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Abstract 

Carbon fibre reinforced plastic (CFRP) composites used in spacecraft structures are susceptible to 

delamination, debonds and fibre-cracking that may arise during manufacturing, assembly or in-

service operations (e.g. caused by debris impacts in near-Earth orbital spaceflights). Therefore, in-

situ and real-time health monitoring is necessary to avoid time-consuming and unsafe visual 

inspections performed either on-ground or during extra vehicular activities. In this paper, a recently 

created “smart” CFRP composite structure with embedded piezoelectric (PZT) transducers was used 

to detect multiple areas of artificial delamination and real impact damage of different size using 

nonlinear ultrasound. The electrical insulation of embedded PZTs was achieved by interlacing a dry 

layer of woven glass fibre fabric between the sensor and the CFRP plies before curing. Damage 

detection was successfully demonstrated using both second harmonic generation and nonlinear 

modulation (sidebands) of the measured ultrasonic spectrum. The material nonlinear response at the 

second harmonic and sidebands frequencies was also measured with a laser Doppler vibrometer to 

validate the nonlinear ultrasonic tests and provide damage localisation. Experimental results revealed 

that the proposed configuration of embedded PZTs can be utilised for on-board ultrasonic inspection 

of spacecraft composite parts. 

 

Keywords: Space debris, damage detection, nonlinear ultrasound, composite materials. 
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1 Introduction 

 Modern spacecraft structures are made of carbon fibre reinforced plastic (CFRP) composites 

because of their advantages over metals including high strength-to-weight ratio, fatigue performance, 

design flexibility and corrosion resistance (Francesconi et al., 1994). CFRP material, for example, 

offers increased ballistic protection over aluminium when used as the inner wall in dual-wall 

spacecraft shields (Schonberg, 2017; Schonberg and Walker, 1994). Nevertheless, one of the major 

problems of CFRP is the susceptibility to damage such as micro-cracks and delamination, which may 

arise during manufacturing, assembly or in-service operations. In-service defects, in particular, are 

caused by hypervelocity impacts from micrometeoroids and orbital debris (MMOD) in the near-Earth 

environment (Schonberg, 2010; Yashiro et al., 2013). Because of the high orbital speed of debris 

objects (~10 km/s), even sub-millimetres particles can cause severe damage to the spacecraft 

(Christiansen et al., 2009). Hence, there is a need to provide real-time and in-situ monitoring of 

material defects at any stage of satellite’s component life cycle, especially for the International Space 

Station and future manned space missions. 

 Visual inspection is currently the most common technique for inspecting spacecraft components. 

It relies on the skills and experience of specialised technicians on-ground or astronauts during in-

service extravehicular activities (Christiansen, 2003). In the last few decades, material defect 

identification has also been achieved using a number of different non-destructive evaluation (NDE) 

methods such as those related to linear ultrasonic wave propagation (Amerini and Meo, 2011; Bricks, 

1991), acoustic emission (Cesari et al., 2007; R’Mili et al., 2008; Oskouei and Ahmadi, 2010), 

thermography (Almond et al., 2017; Holland and Reusser, 2016) and X-ray scanning (Moura and 

Marques, 2002; Wright et al., 2008). Among NDE methods, ultrasonic technology has the advantage 

to be simply converted into structural health monitoring (SHM) systems by integrating 

acoustic/ultrasonic piezoelectric transducers on the monitored component (Aymerich and Staszewski, 

2010). Therefore, ultrasonic SHM technology can be used for in-service monitoring of spacecraft 

structures and it is the focus of this research work. Nonlinear ultrasound, commonly known in the 

ultrasonic scientific community as nonlinear elastic wave spectroscopy (NEWS) techniques, is a 

family of ultrasonic inspection methods that have shown higher sensitivity to the detection and 

localisation of damage (material flaws and micro-cracks) at early stages of formation than linear 

ultrasound (Boccardi et al., 2018; Su et al., 2006; Zargai et al., 2008). NEWS methods can rely on 

higher harmonic generation (Buck et al., 1978; Ciampa et al., 2017; Fierro and Meo, 2018; Polimeno 

et al., 2010; Scarselli et al., 2017; Solodov, 2014), time reversal (Ciampa and Meo, 2012; Lints et al., 

2017; Liu et al., 2015), wave modulation (Chrysochoidis et al., 2011; Dionysopoulos et al., 2018; 

Fierro and Meo, 2018; Klepka et al., 2014; Pieczonka et al., 2015; Van Den Abeele et al., 2000), 
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phase modulation (Vila et al., 2004), local defect resonance (Post et al., 2017; Segers et al., 2018; 

Solodov et al., 2015), imaging of nonlinear scatters (Hauper et al., 2017; Solodov and Busse, 2012) 

and shift in resonance frequency characteristics (Chakrapani et al., 2015; Polimeno and Meo, 2009; 

Solodov, 2018; Van Den Abeele et al., 2000). 

 Previous researchers (Aymerich and Staszewski, 2010; Klepka et al., 2015; Liu et al., 2018; Tang 

et al., 2011), reported damage detection in composite materials by applying NEWS techniques using 

externally-mounted piezoelectric lead zirconate titanate (PZT) transducers. For spacecraft 

applications though, there is a strong demand for composite structures with integrated PZTs in order 

to (i) provide information about micro-cracks during on-ground and in-service ultrasonic monitoring, 

and (ii) protect the sensors from being directly exposed to the harsh space environment. According 

to the literature (Mall, 2002; Masmoudi et al., 2015; Paget et al., 2002; Su et al., 2006), both CFRP 

and glass fibre reinforced plastic (GFRP) composites can include PZTs between the material layers, 

thus creating “smart” composite structures. However, the integration of PZTs in CFRP composites 

requires electrical insulation of the transducers from the conductive carbon fibres to avoid short 

circuits. In previous studies (Mall, 2002; Paget et al., 2002; Su et al., 2006), insulation was achieved 

by covering the embedded PZTs with layers of polyimide (Kapton) films. However, the embodiment 

of polymeric films such as Kapton and Teflon between the composite plies is a typical method for 

constraining ply adhesion and causing artificial delamination (Wooh and Wei, 1999). Consequently, 

the structural integrity of the composite can be significantly affected by the use of polymeric films. 

 An innovative material processing technique for the electrical insulation of embedded PZTs in 

CFRP plates was proposed by the authors in a recent study (Andreades et al., 2018). In particular, a 

dry layer of woven E-glass fibre fabric was inserted between the conductive surface of the PZTs and 

the CFRP plies before curing process. This “smart” CFRP composite was subject to mechanical tests 

including compression, long-beam and short-beam three-point bending tests. An analysis of variance 

(ANOVA) was conducted on the experimental results and proved that the mean values of 

compressive, flexural and interlaminar shear strength were equal to the means of plain CFRP 

specimens. In addition, preliminary NEWS experiments were carried out on the “smart” CFRP 

composite containing “artificial” delamination simulated by double Teflon patches. The experimental 

results revealed that the sensitivity to damage based on the amplitude (𝐴2) of second harmonic 

generation was nearly twice as high as the sensitivity of surface-bonded PZTs. 

 The aim of this paper is to further examine the capability of the “smart” CFRP composite with 

embedded PZTs to detect multiple areas of damage with various dimensions and defect nature. For 

this scope, NEWS experiments were conducted on two damaged CFRP laminates; one plate with two 

“artificial” delamination defects (i.e. polymeric film patches) and one plate with real impact flaws. 
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Artificial damage is generally characterised by debonding at a single interface (in-plane delamination) 

similarly to delamination caused by manufacturing errors (Smith, 2009). Impacts, on the other hand, 

usually generate debonding, fibre breakage and matrix cracking at multiple interfaces in the form of 

through-thickness damage within the laminate (Soutis and Curtis, 1996). In the first part of this paper, 

defect detection was accomplished based on the second harmonic generation method, whereas in the 

second part damage identification was achieved using the nonlinear wave modulation technique (see 

Section 2). In both experimental parts, damage detection at the chosen wave propagation frequency 

was investigated by scanning the plate surface with a laser Doppler vibrometer (LV) and recording 

the out-of-plane vibrational velocity surrounding the damage location. The layout of the paper is as 

follows. In Section 2, the second harmonic generation and the nonlinear wave modulation methods 

are explained. In Section 3, the manufacture and the damage assessment of CFRP plates along with 

the NEWS and the LV experiments are outlined. In Section 4, the results from the NEWS and the LV 

tests are presented. In Section 5, the conclusions of this paper are discussed.  

 

2 Theory 

2.1 Second Harmonic Generation 

 As it is explained by Melchor et al. (2019), the propagation of elastic waves at specific frequencies 

(single-frequency excitation) through composite materials with cracked matrix, debonded fibres or 

delaminated plies forces the damaged layers to either oscillate (“clapping” motion) or move relative 

to each other (“rubbing” motion). This leads to the generation of nonlinear wave effects that can be 

detected in the form of higher harmonics (even and odd multiples) of the input signal frequency 

(Ciampa et al., 2017). In particular, second harmonic generation has been reported as the most 

efficient NEWS feature for damage identification (Landau and Lifshitz, 1986; Munoz et al., 2015). 

This can be explained by considering the second order nonlinear stress-strain relationship (from 

Hooke’s law) 

      𝜎 = 𝐸𝜀 +
𝛦𝛽
2

𝜀2      (1) 

and the one-dimensional (1D) elastodynamic wave equation 

      𝜌
𝜕

2
𝑢(𝑥,𝑡)

𝜕𝑡2 =
𝜕𝜎

𝜕𝑥
 ,     (2) 

where 𝐸 is the Young’s modulus, 𝜀 =
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
 is the strain, 𝛽 is the second order nonlinear coefficient 

(parameter), 𝜌 is the material density, 𝑢(𝑥, 𝑡) is the displacement (Amura et al., 2011). By substituting 

equation (1) into equation (2), yields 

    
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
− 𝑐2 𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
= 𝛽𝑐2 (

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
) (

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 ),   (3) 
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where 𝑐 = √𝐸/𝜌 is the longitudinal wave speed. Equation (3) can be then solved using a first-order 

perturbation method, which has the general solution 

      𝑢(𝑥, 𝑡) = 𝑢(1)(𝑥, 𝑡) + 𝑢(2)(𝑥, 𝑡) ,    (4) 

with 𝑢(1) ≫ 𝑢(2). Both linear, 𝑢(1)(𝑥, 𝑡), and nonlinear, 𝑢(2)(𝑥, 𝑡), terms can be rewritten as 

    𝑢(𝑥, 𝑡) = 𝐴1 sin(𝑘𝑥 − 2𝜋𝑓𝑡) −
𝛽𝑘

2
𝐴1

2

8
𝑥 cos[2(𝑘𝑥 − 2𝜋𝑓𝑡)] ,  (5) 

where 𝐴1 is the amplitude of the fundamental frequency harmonic, 𝐴2 =
𝛽𝑘

2
𝐴1

2

8
𝑥 is the amplitude of 

the second harmonic wave associated with the nonlinear material behaviour, 𝑥 is the wave 

propagation distance within the material and 𝑘 is the wave number (Amura et al., 2011). 

 

2.2 Nonlinear Wave Modulation 

 In the case of multiple-frequency excitation of damaged composite materials, further nonlinear 

wave effects are generated due to the interaction of the propagating waves with the damage. When a 

damaged material is excited using two continuous periodic waves, one with a low frequency (𝑓1) and 

one with a high frequency (𝑓2), the damage behaves as a multiplier and mixer of the two excitation 

frequencies. The amplitude of the high frequency wave is modulated by the low frequency one and, 

in addition to higher harmonics, intermodulation products (sidebands) can be generated in the 

frequency spectrum of the received signal at frequencies equal to 𝑓2 ± 𝑛𝑓1, where 𝑛 is a positive 

integer (Fierro, 2014). Undamaged (intact) materials are, instead, characterised by a linear response 

as the elastic waves are not interacting with any damage. Therefore, only the fundamental frequencies 

(𝑓1 and 𝑓2) are detectable in the frequency domain of the received signal (Meo et al., 2008). Nonlinear 

wave modulation method has also been proved to be effective for defect detection (Chrysochoidis et 

al., 2011; Dionysopoulos et al., 2018; Klepka et al., 2014; Pieczonka et al., 2015). Similarly to the 

second harmonic generation, equation (3) can be solved with dual periodic excitation using the first-

order perturbation method, and the amplitudes 𝐴+ and 𝐴− associated to each sideband 𝑓+ = 𝑓2 + 𝑓1 

and 𝑓− = 𝑓2 − 𝑓1 can be expressed as  

       𝐴+ =
𝛽+ 𝑘𝑓1

 𝑘𝑓2 𝐴𝑓1
 𝐴𝑓2

4
𝑥      (6)  

and      𝐴− =
𝛽− 𝑘𝑓1

 𝑘𝑓2 
𝐴𝑓1

 𝐴𝑓2

4
𝑥    (7) 

where 𝐴𝑓1
and 𝐴𝑓2

 are the amplitudes and 𝑘𝑓1
and 𝑘𝑓2

 are the wave numbers of the input signals at 𝑓1 

and 𝑓2 frequencies, respectively, and 𝛽+ and 𝛽− are the nonlinear parameters (Fierro and Meo, 2015). 
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3 Experimentation 

3.1 Manufacture of CFRP Plates 

 A total of three carbon/epoxy (T800/M21) laminates with dimensions of 180 x 140 x 3.5 mm 

were used in the experiments of this study. The laminates were made from unidirectional prepreg 

layers with a [90/0/90/0/90/0]s lay-up, and they were cured in an autoclave for 180 minutes at 

a pressure of 0.7 MPa and a temperature of 150°C with a ramp rate of 3°C/min. As illustrated in 

Figure 1, all three plates included two embedded PZTs (ferroelectric soft piezo material PIC 255) of 

6 mm diameter and 0.3mm thickness, for the propagation of ultrasonic elastic waves. A 10 x 10 mm 

layer of woven E-glass fibre fabric was also interlaced between the top surface of the PZTs and the 

CFRP plies, for electrical insulation. The PZTs were directly placed between the 8th and the 9th 

layers from the bottom. The thin wires from to the positive and negative electrodes of the PZTs were 

connected to 50 Ω straight Bayonet Neill-Concelman (BNC) plugs through low noise cables 

(RG174/U). The wires were directed outside the top surface of the plate through small slits in the 

fibre direction of every CFRP ply (i.e. without cutting any fibres). 

 

 
(a) 

 
(b) 

 

Figure 1: Design of undamaged CFRP plate - top view (a) and stacking sequence (b). Dimensions in mm. Not to scale. 

 

3.2 Damage Assessment and Sensor Functionality 

 The first laminate (Figure 1) was kept intact and used as the reference plate. The second laminate 

(Figure 2a) included two double-layered patches of different size to cause controlled artificial in-

plane delamination. Each patch consisted of two square layers of 12 μm thick Fluorinated Ethylene 

Propylene (FEP) film stacked one on top of the other. The FEP patches were inserted at the same 

plane of the PZTs (between layers 8 and 9 from the bottom). The third plate (Figure 2b) was impacted 

at its centre with a hemispherical indentor of 20 mm diameter. The damage was initially created with 
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an impact energy of 10 J and, once the experimental detection was completed, the damage size was 

increased with another impact of higher energy (15 J). In the following paragraphs, the first plate is 

referred as the undamaged (UD) laminate, and the second and third plates as the artificially damaged 

(AD) and the impact damaged (ID) laminates respectively. 

 It must be noted that the capacitance of the PZTs was measured with the use of a Keithley 2110 

5 1/2 multimeter before their embedment in the composite plates, after the curing process of the 

plates, and after impacting the ID-laminate. In all cases, the capacitance was the same (1.54±0.02 nF) 

suggesting that the PZTs were functional. This is a typical sensor inspection method in literature 

(Konka et al., 2012; Yoo et al., 2014). In fact, any noticeable drop in capacitance would indicate 

cracking or depoling of the transducer from either the high curing pressure and temperature or the 

applied impact load. 

 

 
(a) 

 

(b) 

 

Figure 2: Design of artificially damaged plate (a) and impact damaged plate (b). Dimensions in mm. Not to scale. 

 

 Prior to performing any experiment, the size of the damage in AD- and ID- plates was evaluated 

by conducting stepped linear C-scans using a phased array system (Diagnostic Sonar Ltd) equipped 

with a 5 MHz probe containing 128 elements. More specifically, the C-scans were carried out in steps 

of 12 elements (single cycle pulse, element pitch of 0.52 mm) and the damage was assessed based on 

the signal amplitude. The front face of the probe included a 30 mm acrylic (Perspex) delay line and 

coupling was achieved using ultrasonic gel. As shown in Figure 3 and Figure 4, the areas at which 

delamination was detected matched the positions of the double FEP patches and the impact damage. 

In the AD-plate, the two defects had a similar size to that of the double FEP patches. In the ID-plate, 

the initial damage diameter (10 J impact) was approximately 18 mm, and the final diameter (15 J 

impact) was around 32 mm. 
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Figure 3: Ultrasonic C-scan of the small (a) and the big (b) artificial damage in AD-laminate and the 

associated B-scans (c), (d) - Images not to scale. 

 

 

Figure 4: Ultrasonic C-scan of the 10 J (a) and the 15 J (b) impact damage in ID-laminate and the 

associated B-scans (c), (d) - Images not to scale. 

 

3.3 Experimental Set-up and Method 

3.3.1 NEWS Experiments 

 Starting from the NEWS experiments based on the second harmonic generation method, in each 

CFRP plate PZT1 was used for the transmission and PZT2 for the reception of continuous periodic 

ultrasonic signals (i.e. single-frequency excitation). As illustrated in Figure 5 below, the input signal 

was generated from an arbitrary waveform generator (TTi TGA12104) and its amplitude was 

increased using a voltage amplifier (Falco Systems WMA-300). The received signal was monitored 

in the time and frequency domains at a sampling frequency of 2 MHz and a total acquisition time of 

50 ms using an oscilloscope (PicoScope 4424). Initially, in the AD- and ID-laminates the input signal 

frequency of PZT1 was swept between 20 and 500 kHz to determine the two frequencies 
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corresponding to the highest 𝐴2 amplitudes of the received signal. In the case of the AD-plate, the 

two chosen frequencies were very likely to be associated with the excitation of the two FEP patches, 

whereas for the ID-plate, the chosen frequencies were related to the excitation of the damage caused 

initially with 10 J, and then with 15 J of impact energy. At these four frequencies, the amplitude of 

the fundamental (𝐴1) and 𝐴2 harmonics was recorded for input signal voltages of 60, 70, 80, 90 and 

100 V. It must be noted that the chosen input signal frequencies would not necessarily correspond to 

the highest 𝐴1 amplitude as this is highly dependent on the excitation of the PZT1 and the tested 

material. For clarity, Table 1 summaries the input frequencies and voltages used with the PZT1. The 

UD-plate was also excited at the same four frequencies and its ultrasonic response was compared to 

the damaged samples. 

 

 

Figure 5: Illustration of the set-up used in NEWS experiments. 

 

Table 1: Input signal frequencies and voltages used in NEWS experiments for second harmonic generation. 

CFRP 

Plate 

Sweep analysis 

freq. band - PZT1 

(kHz) 

Input volt. 

to PZT1 

(V) 

Chosen damage 

excitation freq.  

(kHz)  

AD 20-500 60, 70, 80, 90, 100 f1=104.5, 184.7 

ID 20-500 60, 70, 80, 90, 100 f1=128, 310 

 

 For the NEWS experiments associated with the nonlinear wave modulation technique, both 

embedded PZTs were used to excite the ID- and UD-laminates (i.e. multiple-frequency excitation). 

In each plate, PZT1 was used to send ultrasonic waves at low frequency (𝑓1) whereas PZT2 enabled 

high frequency (𝑓2) transmission. According to Figure 5, PZT1 was connected to a channel of the 

waveform generator through the Falco Systems WMA-300 amplifier and PZT2 was powered by a 

separate channel through an ISI-SYS HVA-B100-2 amplifier. The propagating waves were received 

using an external acoustic transducer (McWade 300 kHz NS3303) connected to the oscilloscope. In 
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the ID-plate, PZT1 was swept between 10-50 kHz and the 𝑓1 values associated with the five highest 

peaks of the received signal amplitude were recorded. For every 𝑓1 value, PZT2 was swept between 

100-300 kHz and the frequency spectrum of the received signal was examined in order to determine 

the combination of 𝑓1 and 𝑓2 which results in the strongest wave modulation, based on the amplitude 

of the sidebands. By keeping the input voltage to PZT2 constant at 50 V and increasing the input 

voltage to PZT1 from 60 to 100 V in steps of 10 V, the received signal amplitude was recorded at 𝑓1, 

𝑓2 and 𝑓2 ± 𝑓1 frequencies. A summary of the input signal frequencies and voltages to the PZT1 and 

PZT2 in the ID-plate is provided in Table 2, together with the frequencies found to cause damage 

excitation. The UD-plate was also subject to multiple-frequency excitation using the chosen 𝑓1 and 

𝑓2 frequencies. 

 

Table 2: Input signal frequencies and voltages used in NEWS experiments for nonlinear wave modulation. 

CFRP 

Plate 

Sweep analysis 

freq. band - PZT1 

(kHz) 

Input volt. 

to PZT1 

(V) 

Sweep analysis 

freq. band - PZT2 

(kHz) 

Input volt. 

to PZT2 

(V) 

Chosen damage 

excitation freq.  

 (kHz)  

ID 10-50 60, 70, 80, 90, 100 100-300 50 
f1=18 

f2=192 

 

3.3.2 LV Experiments 

 In both NEWS experiments with second harmonic and sidebands generation, a series of LV 

experiments were performed to examine whether the generation of second harmonics and the 

presence of sidebands at the chosen input signal frequencies was actually attributed to the damage 

excitation. As shown in Figure 6, ultrasonic waves were transmitted from the same PZTs as described 

in Section 3.3.1, using the same configuration of arbitrary waveform channels and amplifiers. Second 

harmonic generation in the AD- and ID-plate was studied by measuring the out-of-plane vibrational 

velocity of the plate surface at 𝐴1 and 𝐴2 frequencies, using the LV scanning head (Polytec PSV-

400). The input signal voltage applied to PZT1 was fixed at 300 V. Similarly, nonlinear wave 

modulation in the ID-plate was investigated by applying input voltages of 100 V and 300 V to the 

PZT1 and PZT2 respectively, and recording the vibrational velocity of the plate surface at 𝑓1, 𝑓2 and 

𝑓2 ± 𝑓1 frequencies. 
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Figure 6: Illustration of the set-up used in LV experiments. 

 

4 Results and Discussion 

4.1 Second Harmonic Generation Experiments 

 As explained in Section 3.3.1, by sweeping the frequency of PZT1 in the AD-plate from 20 to 

500 kHz, the two highest 𝐴2 amplitudes were observed at 104.5 kHz and 184.7 kHz frequencies. 

Hence, these two were considered as the frequencies causing the strongest excitation of the two FEP 

patches. Similarly, in the ID-plate, the two input signal frequencies related to the excitation of the 10 

J and the 15 J impact damage were chosen at 310 kHz and 128 kHz, respectively, based on the 𝐴2 

amplitude. After exciting the UD-laminate at these four frequencies, 𝐴2 harmonics were not found in 

the frequency spectrum, thus verifying that the plate was intact. An example is presented in Figure 7. 

Additionally, the 𝐴1 amplitude in the case of the UD-plate was always greater than in the damaged 

laminates. That was expected as in the damaged laminates part of the transmitted wave energy was 

transferred from the fundamental input wave to the nonlinear harmonic one. Moreover, as can be seen 

in Figure 8 and Figure 9, the results obtained from the AD- and ID-plates indicated that by increasing 

the input voltage to PZT1 from 60 to 100 V, the received signal amplitude at 𝐴1 and 𝐴2 frequencies 

was also rising. The 𝐴2 amplitude was around two orders of magnitude smaller than the 𝐴1 amplitude, 

in both plates. 

 Furthermore, three-dimensional plots of the results obtained from the LV experiments on AD- 

and ID-laminates (Figure 10 and Figure 11) confirmed that the out-of-plane vibrational velocity was 

always higher at the location of the impact. The 𝐴2 amplitude was about an order of magnitude 

smaller than the 𝐴1 amplitude. The LV experiments on the AD-laminate showed that the input signal 

at 104.5 kHz caused excitation only to the big FEP patch and, at 184.7 kHz, only to the small FEP 

patch. Similarly, the 10 J impact damage in the ID-laminate was only excited at 310 kHz, and after 
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the second impact of 15 J only at 128 kHz. This verified the correct selection of damage excitation 

frequencies. 

 

 

Figure 7: Frequency spectrum of the received signal in the UD-laminate and in the AD-laminate - Input signal of 60 V 

at 184.7 kHz. 

 

(a) (b) 

Figure 8: Amplitude of the received signal in AD-laminate at the fundamental (a) and second (b) harmonic frequencies 

- Input signals of 60, 70, 80, 90, and 100 V at 104.5 and 184.7 kHz. 

 

 

(a) (b) 

Figure 9: Amplitude of the received signal in ID-laminate at the fundamental (a) and second (b) harmonic frequencies - 

Input signals of 60, 70, 80, 90, and 100 V at 128 and 310 kHz. 
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Figure 10: 3D representation of the out-of-plane vibrational velocity around the location of the small (a) and the big (b) 

artificial damage at the fundamental and second harmonic frequencies. 

 

 

 

Figure 11: 3D representation of the out-of-plane vibrational velocity around the location of the 10 J (a) and the 15 J (b) 

impact damage at the fundamental and second harmonic frequencies. 

 

4.2 Nonlinear Wave Modulation Experiment 

 According to the process described in Section 3.3.1 and based on the amplitude of the sidebands 

in the ultrasonic response of the ID-plate, the effect of nonlinear wave modulation was evaluated by 

transmitting periodic waves from PZT1 at 𝑓1=18 kHz and from PZT2 at 𝑓2=192 kHz. The UD-

laminate was also subject to multiple-frequency using the same 𝑓1 and 𝑓2 frequencies. For an input 

voltage of 60 V applied to PZT1 and 50 V applied to PZT2, the received signal amplitude at 18 kHz 

and 192 kHz was lower in the case of the ID-plate (Figure 12). As previously explained, that was 

reasonable because an amount of the input wave energy was transferred from the 𝑓1 and 𝑓2 signals to 

the sidebands. In addition, first-order sidebands were only presented in the spectrum of the ID-

laminate at 174 kHz (𝑓− = 𝑓2 − 𝑓1) and 210 kHz (𝑓+ = 𝑓2 + 𝑓1), and this confirm its nonlinear 

response under wave modulation. Also, in the ID-plate, by increasing the input voltage to PZT1 from 

60 to 100 V and keeping the input voltage to PZT2 constant at 50 V, the amplitude of the 𝑓1 harmonic 

and the two sidebands increased proportionally by around 70%, whereas the amplitude of 𝑓2 harmonic 
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remained almost constant (Figure 13). This verified that the existence of sidebands was attributed to 

the wave modulation by the 𝑓1 signal. For all five values of the input voltage, the amplitude of 

sidebands was three orders of magnitude smaller than the amplitude of 𝑓2 harmonic and one order of 

magnitude smaller than the amplitude of 𝑓1 harmonic. The amplitude of the right sideband 𝑓+ was on 

average 27% greater than the left one 𝑓−.  

 Regarding to the LV experiments, the three-dimensional plots of the results illustrated in Figure 

14 proved that the out-of-plane vibrational velocity at 𝑓1, 𝑓2, 𝑓+ and 𝑓− was always higher at the 

impact location. These results were in agreement with the results from the NEWS experiments with 

respect to the amplitude difference between the sidebands and the 𝑓1, 𝑓2 harmonics. Particularly, the 

amplitude of the right sideband, 𝑓+, was around 30% greater than the amplitude of the left one, 𝑓−. 

Moreover, the amplitude of both sidebands was two orders of magnitude smaller than the amplitude 

of the 𝑓2 harmonic and one order of magnitude smaller than the amplitude of the 𝑓1 harmonic. Hence, 

the LV experiments confirmed that the detection of intermodulation products was associated with the 

nonlinear elastic behaviour of the damaged plate. 

 

  (a) 

  (b) 

Figure 12: Amplitude of the received signal in the UD-laminate and the ID-laminate at 𝒇𝟏 (a) and at 𝒇𝟐 and 𝒇𝟐 ± 𝒇𝟏 (b) 

- Input signal voltage to PZT2 = 50 V and to PZT1 = 60 V. 
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   (a)    (b) 

Figure 13: Amplitude of the received signal in the ID-laminate at 𝒇𝟏 & 𝒇𝟐 (a) and at 𝒇𝟐 ± 𝒇𝟏 (b) - Input signal voltage 

to PZT2 = 50 V and to PZT1 = 60, 70, 80, 90 and 100 V. 

 

 

Figure 14: 3D representation of the out-of-plane vibrational velocity at the location of the impact damage at 𝒇𝟏, 𝒇𝟐 and 

𝒇𝟐 ± 𝒇𝟏. 

 

5 Conclusions 

 The aim of this study was to demonstrate the damage detection capabilities of directly embedded 

PZTs in CFRP composites with nonlinear ultrasound. PZTs were electrically insulated using a novel 

embedding technique in which the conductive surface of each transducer was covered by a single 

layer of woven E-glass fibre fabric. The ultrasonic response of CFRP plates with areas of artificial 

(polymeric film patches) and real (impact) damage of different size was compared with the response 

of an intact plate, using pairs of embedded PZTs. In the first part of experiments, one PZT was used 

as the transmitter and the other as the receiver of ultrasonic elastic waves. Excitation of each damage 

type (artificial and impact) was achieved at a different input signal frequency. This was detected based 

on the generation of 𝐴2 harmonics in the frequency spectrum of the received signal, and the amplitude 

of these harmonics was found to increase with increasing input signal voltage. Furthermore, by using 
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an LV, the out-of-plane vibration velocity of the laminate surface was also recorded at 𝐴1 and 𝐴2 

frequencies and found to be greater at the damage location. In the second experimental part, nonlinear 

wave modulation was employed for defect detection. The undamaged and impacted plates were 

excited by ultrasonic waves transmitted from both PZTs at different frequencies (𝑓1 and 𝑓2). An 

external transducer was used as the receiver. The nonlinear response of the impacted laminate was 

verified by the presence of first-order sidebands (𝑓+ = 𝑓2 + 𝑓1 and 𝑓− = 𝑓2 − 𝑓1) in the frequency 

spectrum of the received signal, and the amplitude of sidebands was increasing with rising input 

voltage at 𝑓1. Again, by scanning the material response at 𝑓1, 𝑓2, 𝑓+ and 𝑓− frequencies with the LV, 

the out-of-plane vibrational velocity of the laminate surface was confirmed higher at the impact 

location. The experimental results revealed that multiple damage locations of different size in 

composite laminates were successfully detected. Moreover, it was demonstrated that these embedded 

PZTs were capable of detecting in-plane delamination which is usually related to manufacturing 

errors, but also through-thickness damage (multi-layer fibre and matrix cracking) that commonly 

occur after impacts. Therefore, it is concluded that the proposed configuration of embedded PZTs has 

the potential to be used for the development of “smart” composite structures to enable in-situ and 

real-time ultrasonic inspection of satellite components. Future challenges are to implement optimal 

signal transmission/reception and data storage strategies for real satellite operations in order to make 

the proposed NEWS technology with embedded PZT transducers compliant with other spacecraft 

sub-systems. 
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