Citation for published version:

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Single-source precursors for \(\alpha \)-Fe\(_2\)O\(_3\) thin-films

Matthew K. Surman\(^{a,b}\), Michael. S. Hill\(^b\) and Andrew L. Johnson\(^b\)

\(^a\) Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, BA2 7AY.
\(^b\) Department of Chemistry, University of Bath, BA2 7AY.

E-mail: mks48@bath.ac.uk URL: http://www.bath.ac.uk/csct

Introduction

Photoelectrochemical water-splitting is one method of producing hydrogen from non-hydrocarbon primary energy sources. Photoelectrochemical water-splitting is often performed using metal oxide thin-films\(^1\), which ideally will have:

- A band-gap of sufficient energy for efficient absorption of the solar spectrum
- A band-gap whose valence and conduction band energies bridge the redox potentials of the two relevant half-reactions:

\[
\begin{align*}
4\text{H}^+ + 4\text{e}^- &\rightleftharpoons 2\text{H}_2, & E_{\text{redox}} &= 0.0 \text{ V} \\
\text{O}_2 + 4\text{H}^+ + 4\text{e}^- &\rightleftharpoons 2\text{H}_2\text{O}, & E_{\text{redox}} &= 1.23 \text{ V} \\
2\text{H}_2\text{O} &\rightarrow 2\text{H}_2 + \text{O}_2, & E_{\text{redox}} &= -1.23 \text{ V}
\end{align*}
\]

Deposition of \(\alpha \)-Fe\(_2\)O\(_3\) thin-films

- \(\alpha \)-Fe\(_2\)O\(_3\) has a band-gap of 1.9-2.2 eV, making it a suitable photo absorber for water-splitting\(^2\).
- Iron is earth-abundant and cheap, making hematite an inherently sustainable material.
- AA-CVD can be used to deposit a wide selection of single-source precursors.\(^3\)

Precursor design

- The iron complex Fe(hfa)\(_2\))TMEDA has been shown to be a useful precursor for the deposition of \(\alpha \)-Fe\(_2\)O\(_3\).\(^4\)
- At elevated temperatures the TMEDA ligand is labile, making the precursor involatile.
- By modifying the (fac) ligands to bear a pendant donor group we may be able to increase the stability of precursors.

Future work

- A second series of mono-substituted iron (II) complexes will be synthesised using the ketoiminate ligands we have developed.
- Synthesised hematite precursors will be analysed using thermogravimetric analysis.
- Based on the decomposition observed by thermogravimetric analysis, lead precursors will be chosen for deposition by AA-CVD.
- Hematite-thin films will be produced and fully characterised.
- Devices will be manufactured and tested for photoelectrochemical water-splitting.

Conclusions

- A series of ketooiminate ligands and their sodium complexes have been synthesised and fully characterised.
- From the sodium salts, a series of potential single-source precursors for hematite have been synthesised and fully characterised.

References

\[\text{Fe}[\text{NaL}_2]\text{O}_2\text{Fe}[\text{NaL}_2] \]