation Tool. Most par-
ticipants found navigating with CodeGazer to be quick and
easy. In particular, the “Go to Definition” action with gaze
was the most liked feature among the participants (RQ3),
with 16 participants stating it as the feature that worked best
for them. Six participants said that they liked the “Go Back”
feature. Generally participants liked the idea of being able to
jump into the definition of a method and then quickly jump
back if they did not find what they were looking for. The
following are some of the participants’ responses on being
asked: “What worked well with you for CodeGazer?”

P1: I think navigating, in general. It felt very natural.
P4: I think the quick commands. Such as the “Go Back” one.

If I don’t have my hands on the keyboard, it is really quick.
P5: Navigation was really easy. I tried the mouse one time

and it feels so hard. Navigation was best with the tracker.
P6: I quite liked the idea of being able to jump into the dec-

laration of a method, so that I could see what’s inside without
having to navigate through the files. I think that probably is
the part of it that I liked the most.

P8: I liked the fact that I didn’t have to use my hands to look
through the code.

Users’ willingness to use CodeGazer. Eight participants said
that they would use CodeGazer for their own development
work. Five said they probably would use it once they get
used to it more, while another five said they would not use
it. Ten participants said that they would probably not use
CodeGazer for heavy development work, but would con-
sider using it for general code exploration, especially for
unfamiliar code.

Perceived Speed Compared to Mouse and Keyboard. Fifteen
participants perceived gaze to be slower than the mouse,
four perceived it to be faster, while five said that it was the
same speed. The remaining four said they were not sure.
Twenty four participants perceived gaze to be faster than
the keyboard. One participant said that keyboard was faster

9

while the remaining three simply said they found keyboard
“easier.”

Reasons for Choosing Gaze. Thirteen participants specifi-
cally said that they chose gaze because they wanted to “try it
out,” and another three said that they chose gaze “because it
is fun.” This shows that they initially chose gaze for novelty.
A number of those participants, however, continued using
mostly gaze and said that they continued to do so because
it felt natural and easy. The following are quotes from the
participants’ responses:
P1: Initially I wanted to try using gaze. I thought it would

feel forced but it didn’t. It felt quite natural.
P3: It was more natural since the colors were already there

on screen. It felt easier to match based on colors than to use the
keyboard.
P4: I just wanted to try it. But, once I got used to it, the

functionality was good, but I think the scrolling was hard.
P10: I wanted to try it out since it is quite cool. It seems to

be effective too - It did not impair my ability in any way, so I
thought I might stick to it anyways

P15: Initially I had my hand on the mouse, thinking that if I
lose control with the gaze, I’d switch to the mouse, but then I
found it very accurate and very fast. I can put my hands on
my chin, because that kind of helps me think better. I think I
was absorbed into using it, because it so intuitive.

P20: I feel like there is some convenience to just seeing your
target and then just using your eyes to get into your target.

P26: I thought I would try gaze, but if it’s really not working
then I’d switch to something else. I had to do that only for
scrolling at times.

Limiting Features. Participants found scrolling with gaze
by far the most difficult, with 16 participants stating it to be
the feature which did not work well for them in the system.
Participants had problems when the scrolling would start as
they looked at code at the bottom or top of the editor where
the scroll bars are positioned (see Figure 1). They found
scrolling with gaze to be much slower than scrolling with the
mouse, and also found it hard to stop scrolling while reading
code. Gaze scrolling is an optional feature of CodeGazer and
people were comfortable scrolling with keyboard or mouse
instead. The next most common problem was the difficulty
of some participants to distinguish between the two green
colored buttons at the bottom of the right margin (see Figure
1). Eleven participants stated that they got confused between
these two shades of green and suggested that these two
buttons should be replaced with more contrasting colors.

Discussion
Our usage frequency results show that participants used
gaze most of the time during the one-hour free-use study
session. As Figure 7b shows, there is no observable trend of

gaze usage decreasing over time. On the contrary, the usage
of gaze tended upward in the study sample from Task 1 to
Task 4. Most participants expressed genuine interest in using
features of CodeGazer for their own work (RQ2), to a degree
that was unlikely to come just from novelty, social desirabil-
ity or acquiescence bias. We are aware that the threats to
validity, especially of novelty bias, cannot be fully mitigated
by the nature of this study and the results should be read in
that light. However, by conducting two user studies with dif-
ferent methodologies and a mix of different quantitative and
qualitative measures, we obtained a differentiated picture of
usability with consistently positive results.
Our feature usage analysis shows that the “Go to Defini-

tion” feature was most commonly used and best-received,
followed by the “Go Back” feature. The results indicate that
supporting users to literally “look up” new or previous infor-
mation with their gaze works well (RQ3). Related work on
the usage of code navigation shows that “Go to Definition”
is generally the most used navigation feature in an IDE [35].
This is consistent with our results and suggests that gaze
interaction works well for features that are needed most.

6 CONCLUSION AND FUTUREWORK
Source code navigation is a common activity during software
development and maintenance. Software development tools
such as IDEs provide options to programmers for speeding up
navigation actions through context menus that are activated
and accessed using either a mouse or keyboard shortcuts.
These require users to position the mouse pointer or the
caret at the point of interest in code before they can navigate
to it. This is not as intuitive as pointing with gaze, especially
during code reading and comprehension tasks where users
are more focused on exploring the logical structure of the
code.

Here we have presented CodeGazer, a plug-in for the Intel-
liJ IDEwhich offers navigation features for purely gaze-based
code navigation: “Go to Definition,” “Find All Usages” of an
identifier, navigate to a usage, file or method and move back
and forth between visited points in code. CodeGazer uses
a gaze confirmation system [30] to disambiguate between
identifiers which are close together, successfully addressing
the problems of gaze tracking inaccuracy and Midas touch.
An evaluation of the system indicates that it is comparable to
keyboard in terms of speed (although slower than mouse), is
accurate and has good usability. As future work, a cost model
such as GOMS [19] could be applied to investigate theoreti-
cal performance limits. The contribution points to potentials
beyond simply code navigation with gaze: code navigation
is a stand-in for many activities where users will accept gaze
only if it delivers clear advantages over the mouse.

10

REFERENCES
[1] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining

what individual SUS scores mean: Adding an adjective rating scale.
Journal of Usability Studies 4, 3 (2009), 114–123.

[2] Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An empiri-
cal evaluation of the system usability scale. Intl. Journal of Human–
Computer Interaction 24, 6 (2008), 574–594.

[3] Lonni Besançon, Paul Issartel, Mehdi Ammi, and Tobias Isenberg.
2017. Mouse, tactile, and tangible input for 3D manipulation. In CHI
Conference on Human Factors in Computing Systems. ACM, 4727–4740.

[4] Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J LaViola Jr. 2010. Code bubbles: a working set-based
interface for code understanding and maintenance. In CHI Conference
on Human Factors in Computing Systems. ACM, 2503–2512.

[5] Yiu-ming Cheung and Qinmu Peng. 2015. Eye gaze tracking with a
web camera in a desktop environment. IEEE Transactions on Human-
Machine Systems 45, 4 (2015), 419–430.

[6] Heiko Drewes and Albrecht Schmidt. 2007. Interacting with the com-
puter using gaze gestures. In IFIP Conference on Human-Computer
Interaction (INTERACT). Springer, 475–488.

[7] Len Erlikh. 2000. Leveraging legacy system dollars for e-business. IT
Professional 2, 3 (2000), 17–23.

[8] Hartmut Glücker, Felix Raab, Florian Echtler, and ChristianWolff. 2014.
EyeDE: gaze-enhanced software development environments. In CHI
Extended Abstracts on Human Factors in Computing Systems. ACM,
1555–1560.

[9] Dan Witzner Hansen, David JC MacKay, John Paulin Hansen, and
Mads Nielsen. 2004. Eye tracking off the shelf. In Symposium on Eye
Tracking Research & Applications. ACM, 58–58.

[10] Dan Witzner Hansen and Arthur EC Pece. 2005. Eye tracking in the
wild. Computer Vision and Image Understanding 98, 1 (2005), 155–181.

[11] DanWitzner Hansen, Henrik HT Skovsgaard, John Paulin Hansen, and
Emilie Møllenbach. 2008. Noise tolerant selection by gaze-controlled
pan and zoom in 3D. In Symposium on Eye Tracking Research & Appli-
cations. ACM, 205–212.

[12] John Paulin Hansen, Anders Sewerin Johansen, Dan Witzner Hansen,
Kenji Itoh, and Satoru Mashino. 2003. Command without a click:
Dwell time typing by mouse and gaze selections. In IFIP Conference on
Human-Computer Interaction (INTERACT). 121–128.

[13] Tobii Inc. 2018. Tobii Eye Trackers For PC Gaming - 4C Plus Alienware,
Acer, MSI. https://tobiigaming.com/products/ [Online; accessed 15-
February-2018].

[14] Toshiya Isomoto, Toshiyuki Ando, Buntarou Shizuki, and Shin Taka-
hashi. 2018. Dwell time reduction technique using Fitts’ law for gaze-
based target acquisition. In Symposium on Eye Tracking Research &
Applications. ACM, 26.

[15] Howell Istance, Aulikki Hyrskykari, Stephen Vickers, and Thiago
Chaves. 2009. For your eyes only: Controlling 3d online games by eye-
gaze. In IFIP Conference on Human-Computer Interaction (INTERACT).
Springer, 314–327.

[16] Rob Jacob and Sophie Stellmach. 2016. What you look at is what you
get: gaze-based user interfaces. Interactions 23, 5 (2016), 62–65.

[17] Robert JK Jacob. 1991. The use of eye movements in human-computer
interaction techniques: what you look at is what you get. ACM Trans-
actions on Information Systems (TOIS) 9, 2 (1991), 152–169.

[18] JetBrains. 2017. IntelliJ IDEA the Java IDE. https://www.jetbrains.
com/idea/ [Online; accessed 9-January-2017].

[19] Bonnie E John and David E Kieras. 1996. The GOMS family of user
interface analysis techniques: comparison and contrast. ACM Transac-
tions on Computer-Human Interaction (TOCHI) 3, 4 (1996), 320–351.

[20] Andrew J Ko, Htet Htet Aung, and Brad AMyers. 2005. Eliciting design
requirements for maintenance-oriented IDEs: a detailed study of cor-
rective and perfective maintenance tasks. In International Conference
on Software Engineering (ICSE). IEEE, 126–135.

[21] Andrew J Ko, Thomas D Latoza, and Margaret M Burnett. 2015. A
practical guide to controlled experiments of software engineering tools
with human participants. Empirical Software Engineering 20, 1 (2015),
110–141.

[22] Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung.
2006. An exploratory study of how developers seek, relate, and col-
lect relevant information during software maintenance tasks. IEEE
Transactions on Software Engineering 32, 12 (2006), 971–987.

[23] Sai Anirudh Kondaveeti, Sandeep Vidyapu, and Samit Bhattacharya.
2016. Improved Gaze Likelihood Based Web Browsing. In Indian
Conference on Human Computer Interaction (IHCI). ACM, New York,
NY, USA, 84–89.

[24] Per Ola Kristensson and Keith Vertanen. 2012. The potential of dwell-
free eye-typing for fast assistive gaze communication. In Symposium
on Eye Tracking Research & Applications. ACM, 241–244.

[25] Manu Kumar and Terry Winograd. 2007. GUIDe: gaze-enhanced UI
design. In CHI Extended Abstracts on Human Factors in Computing
Systems. ACM, 1977–1982.

[26] Manu Kumar, Terry Winograd, Terry Winograd, and Andreas Paepcke.
2007. Gaze-enhanced scrolling techniques. In CHI Extended Abstracts
on Human Factors in Computing Systems. ACM, 2531–2536.

[27] Andrew Kurauchi, Wenxin Feng, Ajjen Joshi, Carlos Morimoto, and
Margrit Betke. 2016. EyeSwipe: dwell-free text entry using gaze paths.
In CHI Conference on Human Factors in Computing Systems. ACM,
1952–1956.

[28] Joseph Lawrance, Rachel Bellamy, and Margaret Burnett. 2007. Scents
in programs: does information foraging theory apply to program main-
tenance?. In Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). IEEE, 15–22.

[29] Dongheng Li, Jason Babcock, and Derrick J Parkhurst. 2006. openEyes:
a low-cost head-mounted eye-tracking solution. In Symposium on Eye
Tracking Research & Applications. ACM, 95–100.

[30] Christof Lutteroth, Moiz Penkar, and Gerald Weber. 2015. Gaze vs.
Mouse: A Fast and Accurate Gaze-Only Click Alternative. In Sympo-
sium on User Interface Software & Technology (UIST). ACM, 385–394.

[31] Päivi Majaranta, Ulla-Kaija Ahola, and Oleg Špakov. 2009. Fast gaze
typing with an adjustable dwell time. In CHI Conference on Human
Factors in Computing Systems. ACM, 357–360.

[32] Päivi Majaranta and Kari-Jouko Räihä. 2002. Twenty years of eye
typing: systems and design issues. In Symposium on Eye Tracking
Research & Applications. ACM, 15–22.

[33] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what
you did last summer: an investigation of how developers spend their
time. In International Conference on Program Comprehension. IEEE,
25–35.

[34] Martez E Mott, Shane Williams, Jacob O Wobbrock, and Mered-
ith Ringel Morris. 2017. Improving dwell-based gaze typing with
dynamic, cascading dwell times. In CHI Conference on Human Factors
in Computing Systems. ACM, 2558–2570.

[35] Gail C Murphy, Mik Kersten, and Leah Findlater. 2006. How are Java
software developers using the Elipse IDE? IEEE Software 23, 4 (2006),
76–83.

[36] Brad A Myers, Andrew J Ko, Thomas D LaToza, and YoungSeok Yoon.
2016. Programmers are users too: human-centered methods for im-
proving programming tools. Computer 49, 7 (2016), 44–52.

[37] Aanand Nayyar, Utkarsh Dwivedi, Karan Ahuja, Nitendra Rajput,
Seema Nagar, and Kuntal Dey. 2017. OptiDwell: intelligent adjust-
ment of dwell click time. In International Conference on Intelligent User
Interfaces (IUI). ACM, 193–204.11

https://tobiigaming.com/products/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/

[38] Jakob Nielsen. 1994. Usability engineering. Elsevier.
[39] Abdul Penkar, Christof Lutteroth, and Gerald Weber. 2013. Eyes only:

navigating hypertext with gaze. In IFIP Conference on Human-Computer
Interaction (INTERACT). Springer, 153–169.

[40] Abdul Moiz Penkar, Christof Lutteroth, and Gerald Weber. 2012. De-
signing for the eye: design parameters for dwell in gaze interaction.
In Australian Computer-Human Interaction Conference (OzCHI). ACM,
479–488.

[41] David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher
Bogart, Margaret Burnett, Bonnie John, Rachel Bellamy, and Calvin
Swart. 2012. Reactive information foraging: an empirical investiga-
tion of theory-based recommender systems for programmers. In CHI
Conference on Human Factors in Computing Systems. ACM, 1471–1480.

[42] David J Piorkowski, Scott D Fleming, Irwin Kwan, Margaret M Burnett,
Christopher Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. 2013. The
whats and hows of programmers’ foraging diets. In CHI Conference on
Human Factors in Computing Systems. ACM, 3063–3072.

[43] Stevche Radevski, Hideaki Hata, and Kenichi Matsumoto. 2016. Eye-
Nav: gaze-based code navigation. In Nordic Conference on Human-
Computer Interaction. ACM, 89.

[44] Javier San Agustin, Henrik Skovsgaard, Emilie Mollenbach, Maria
Barret, Martin Tall, Dan Witzner Hansen, and John Paulin Hansen.
2010. Evaluation of a low-cost open-source gaze tracker. In Symposium
on Eye-Tracking Research & Applications. ACM, 77–80.

[45] Simon Schenk, Marc Dreiser, Gerhard Rigoll, and Michael Dorr. 2017.
GazeEverywhere: enabling gaze-only user interaction on an unmodi-
fied desktop PC in everyday scenarios. In CHI Conference on Human
Factors in Computing Systems. ACM, 3034–3044.

[46] Laura Sesma, Arantxa Villanueva, and Rafael Cabeza. 2012. Evaluation
of pupil center-eye corner vector for gaze estimation using a web cam.
In Symposium on Eye Tracking Research & Applications. ACM, 217–220.

[47] Claude M Steele and Joshua Aronson. 1995. Stereotype threat and
the intellectual test performance of African Americans. Journal of
Personality and Social Psychology 69, 5 (1995), 797.

[48] Ken Neth Yeoh, Christof Lutteroth, and Gerald Weber. 2015. Eyes
and Keys: an evaluation of click alternatives combining gaze and key-
board. In IFIP Conference on Human-Computer Interaction (INTERACT).
Springer.

12

	Abstract
	1 Introduction
	2 Background and Related Work
	Understanding Programmer Navigation
	Gaze as Input for Code Navigation
	Gaze as Input for Other Domains

	3 CodeGazer Design
	Gaze-Based Click Interaction

	4 Comparative Study
	Methodology

	5 Free-Use Study
	Methodology
	Results
	Discussion

	6 Conclusion and Future Work
	References

