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Abstract This paper concerns our approach to the EVA2017 challenge, the
aim of which was to predict extreme precipitation quantiles across several si-
tes in the Netherlands. Our approach uses a Bayesian hierarchical structure,
which combines Gamma and generalised Pareto distributions. We impose a
spatio-temporal structure in the model parameters via an autoregressive prior.
Estimates are obtained using Markov chain Monte Carlo techniques and spa-
tial interpolation. This approach has been successful in the context of the
challenge, providing reasonable improvements over the benchmark.

Keywords Bayesian hierarchical modelling · Extreme value analysis ·Markov
chain Monte Carlo · Precipitation extremes · Spatio-temporal dependence

1 Introduction

Recently, there have been numerous examples of devastating rainfall events
- these include Storm Desmond, which hit northern England and Scotland,
and Hurricane Harvey which affected the southern United States. In both
cases, a large amount of damage and disruption was caused by severe flooding.
By better understanding the probability of extreme rainfall events occurring,
we can prepare more suitably for these potential flood events by adapting
infrastructure appropriately.

The challenge data is comprised of precipitation readings for multiple we-
ather stations in the Netherlands; the training set consists of data collected
between 1972 and 1995 whilst the validation set was collected from 1996 to
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2016, with different numbers of observations for each site. A detailed descrip-
tion of the data is provided in Wintenberger (2018). The aim of the competition
is to predict extreme quantiles for the years 1996 to 2016 and predictions are
assessed via a predefined error metric; see Wintenberger (2018).

There exists a rich literature within the extreme value theory framework
for modelling precipitation extremes. A classical approach is to utilise block
maxima. Suppose that we have independent and identically distributed (i.i.d.)
random variablesX1, . . . , Xn, withMn = max{X1, . . . , Xn}. When normalised
appropriately, and as n→∞, Mn follows a generalised extreme value (GEV)
distribution (Fisher and Tippett, 1928), which has distribution function

F (x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
, (1)

where {z}+ = max{0, z}, and has parameters (µ, σ, ξ) ∈ R × R+ × R, corre-
sponding to location, scale and shape parameters respectively.

An alternative technique is to follow Pickands (1975) and use exceedan-
ces of a threshold u. For some suitably large u, the conditional distribution
function of (Xi − u) | (Xi > u) is approximately given by the generalised
Pareto distribution (GPD), which has the form

H(x) = 1−
(

1 +
ξx

ψ

)− 1
ξ

+

, x > 0, (2)

where (ψ, ξ) ∈ R+ × R are the scale and shape parameters respectively. In
the context of the challenge at hand, both the GEV and GPD may be fitted
separately at each site to give a model fit whereby any dependence is ignored.

By considering the physical process of rainfall, one can expect that nearby
locations will exhibit similar behaviour, which invites improved inference by
sharing information across sites. One popular method for the modelling of spa-
tial extremes is to use max-stable processes (Brown and Resnick, 1977; Smith,
1990; Schlather, 2002). These arise as the limiting process from replications
of spatial processes which have been suitably normalised (de Haan, 1984) and
have been used to analyse rainfall data previously; see, for example, Davison
et al (2012) and Reich and Shaby (2012). However, such processes assume de-
pendence of the extremes across sites; an investigation of pairwise dependence
using scatter plots showed no clear evidence for this behaviour across the spa-
tial grid. Moreover, max-stable models are difficult to fit and this would have
been further impeded by the lack of data available at some sites.

Another approach is to impose spatial structure on the model parameters
via a Bayesian hierarchical model; this is closer in nature to the method we
propose. Spatial hierarchical models have been used previously to model spa-
tial count data (Diggle et al, 1998) and, more recently, have been utilised in
extreme value analysis. Cooley et al (2007) describe a model, applied to rain-
fall data, whereby a GPD is fitted at the sampling locations, and allow the
model parameters to vary according to a spatial process structure - in particu-
lar the authors use a Gaussian process for this. A spatio-temporal hierarchical
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modelling method for extreme events is given by Sang and Gelfand (2009),
who apply their methods to precipitation data.

In this paper, we define a Bayesian hierarchical model which accounts for
the spatial and seasonal variation in the data. Our approach captures the fre-
quency of non-zero events of precipitation and introduces an extremal mixture
model, combining Gamma and generalised Pareto distributions, for positive
amounts of rainfall. Spatio-temporal structure in the parameters for the ex-
tremal mixture model is imposed via a separate autoregressive prior for each
of them, which takes the form of a Gaussian Markov random field. Model esti-
mates are then obtained using spatial interpolation and Markov chain Monte
Carlo (MCMC) techniques. Cooley et al (2007) defines a similar approach for
continuous space, whereas we consider a finite number of sites and additionally
incorporate seasonality.

The remainder of this article is structured as follows. Section 2 details our
Bayesian framework and its estimation: in Sections 2.1 and 2.2 respectively, we
specify our likelihood and prior models; in Section 2.3, we discuss parameter
estimation. In Section 3, we discuss the results obtained using our method for
modelling rainfall extremes, and highlight areas for potential improvements.

2 Methodology

2.1 Likelihood

Interest lies in modelling the daily rainfall amounts for each site and month.
Due to seasonality in the rainfall data, the weak extremal dependence of the
daily amount of rainfall across sites and the nature of the challenge, we model
each month and site individually. Specifically, daily rainfall events within a
month at a site are assumed to be i.i.d. Our model is motivated by an analysis
of the sites for which data have been recorded for at least five years.

Let Rj,m denote the random variable corresponding to the daily rainfall
amount at site j for a day in monthm = 1, . . . , 12. We consider the transformed
random variable

R̃j,m = log (1 +Rj,m) . (3)

Wadsworth et al (2010) show that such a transformation may increase the
rate of convergence of the distribution tails to an extreme value form, in par-
ticular for distributions which appear as heavy-tailed as our rainfall data.
Predictions on the extreme quantiles of Rj,m are later obtained in Section 3
by reversing this transformation. We note that the transformed observations
are non-negative and an observation of Rj,m = 0 remains unchanged.

We infer on the distribution of R̃j,m by defining a hierarchical model. The
first model component considers occurrences of non-zero amounts of rainfall
on a day, R̃j,m > 0, and we denote their probability by pj,m. A temporal
trend in pj,m was investigated, but we did not find evidence of this for any

site. Next, we consider the distribution R̃j,m | (R̃j,m > 0). There exists a rich
literature on modelling positive rainfall amounts, such as Wilks (2006), So
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et al (2015) and Yunus et al (2017). By investigating QQ plots, we find that
an estimated Gamma distribution works quite well for non-extreme amounts
of precipitation. However, most of the observed monthly extremes are not
captured well.

To improve the model fit, we define an extremal mixture model (Fri-
gessi et al, 2002; Behrens et al, 2004; MacDonald et al, 2011) which com-
bines the Gamma distribution with a GPD as defined in (2). Given a thres-
hold uj,m, R̃j,m | (R̃j,m ≤ uj,m) follows a truncated Gamma distribution,

while R̃j,m | (R̃j,m > uj,m) is generalised Pareto distributed. Formally, let
Gj,m ∼ Gamma (αj,m, βj,m) with shape αj,m and rate βj,m, and Hj,m ∼
GPD (ψj,m, ξj,m) with scale ψj,m = ψ̃j,m − ξuj,m and shape ξj,m. The repara-
metrisation of the scale parameter in Hj,m removes the effect of the threshold
on inference and has been used in previous studies (Fawcett and Walshaw,
2006). Then, the cumulative distribution function of R̃j,m | (R̃j,m > 0) is
given by

P
(
R̃j,m > r | R̃j,m > 0

)
=

{
P (Gj,m > r) r ≤ uj,m,
P (Gj,m > uj,m)P (Hj,m > r − uj,m) r > uj,m.

(4)
Combining the model components defined above, the event R̃j,m > r, for

r > uj,m, occurs with probability

P
(
R̃j,m > r

)
= pj,mP (Gj,m > uj,m)P (Hj,m > r − uj,m) .

Due to the empirical mean of Rj,m | (Rj,m > 0) being similar for all j, we
fix αj,m, m = 1, . . . 12, in the Gamma distribution to be constant across sites
and, thus, refer to this parameter as αm in the rest of this paper.

2.2 Prior model

Prior selection is critical in this analysis due to the varying degrees of data
availability at each site; inference at sites where data are lacking or unavaila-
ble will be dominated by the prior distribution. We considered uninformative,
improper Uniform priors on logαm, log βj,m, log ψ̃j,m and ξj,m. However, these
produced unrealistic estimates of ξj,m, mostly due to the difficulty in estima-
ting ξj,m given short data records. Studies on extreme rainfall often feature
the prior used in Martins et al (2000) which constrains the shape parameter
to be in a sensible interval.

We instead introduce a prior aimed at exploiting the spatial and seasonal
structure of the model parameters. We assume that parameters for neighbou-
ring sites and adjacent months are likely to be similar. Explicitly, we propose
for φj,m, an arbitrary parameter at site j and month m, that

φj,m ∼ N

(
φj,m−1 + φj,m+1 +

∑
j′ 6=j φj′,mdj,j′

2 +
∑
j′ 6=j dj,j′

,
1

(2 +
∑
j′ 6=j dj,j′)τφ

)
, (5)



A Bayesian spatio-temporal model for precipitation extremes 5

where τφ > 0 denotes the precision for parameter φ, common to all sites and
months. The constant dj,j′ ≥ 0 describes our prior belief concerning the de-
gree of similarity of φj,m and φj′,m. This prior is a variant of the Intrinsic
Autoregressive (IAR) prior as described in Banerjee et al (2004) and allows
us to pool information across neighbouring sites and months, which helps to
produce more stable parameter estimates and to reduce uncertainty in these
estimates. The cyclical nature of the sequence of months means that values 0
and 13 for m−1 and m+1 should be replaced by the values 12 and 1 respecti-
vely in order to ensure that December and January are correctly identified as
being adjacent months. We define a flat, conjugate Gamma(1, 0.001) prior for
τφ.

2.3 Threshold selection and estimation

We detail our approach to estimate the model defined in Sections 2.1 and 2.2
in the following. First, we consider pj,m, which can be estimated independently
from the remaining parameters due to the hierarchical model structure. Next,
the selection of the thresholds uj,m is described. Finally, we infer on the re-
maining model parameters via an MCMC algorithm which is outlined at the
end of this subsection.

For sites with more than five years of data, we estimate pj,m empirically
due to the high number of observations available. We infer on the remaining
sites via spatial interpolation. Let J denote the indices of the sites with at least
five years of data. We further define a pairwise weighting between arbitrary
sites j and j′ by introducing the weight

dj,j′ = exp (−‖xj − xj′‖) , (6)

where xj denotes the longitude and latitude coordinates of site j and ‖·‖ cor-
responds to the Euclidean distance. As the study region is small, the curvature
of the earth is negligible and the Euclidean distance in the two-dimensional
space is close to the true distance between the sites. Then for a site j /∈ J ,
the estimate p̂j,m for pj,m is derived as

p̂j,m =
∑
j′∈J

dj,j′ p̂j′,m. (7)

The weights dj,j′ defined in (6) are identical to the ones which we set in the
prior density (5). As the weighting function (6) produces larger values for
locations close together, a higher weight is given to neighbouring sites.

We now consider how to select the thresholds, uj,m, of our model (4). These
thresholds must be large enough for the asymptotic argument of Pickands
(1975) to approximately hold whilst also low enough so that we have a suf-
ficient number of observations for reliable model fitting. We use the classical
fixed threshold approach as described in Coles (2001) for the sites in J . Speci-
fically, by inspection of threshold stability plots, we find the smallest threshold
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above which the GPD is an appropriate model for the exceedances. For the
other sites, we estimate these thresholds in an equivalent manner to (7). Other
threshold selection methods are outlined by Scarrott and MacDonald (2012).

The parameters of our Gamma-GPD mixture model are estimated using
MCMC methods. We sample from the posterior distribution using a Metropolis-
within-Gibbs scheme. In particular, proposal values of each parameter are
generated sequentially from a Gaussian distribution and accepted with a pro-
bability defined as the posterior ratio of the proposed state relative to the
current state of the Markov chain. The hyperparameter τφ in (5) is upda-
ted by sampling from the full conditional Gamma posterior as described by
Knorr-Held (2003). We tune the parameters of the MCMC algorithm to ensure
an acceptance rate of 20-25% in accordance with the optimality criterion of
Roberts et al (1997).

3 Results and Discussion

We begin this section by considering the results of the MCMC implementation.
We run our MCMC chains for 20000 iterations, and discard the first 5000
iterations as burn-in to aid convergence. Examples of the chains produced are
provided in Figure 1 for scale and shape parameters ψ10,6 and ξ10,6. Estimates
of these parameters were obtained using the posterior means of their respective
MCMC chains. These plots demonstrate that good mixing has been achieved
for this case; similar results were obtained across other stations and months.
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Fig. 1: MCMC chains for the scale and shape parameters for station 10 in
June.
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We now explore the monthly variation in the estimated model parameters
by focussing on results at four nearby stations. The locations of these stations
are shown in the top left panel of Figure 2. The data set contains over 8000
observations for stations 2 and 5, and no observations for stations 7 and 10.
The top right and bottom left panels of Figure 2 show our estimates of the
scale and shape parameters, respectively, at these four locations. These plots
demonstrate the seasonality in the parameter estimates, with higher values
of both the scale and shape generally corresponding to summer and autumn
months. This effect is maintained in the predicted 0.998 quantiles, shown in
the bottom right panel of Figure 2, which are typically highest between June
and October. A similar trend was observed at other sites, particularly those
with limited data where estimates are more heavily influenced by information
from other locations, due to the spatial smoothing imposed by the model.
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Fig. 2: Location of stations 2, 5, 7 and 10, as well as estimates of the corre-
sponding scale and shape parameters and predicted 0.998 quantiles.

We now consider our estimates in the context of the competition, which
used the quantile loss function by Koenker (2005). In particular, as in the
challenge, we consider the percentage improvement provided by our method
over benchmark predictions. The competition was split into two challenges:
Challenge 1 involved only sites where observations were available, with the



8 A.Barlow, C.Rohrbeck, P.Sharkey, R.Shooter & E.Simpson

benchmark quantile estimates being given by the monthly maxima at each
station; Challenge 2 included predictions for all sites, with the benchmark for
those sites with no data being taken as the average of the quantiles predicted
in Challenge 1 for each month. Our method gave a 59.9% improvement over
the benchmark for Challenge 1, and a 57.7% improvement for Challenge 2.
Table 1 shows the performance of our approach using this same metric, but
with the results separated by month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Challenge 1 57.7 71.1 60.0 65.0 43.7 62.8 65.9 77.0 38.7 38.4 52.2 33.4
Challenge 2 54.4 69.3 57.4 61.9 43.1 60.7 64.2 75.4 37.9 36.4 49.3 31.3

Table 1: Percentage improvement over the benchmark for Challenges 1 and 2
across each month.

As is to be expected, our method performed better in Challenge 1, where
only predictions for sites with observations were considered, across all months.
Looking at these results separately for each month allows us to identify possible
areas for improvement. In particular, the scores for September, October and
December are lower than for other months, suggesting that the method could
be improved by focussing on the modelling of autumn and winter months.
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